
UNIVERSIDADE TÉCNICA DE LISBOA
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Provas conclúıdas em:

Resumo: Tomando como inspiração biológica a proposta de António Damásio

de que os mecanismos das emoções no cérebro são essenciais para uma apro-

priada tomada de decisão, esta tese apresenta um modelo conceptual para um

agente autónomo baseado num paradigma de dupla representação. Est́ımulos

são representados sob duas perspectivas distintas, induzindo dois esquemas

de representação com propriedades diferentes. As consequências deste modelo

são exploradas de várias formas. Primeiro, a aplicabilidade deste modelo à

antecipação, e à formulação de modelos causais sobre o mundo é explorada.

De seguida é apresentado um modelo formal, onde consequências teóricas são

derivadas, inicialmente de um ponto de vista probabiĺıstico, seguido por uma

abordagem baseada na assunção de que as representações acima mencionadas

vivem em espaços métricos. Seguindo esta última abordagem, é proposto um

algoritmo para adaptar a métrica de um desses espaços, tal como fornecer in-

dicações para a melhoria dessa representação, com vista à criação de novas

caracteŕısticas. A formulação deste algoritmo é baseado em técnicas de Mul-

tidimensional Scaling. Resultados utilizando um mundo sintético corroboram

as hipóteses levantadas na proposta deste algoritmo.

Palavras-chave: Emoções, Agentes, Decisão, Inteligência Artificial, Neu-
rociência.
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Title: Emotion-based Mechanisms for Decision Making in Autonomous Agents

Abstract: Taking as biological inspiration the António Damásio proposal that

the brain emotion mechanisms are essential for appropriate decision-making,

this thesis presents a conceptual model for an autonomous agent based on

a double-representation paradigm. Stimuli is represented under two distinct

perspectives, thus inducing two representation schemata with different prop-

erties. The consequences of this model are explored in various forms. First,

the applicability of the model to anticipation, and to the formulation of causal

models about the world are explored. And second, a formal approach is pre-

sented, where theoretical consequences are derived, first from a probabilistic

standpoint, followed by an approach based on the assumption that the above-

mentioned representations live in metric spaces. Following this latter approach,

an algorithm is proposed to adapt the metric for one of the spaces, as well as

to provide a guidance for the improvement of that representation, aiming at

the creation of new features. The formulation of this algorithm is based on

Multidimensional Scaling techniques. Results employing a synthetic world

corroborate the hypotheses raised by the proposal of the algorithm.

Key-words: Emotions, Agents, Decision, Artificial Intelligence, Neuroscience.
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Chapter 1

Introduction

1.1 Motivation

People usually say “don’t get emotional over this matter” in a manner of
warning that emotions threaten to get in the way of the sound analysis of
a situation. In fact, Western culture has been dominated by a Cartesian
view of intelligence as dispassionate reasoning, happening in the realm of a
disembodied mind. And on the contrary, emotions are viewed as something
pertaining to the body, hence outside of the realm of reason. Intelligence and
emotions are thus two things living in different, contradictory worlds.

This perspective has dominated the way Artificial Intelligence (A.I.) has
been progressing towards the goal of machine intelligence. This point of view
became more evident when the field became dominated by research on logic
reasoning. One notable exception can be found in the writings of the Nobel
laureate Herbert Simon, one of the founders of the field. He was perhaps
the first one to propose in 1967 that emotions are an essential mechanism
of intelligent machines [172]. According to Simon, emotions provide an in-
terrupt mechanism, triggered by relevant real-time events, that among other
things, regulates the prioritization of goals on a multiple-goal systems. How-
ever, most of the later research in A.I. disregarded any similar modeling of
emotional phenomena.

This was the state of affairs in A.I. until the neuroscientist António
Damásio brought forward a controversial proposition, in which emotion mech-
anisms play a crucial role in many apparently dispassionate human behav-
iors [55]. More than in the case of reasoning, where the brain can be loosely
seen as the “hardware” on which the mind runs, the body proper holds a
closer relationship with emotions. Elicitation of emotions provokes actual
physiological changes, often externally visible (and measurable). Hence, re-
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2 CHAPTER 1. INTRODUCTION

claiming the role of emotions is also a way of reclaiming the role of the body
in mental activity. In fact, Damásio claims that the body proper is a decisive
actor in most of our intelligent activity. The reason for this is a closer rela-
tionship among the brain regions responsible for reasoning and emoting than
previously thought. Its effects are exerted mostly in a covert, unconscious
fashion, and therefore unnoticeable through introspection. This proposition
thus shakes the foundations of the Cartesian view of a rational mind apart
from a physiological body. Extensive experimental research, conducted by
Damásio and colleagues, has been corroborating their theses. For instance,
patients with lesions on the pathways connecting the “reasoning” and the
“emotional” brains, exhibit severe impairments in their ability to perform
simple common real-life decisions. Although I.Q. tests have shown no mea-
surable deficits, they became unable to deal appropriately with many daily
life matters.

This thesis takes this proposal as a biological inspiration for the formu-
lation of a model for autonomous agents. Then, this model is explored from
various standpoints, including theoretical analysis as well as experimentation
in simple environments.

1.2 Scope

The subject of emotions in the field of A.I. can be broadly divided into two
areas. One area concerns emotions from the standpoint of interaction be-
tween humans and machines. This includes on the one hand, the problem of
recognizing emotions in humans, and how to respond appropriately to them,
and on the other, the problem of machines believably expressing emotions
under appropriate circumstances. The other area concerning emotions in
A.I. acknowledges the internal implications of emotional phenomena for the
internal workings of agents, devoting less attention to its role in interaction.
Of course, this does not draw a rigid boundary between the areas, rather,
research can be found that includes concerns (and methodologies) from both.

The research reported in this thesis takes the latter approach. In ac-
cordance with Damásio’s position, it acknowledges the role of emotions in
decision-making, leaving out concerns about externalization of emotions. So,
instead of modeling emotions as a module to be added to an already func-
tioning cognitive architecture, this thesis addresses emotions at the core of
the decision-making process. Nevertheless, the goal is not to replace existing
A.I. methodologies, but rather to search for new models and new tools that
can bring innovation to the field.

This thesis is about Artificial Intelligence, having in mind the applicabil-
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ity of the model in robots. Although the experiments presented here do not
involve robots, several related efforts supported by the presented model em-
ployed robotic scenarios, both in simulation and in real robots (section 4.7.1
provides a review).

1.3 Objectives

This thesis addresses the formulation of an agent model biologically inspired
by mechanisms involving emotions and decision-making.

At the core of the proposed model lies a double-representation paradigm,
in which the agent represents stimuli internally under two different perspec-
tives: one aiming at fast response, and thus it is a simple, low dimensional
representation, and the other aiming at cognitive activities, such as recogni-
tion, reasoning, planning, and so on, being a complex, high dimensional one.
The model addresses the consequences of associating instances of each one
of these representation schemata. This association is inspired by Damásio’s
Somatic Markers, according to which high level cognitive representations are
associated with low-level body states. Then, a set of mechanisms are hy-
pothesized that deal with these representations: how these representations
are created, how they are associated and stored in the agent’s memory, and
how they are utilized when the agent is faced with new stimuli.

Having formulated the model at a conceptual level, two distinct research
paths are explored. The first one concerns the role of the model in the for-
mulation of causal models about the environment, as well as the interaction
of the agent with it (chapter 5). The drive for this research comes from
Damásio’s proposals regarding the role of emotions in the anticipation of fu-
ture consequences. According to Damásio, this anticipation occurs at two
levels: at the cognitive level, and at the body level.

The second research path picks up one of the hypothesized mechanisms
of the agent model, and explores it from several points of view (chapter 6).
Several goals are sought: (1) to provide a formal approach to this mechanism,
(2) to devise algorithms to explore the benefits in terms of efficiency of the
double-representation paradigm, and (3) to employ one of the representation
schemata to identify relevance on the other, using two strategies: metric
adaptation, and the creation of new features.



4 CHAPTER 1. INTRODUCTION

1.4 Contributions

The conceptual model was initially presented elsewhere [200, 196], and has
evolved since in several directions (a review can be found at the end of chap-
ter 4). This thesis presents and discusses the formulation of the core aspects
of the model: the double-representation paradigm, together with the de-
sirability vector, and the hypothesized associated mechanisms. Then, two
implementations are presented, one dealing with anticipation, and the other
exploring mechanisms to formulate causal models about the agent interaction
with the environment. One of the proposed mechanisms (termed indexing) is
then explored, resulting first in a probabilistic analysis of efficiency. Then, it
is assumed that the internal representation schemata have metric structure.
On the one hand, the efficiency of the indexing mechanism is theoretically
analyzed, followed by experimental results corroborating the analysis. Also
under the metric structure assumption, an algorithm is devised to extract
relevance, and to contribute to the creation of new features, thus improving
the representation schemata employed by the agent. This algorithm is based
on Multidimensional Scaling methodologies.

1.5 Structure

First, some background covering the issue of emotions in several scientific
domains is reviewed in chapter 2. This material has served as inspiration
to most of research performed in the field of A.I. and emotions, which is
reviewed in chapter 3. The conceptual model is presented in chapter 4,
followed by chapter 5, in which some experimentation on anticipation and
on the formulation of causal models is presented. The main contribution
of this thesis can be found in chapter 6, where the indexing mechanism is
explored from several different perspectives. This thesis closes with chapter 7,
in which conclusions of the presented work as well as possible future research
directions are discussed.



Chapter 2

Background

2.1 Introduction

The theme of emotions has attracted the mind of curious inquirers ever since
the early times of civilization. This chapter reviews research on emotions
in several scientific fields, since the early days of Greek Philosophy, up to
recent neurophysiological research. This review begins with an account from
philosophical thought, followed by a review of some relevant physiological
models of emotions. More recently, mostly because of the advent of modern
imaging techniques, neurophysiology has taken a prominent place, aiming
to find the physiological correlates of mental activity, with emotions as an
unavoidable subject. In this latter context, the research of António Damásio
receives extensive treatment, since it constitutes a central inspiration for the
conceptual model underlying this thesis.

2.2 Philosophy

The subject of emotions is clearly not a recent issue in philosophical thought.
In fact, it has been embraced by philosophers from the dawn of philosophy.
Early Greek philosophers, namely Plato and Aristotle, are referred by the
literature as the first ones to discuss the issues of emotions in human life [119,
33]. The discipline of psychology is considered to have been born with these
two Greek philosophers.

Plato’s (427–347 b.c.) account of the universe divides it in two distinct
realms: the realm of the ideas (“Forms”), immaterial and eternal entities,
and the realm of earthly objects, material and imperfect reflections of the
former entities. Human existence is composed, according to Plato, of a mind
and a body, living respectively in the realms of the ideas and of the material

5
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objects. This view is usually referred to as a dualist one, in the sense of
separating mind and body as two independent entities. Moreover, Plato saw
human life as an ongoing struggle between reason and emotion, with each one
reaching for dominance over the other. From this struggle resulted a view
of emotions as something not easily controllable and potentially dangerous.
Therefore Plato gave emotions a negative connotation, as something that
stands in the way of the idealized world of pure rationality.

An opposing view was held by Aristotle (384–322 b.c.): human behavior
resulted from the combination of a higher cognitive and a lower emotional
life. Aristotle positioned emotions in the body proper, considering that our
bodily responses resulted from the way humans view the world around them.
Aristotle saw emotions as a not so negative aspect of life as Plato did. De-
pending on the point of view, Aristotle’s account is seen as a dualist one [33],
because he advocated a separation between mind and body as two separate
entities, but also as non-dualist [119], since Aristotle put reason and affect
at an equal footage.

During the Roman empire, the Stoics and the Epicureans were the two
main philosophical currents whose ideas included issues regarding emotions.
The Stoics (roughly 500–200 b.c.) saw emotions as self-centered phenom-
ena, in the sense of being cognitively induced by one’s beliefs. They treated
the emotions in the context of ethics, where emotional behavior was consid-
ered morally subversive. In a similar way, the Epicureans (roughly 50 b.c.–
a.d. 100) also held a suspicious view of emotions. The Epicureans stood by a
materialistic view of the universe, as composed of nothing more than atoms.
However, while the Stoics saw emotions as a lack of virtue, the Epicureans
saw it as a lack of knowledge [119].

During the seventeenth century, two distinguished philosophers held op-
posite positions with respect to the issue of emotions: Descartes and Spinoza.
René Descartes (1596–1650) centered his philosophy around the idea of an
ultimate reliance on self-awareness of one’s ideas, which is crystallized in the
famous quote “Cogito, ergo sum.” Descartes held a strong dualist view sep-
arating the physical world, governed by mechanical laws, from the spiritual
world, where human reason lives. The connection between these two enti-
ties is fulfilled by an area of the body, somewhere close to the brainstem,
which he called pineal gland. He placed the emotions in the body proper.
The emotional experience — the feelings — occurred in the immaterial soul.
According to Descartes, it is in the domain of the immaterial soul that ev-
erything really important takes place. This hard-edged separation between
mind and body dominated the philosophical thought about emotions until
present times, till the advent of behaviorism [119, 33].

Still during the seventeenth century, Baruch Spinoza (1632–1677) upheld
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a quite different characterization of emotions and mind phenomena. On the
one hand, Spinoza considered mind and body as two aspects of the same sub-
stance — the individual’s unity — corresponding to its internal and external
manifestations, respectively. Mind is therefore an abstraction about a part of
a person. And on the other, desire was seen as a drive for self-preservation,
i.e., a biological predisposition. It is interesting to note how this view pre-
dates Darwin’s evolutionary theories. Only when one is capable of making
reason prevail over emotion, which Spinoza saw as a struggle for survival,
one truly reaches freedom to act. Otherwise, the biological predisposition for
survival will drive ones actions. In sum, for Spinoza, emotions are something
necessary, without which one’s survival is at risk [33].

Out these two contrasting views, it was Descartes’ that was to dominate
philosophical thought for the centuries that followed. Several factors can
be pointed out for this dominance. Firstly, Spinoza’s writing style was less
clear than Descartes’, and secondly, Spinoza’s denial of God went against the
Christian religion, which dominated European culture at that time [119].

2.3 Psychology

The dawn of psychology can be traced back to the late 19th century. Three
movements contributed to the emergence of psychology as an independent
discipline: physiology, which offered an understanding of the nervous system
that did not exist before; psychophysics, which focused on the subjective
experience of sensations, which was beyond physical considerations of bio-
logical sensors; and Darwin’s theory of evolution by natural selection. These
three trends shared an empirical approach to science, based on scientific ex-
perimentation, a legacy of the methods pioneered by Copernicus in the 16th

century [33].

One of the fathers of the field of psychology was William James (1842–
1910), most notably with his book The Principles of Psychology [33] in 1890.
James proposed a counter-intuitive model of emotions. According to James,
an emotion follows the bodily changes provoked by a stimulus, rather than the
bodily changes being a result of having an emotion [102]. He sustained that
certain stimuli directly provoke bodily changes. The feeling of these changes
is what he calls an emotion. For instance, one feels fear after detecting one’s
accelerated heart beat, increased respiration rate, sweaty hands, and so on.
These later bodily changes are a direct consequence of being exposed to a
stimulus. With these ideas, James put emotions at the heart of early days
of psychology’s enterprise, during its early days.

However, James’ account of emotions relied mostly on introspection. In
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the late 19th century physiology was making its first steps. But as scien-
tific progress requires rigorous experimental methods, introspection had to
be ruled out. It was following this line of reasoning that the so-called behav-
iorist movement emerged. J. B. Watson laid the foundations for a movement
that dominated psychology for decades, with his paper “Psychology as a be-
haviorist views it” (1913). According to behaviorism, the only observable
phenomena regarding one’s behavior are limited to the stimuli one is ex-
posed to, together with the actions one performs. Everything else is beyond
the scope of scientific endeavor. In this context, emotions were described
by Watson as nothing more than a pattern of physiological reactions to cer-
tain stimuli. This corresponds to reducing emotional phenomena to the bare
minimum of what is externally observable [119].

Behaviorism came across several difficulties, namely, on the one hand, the
inability to account for what Ryle called “Le Penseur,” or in other words,
an account for an internal point of view of experience. And on the other
hand, the problem of diffuseness: the same situation and stimuli elicit differ-
ent emotions in different persons, as well as the fact that different persons
respond to the same emotion in distinct ways [119]. Trying to understand
and to explain human behavior solely based on external measurable vari-
ables discards an essential component of it, namely the individual experience
of situations from an internal point of view.

These limitations were some of the main factors that led to the reappear-
ance of cognition in psychology. Cognitive approaches to psychology may
be called centralist ones, in contrast with the behaviorist ones, which may
be termed peripheralist [119]. However, it is important to note that cogni-
tive psychology does not dismiss scientific methodology. Rather, it does not
reject the description level mental construct, as behaviorism does. Cogni-
tive Psychology took form during the 1950–1970 period. It was originally
inspired by several sources: first, by research on human performance, mainly
impelled by the Second World War efforts, where behaviorist accounts were
insufficient to deal with issues like breakdown and attention; second, by in-
formation processing approaches, motivated by the emergence of computer
science and artificial intelligence; and third, by linguistics, in particular the
work of Noam Chomsky [1].

It was in the context of cognitive psychology that the first modern theories
about emotions emerged. The following sections provide a brief overview of
the most prominent theories, according to [50].
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2.3.1 Appraisal theory

Today, a dominant approach to emotions in psychology is the family of ap-
praisal theories. According to this approach, the elicitation of an emotion
follows a process of subjective evaluation — appraisal — of a situation, ob-
ject or event, with respect to a number of dimensions or criteria [165]. Ap-
praisal theories cover a broad range of issues, such as the dimensions involved
in the appraisal process, multiple appraisal stages, cultural differences, and
pathologies, to name a few.

The appraisal theory emerged in a 1960 paper by Magda Arnold, describ-
ing the appraisal of an event with respect to three dimensions: beneficial
vs. harmful, presence vs. absence of some object, and relative difficulty to
approach or avoid that object. Since then, the appraisal theory has evolved
significantly, due to contributions by Richard Lazarus, Nico Frijda, Keith
Oatley, Philip Johnson-Laird, Klaus Scherer, Craig Smith, among many oth-
ers.

According to Richard Lazarus, appraisal is not a one-step process, rather,
it is composed of a primary appraisal, which evaluates an event in terms of
positiveness or negativeness with respect to the person’s well-being, and a
secondary appraisal, which deals with the subject’s ability to cope with the
consequences of that event.

According to [165], four major trends can be identified in appraisal the-
ory. One trend focuses on the issues of the criteria used by the appraisal
process. This trend follows from the early works of Arnold and Lazarus.
These criteria can be divided into these major classes: intrinsic properties
of objects or events, e.g. novelty or agreeableness; significance of the event
to the individual’s needs or goals; the individual’s ability to influence or
cope with the consequences of events, and compatibility of events with so-
cial or personal standards, norms, or values. It is usually stated that the
elicitation of a specific emotion follows from the profile of the appraisal out-
come, according to a set of dimensions. Another trend deals with the issue
of attributing causes to an emotion-antecedent appraisal. The themes trend
studies the link between emotion elicitation and patterns of goal-relatedness
of an event. And finally, another trend analyzes the propositional nature of
semantic fields that underlie the use of specific emotion terms, with respect
to their verbal definitions.

Although appraisal theories have been playing an important role in emo-
tion research in psychology (and also in A.I., as discussed in the following
chapter) they do suffer from several drawbacks. On the one hand, empirical
evidence corroborating these theories comes mainly from verbal reports of
the individuals experiencing the emotions. There is a vast literature that
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alerts to the pitfalls of introspection and verbal reporting. However, there is
recent evidence from neuroimaging corroborating some aspects of appraisal
theories (see [164] for a review). And on the other hand, appraisal theories
cover solely the process mediating the perception of an event (either exter-
nal, or internal, e.g., a thought) and the elicitation of an emotion. It is also
important to stress at this point that appraisal, like all psychology theories,
account only for humans beings. The issue of emotions in simpler biolog-
ical beings is outside the scope of general psychology, and consequently of
appraisal theories in particular.

Two appraisal theories have been particularly influential in the A.I. com-
munity, thus deserving a closer look here. Unlike many other psychology
models, these ones present computational models, thus facilitating the pro-
cess of bridging the gap between a psychology model and a machine imple-
mentation of that model. They are the OCC theory [142] and the Frijda’s
model [79], briefly reviewed in the following two subsections.

2.3.2 OCC theory

The name OCC theory stands for a theory of emotions proposed by An-
drew Ortony, Gerald Clore, and Allan Collins, in their book published in
1988 [142]. One of its goals is computational tractability, thus making it a
very appealing theory upon which A.I. models can be based.

The OCC theory proposes a taxonomy of emotions. Three classes of
emotions are proposed, corresponding to reactions to events (e.g., pleased
vs. displeased), to agents (e.g., approving vs. disapproving), and to ob-
jects (e.g., liking vs. disliking). Event-based emotions are further divided in
events that involve others — including happy-for, resentment, gloating, and
pity — and the ones that involve oneself — satisfaction, fears-confirmed, re-
lief, disappointment. Reactions to agents are identified with an attribution
group: pride, shame, admiration, and reproach. And reactions to objects are
identified with a attraction group, which includes love and hate.

The theory is further developed on the aspects of the appraisal process
details, as well as the variables that affect emotion intensities. It focus its
attention on identifying the aspects in situations that imply the elicitation
of specific emotions. For instance, literature often recurs to the description
of situations that lead the reader to ascribe specific emotions to a fictitious
personage. The name of the emotion does not have to be made explicit within
the text. Another example one can consider is a sports match, where the
outcome of the game may be appraised by each team’s fans quite differently.
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2.3.3 Frijda’s model

The psychologist Nico Frijda proposed a model of emotions that also proved
very influential to the A.I. community. One reason for this is the explicit
addressing of emotions in robots in his writings.

Frijda takes a functional view of emotions, identifying the adaptive value
as its main purpose [80]. The functions of emotions considered by Frijda
are: signaling of relevance of events, detecting of difficulties in solving the
problems posed by these events, providing goals for plans towards solving
the detected difficulties, and to accomplish all of these in parallel. The the-
oretical notion of a concern, which is central in Frijda’s theory, is used to
model the relevance of events for a system at any given moment. Besides the
affective component of emotional experience (e.g., pleasure or pain), Frijda
also identifies an associated informational structure. For instance, issues like
the specific way it is relevant (e.g., loss, threat, offense), the relevant prop-
erties when dealing with it, and so on. These cognitive aspects of emotions
correspond to the appraisal concept from the appraisal theories. Frijda also
identifies the awareness of one’s behavioral impulses and one’s bodily changes
as further cognitive processes of the appraisal. The outcome of the appraisal
processes are action readiness.

A computational model of Frijda’s theory (ACRES: A Concern REaliza-
tion model for emotionS) [79, 80] comprises several stages of stimulus pro-
cessing, named core processes. Stimuli can originate from external events, as
well as from internal ones, such as the case of a thought.

1. Analyzer: the stimulus is coded in terms of event types, as well as its
implications in terms of causes and consequences;

2. Comparator: appraisal of the stimulus, with respect to the current
system concerns. The output of this stage is an assessment of the
stimulus relevance to the agent. In case of irrelevance, the process ends
here. This stage can be identified with the primary appraisal concept
referred in appraisal theories;

3. Diagnoser: a second appraisal of the stimulus, with respect to the
ability to cope with it. This corresponds to the secondary appraisal in
appraisal theories;

4. Evaluator: the urgency, difficulty, and seriousness of the event is com-
puted at this stage. The outcome of this stage may lead to an action
interruption;
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5. Action proposer: generation of action readiness, leading to a possible
action tendency, and/or change of the mode of activation;

6. Psychological change generators, in parallel with:

7. Actor: the action generator;

Stages 1–5 are subject to interaction with a set of regulatory processes.
On the one hand, these processes influence the mode of processing of each
one of those stages, and on the other, these processes are influenced by input
stimuli, and by the core processes themselves.

2.3.4 Attributional theories

People tend to formulate explanations about events, especially negative events,
in terms of what caused them. Attributional theories of emotion focus on
the impact of these explanations on the likelihood, severity, and duration of
emotional distress [91]. These theories are oriented towards clinical aspects
of emotional disorders in patients. In this context, the hopelessness theory of
depression, first proposed by Seligman in 1975, has gathered much attention
of researchers in the clinical area. These theories have drawn little, if any,
interest from A.I. research, possibly because attributional theories focus on
pathological aspects of emotional disorders.

2.3.5 Network theories

Network theories propose that affect and cognition are intertwined by a net-
work of associations [78]. It is well known that some affective states pro-
voke physiological alterations in the body, such as accelerated heart beat,
sweat, facial expressions, and so on. According to network theories, affective
states can also have consequences upon cognitive activities, namely memory
retrieval, selective attention, and association of concepts. For instance, de-
pressed persons tend to recall negative events more easily than positive ones.
Network theories were first proposed by Isen and her collaborators in 1978.

One elaboration of network theories is the Affect Infusion Model (AIM).
According to this model, affective information selectively influences learn-
ing, memory, attention, and associative processes, and eventually “colors”
the outcome of the person’s deliberations in an affective-congruent direction.
AIM proposes four information processing strategies the mind uses to accom-
plish a given cognitive task: direct access strategy, which uses crystallized,
predetermined reactions and evaluations, normally used in familiar tasks;
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motivated processing strategy, when there is a well-known objective or out-
come, and there is little constructive processing; heuristic processing strategy,
when there is no crystallized solution nor a defined objective, and therefore
a heuristic strategy is employed, guided by a least-effort principle; and a
substantive processing strategy, when recourse to pre-existing knowledge, as
well as elaborate cognitive processes are needed to perform the task, being
the most constructive processing strategy of them all. According to AIM,
these four strategies are progressively more vulnerable to affect infusion. In
particular, the direct access strategy is the least vulnerable, since it is based
on pre-determined packages of responses, while the substantive processing
one is the most vulnerable one. Many factors influence the choice of process-
ing strategy, namely task familiarity and complexity, personal relevance and
motivation, processing capacity, and mood.

2.3.6 Multi-level theories

The theories reported so far assume a single level of information process-
ing. However, this assumption makes it hard to explain certain situations.
For instance, the difference in emotional intensities while experiencing an
emotion-eliciting event, and while remembering the emotion experienced in
that same event. The multi-level theories propose that there are several levels
of information processing in the brain [182], and thus the same topic may be
represented in qualitatively different ways at different levels. Some of these
levels are directly linked to emotion, while others are not.

To be more specific, four approaches are addressed. The first one is Lev-
enthal’s perceptual motor processing model, proposed in 1979. Three levels
are proposed: at the lowest level, sensori-motor processing includes innate
expressive-motor responses and feelings; then, the schematic level deals with
memories of emotional experiences, including perceptual, motor, and affec-
tive information; and finally the conceptual level, consisting of propositionally
organized memories, at the most abstract level. According to tis approach,
emotional responses result from contributions from these three levels. How-
ever, there is a clear distinction between the schematic level, which include
memories of emotional experiences capable of directly eliciting emotions, and
the conceptual level, which includes memories about emotions, that only in-
directly are capable of eliciting emotions (by posterior resort to the schematic
level).

A second approach is the Interacting Cognitive Subsystems (ICS), first
proposed by Barnard in 1985. Three simple ideas support this approach. The
first one is that there are different kinds of representations (mental codes)
covering distinct aspects of experience, divided in propositional and implica-
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tional (schematic) code patterns. The second idea is that there are specific
processes that are able to transform one kind of codes into another kind. And
the third idea is that different memory systems store different mental codes,
separately. According to ICS, the elicitation of an emotion is a result of
processing an appropriate pattern of implicational code. These implications
codes constitute the “common currency” in which sensory contributions, on
the one hand, and cognitive contributions, on the other, can be expressed,
integrated, and capable of modulating the production of emotions.

A third approach, termed Multiple-Entry, Modular Memory System
(MEM), advanced by Johnson in 1983, proposes that the memory is or-
ganized in distinct but interacting subsystems. It identifies two perceptual
subsystems (P-1 and P-2), and two reflexive subsystems (R-1 and R-2). The
basic aspects of perceptual processing are handled and stored by P-1, while
the P-2 processes originate perceptual experiences of meaningful objects in-
teracting in meaningful ways. The reflexive subsystems R-1 and R-2 are
responsible for the executive and the strategic supervisory processes. Ac-
cording to MEM, any one of these four subsystems can contribute to the
elicitation of emotions. Biologically primitive emotions arise from P-1 and
P-2 processes, while the R-1 and R-2 ones are behind the elicitation of sec-
ondary (or derived) emotions1.

Finally, a fourth approach, called SPAARS (Schematic, Propositional,
Analogical and Associative Representation Systems) is the most recent one.
The SPAARS approach, proposed by Power and Dagleish in 1997, aims at
integrating previous contributions to multi-level theories, while rooted in a
philosophical and physiological historical context. SPAARS distinguishes
several representational systems: analogical, corresponding to sensory-per-
ceptual levels; propositional, corresponding to a propositional-conceptual
level; schematic, which is similar to the implicational schematic models of
ICS; and associative, which provides associations among the previous three
levels. The schematic level is the one primarily responsible for the elicitation
of emotions. However, the associative level can also elicit emotions, with-
out the recourse of the schematic one. Two routes for emotion elicitation
can therefore be identified: one by the means of the schematic level, which
comprises an appraisal process, and another by the hand of the associative
level.

Multi-level theories bring forward the idea of distinct mechanisms work-
ing in parallel in the brain, with varied modes of representation. This is
acknowledged by the modular nature of the above models. One interesting

1Secondary emotions are the ones derive from mental imagery (e.g., remembrance of a
past emotional event). See section 2.4.2 below for further details.
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aspect of these approaches is their ability to model conflicting issues, aris-
ing, for instance, when different levels provide contradictory assessments of
a situation. Moreover, dealing with several levels also provides a means of
bringing psychological models closer to the physiology of the brain. These
latter models are unanimous in stating that information is processed in the
brain at several levels, simultaneously, and with different modes of represen-
tation.

Joseph LeDoux [112] has performed extensive research on the physiolog-
ical mechanisms of fear. The last section of [182] presents an interesting
comparison of LeDoux’s physiological model with ICS, providing a mapping
of concepts between the two models. For instance, LeDoux’s “high-road”
(slow, elaborate) and “low-road” (quick, crude) levels can be mapped onto
the different ways implication codes are derived. Such interdisciplinary stud-
ies are extremely interesting because they contribute for mutual corrobora-
tion of models, where each one arose from a different approach: one from
psychological studies, and the other from neurophysiology.

2.3.7 Self-organization

The concept of self-organization in cognition-emotion interactions [116] is
rooted in four core principles: recursion, in the sense of a process contin-
ually reworking and revising its own results; emergence, resulting from the
interaction of parts within a complex system; consolidation, in the sense of
a dynamical convergence of a complex system towards some stable state (an
attractor); and different time scales involved in a complex system. Accord-
ing to the self-organization view of emotions, the appraisal process is not
formed by a single step, but rather by a continuous interaction among cog-
nitive appraisals of situations, as well as modulation of cognitive processes
by emotions. Within this context, emotions guide and constrain cognitive
processes.

2.3.8 Basic emotions

The goal of basic emotions research is to organize affective phenomena in
a systematic way. The concept of basic emotions was introduced by Paul
Ekman [71]. He identifies two meanings of the word “basic” here. One corre-
sponds to the idea of a set of emotions that are distinguishable among them
in one or more important ways. This idea contrasts with the views that
all emotions are all essentially the same, only differing in degree in one or
more dimensions. The other meaning of the word relates basic emotions with
their adaptive value in dealing with fundamental life tasks [71]. Paul Ekman



16 CHAPTER 2. BACKGROUND

defends that there are nine characteristics that distinguish basic emotions
from other affective phenomena [70]. These characteristics are: distinctive
universal signal, such as facial expressions2, comparable expressions in other
animals, emotion-specific physiology, namely in terms of autonomic nervous
system (ANS) patterns of activity, universal antecedent events, meaning com-
mon elements in situations that elicit specific emotions, coherence in response
systems between autonomic (ANS) and expressive responses, quick onset,
possibly arising before one being aware of them, brief duration, on the scale
of seconds and minutes rather than hours or days, unbidden occurrence, since
emotions do not happen by conscious choice (although people can put them-
selves in situations or thoughts that are likely to elicit a specific emotion),
and automatic appraisal.

Research on basic emotions can provide useful knowledge for the compu-
tational modeling of human emotions. Some approaches to emotions in the
field of Artificial Intelligence (A.I.) have used Paul Ekman’s approach to des-
ignate a small set of essential emotions. However, one should be aware that
these emotions refer to human ones, which may not be the most appropriate
for machines, unless the plausible simulation of human emotions is intended.

2.3.9 On the cognition-emotion debate

In the 1980’s a heated debate took place within the psychology community,
involving the roles of cognition and emotion [111]. The debate started with
Robert Zajonc’s proposal that, first, emotions are fairly independent from
cognition, and second, that emotions precede cognition. Such proposal re-
ceived heated contesting from the cognitivist community, because they sus-
tain (e.g., Richard Lazarus) that emotional judgments cannot take place
apart from cognition and motivation, hence not independently from cogni-
tion. From a distance, this debate boils down to a matter of semantics: what
each one means by the terms emotion and cognition. On the one side, one
can take a broad view of the concept of emotions, together with a narrow
view of cognition. In this sense, emotional judgments can be performed in-
dependently from cognition, leaving for the latter higher cognitive aspects,
like reasoning, planning, and so on. However, taking the opposite approach,
a cognitive nature in emotions is undeniable, since the way people respond
emotionally to situations evolve with experience, through life. Psychology’s
understanding of cognition favours a broader view of cognition, embracing

2The study of facial expressions after the experience of an emotion constitutes a major
source of empirical evidence behind Paul Ekman’s theories of basic emotions. Ekman
found out that at least some of the human facial expressions are biologically determined,
rather than culturally.
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all aspects dealing with knowledge (from the Latin word cognitio, meaning
knowledge), while a neurophysiological background may hint in the other di-
rection, since emotions and higher cognitive tasks are dealt with by different
(but interacting) neural systems.

2.4 Neurophysiology

The study of the physiology of the nervous system goes back to Galen
(200 b.c.), a Greek anatomist. His accounts included concepts such as
nerves, transporting signals (psychic pneuma), and muscles performing move-
ment [44]. The first scientific approaches to the localization of functional roles
in the brain were proposed by Franz Josef Gall in the late eighteenth cen-
tury [112]. These functions included sensing, feeling, speech, memory, and
intelligence, to name a few. Unfortunately, Gall’s ideas were followed in a
distorted fashion, giving rise to phrenology: a non-scientific practice of as-
cribing mental faculties according to the bumps found on the head surface.
Phrenology was later dismissed after severe criticism. However, the basic
idea that specific functions can be identified with certain brain zones stands
until today. Contemporary neurophysiology provides detailed maps of sev-
eral cortical areas. To give a few examples, in very general terms, the frontal
lobes (behind the forehead) are identified with higher reasoning; in the back
of the brain lie the occipital lobes, which are identified with vision (optical
nerves connect the retina in the eyes to this area); and temporal lobes (on
the left and right sides of the brain) are identified with memory. Even though
a quite detailed functional mapping of the brain has been achieved, it is still
believed that very little is known about its functioning. Functional mapping
can sometimes seem counter-intuitive. For instance, Hanna Damásio and her
collaborators have identified different brain areas responsible for recognition
of persons, animals, and tools [60]. Many other studies, proposing a myriad
of correlates among neurophysiology and behavior (and mental phenomena),
abound in the literature.

Going back in time, and focusing now on emotions, at the time William
James proposed his theory of emotions [102], physiologists were mostly study-
ing the motor and the sensory centers of the brain. Therefore, James’ account
was built upon a sensory-motor model of the brain: an emotion-eliciting stim-
ulus is processed by the sensory cortex, triggering bodily changes which are
enacted by the motor cortex; these changes are then percepted by the sensory
cortex, resulting in the feeling of an emotion [112] (see section 2.3 above for
further details).

Walter Cannon was a contemporary of William James. He became fa-
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mous not only because he severely attacked James’ theory of emotions, but
also because of his own model of emotions. Together with Philip Bard, he
formulated a model — known as the Cannon-Bard theory — based on the
latter’s experiments. They identified a particular brain zone responsible for
relaying signals from the sensory cortex onto two other brain zones (see fig-
ure 2.1). This zone is called the thalamus, located in the inner core of the
brain, close to where the brain connects to the spinal cord.

thalamus

cerebral cortex

sensory
signals

feelings

bodily
responses

hypothalamus

Figure 2.1: Cannon-Bard model of the brain emotional circuits (adapted
from [112]).

Sensory signals are relayed to the cerebral cortex and to the hypothalamus,
a structure near the thalamus. It is important to note that these signals are
relayed simultaneously towards these two structures. Functionally speaking,
the cerebral cortex is related with the recognition and understanding of stim-
uli, while the hypothalamus is related with the production bodily responses.
Each one of these structures process in parallel sensory signals relayed by
the hypothalamus. Moreover, the cerebral cortex also receives signals about
bodily responses emitted by the hypothalamus. This simultaneous reception,
after an emotion eliciting stimulus, constitute the feeling of an emotion.

This model was further developed and refined by James Papez (see fig-
ure 2.2). In 1937 he proposed one of the most influential models of the
neurophysiology of emotions. In consonance with Cannon-Bard model, he
proposed that the thalamus splits sensory signals in two streams: the stream
of thought, and the stream of feelings. These streams follow distinct paths
inside the brain. While the former activates the lateral areas of the neocor-
tex, the latter activates the mammiliary bodies of the hypothalamus, which
is responsible for bodily responses. An activation of this hypothalamus area
results in the activation of the cingulate cortex, via the path of the anterior
thalamic nucleus. The experience of feelings is attributed to the integration
of the cingulate cortex activation, along with activation in the neocortex
(stream of thought). Besides the anterior thalamic nucleus, which sends sig-
nals from the hypothalamus to the cingulate cortex, there is another struc-
ture — the hippocampus — which sends signals in the opposite direction.
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According to Papez, this connection is responsible for controlling emotional
responses, after one experiencing a feeling. On other words, it conveys the
control the cortex exerts on the expression of the emotion.
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Figure 2.2: Papez model of the emotional circuits in the brain (adapted
from [112]).

In 1952 Paul MacLean introduced the term “limbic system” to denote a
reunion of several brain areas. He included the areas responsible for emotions
identified by Papez, as well as the amygdala, the septum, and the pre-frontal
cortex. According to MacLean, the limbic system contains the areas and the
connections that mediate emotions in the brain. Later, in 1970 he introduced
the idea of the triune brain. Comparing the brain’s general structure across
different species, MacLean proposed three major zones of the brain, corre-
sponding to three grand evolutionary stages. The oldest one comprises the
reptilian brain, which the lower vertebrates (e.g., reptiles, birds, amphibians,
and fishes) share with all other species; then, there is the paleomammalian
brain, that can be found in lower mammals, but is absent in reptiles; and
finally the neomammalian brain can only be found in the highest primates,
namely humans. Each one of these “brains” has its own properties regard-
ing the nature of intelligence, memory, perception and motor functions, and
so on. The underlying conjecture is that which are present in the brain of
any given animal determine, to a large extent, the level of complexity of its
behavior.

Subsequent research revealed flaws in the MacLean triune brain model,
in the sense that those areas are not as clear-cut as his model suggests, both
from a morphological and from a functional point of view. For instance,
regions identifiable in function with the neocortex have been found in many
primitive creatures. Moreover, some researchers, including Joseph LeDoux,
state that there is no such thing as a limbic system [112].
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2.4.1 Joseph LeDoux

Joseph LeDoux’s contribution to the field of emotions has focused on the
detailed study of the brain circuits of fear [113, 112]. In order to avoid the
subjectivity LeDoux considers inherent to the study of emotions, He opted
to choose a well defined emotion — fear — and to study its mechanisms ex-
haustively. Fear conditioning is a behavior paradigm introduced by Pavlov
in 1927 [143]. The paradigm is based on two kinds of stimuli: an uncondi-
tioned stimulus (US) that prompts an innate response by the subject, and a
conditioned stimulus (CS), which is meaningless to the subject prior to the
experiment (or at least with respect to the US).

In Pavlov’s well known salivating dog experiment, the dog is repeatedly
exposed to a piece of meat along with the sound of a bell. The dog starts
salivating after the sight of the meat. However, a bell is tolled every time the
meat is shown. After several such pairings, the simple exposure to the sound
of the bell is sufficient for the dog to immediately start salivating. In this
example, the unconditioned stimulus (US) corresponds to the meat, which
unconditionally makes the dog salivate. The bell, since it becomes associated
with the dog salivation, is the conditioned stimulus (CS). This association is
called conditioned reflex.

Research conducted by LeDoux and colleagues focused on tracing the ac-
tivation patterns and the pathways in the brain involved in these conditioned
reflex processes [113]. They found (see figure 2.3) that the sensory signals
from the US and the CS meet at the amygdala, in the lateral nuclei (LA). In
the case of an emotion eliciting stimulus, the LA activate another amygdala
area — the central nuclei (CE) — which trigger behavior, autonomic, and
endocrine responses. In the case of the US, as well as of the CS, there are
pathways originating from the cortex and from the thalamus. Each one of
these pathways has particular characteristics. The pathways from the cortex
appear to be connected with stimulus processing of higher complexity. More-
over, the projections of these pathways towards the amygdala have different
plasticity properties: the ones coming from the cortex learn more slowly than
the ones originating in the thalamus. This indicates that fear conditioning
occurs initially through the thalamus pathways. There is a third party found
to be involved in fear conditioning: the basal (B) and accessory basal (AB) ar-
eas of the amygdala. These areas receive projections from the hippocampus,
which is believed to be related to contextual information. Fear conditioning
experiments with rats, for instance, have shown that contextual information
intervenes in the process. Rats that return to a chamber where tone (CS)
and shock (US) have been paired, exhibit fear responses even without any
other stimulation.
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Figure 2.3: Schematic view of emotion circuits involved in fear condition-
ing, according to LeDoux [113]. Abbreviations: conditioned stimulus (CS),
unconditioned stimulus (US), lateral nuclei (LA), central nuclei (CE), basal
(B), and accessory basal (AB) areas.

Besides the pathways projecting to the amygdala, originating from several
other brain areas, the amygdala projects signals to several brain zones. These
projections are related with the influence that the emotional state (the acti-
vation patterns in the amygdala) exerts on other cognitive processes. LeDoux
refers several examples: although the amygdala receives signals from the later
stages of sensory processing from the cortical areas, it projects back to its
earlier stages. This allows the amygdala to indirectly modulate the kinds
of inputs it receives from those areas. Another example referred by LeDoux
regards emotional memories: it is known that implicit emotional memories
depend on the amygdala, while explicit ones depend on the medial tempo-
ral lobe3. However, the amygdala seems to modulate the storage of explicit
memories, in a way that memories with emotional content tend to be longer
lasting and more vivid than the non-emotional ones.

The working memory is a locus of integration of several brain mechanisms:
sensory information, memory, emotions, and so on. There, information is
contrasted and manipulated in several ways. LeDoux suggests that this in-
tegration gives rise to the conscious experience of feelings. Moreover, there
are projections from the amygdala onto these areas, suggesting a modulating
role in the functioning of the working memory.

3This dichotomy of memory, due to Daniel Schacter, is based on the conscious awareness
of a memory: implicit memory (also known as procedural) depends on unconscious factors
(e.g., skills, conditioned reflex), while the explicit one (also known as declarative) involves
conscious awareness [112].
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2.4.2 António Damásio

António Damásio has published several prominent books on the subject of
emotions. Although his books have targeted primarily the general public
audience, his ideas and theories have yielded a profound impact in many
scientific disciplines [55, 56, 57], including fields not directly connected with
neuroscience [175, 118, 90]. One of his main research areas involves the
underpinning of the neurophysiological correlates of emotions in decision-
making.

Early research by Damásio involved system level models of the brain [54,
53, 58]. The brain receives signals from various sensory modalities (visual,
auditory, tactile, olfactory, and so on), and processes these signals through
layers of neuronal structures. There are convergence zones in the brain that
receive signals from these sensory processing regions. These convergence
zones are amodal, in the sense that they receive signals simultaneously from
various sensory modalities. The mechanism of integrating information from
various sensor modalities into entities and events is termed the binding prob-
lem. According to Damásio, these convergence zones, not only perform this
integration, but are also capable of retro-activating early sensor processing
zones [54]. This means that, for instance, when a person recalls a situation,
the brain activates several early sensory processing cortices, in a synchronous
fashion. There are feed-back, as well as feed-forward projections among these
early sensory cortices and the convergence zones. Thus, a recalled situation
is represented in the brain, not only distributed over many diverse regions,
but also in the low-level sensory cortices, from which those representations
originated in the first place. For instance, the reader can perceive this by try-
ing to answer this simple question: “how many windows does the house you
live in have?” Can this question ba answered without actually reconstructing
visually one’s house inside the mind? Unless the unlikely case of the reader
having this number memorized, one needs to actually reconstruct in her/his
mind the spatial structure of the house, in order to count the windows one
by one.

Somatic Marker Hypothesis

The somatic-marker hypothesis [59], which is central to Damásio’s proposal,
originated from the study of some particular projections among the frontal
lobes and the central autonomic control structures. It is well known that the
frontal lobes are related with high-level executive functions, such as reason-
ing, planning, decision-making, and so on. Damásio studied patients with
damage in a particular zone of the frontal lobes — the ventromedial sec-



2.4. NEUROPHYSIOLOGY 23

tor — which receives projections from all sensory modalities. Moreover, it
was the only known source of projections, at the time this hypothesis was
first proposed, from the frontal regions towards the central autonomic control
structures [59]. These latter structures are responsible for many regulatory
functions of the body. In particular, they are believed to control physiolog-
ical body changes, namely the ones elicited by emotions. What is the role
played by all these connections among the highest levels and the regulatory
subsystems?

Damásio reports that patients with lesions in the ventromedial sectors of
the frontal lobes exhibit a peculiar behavior. First, their intellectual capabil-
ities were found to be intact, as was validated by various psychometric tests,
ranging from standard IQ tests, to learning and memory tests (with the ex-
ception of social knowledge). Yet, these patients showed severe impairments
in certain circumstances: they were unable to choose a course of action that
would be clearly advantageous to them in the long-term; instead, they tend
to plunger in endless debates over secondary matters, such as what to wear,
where to shop, and so on; moreover, they also revealed impairment in social
situations [59].

With the goal of providing an explanation the above phenomena, Damásio
advanced the Somatic Marker Hypothesis (SMH) [59, 55]. In a nutshell, it
proposes that decision-making in normal individuals is assisted by “the ap-
pearance of a somatic signal that marks the ultimate consequences of the
response option with a negative or positive somatic state” (page 220, [59]).
These somatic signals can be either conscious or covert, but they are physi-
cally measurable. One common such measure is the change in skin conduc-
tance. The measurement of these changes is called Skin Conductance Re-
sponses (SCR). Conscious effects of this somatic marking are, for instance,
the “gut feeling” when a response option is considered, as well as attention
focus on such responses. Covert effects include appetitive or aversive behav-
iors towards/away certain response options [59]. These mechanisms employ
machinery supporting emotional processes.

Damásio divides emotions into two broad categories: primary and sec-
ondary emotions. The primary emotions are the ones corresponding to direct
and immediate response to stimuli (e.g., following an unexpected loud sound),
corresponding to the “low-road” in LeDoux’s terminology. These responses
operate before conscious awareness, and make use of the evolutionary older
structures in the brain. The secondary emotions involve evolutionary newer
structures (the LeDoux’s “high-road”), and follow from thought processes,
as in the case of the recollection of episodes eliciting associated emotional
states. In this latter case, these emotions provoke actual measurable changes
in the body state. The enactment of these body states depend on projections
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from the pre-frontal cortex, where the eliciting thoughts are formulated, to-
wards the amygdala area, which promotes the body state changes. These
projections originate at the above-mentioned ventromedial sector. The per-
ception of these changes, together with the recalled images, is what Damásio
calls the feeling of an emotion.

Two aspects are crucial to the SMH: one is that somatic signals are en-
acted before decisions are made, even before any cost/benefit analysis of the
available options; and the other is that such enactment involves low-level,
visceral, evolutionary old regions such as the autonomic control structures.
Moreover, this enactment plays an influential role in the decision making
process, with different degrees depending on the nature of the situation. Pa-
tients with lesions in the frontal lobes became unable to take certain common
day decisions, while maintaining psychometric performance levels intact.

If this hypothesis is correct, thought can no longer be considered a dis-
embodied process, separable from physiological mechanisms. This refutation
of the Cartesian dualism motivated Damásio’s book title “Descartes’ error:”
mind proper and body proper are two faces of the same coin, according to
Damásio.

In sum, the high-level decision processes in the brain do not unfold iso-
lated from the body, as in a metaphor of a computer inside a robot. Rather,
decision processes consult the body, both by provoking body changes while
analyzing certain options, as well as by being sensible to the resulting body
changes. In result, certain options are rejected straight away, for being con-
sidered repulsive by the body, while others may receive salience, if found
desirable by it.

This allows for a reduction in complexity of decision processes, as many
available options can be put aside from the rational cost/benefit analysis
that follows. The body can promptly reject certain options, either because
of their undesirability, or their irrelevance. And because this pre-selection
is performed outside of the scope of conscious thought processes, it is some-
times hard to explain to oneself in verbal terms. It is plausible to consider
that human intuition falls into this category. Intuition is closely related to
experience. It is not easily transmitted orally: one cannot simply teach in-
tuition directly, at least without putting the students into situations where
they can obtain that intuition themselves by experience.

Damásio also discusses an alternative mechanism to the body consulting
process: the “as-if” loop. By using it, the decision making processes can
skip the actual interaction with the body. The “as-if” loop mimics the body
responses, without actually changing the body proper. However, note that
what this mechanism does is just to emulate the body responses in those
circumstances. And the way of doing this is to learn how the body actually
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responds to those situations. Therefore, from the conceptual point of view,
it remains a consulting of the body response.

Testing the hypothesis

To test the plausibility of the SMH, Damásio and his colleagues conducted
several experiments whose results are briefly reviewed below. One of them
consisted of exposing patients with lesions in the ventromedial sector of the
pre-frontal cortex, as well as normal controls, to three kinds of stimuli: (1)
unconditioned stimuli, such as an unexpected loud hand-clap close to the
subject’s ears, (2) target pictures, such as ones of social disasters, mutila-
tions, nudity, and (3) non-target pictures, showing bland scenery or abstract
patterns. During the experiment, the skin conductance of the subjects was
recorded (SCR).

All subjects behaved similarly on all tests: SCR was found in all subjects
when exposed to unconditioned stimuli, while no significant SCR followed
non-target pictures. However, patients with lesions did not generate SCR
when target pictures were shown, unlike control subjects, where SCR was
detected. According to the SMH, these lesions prevented signaling from the
pre-frontal cortex to the autonomic control structures, thus preventing the
reenactment of body states after the exposure to target pictures. These pa-
tients were therefore unable to express in the body the appropriate emotions
following target pictures, thus not feeling in the way normal subjects felt.
These patients reported later that they realized they were not feeling in they
way they used to feel before the lesions [55].

A second experiment conducted by Damásio and his colleagues, desig-
nated the good-guy/bad-guy experiment [56, 187], can be described as fol-
lows. A patient with a specific kind of brain lesion preventing him from re-
membering certain forms of factual knowledge, namely faces, was subjected
to the following situation: three persons, previously unknown to the patient,
contacted him several times over a week, each one playing a pre-designated
role. The first one (good-guy) did good things to the patient every time they
met (e.g., smile, talk nicely), the second one was neutral, and the third one
did unpleasant things to him (bad-guy). Every time the patient met one
of these persons, he neither recognized them, nor recalled their previous en-
counters, because of the lesions to his brain. Pictures of these persons were
then shown to the patient, and although he was unable to recollect any fac-
tual information about them, when asked who he thought was his friend, he
tended to prefer the good-guy over the others about 80% of the times. The
neutral-guy was choosen with a probability no greater than chance, while the
bad-guy was almost never chosen. These intriguing results suggest a covert
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learning of affective valence independently from factual learning. This pa-
tient had no recollection of the encounters with those persons, still, he was
able to perform affective evaluations solely based on their faces.

A third experiment was a card game designed to address the SMH [55, 23].
This game, posteriorly known as the Iowa Gambling Task (IGT), consists of
four decks of cards, labeled A, B, C, and D. This is a one person game, where
the player is given an initial loan of $2000. In each turn, the player is asked to
choose one of the decks. A card is drawn from the chosen deck, and the player
is informed of the amount of money either earned or lost, as a consequence of
her/his choice. The game was designed in the following way: decks A and B
usually yield earnings of $100, but occasionally there are cards that make the
player lose as much as $1250, while decks C and D usually offer a more modest
earning of $50 per card, and occasional losses are not higher than $100. The
contents of each deck was formed in such a way that in the long run, decks A
and B are disadvantageous, while the other two are advantageous to the
player. The players are obviously ignorant of these facts before playing the
game. Each game is made up of 100 turns. Two groups of subjects played
this game: a normal control, and patients with lesions in the ventromedial
sector of the frontal lobes. The results are remarkable: after sampling some
cards from each deck, normal controls tended to prefer the advantageous
decks C and D, while the frontal patients tended to prefer the other two
(disadvantageous) decks. Frontal patients seemed to prefer the decks that
gave larger immediate amounts, but most important of all, they seemed to
be insensitive to the high risk involved with those decks (occasional high
losses). This insensitivity to future consequences is referred to by Damásio
as a “future myopia.” It was also found that normal patients showed SCR
immediately before choosing a deck, while frontal patients did not show any
significant SCR. However, both players showed SCR after knowing whether
they had gain or lost money. The lack of SCR prior to deciding, in the frontal
patients, is coherent with the SMH, in the sense that the absence of SCR
prior to deciding prevents these patients from being sensitive to the future
consequences, in this experiment, of their possible choices .

These results suggest that the pathways from the amygdala to the pre-
frontal cortex, signaling body state changes, have a determinant effect on the
choice of the advantageous course of action. Pre-frontal subjects seem insen-
sitive to the prospects of high losses, thus suggesting that the body plays
a key role in representing those unpleasant prospects. The SCR prior the
decision seems decisive to the appropriate decision of avoiding the disadvan-
tageous decks.

The impairments manifested by these patients, in the first and third ex-
periments, is not visible in well-defined tasks, since IQ tests show results
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within average. The kind of tasks revealing reduced competence concerns
long-term decision-making. Damásio refers the example of the Phineas Gage
case, a railroad construction worker who after severe lesions in the pre-frontal
cortex, became unable to sustain his previously stable family life nor his pro-
fessional career [55]. His life became a turmoil. Another example discussed
by Damásio (referred by him as Elliot [55]) is of another patient sustain-
ing similar lesions. Elliot exhibited a curious impairment to perform simple
common day tasks, such as scheduling an appointment with a doctor, or
simple organizational tasks in an office. In these cases, this patient seemed
immersed in a sea of indecision, taking incredible (unreasonable?) amounts
of time to make up his mind, pondering all the pros and cons of each option
ad nauseam.

When the precise consequences of decisions are hard to predict in all of
their details, and thus a capacity to ponder in general terms is at order, these
patients seem unable to reach a decision. They seem unable to realize the rel-
evant aspects of decisions when the consequences of the available options are
not well-defined. The Somatic Marker Hypothesis advances an explanation
to this impairment. When faced with a decision, the brain ponders possible
courses of actions, in an means-ends analysis fashion. Their consequences of
these are considered (and possibly anticipated), in turn. The first aspect is
that the body responds to each of these possibilities. The SCR shown by
normal patients reflects this consulting of the body. The second aspect of
the proposal is that these changes in the body are signaled back to the brain.
This signaling can have several effects in the decision-making process: some
possibilities may be rejected without any further consideration, while other
possibilities may receive further attention, held in working memory more
vividly, and receive additional analysis. Although the influence of emotions
is commonly been recognized in decision making, the novelty introduced by
Damásio centers on two proposals: first, that emotions are essential for ap-
propriate decision-making, and second, that they play a role even in those
decisions not explicitly involving emotions.

Taking an extreme example, in the proof of a non-trivial mathematical
theorem, even though the steps taken must obey strict mathematical rules,
emotions may play a role in the choice of the followed path, the employed
abstractions, etc. Illustration of this influence is visible when mathematicians
talk about elegance of proofs and creativity. Henri Pointcaré once wrote that

In fact, what is mathematical creation? It does not consist
in making new combinations with mathematical entities already
known. Anyone could do that, but the combinations so made
would be infinite in number and most of them absolutely with-
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out interest. To create consists precisely in not making useless
combinations and in making those which are useful and which are
only a small minority. Invention is discernment, choice.
[...]

To invent, I have said, is to choose; but the word is perhaps not
wholly exact. It makes one think of a purchaser before whom are
displayed a large number of samples, and who examines them, one
after the other, to make a choice. Here the samples would be so
numerous that a whole lifetime would not suffice to examine them.
This is not the actual state of things. The sterile combinations do
not even present themselves to the mind of the inventor. Never
in the field of his consciousness do combinations appear that are
not really useful, except some that he rejects but which have to
some extent the characteristics of useful combinations. All goes
on as if the inventor were an examiner for the second degree who
would only have to question the candidates who had passed a
previous examination. (taken from page 188 of [55])

Automatic theorem provers exist nowadays, but they only seem capable to
prove trivial theorems. These systems seem unable to scale with the domain
complexity. A way to circumvent this limitation is to include additional tech-
niques, such as including domain-knowledge, or well-crafted heuristics. But
if it is the case, then one may question to what extent the actual intelligence
resides with the machine and with the designer.

Questioning the SMH

The Iowa Gambling Task (IGT) is one of the pieces of supporting evidence
for the SMH. However, the validity of the conclusions drawn by Damásio
and colleagues from this experiment has been contested. For instance, Tiago
Maia et al. dismiss not only any unconscious knowledge of the advantageous
deck, but also the statement that patients with lesions under-perform because
of the impairment of the somatic marker mechanism [124]. Maia reproduced
the IGT under the same conditions (but not with patients with lesions),
where the subjects were asked a more detailed questionnaire about their
knowledge of the game. The results have shown that subjects have more
conscious knowledge about the most advantageous strategy than suggested
before, even prior of behaving according to that strategy. In a second line of
reasoning, Maia cites experiments performed by Lesley Fellows and colleagues
on the consequences of reward reversal [77]. Reward reversal corresponds to
changing the learning conditions in a radical fashion mid-way an experiment,
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in order to assess whether subjects are capable of adjusting their behavior
appropriately. For instance, switching the conditions on which positive and
negative rewards are given. The results show that patients with the same
kind of lesions as the ones in the original IGT demonstrate inability to adapt
to the new conditions after reversal. Maia sustains that these results show
that the reason behind the under-performance of patients with lesions is more
related to their inability to adapt their strategy after getting a $-1250 card,
than to any lack of a somatic marking mechanism [124].

Antoine Bechara et al. published a response [25] to Maia’s publication,
which was promptly replied by Maia [125] in the same journal issue. Bechara
sustains that Maia’s findings are not contradictory with the SMH. Conscious
knowledge of the advantageous strategy is addressed by the hypothesis “by
proposing that pure cognitive processes unassisted by emotional signals do
not guarantee normal behavior in the face of adequate knowledge,” while
“cognitive processing assisted by emotion-related marker signals, conscious
or not, contributes to the proper action being taken.” [25]. Maia’s response
follows the idea that there are more plausible explanations than the SMH,
not only to the IGT results, but also to other evidence [125] (not explicitly
pointed out by Maia). For instance, behaving in a way incoherent to one’s
knowledge of the advantageous strategy can be explained as an exploratory
behavior. The only issue both seem to agree on is the presence of many open
questions on the subject.

The body

One central issue in António Damásio writings is the importance of the body,
hence the suggestive title “Decartes’ Error” [55] of his first book. René
Descartes upheld the separation of mind and body as two distinct entities.
Moreover, the body was considered pernicious to pure rationality. Damásio,
on the contrary, reclaims the role of the body as a crucial one. First, mental
imagery is not only interpreted at the cortical level, but also at the level of the
body. In other words, the body responds to that imagery, independently and
simultaneously to the cortex processing. And second, the higher levels of the
brain hold, at the same time, their own representations at the cognitive level
(factual information, memory, cost/benefit analysis of response options, and
so on), as well as representations of the body changes incurred. Thus, these
body changes provide a “coloring” of one’s thoughts. Since each person’s
individual life experience is unique, Damásio sustains that subjectivity arises
from the differentiated somatic marking of each individual. Exposed to the
same situation, different persons have different subjective responses, since
their bodies respond differently to it.
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Chapter 3

Review of the state-of-the-art

3.1 Introduction

There is a large body of research on emotions in the field of Artificial Intelli-
gence (A.I.). This research has evolved from the initial early implementations
in the 1980’s, to an expansion of the field beginning at about 1998. This
chapter presents a review of the evolution of the field. Since several different
approaches can be identified, a taxonomy of the field is also proposed here.
The review of recent research is then presented under this taxonomy.

3.2 Artificial Intelligence

The field stems from the two concepts evidenced by the name Artificial In-
telligence: the goal of creating artificial systems exhibiting functionalities
classifiable as intelligent. While the latter refers to a natural phenomenon
observable in biological beings (prominently in humans), the former refers
to what Herbert Simon calls the Sciences of the Artificial [173]: the study
of man-made artifacts, in contrast with the traditional sciences focused on
natural phenomena.

A review of several approaches to the definition of Artificial Intelligence
(A.I.) can be found in the Introduction section of Russell and Norvig’s text-
book “Artificial Intelligence: A Modern Approach” [161]. Broadly, the nature
of these definitions differ along two dimensions, one concerns the perspective
of thought processes — is A.I. attempting to mimic human thought? —
and the other the perspective of behavior and acting — is A.I. attempting to
mimic human behavior? Along the former dimension, A.I. can be understood
as either the replication of the human cognitive mechanisms, or a rational
mechanism undressed from biological plausibility concerns (e.g., a logic ap-
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proach). Regarding behavior and acting, A.I. can be approached as either an
attempt to replicate human behavior, or to behave in a rational way. These
are, however, extreme cases. Introductory textbooks often address the issue
invoking the “strong A.I.” and “weak A.I.” perspectives. The former corre-
sponds to the ambition of human-like thought and behavior, by machines,
while the latter focuses on whether machines act rationally [161]. While the
“weak A.I.” perspective embodies a pragmatical drive towards working sys-
tems, the “strong A.I.” one represents the long-term goal of attaining truly
intelligent systems, regardless of how nebulous this idea might be.

From a historical perspective, many scientific fields contributed to the
emergence of A.I.: philosophy, mathematics, psychology, computer engineer-
ing, and linguistics. The first publication commonly accepted as being the
precursor of A.I. was written by Warren McCulloch and Walter Pitts in 1943,
proposing a model of artificial neurons. Each one of these neurons can as-
sume one of two states (“on” and “off”), receiving signals from other neurons.
They showed that this model could implement logical connectives, and even
perform any computable function [161].

In the late 1940’s Alan Turing wrote an influential paper (only published
later [189]) claiming the possibility of machines exhibiting intelligent behav-
ior, while presenting several arguments sustaining his claim.

The name of the field was however only coined in 1956 after a workshop
in Dartmouth in the summer of 1956, organized by John McCarthy, Marvin
Minsky, Claude Shannon, and Nathaniel Rochester. The list of participants
of this workshop included names such as Allen Newell and Herbert Simon.

The field has evolved over several stages, from the early enthusiasm of
naive systems and toy problems, to a maturity state where strong theoretical
results can be found as well as real-world systems actively used in production
by the industry. The A.I. now field counts a large community of researchers.
It has remained a quite inter-disciplinary subject, with strong connections
to the many fields of mathematics (logic, statistics), robotics, linguistics,
neuroscience, systems and control theories, among others.

3.3 Early implementations

Human intelligence has naturally inspired most A.I. researchers. The early
days of the field were particularly prolific in this respect. Since emotions play
a major influence in human behavior, it is natural to assume that the design
of intelligent systems should take those issues in account. Such a proposal
was first brought forward by Herbert Simon in a paper from 1967 [172]. In
this paper, Simon considers systems with multiple goals. Mechanisms for
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selecting which goal to seek at a given time are considered, such as a simple
goal queuing strategy. However, when faced with real-time systems, where
the survival of the system depends on its response time in certain situations,
such mechanisms are inadequate. An interrupt system capable of interrupt-
ing current processing in order to attend to a real-time solicitation is con-
sidered by Simon as an emotional behavior mechanism. Such a mechanism
requires a continuous monitoring system, running in parallel with the current
goal-seeking mechanisms. When a particular situation is detected, either of
internal or external origin, the current goal-seeking process is interrupted,
and the solicitation is attended. This emotional mechanism opens up several
possibilities for learning. Two possibilities discussed by Simon are: the capa-
bility of learning new associations among stimuli and interrupt mechanisms,
as well as weakening such associations, and to acquire or modify packaged
responses to these interrupts.

Although Simon does not expand on how to implement these ideas, it
is interesting to note that the relevance of emotion phenomena in human
behavior caught the attention of one of the founders during the early days
of the field. The particular aspect of emotions that Simon found interesting
was not the machine handling of specific human emotions, but rather the
mechanism of interruption of cognitive processes.

With the provocative title “Why robots will have emotions” [176], Aaron
Sloman and Monica Croucher sketched a complex (and sometimes confus-
ing, in the attempt of broadly covering many aspects of human intelligence)
architecture of the mind. In a similar fashion as Simon, emotions are taken
to play the role of interrupting current processing in order to cope with
the vicissitudes of a changing and partly unpredictable environment. Slo-
man and Croucher conjecture in their paper from 1981 that “interruptions,
disturbances and departures from rationality which characterize emotions
are a natural consequence of the sorts of mechanisms required by the con-
straints on the design of intelligent systems.” These constraints are of many
sorts (physical needs, mental needs, social ones, and so on). To name a few
of them: non-static collection of motives, non-static environment, speed of
computation, environment complexity, complex physical structure, etc.

Both Simon and Sloman approached emotions as mechanisms of a larger
system. They claimed that a cognitive system complex enough to exhibit
intelligent behavior at a level similar to the human one ought to incorporate
emotion-like mechanisms. Note that the focus is not on specific human emo-
tions, but rather on the mechanisms involved in emotion processing. Thus,
this does not dismiss the possibility that one or more human emotions may
uncover mechanisms generic enough to be useful outside of the biological con-
text. To what extent human emotions are specific to biology and to specific
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environments remains an open question.

An alternative approach is possible, though: the design of a system en-
dowed with representations and mechanisms closely based on human emo-
tions. Early works on this line of research include the ones of Jaap Swa-
german, based on the emotion theories of Nico Frijda, and a review made
by Michael Dyer on previous computer models that exhibit comprehension
and/or generation of emotional behavior.

Michael Dyer reviews in [69] three computer models — BORIS, OpEd,
and DAYDREAMER — that he claims to exhibit comprehension and/or gen-
eration of emotional behavior. None of these implementations was designed
to specifically address the issue of emotions. They all interact with the user
via a natural language interface. The representations of emotions correspond
to the ones captured by the corresponding words, which is the same to say
that they aim at representing specific human emotions.

The BORIS implementation reads narrative texts and answers questions
about probable emotional reactions of characters. The representations are
based on affective units (Minsky’s frames [133]). Affects are represented in
terms of abstract goal situations, e.g. “unhappy” indicates a character has
experienced a goal failure. Each affect unit includes also which character
is feeling the emotion, a polarity (two values: negative or positive), and a
person or object towards which the emotion could be directed (e.g., anger),
among other slots. BORIS is able to infer emotional responses after a given
situation, as well as to interpret a given emotional reaction in terms of its
probable causes.

The OpEd implementation is an extension of BORIS, aiming at reading
editorial texts and answering questions about them. The main innovation of
OpEd is the introduction of beliefs. This way, OpEd is able to represent dif-
ferent points of view held by different characters. Beliefs are also represented
as frames whose slots include the believer, the belief content, and pointers
to beliefs that attack and that support it. Such an explicit representation of
beliefs contributes significantly to the representational power of OpEd. For
instance, it becomes able to understand emotional reactions resulting from a
character’s beliefs. An interaction example of OpEd follows (from page 333
of [69]):

Q: Why have limitations disappointed Friedman?

A: milton friedman believes that voluntary export re-

strains on automobiles from japan negotiated by the

regan administration will cause loss of jobs in the

u.s.
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The goal of DAYDREAMER, unlike the above implementations, is to gen-
erate streams of thought (again, in natural language form). DAYDREAMER
operates in two modes: an input mode, where plans are executed in the
“real world,” and a daydreaming mode, where a stream of thought is gener-
ated, based on the “real world” events. Several components constitute DAY-
DREAMER, to name a few: a personality module, comprising high-level
goals (e.g., preservation of self-esteem, social status, etc.), a relaxed plan-
ning mechanism (more fanciful dreams result from relaxed constrains), and
an emotional component that alters the process of daydreaming by feedback
of dreamed emotions (e.g., imagining a goal failure makes DAYDREAMER
“sad”). The daydreams are represented by conceptual structures, and are
afterwards translated to English for output. An example daydream follows
(from page 337 of [69]):

I am disappointed that she didn’t accept my offer... I imagine
that she accepted my offer and we soon become a pair. I help her
when she has to rehearse her lines... When she has to do a film
in France, I drop my work and travel there with her... I begin to
miss my work. I become unhappy and feel unfulfilled. She loses
interest in me, because I have nothing to offer her. It’s good I
didn’t get involved with her, because it would’ve led to disaster.
I feel less disappointed that she didn’t accept my offer.

All these three implementations are based on viewing emotions as pat-
terns of beliefs, goals, and arousals. Michael Dyer provides some support for
this view, citing Robert C. Solomon who argues that emotions are rational
judgments. Solomon states that “raw” feelings are distinct from beliefs and
goals, but require beliefs and goals in order to be identified as emotions. In
urgent situations, for instance, emotions are still judgments, however they
may seem irrational to us in the larger context.

Note that all of these implementations represent emotions at the verbal
level. Moreover, they work with human emotions and require built-in repre-
sentations of how they can be represented in terms of goals and beliefs. It
is well-known that emotional phenomena often operate covertly, and there-
fore one’s own interpretations may be misleading. There is evidence that
the brain has a tendency to confabulate verbal explanations (see split-brain
experiments [112, 87]). With this in mind, it may seem exaggerated to state
that these implementations represent emotions per se. Rather, it seems more
accurate to say that they work with representations of verbal interpretations
of emotional phenomena. In other words, emotions are put in a rational
and symbolic framework, within which inference mechanisms generate the
programs’ output.
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The PhD dissertation of Jaap Swagerman describes ACRES, an imple-
mentation of Nico Frijda’s architecture [81]. The fundamental issue is the
realization of concerns. The term concern is understood in this context as
“the system’s disposition to evaluate events or internal conditions as de-
sirable or as undesirable” [81]. These concerns are responsible for seeking
the satisfaction of the system major goals. The system is based on Frijda’s
architecture proposed in his book [79].

The ACRES1 program is written in Prolog, and interacts with a human
operator via a text-based interface. It is endowed with the following set of
concerns: continued operation (“avoiding being killed”), continuous opera-
tion (preservation of reasonable waiting times), reception of correct input,
reception of interesting input, and continued unchanged operation (safety).
This set of concerns is designed for the environmental niche the system re-
sides in, i.e., an operator-machine interaction. The program is composed of
several task-components, which seek the realization of the above concerns.
While the system seeks to realize all concerns simultaneously, some con-
cerns take precedence over others. As input is received by ACRES, these
task-components check for concern realization. The system learns from de-
scriptions of emotions given by the operator, and stores knowledge about its
own emotions, as well as other people’s emotions.

To attain concern realization, ACRES has the ability to perform actions.
These actions can either have external effects, or modify its knowledge base.
It also disposes of pre-programmed action sequences, and is capable of plan-
ning sequences of actions. The detection of a concern relevance often leads to
goals being set up. The choice of particular actions is based on the relevance
evaluated for the present situation. ACRES builds memories of its own ex-
perience. Since these memories are formed by relevant aspects with respect
to the system concerns, it is claimed that they constitute an emotional expe-
rience memory. Another aspect of ACRES is the use of its knowledge base
to name emotions. The system has been tested with a set of 960 emotion
profiles obtained from real life experiences of 32 subjects (30 emotions in-
volved). ACRES was able to give correct first choices for 32% of the cases,
while in 71% of the cases the correct one was among the top five choices [81].

The authors of ACRES acknowledge the limitation imposed by the sys-
tem environment (text-based operator-machine interface) where, for instance,
there is no concept of space or movement. This limitation prevents the sup-
porting emotion theory to be fully tested. Even so, some concepts of the
theory, such as action readiness, control precedence, hedonic signals, and
concerns, could be implemented.

1ACRES: A Concern REalization model of emotionS.
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3.4 Historical perspective

The evolution of emotions research within the domain of A.I., can be roughly
divided into three major periods. First, the early days of the field, spanning
from the 1960’s until the end of the 1980’s. Herbert Simon published his sem-
inal paper about emotions and its relevance to the A.I. field in 1967 [172],
and in 1981 Aaron Sloman (together with Monica Croucher) published “Why
Robots Will Have Emotions.” The 1980’s saw the creation of the first
computer programs dealing in an explicit manner with emotions, namely
BORIS [69] in 1983, and ACRES [81] in 1987.

A second period can be roughly identified with the first half of the 1990’s.
This period is characterized by some dispersed research, during which the
first applications of emotions were implemented. Two examples are the Oz
project [21, 156, 155] in the field of believable agents, and MINDER1 [216],
an implementation based on Sloman’s architecture.

The year 1998 marked a new era for the field, with the emergence of
several meetings dedicated to the topic, namely the workshop “Grounding
Emotions in Adaptive Systems” in the Simulation of Adaptive Behavior con-
ference (SAB98), and the AAAI Fall Symposium on “Emotional and Intelli-
gent: The Tangled Knot of Cognition.” Several others followed in the next
few years. These gatherings aggregated hitherto dispersed research, allowing
for the creation of a community of researchers working on this area.

However, it is hardly the case that the field is united among a common
goal, nor a common theory, for several distinct research goals and interests
can be identified. Moreover, as it became evident in earlier sections of this
chapter, theories about emotions abound. These theories are not necessar-
ily contradictory, but rather attempt to describe the emotional phenomena
from different perspectives, and sometimes from different initial assumptions.
They also vary in terms of level of description: from the physiological level, as
in Joseph LeDoux’s research, where fear has been singled out, to the higher
psychological levels, as in Appraisal theories, taking a cognitive stance.

3.5 A taxonomy of the field

This section proposes a taxonomy of the field. At a first level, research is di-
vided among two areas, where research is focused on internal manifestations,
or on external manifestations of emotions. It is possible to develop research
that intertwines these two concerns, but the large majority the work found
in the literature chooses either one of them.

Even so, these are not self-contained separate areas. People working on
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believable agents, for instance, consider it important to base the internal ar-
chitectures of their agents on sound emotion theories. Suspension of disbelief
during an interaction with one of these agents may depend crucially on the
consistency among events and displayed emotions. Similarly, validation of
agent architectures based on emotions, for instance through social interac-
tion with humans, may require sound display and recognition of emotions.
So, it might be fruitful that people working in each one of these two major
areas exchange ideas, models, and implementations.

At a second level, the proposed taxonomy further divides research in a
set of subareas. At a first glance, one could attempt a division based on the
nature of the emotion theories (e.g., appraisal theories, neurophysiological,
and so on). However, such an approach easily results with very diverse
research work ending up in the same subarea. For instance, appraisal theories
cross-cut horizontally across projects with different goals. For this reason,
an alternative approach was chosen. This approach is based on the research
goal the authors propose themselves. With this idea in mind, the adopted
taxonomy is the following:

• Internal manifestations of emotions

– Architectures. Research in this area aims at a generic agent archi-
tecture where the internal mechanisms of emotions play a promi-
nent role;

– Robotics. The goal in this area is the construction of mobile robots
whose behavior is determined by emotional components in the
architectures;

– Emotions Modeling. This area aims at the creation of models of
mechanisms of emotions, not necessarily biologically-inspired;

– Cognitive Modeling. The research here studies computational
models of emotional mechanisms of the brain;

• External manifestations of emotions

– Believable Agents. The goal in this area is to build interactive
agents seeking suspension of disbelief with the user;

– Affective Computing. Classical computing is based on interaction
with the user on a rational basis, while affective computing focuses
on affective interaction among users and computers. This includes
two aspects: computers recognizing affective states of users, and
computers expressing emotional states in a believable way;



3.5. A TAXONOMY OF THE FIELD 39

The borders suggested by the above descriptions are not rigid. Hence,
a few words are in order about what was kept in mind while reviewing the
published work. Although the Robotics area can be seen as an application
of the Architectures one, a given research work is here considered to belong
to the former area whenever not only a physical robot is involved (includes
simulation), with at least its kinematic aspects, but also when it is not evi-
dent how the proposed architecture can be deployed in different application
contexts. The Emotion Modeling area is here distinguished from Cognitive
Modeling one by the object being modeled: the latter aims at modeling cog-
nitive mechanisms in humans, by the means of computational models, while
the former one is here understood in the context of (abstract) artificial mod-
els of emotions. These models may or may not be biologically inspired. It
may also become difficult to distinguish clearly between Believable Agents
and Affective Computing: while the latter centers its attention on the emo-
tional content of the interaction, the former uses emotions as a component,
among others, contributing to the goal of believability.

3.5.1 Architectures

The goal here is to build an agent architecture where emotional mechanisms
play an essential role. These architectures are usually generic enough so that
they can be applied in a broad range of contexts.

One of the earliest architectures that accounts for emotional processes
was proposed by Aaron Sloman [174, 175, 177]. It captures several archi-
tectural trends in the A.I. field. On the one hand, it is based on the classic
“triple tower” architecture: perception, processing, and action. And on the
other, there are three horizontal levels of processing: reactive, deliberative
(planning, deciding, scheduling, etc.), and meta-management (reflective). By
crossing the former three vertical “towers” with the latter horizontal layers,
one reaches an architecture formed by the nine slots. This is generic enough
to cover a broad range of approaches found in the agent architecture liter-
ature, but falls short on explaining how exactly all those processes interact
in order to produce a coherent behavior. The emotional mechanisms are
represented by an alarm system, functioning in parallel. The alarm system
monitors activity throughout the architecture. The role of the alarm system
is to detect certain salient events, corresponding to emotional states. These
events can have origin on either the internal state of the agent, or on external
events. The alarm system may respond to those events by provoking changes
in the processes running in the system. For instance, processes may be in-
terrupted, while others launched. This point of view is inspired by Herbert
Simon’s early ideas about emotions as interrupts, as reviewed in section 3.3



40 CHAPTER 3. REVIEW OF THE STATE-OF-THE-ART

above.
During the early eighties, Masanao Toda developed a conceptual model

of an artificial being which he called Emotional Fungus-eater [184]. The
thought scenario is a team of such fungus-eaters mining for uranium on a
distant planet. The idea consists of reducing mental phenomena to a set of
urges. An urge functions as a motivational sub-routine. These urges range
from emergency urges, such as “fear”, whenever the fungus-eater encounters
an object that may jeopardize its survival, and “startle,” when an unexpected
detection of a potentially dangerous object occurs, all the way to social urges.
Examples of social urges are the “rescue” urge, when a mate fungus-eater
needs help, and the “gratitude” urge, e.g. by the one being helped in case
of having been rescued. More sophisticated urges include “rule observance”
urges, for maintaining some kind of social structure, and the “confirmation”
urge of social status, assuming a social hierarchy based on power demon-
strations (e.g., the “demonstration” urge). Even though the names of these
urges may suggest their identification with emotions, Toda states that there
is no one-to-one correspondence among the fungus-eaters urges and human
emotions, although some of their names were borrowed from them.

Michel Aubé worked on Toda’s theoretical framework, and developed a
conceptual architecture for an emotional agent [11, 12]. Aubé first divided
Toda’s urges in two distinct groups: needs, and emotions. Needs corresponds
to basic urges, such as hunger, thirst, and fatigue, while emotions encompass
social and interactive urges, such as anger and guilt. The former are sat-
isfiable directly via first order resources, such as food and water, while the
latter correspond to second order resources, which are only obtainable by
commitments with other agents. Toda identifies the first order urges (needs)
with autonomy. Effective management of these basic urges is essential for an
agent to be autonomous. The second order urges (emotions) relate to social
interaction. Restricting emotions to the social domain is an arguable claim,
which Aubé discusses in his publications [11, 12]. Aubé’s central idea is to
view emotions as commitment operators: emotions form attachments among
agents, and therefore an emotion implies a commitment among agents. These
commitments constitute the abovementioned second order resources. The
raison d’être for considering needs and emotions w.r.t. resources comes from
viewing the management of needs as the management of basic resources for
survival (e.g., food, water, protection), while the management of emotions as
the management of commitments among agents. Aubé’s architecture is based
on two layers: an emotional layer, encompassing emotions and commitments
management, and a needs layer, containing the management of first order
resources and needs. According to Aubé’s theory, the needs layer is capable
of triggering emotions, while the emotions layer performs regulation of the
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needs.
Rolf Pfeifer proposed an A.I. model of emotions called FEELER [146,

147]. FEELER is based on a set of production rules, such as the following
one (example from [146])

R1: IF current_state is negative for self

and emotional_target is VARperson

and locus_of_causality is VARperson

and locus_of_control is VARperson

THEN ANGER at VARperson

The rules are based on an emotions taxonomy proposed by the psychologist
Bernard Weiner in 1982. The current situation is represented on a pair of
working memories, a cognitive memory (to store structures such as plans and
goals), and a physiological memory (to represent physiological activity). In
the simpler case, left side conditions refer to the current situation stored in
the working memories, while the right side triggers specific emotions, possibly
containing variables (e.g., VARperson in the above example) about the target
of the emotion. This allows for feedback, in the sense that the elicitation of
certain emotions can trigger the occurrence of other ones. The model also
accounts for interrupts, for instance, in the case of sub-goal violation, which
triggers the rule production system, and for dynamics of the emotions (e.g.,
for how long an emotion should last).

In his later research, Pfeifer departed from this methodology, motivated
by the recognition that emotion should be an emergent phenomenon, rather
than engineered into the agent as in FEELER [147]. Pfeifer then followed
a “Nouvelle A.I.” approach, pioneered by Rodney Brooks [34, 35]. Pfeifer’s
methodology followed a path of constructing robots exhibiting emergent be-
havior. According to Pfeifer, at a sufficient level of sophistication, emotions
will become identifiable as an emergent phenomena, given that agents are
provided with some basic built-in mechanism(s) allowing them to discern
what is ’good’ for them from what is ’bad’.

As in Pfeifer’s FEELER, the Salt & Pepper architecture of Lúıs Botelho
and Helder Coelho also uses a rule production system for emotion elicita-
tion [29, 27, 28]. However, this architecture differs from FEELER in several
aspects. The appraisal process is divided in two parallel processes, driven by
two distinct set of feature extraction processes: a cognitive appraisal, deal-
ing with explicit representations of cognitive structures such as plans, goals,
and so on, and an affective appraisal, which is responsible for the genera-
tion of emotional signals and responses. The authors found inspiration in
neurophysiology (e.g., research by Damásio [55] and LeDoux [112]) for this
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double representation scheme. The affective appraisal is implemented by a
production system. The emotional responses generated by the firing rules
affect the internal state and possibly are capable of triggering actions. Inter-
nal effects of emotions include changes in motivators (goals), and attention
shifts, among others.

Alastair Burt’s approach takes a three layer agent architecture (INTER-
RAP) as a stating point, consisting of a Behavior-based (lowest level), a Local
Planning, and a Social Planning layers (highest level). Burt views emotion
as a mechanism for internal resource management [37, 36]. The agent ar-
chitecture modeling is based on logic. However, according to Burt, logic
does not suffice for an agent to function, a motivational component is also
required. This motivational component is responsible for tasks such as man-
aging goal generation, goal weighting, and for the way the layers influence
one another and lead to action generation. Agents with bounded resources
require a scheme for managing these resources: the emotions.

Basing his framework on Minsky’s Society of Mind [133], Juan Velásquez
proposed the Cathexis architecture [193, 195, 194]. The two main compo-
nents of Cathexis are the emotion generation and the behavior system. The
former consists of a networked architecture of proto-specialists2, one for each
emotion family (e.g., fear, disgust). Each one has a scalar value represent-
ing its activation level. They receive inputs from emotion elicitors (external
stimuli), as well as from other proto-specialists (with either excitatory or
inhibitory gains). Each one of them has also a decay function that fades out
the activation level, in the absence of input activity. A proto-specialist is
further subject to a thresholding for saturation at a maximum level, as well
as to a minimum above which the corresponding emotion is activated. The
behavior system is based on a network of behaviors. These can be activated
by releasers which, depending on the specific behavior, can be triggered by
emotions or by external stimuli. Velásquez developed two implementations of
this architecture: Simón and Yuppy. Simón [193] depicts a cartoon baby-face
showing emotional facial expressions, and has a set of basic behaviors (e.g.,
sleep, eat, laugh, kiss). The stimuli are a set of graphical interface inputs,
such as sliders and buttons. These inputs act not only as stimuli, but they
also modify internal physiological variables of the agent. Yuppy is a physical
robot [194] with various sensors, such as CCD cameras, microphones, and
air pressure sensors. The above architecture was augmented for Yuppy with
an emotional memory structure (comparable to Minsky’s K-lines3). Little
details are given on the mechanisms of this emotional memory. The pro-

2In Minsky terminology, proto-specialists are simple genetically encoded agents, spe-
cialized at innate basic needs, such as thirst, hunger, warmth, and so on [133].

3K-lines are memory structures that, during recall of an event, the mental state expe-
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posed goal is to replicate Damásio’s secondary emotions [55]: associating an
emotional state with external stimuli.

Alexender Staller and Paolo Petta proposed an architecture (TABASCO)
for situated agents based on appraisal theories of emotions [179]. TABASCO
builds on a pair of three-level architectures for perception and for action.
On the perception side, where the appraisal process resides, there are a sen-
sory level (feature detection), a schematic level (schemata, e.g. associative
network with spreading activation), and a conceptual level (reasoning based
on knowledge and beliefs, e.g. BDI [154]). The three levels of the action
side are based on Bonasso’s 3T architecture [26]. The three layers of the 3T
architecture are the deliberative one (planner), the sequencer one (based on
reactive action packages), and the reactive one (sensori-motor processing).
Mediating between the perception and the action sides there is an appraisal
register [178], combining the appraisal outcomes from the perceptual layers,
and influencing the three layers of the action side. Finally, there is an ac-
tion monitoring mechanism sending results from the monitoring of the agent
actions to the perceptual side, in order to be integrated with the appraisal
process.

The TABASCO target implementations include a graphical/3-D setup,
and a text-based environment. In the former case, the setup is based on a
virtual mirror (camera and projector, similar to the ALIVE project [123]):
a virtual character interacting with the user, with the character’s emotions
being expressed in both behavior patterns and texture changes [144]. This
setup was built for a permanent exhibit at the Vienna Museum of Technology
(Austria).

The text-based environment, a modified version of the architecture re-
sulted from blending the agent architecture JAM [96] with components from
TABASCO. An appraisal mechanism was added to JAM, receiving beliefs
from JAM’s world model, and generating (impulse) goals to JAM’s intention
structure, as well as appraisal outcomes to JAM’s plan library [145]. The
environment consists of a 2-D grid, where a society of agents is deployed,
looking for scattered food. When an agent detects food being eaten by an-
other agent, it can aggress it (the stronger one takes the food). Several
strategies are possible, for instance: aggress always, aggress only if stronger,
and social norms that assigns food to the ones that find it first.

rienced at that event is reconstructed [133].
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3.5.2 Robotics

This section addresses agent models designed specifically for mobile robots,
including both physical robots as well as simulation. The bottom line is the
constraints imposed to the architecture by the kinematic structure of the
robot and/or the spatial structure of the environment.

Sloman’s architecture has been implemented, for instance, in Luc Beau-
doin’s NML1 [22] and Ian Wright’s MINDER1 [216] agent implementations,
in the context of their PhD theses (both under Sloman’s supervision). The
environment, common to both implementations, is a 2-D space, enclosed by
walls, where the agent moves around and interacts with objects in it. There
are static objects, such as fences and ditches, and simple agents that just wan-
der around (minibots). The task is to “take care” of those minibots, such as
trying to keep them out of the ditches, as well as charging their “batteries.”
The MINDER1 agent, which builds on NML1, implements aspects of all lay-
ers of Sloman’s architecture (reactive, deliberative, and meta-management).
The agent keeps a set of concerns (inspired by Frijda’s theory [79]), that give
rise to the generation of motives. These motives are filtered, according to a
resource allocation scheme. A reactive planner is responsible for the agent’s
actions. The meta-management layer comprises the management of the mo-
tive filtering, and a detector of perturbances. Whenever the rate of motive
rejection is above a certain threshold, a perturbance state is detected. Such
states could be used to control management processes in other parts of the
architecture, however, this mechanism was not implemented. It was claimed
by the authors that these perturbances states can be identified with human
emotional states, in the context of Sloman’s framework.

The early work of Dolores Cañamero on emotions can be classified in the
area of architectures [40], although her later work shifted towards the field
of Affective Computing. In the former area, she developed an agent archi-
tecture for a robot living in a grid-world. This environment contains objects
of several classes: inanimate blocks (obstacles), food and water resources,
and living agents (Abbotts) implementing the proposed architecture. The
architecture is rooted in the Society of Mind framework, proposed by Mar-
vin Minsky [133]. Following this framework, an agent is formed by a society
of simple specialized agents, where from the interactions among them, intel-
ligent behavior ought to emerge. An Abbott agent is therefore constituted
by a society of several agents of different classes. There are sensor agents,
devoted not only for processing external stimuli, but also to monitoring the
agent’s body state (somatic sensors). The body state is composed of sev-
eral physiological variables (e.g., adrenaline, blood pressure, energy, pain,
etc.). There are also recognizer agents that process sensor data and perform
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object recognition, direction-neme agents that specialize on certain physical
directions (e.g., top, top-left, left, etc.), map agents that construct a map
of perceived objects found in the environment, effector agents that perform
actions upon the environment, behavior and manager agents that are spe-
cialized on certain behaviors, motivation, and emotion agents. These two
latter classes of agents are responsible for the emotional component of the
Abbotts.

Cañamero distinguishes motivations from emotions in the following way:
while the former aim at the homeostatic equilibrium of the body’s physiologi-
cal variables, the latter are able to amplify (or modify) the motivational state
of the agent. Emotional states can be activated by either external events (e.g.,
achievement of a goal elicits happiness) or internal patterns of physiological
variables (e.g., sustained high level of a variable provokes anger). The effects
of an emotion are twofold: first, it can modify the intensity of current moti-
vations, leading to modifications in the behaviors intensities, and second, it
can modify readings of sensors that monitor the variables that emotion can
affect.

Matthias Scheutz approached emotions from a bottom-up perspective.
The goal is to develop simple affective states in a multi-agent setup [166].
He implemented an agent architecture living in a simulated 2-D environ-
ment. The agents are robots that move around, looking for food and water
resources, and avoiding obstacles, as well as other robots. The agents are
evolutive, in the sense that they live until they either collide or run out of
energy. After some pre-determined time after inception, they give rise to an
offspring of brand new agents/robots. Each robot has sonar sensors to detect
other objects from a distance, smell sensors to detect water and food, and
touch sensors to detect close proximity to other objects. When a touch sensor
is activated, an alarm system triggers a reflex action to make the agent move
away from the touched object. The motors are driven by a schema-based
controller [4]. The sensors are able to identify and localize the four types of
objects in the environment: food, water, obstacles and other agents. When
detected, an object will produce a force vector, depending on the kind of
object and on its relative direction with respect to the agent. Using a linear
combination of these vectors, a direction of movement is computed, resulting
in motor commands. The weights used in this linear combination are crucial.
Depending on their sign, they can make the agent be attracted to or be re-
pulsed from a specific kind of objects, with more or less intensity depending
on the weight magnitude. These weights are the outputs of a neural network,
which constitutes the affective system of the agent. The inputs of this neural
network are: internal water and energy levels (“physiological” variables), and
alarm signals triggered by close proximity of obstacles or other agents.
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The motivations for these agents are to look for food and for water. The
intensities of these motivations are determined by the weights that come
out from the neural network. So, these values are said to represent the
motivational state of the agent.

In summary, the internal “physiological” variables and the alarm signals
triggered by external events are processed by the neural network, resulting
in the weights that determine the behavior of the agent. Thus, the neural
network parameters span a parameter space where a broad range of agent
“personalities” can be found.

The parameters of the neural network are subject to evolutionary muta-
tion. The number of agents in an offspring depend on the energy level of the
progenitor at the time of the reproduction. Therefore, the surviving agents
tend to be the ones with the neural network parameters most fit for survival
on the given environment.

The experiments consisted of runs of a certain amount of simulation steps
each. The network parameters of the survival agents were then analyzed. Ac-
cording to Scheutz, two classes of affective states can be identified [166]. One
class corresponds to the signal path starting at the levels of the “physiologic”
variables, which can be identified with the agent drives, e.g. a low level of
water makes the agent being more attracted to water resources. A second
class corresponds to the signal path originating from the alarm signals. In
this latter case, according to Scheutz, the neural network seems to measure
the frequency of encounters with certain kinds of objects, suggesting the
emergence of emotional states. Scheutz identifies these states with primary
emotions, such as fear and anger.

More recent research by Scheutz shows a shift of concern towards the
analysis of agent architectures, in terms of methodologies to evaluate the
utility of emotions [168, 167]. Scheutz’s approach consists of a systematic
analysis of a given agent architecture in terms of performance-cost trade-
offs, and the impact or having or not emotions. He introduces the idea of
cost induced by the architecture [167]. He first maps agent architectures to
a common abstract framework — APOC — that models an agent’s internal
structure in terms of various kinds of components and links [2]. The cost
induced by an architecture results from the combination of structural costs,
process costs, and action costs.

Building on the animat paradigm, Sandra Gadanho and John Hallam pro-
posed an architecture targeting a physical robot (Khepera). Their architec-
ture consists of an adaptive controller, based on the Q-learning paradigm [181],
driven by an emotional system [85, 82]. The two main architecture compo-
nents are the emotional system and the adaptive controller. The environment
is a 2-D maze with energy sources (represented by light sources) scattered
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around. In order to obtain energy, the robot has to bump into those light
sources. There are additional characteristics that complicate this task, thus
requiring the robot to perform sequences of actions to avoid running out of
energy over time.

The emotional system implements four valenced emotions4 (happiness,
sadness, fear, and anger), and seven feelings (hunger, pain, restlessness, tem-
perature, eating, smell, warmth, and proximity), resulting in two numerical
vectors of four and seven components. Although they correspond to the
names of human emotions, the choice out of the full human spectrum was
based on whether they made sense in the given environment. Moreover, there
is a hormonal system consisting of a dynamical system with a state vector
of seven components (corresponding to the seven feelings). This dynamical
system implements attack and decay rates of each of the state vector compo-
nents. The feelings vector is obtained by summing up the hormonal state vec-
tor (weighted) with the sensations vector. This sensations vector is obtained
from the robot’s perception (internal and external), e.g. the hunger compo-
nent corresponds to the robot energy deficit, and the pain component is high
whenever the robot bumps into something. The emotions vector is computed
from the feelings vector by using a neural network with handcrafted weights,
reflecting how specific feelings influence certain emotions. For instance, low
energy, and not acquiring it, makes the robot sad, and even sadder if no light
is sensed; bumping into obstacles provokes pain, inducing fearfulness, but
less fear if the robot is hungry or restless. The emotions close the loop by
activating the hormonal system (through another neural network).

The adaptive controller is responsible for selecting a behavior out of a set
of three options: avoid obstacles, seek light, and follow walls. Three neural
networks, one for each behavior, are used to estimate their Q-values. The fi-
nal behavior is probabilistically chosen using a Boltzmann-Gibbs distribution
over the Q-values. The reinforcement value is obtained from the dominant
emotion, i.e., the highest component of the emotions vector. Recall that the
emotions are valenced: happy is positive, and the others are negative. This
reinforcement value is used to train the neural networks using the Q-learning
algorithm [181]. Thus, the neural network aims at estimating the Q-values,
taking into account the reinforcement as well as the expected discounted
cumulative reinforcement for the optimal policy.

For the system to function in a continuous time environment, there is the
need of an event detector responsible for triggering the learning, as well as
keeping each behavior for sufficient amount of time so that its effects can be

4The valence of an emotion amounts to its positiveness or negativeness value. For
instance, happiness is said to have positive valence, while sadness a negative one.
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felt. For this purpose, two event detector mechanisms were tested: event-
triggered (significant changes in the emotional state), and interval-triggered
(fixed interval).

The authors performed several experiments in the above-mentioned sim-
ulated environment, using a Khepera robot simulator. Several variations
of the architecture were experimented with, where certain emotional com-
ponents were replaced by non-emotional counterparts. The results of the
comparison showed that the emotional version of the architecture performed
better in terms of collisions and number of events. The authors attributed
this result to the event-triggered mechanism, which depends on changes on
the emotional state.

Sandra Gadanho continued working on this architecture during her post-
doctoral research studies. Enhancements on the architecture include mod-
ifying the emotional system in such a way that the goals are made more
explicit, by using a set of homeostatic variables [84]. Further research also
includes augmenting the architecture with an adaptive rule-based cognitive
system, with the goal of a cognitive level decision-making mechanism [83].

Piotr Gmytrasiewicz takes a decision theoretic approach to emotions [88,
68]. Decision theory states that the optimal course of action a∗ from a set A
of possible actions, given an utility function U(s) mapping the set of possible
world states S to real numbers, is given by the following equation equation5

a∗ = arg max
ai∈A

∑

s∈S

pj
iU(sj) (3.1)

where pj
i is the probability of finding the world state sj after performing

action ai. The agent’s knowledge of the world state is thus assumed to be
probabilistic. Given a current state probability distribution Pc(s) over the
state space S, together with an action ai to be performed next, there is a
function that maps this distribution onto a next state distribution Pi(s),
where consequently pj

i = Pi(s
j). This function is designated probabilistic

temporal projection. The quadruple formed by this projection, together with
the current state distribution Pc(s), the action set A, and the utility function
U(s) is termed a decision-making situation.

Transitions between emotional states are represented by a finite-state ma-
chine (FSM) whose transitions depend on environmental input. The central
idea of Gmytrasiewicz’s approach is that each state can perform transforma-
tions on each one of the components that form the decision-making situation
quadruple of the agent. Namely, transformations on the action space A, on
the utility function U(s), and on the state probabilities are discussed [88]. An

5Assuming a properly formed utility function U(s).
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example of a transformation of the action space is the narrowing of possible
actions. This can be compared to Frijda’s action tendencies [79], when there
is a predisposition for a small subset of actions. Emotions and feelings are
said to implement and modify the utility function, for instance. And finally,
transformations to the probabilities of states, for instance, by simplifying
them, can allow the agent a quicker decision-making process (e.g., taking
into consideration the most probable next state only).

Experiments were performed in a Wumpus world scenario [161], which
resulted in interesting preliminary results [68]. The Wumpus world consists
of a 2-D grid world inhabited by a moving creature called Wumpus, which
kills the agent whenever they collide. The goal of the agent is to grab a
piece of gold located somewhere in the grid, while avoiding being killed by
the Wumpus. The agent can move in all four directions, as well as collecting
gold wherever it finds it.

The agent decision-making used in this case was based on a partially ob-
servable Markov decision process (POMDP) approach [41]. Computing the
optimal policy for a POMDP is computationaly hard. Therefore, methods
to trade-off computational complexity against solution quality are interest-
ing from a pragmatical point of view. The proposal Gmytrasiewicz brings
forward is that emotions can provide such a mechanism. The idea is to use
emotions to simplify the POMDP model, hence facilitating the task of finding
the optimal policy.

Each one of the emotional states considered in the FSM — contended,
elation, fear, and panic — perform transformations on the POMDP model: a
contended agent takes the maximum possible time in computing the optimal
plan; fear makes the agent restrict the time horizon of the planning process;
panic is like fear, but additionally reduces the action space to movement; and
during elation the agent attempts to reach the goal regardless of any danger
of colliding with the Wumpus, i.e., the utility function is insensitive to the
case of such a collision.

Along with the described agent, two more agents were tested in several
randomly generated Wumpus worlds: a cut-down non-emotional version, and
one always in the panic state. The performance was evaluated by measuring
the average of the accumulated rewards (of the POMDP) over a number of
runs, in a set of three kinds of worlds, differing in the speed of the Wum-
pus. The simulations took into account the time the agent takes to perform
planning using the POMDP model, and thus the speed of movement of the
Wumpus has an impact on the performance. The preliminary results show
that, while the non-emotional agent performs marginally better with a slow
Wumpus, the emotional one exceeds it as the Wumpus moves more quickly.
Moreover, the agent that is always in a state of panic did not perform better
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in any scenario. These results suggest a clear benefit of using emotions in
such a rational decision-theoretic agent model.

Lúıs Morgado and Graça Gaspar use a signal processing approach to
emotions [134, 135]. The emotional disposition of an agent is modeled by a
two dimensional dynamic vector ED ≡ (δP, δC)

δP =
dP

dt
and δC =

dC

dt
(3.2)

where the components are the time derivatives of two quantities: the achieve-
ment potential P , representing the potential the agent is able to produce
in the environment, and the achievement conductance C, representing how
much the environment allows for that change to occur. The position of the
ED vector in 2-D space defines an emotional quality tendency, namely quad-
rant I (both δP and δC positive) means Joy, quadrant II (δP positive and
δC negative) means Anger, and quadrants III and IV mean Fear and Sad-
ness. In other words, the rates of change of the achievement potential and
of the conductance determine the agent emotional quality. On top of this
structure, they define cognitive elements as vectors in a multi-dimensional
space. These elements can play the roles of motivators, mediators (transform
motivations to actions), achievers, and observations (related to perception).
Experimental case studies include, for instance, a robot moving in a 2-D
space, looking for food, and avoiding obstacles [134]. The results show that
not only the robot is able to avoid colliding with an obstacle, but also that
it exhibits adaptive capacity, showing improvement along successive runs in
the way the obstacle is efficiently contoured.

3.5.3 Emotions Modeling

The approaches reviewed in this section address models of emotional mech-
anisms, including computational models, but also mathematical ones. This
accounts for models that do not necessarily mimic the biological counterparts,
but rather aim at incorporating a set of characteristics found in emotions.

Zippora Arzi-Gonczarowski employs mathematical Category Theory [110]
as a tool for modeling affective phenomena, although the scope of her model
is broader [9, 6, 7]. Her goal is to provide a rigorous mathematical formu-
lation of the field. Category Theory, first introduced in 1945, is an abstract
algebraic theory that unifies a broad range of mathematical constructs. Its
principles are very simple: a category is composed by a set O of objects,
a set A of arrows (also known as morphisms) associating ordered pairs of
objects (notated as f : a → b for a, b ∈ O and f ∈ A), and a set of
properties these objects must conform to (such as associativity), giving it
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a minimalist mathematical structure. Many other constructs can be built on
top of this minimalist definition (e.g., set theory, algebraic topology, logic).
Arzi-Gonczarowski approach builds on a category of perceptions [10], where
objects are tuples 〈E , I, ρ〉 (perceptions), and morphisms are transitions from
one perception to another. World objects, exterior to an agent, are repre-
sented by a set E0, which is assumed to be common to all perceptions of the
category (E = E0). In a perception, the set I contains internal representa-
tions (connotations), and the mapping ρ associates the set of exterior objects
E and the set of the agent connotations I by the means of a three-valued
logic ρ : E × I → {t, f ,u}. For a world element w and a connotation α,
a logical value of t means that w has connotation α, f means that it does
not, and u means that it is unspecified (at least at the moment). Morphisms
represent transformations from one perception to another. Several standard
category constructs can be mapped to this category of perceptions [10].

This mathematical background has been used by Arzi-Gonczarowski to
model several aspects of affective phenomena. Connotations can model agent
reactions to certain stimuli. If α denotes a reaction, ρ(w, α) = t means
that the perception of w provokes a reaction α. Changes in perceptions are
modeled by morphisms. An emotional response may include, for instance,
changes in the way the agent reacts to perceptions (moods and attitudes).
The theory was further extended, for instance, to explicitly include behaviors
and action tendencies into the perception tuples. Other extensions include
perceptions of perceptions, by allowing the world set E to be made of other
perceptions. This construct was said to constitute self-reflection [8].

As explained in section 2.3.1, cognitive appraisal means the evaluation of
an event, with respect to an agent’s goals and expectations. The approach
of Jonathan Gratch is based on the idea that classical planning algorithms
provide a level of representation adequate for the development of cognitive ap-
praisal models [92, 93]. Such a level of representation allows for what he calls
a plan-based appraisal, that determines the significance of events in terms
of the successful execution of a plan. For instance, an event may threaten a
precondition of some step of a plan, and thus jeopardize the achievement of
the goal. The appraisal process is based on construal frames (from Elliot’s
construal theory [74]). Events are matched against these construal frames,
and emotions are elicited according to the OCC theory [142]. Emotions exert
their influence on the agent’s communications, planning process, and action
selection. To illustrate these ideas, an implementation called Émile was de-
vised. Émile agents dialogue with each other in natural language, each one
with different personalities parameters, all trying to achieve their own goals
(e.g., one wants to make money, while another wants to go surfing).

Together with Stacy Marsella, Gratch extended his research to include
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coping behavior [126, 94]. They devised a set of strategies the agent uses to
cope in response to the appraisal of events. For instance, if a possible future
event has desirable effects, a Planning strategy is used to assert the intention
of that event to occur; or if an intended future state seems unachievable,
an Acceptance strategy is called for to retract from that intention [126].
Their model was subject to an evaluation, where the results form their model
and from a group of human subjects was compared [94]. The evaluation of
the human subjects was performed by means of questionnaires about the
subject’s feelings, as well as the way they appraised the situation. Two
scenarios were devised, one based on verbal accounts of a situation, and
another where subjects watched a video clip of a conversation in a virtual
reality setup. The authors claim that their model showed consistent results
with the subjects answers.

Aiming at believable agents and interactive characters, Ian Wilson pro-
posed the Artificial Emotion Engine to model affective behavior [211]. Af-
fective behavior is represented at three levels of prominence: momentary
emotions (high priority, short span of time), moods, and personality (low
priority, longest span of time). The extensive research of the personality
psychologist Hans Eysenck was used to define personality traits in a three
dimensional space (Extroversion, Fear, and Aggression). The engine receives
at its input punishment or reward signals for each one of the agent needs,
as well as signals from sensors of its emotional reactions. At its outputs, the
engine produces signals at different levels: body and facial expressions, the
action plan to satisfy the agent needs, and the raw agent emotional state.

3.5.4 Cognitive Modeling

This section reviews computational models that explicitly aim at modeling
emotional mechanisms from a cognitive point of view. Contrarily to the pre-
vious section, the following approaches aim at modeling affective phenomena
as they occur on humans.

Taking a physiological perspective, Christian Balkenius proposed a com-
putational model of emotional learning and processing [17, 16]. The approach
aims at modeling several areas of the brain related with emotions, at a func-
tional level, rather than at a neural level. The areas modeled are the amyg-
dala and the orbitofrontal cortex, as well as the interactions among them,
at a simplified level. The resulting system receives sensory input and a rein-
forcement signal (reward/punishment). The amygdala learns to respond to a
stimulus with an emotional response of the same magnitude as the reinforce-
ment signal. The orbitofrontal cortex compares the actual and the expected
reinforcement signals, coming from the amygdala. If they do not match,
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learning is activated such that the orbitofrontal cortex is able to anticipate
the emotional response of the amygdala. The orbitofrontal cortex uses this
learning process to be able to inhibit emotional responses of the amygdala
prior to any reinforcement signal. The amygdala and the orbitofrontal cortex
receive sensory input with different granularities, where the orbitofrontal cor-
tex employs finer input resolution. Thus, it is capable of a higher degree of
discrimination. The simulations showed interesting results at several aspects
of classical conditioning, such as habituation, acquisition, extinction, and
blocking. Moreover, the model reproduced many effects caused by lesions in
certain brain regions.

Dietrich Dörner and Ulrike Starker developed a model of human action
regulation (Psi-model), integrating cognition, motivation, and emotion [67].
The key idea is to view emotions as a controlling system that takes into
account the degree of uncertainty of the environment, as well as the organ-
ism’s competence to tackle problems. Two examples: uncertainty leads to
safeguarding behaviors, and low competence makes the organism avoid too
difficult problems. The cognitive processes depend on an arousal parame-
ter, related with the general preparedness for action, and a resolution level,
which regulates how deep planning and perception processes should go. They
devised an experiment using complex and dynamic maze-like environments,
and subjected both humans and agents based on the Psi-model to it. Several
performance metrics were used, such as the number of places visited, the
number of breakdowns, the number of “nuggets” collected, among others.
The results showed similar profiles across these metrics among human and
machine subjects. They also tested the Psi-model with and without emo-
tions. The emotional version showed better results in general, namely in
terms of agents succeeding to preserve themselves (number of breakdowns),
and of the number of collected “nuggets.”

Drawing on neurophysiology, Jean-Marc Fellous proposes a view of emo-
tions as dynamic patterns of neuro-modulation, rather than patterns of neu-
ral activity as it is traditionally viewed [75, 76]. Many neurological studies
point towards an active involvement of many chemical substances (neuro-
modulators) in the dynamics of emotional states [114]. These chemical sub-
stances, elicited by emotional states, are able to modulate the functioning of
the nervous systems in many ways. Emotions can thus be seen as a mech-
anism of conveying information across the brain. Although the nature of
this information is poorer than in other cognitive capabilities, it has an high
impact. Fellous proposed an organization of behavior on four levels: Reflexes
(e.g., knee jerk), Drives (e.g., rage), Instincts (e.g., fear conditioning), and
Cognitions (e.g., learning). These levels present an increasing potential of
neuro-modulation susceptibility, from the reflex level, where this potential
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is small, up to the cognitive level, where the potential of neuro-modulation
is the highest. Fellous defends that there is no emotion center in the brain,
but rather that emotions involve the whole brain. Moreover, he denies any
causal interdependence among cognition and emotion.

Together with Fellous, Michael Arbib put forward a proposal of emotions
as a mechanism of arbitrating among several modes of behavior [3]. Four
major modes of behavior (the four Fs) are widely acknowledged as universal:
feeding, fighting, fleeing and reproduction. For a robot in an ecological niche
of different nature, a different set of modes may be more appropriate than
these four. Each mode encompasses a group of tasks. Arbib and Fellous view
motivations as a bias to choose one mode over another, a priori, in a given
situation. Moreover, emotions are considered an evaluative process of the
consequences of that choice. Emotions are then capable of switching modes
whenever appropriate.

Eva Hudlicka proposes a computational cognitive-affective architecture
(MAMID) [97, 98], where the underlying idea is that affective states, to-
gether with personality traits (individual differences), manipulate a series of
architectural parameters, such as the processing speed and capacity of a set
of cognitive modules. For instance, anxiety provokes reduced attentional and
working memory capacities. The MAMID architecture is based on six mod-
ules which process perception, in sequence, resulting in actions at the end.
These modules are: attention, situation assessment, expectation generation,
affect appraiser, goal manager, and action selection. The affect appraiser
mechanism is based on multiple-levels and multiple-stages appraisal theories
(see section 2.3.6). Stimuli are processed at two levels: a low-resolution level
in terms of valence, and a high-resolution one in terms of four basic emotions
(anxiety/fear, anger, sadness, and happiness). The appraisal process consists
of three stages: an automatic appraisal centered on the properties of stimuli,
an expanded appraisal which is centered around the agent’s internal motiva-
tional context (including the agent’s goals and expectations), and a current
state modulator providing a smooth variation of emotional values along time
(ramp-up and decay). The affective state has influence on various parame-
ters of the cognitive architecture, namely on the goals and actions selection
rules, on the speed and capacity of the modules, and on the ranking of the
mental constructs.

The proposed model was evaluated in a peacekeeping simulation sce-
nario, employing three types of agents (anxious, aggressive, and normal).
The agents were exposed to a series of surprise situations (e.g., a destroyed
bridge, an hostile crowd) capable of eliciting different responses depending
on the agent traits. The results confirmed that appropriate behaviors were
performed, according to the types of agents [98]. Although the agents per-
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formed according to design, Hudlicka aims at further validating the results
by comparing them with empirical studies with human subjects.

An enhancement of the MAMID was proposed by Hudlicka to model
meta-cognition within the framework of the architecture [99]. The idea is to
model the Feeling of Confidence (FOC). A FOC attribute is added to each
mental construct of the architecture. The architecture is augmented with a
meta-cognitive layer, which is responsible for monitoring the cognitive pro-
cesses, as well as performing control on the architecture at a meta level. The
FOC attributes reflect the confidence in the corresponding mental constructs.
Moreover, for each construct type, there is a threshold value: if the FOC is
above that threshold, no further processing is done, since the level of FOC
is considered adequate; otherwise, the meta-cognition layer is called in an
attempt to either increase the FOC, or shift strategies entirely. Emotional
states and traits have influence on the threshold levels used throughout the
architecture.

Taking inspiration on the architecture of the human Autonomous Nervous
System (ANS), Christine Lisetti proposed a neural network that captures
emotion processing at the physiological level [117]. As with the ANS, the
neural network divides into a sympathetic and a parasympathetic subsystem.
The former is responsible (in humans) for emotional states such as anger and
fear, while the latter has an antagonistic effect (e.g., calming down). The
model targets several physiological organs such as the brain, throat, heart,
stomach, and so on. Experimentation utilized neural networks, implementing
a Boltzmann machine model, and using an Hebbian rule for weight updating.

Although still in its early stages, interesting research is being conducted
by Licurgo de Almeida and colleagues, with the aim of developing a phys-
iological model of the body [63]. This model is detailed down to the level
of organs (e.g., heart, liver, reproductive organ, muscles) as well as the in-
teractions among them (e.g., hormones, circulatory system). The goal is to
construct a biologically plausible system of the body, on top of which emo-
tional mechanisms can be implemented. This corresponds to the Damásio’s
concept of emotions grounded on body states [55].

3.5.5 Believable Agents

The following sections review research on the external manifestations of emo-
tions branch of the proposed taxonomy. The goal of building believable
agents is to construct agents that interact with the user in a way to attain
suspension of disbelief. In other words, to give the impression that the user
is interacting with another being, rather than a machine. This implies that,
from an external point of view, the agent acts in a life-like fashion.
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The Oz project at Carnegie Mellon University was created with the goal
of building interactive believable agents [156, 21, 20, 155]. The architecture
underlying the agents is called Tok. It is based on several modules. There is
a sensory module which is responsible for processing sensing data from the
environment, as well as maintaining an integrated world model. The remain-
ing modules perform queries on this model to gather information about the
world state, as perceived by the agent. The two main components of Tok are
the Em module, which models the agent’s emotions, and the Hap module,
which manages the goals and outputs the agent actions. Based on sensed
data and on the internal state, the Em module is able to generate emotions.
Moreover, the Em module is also sensitive to social relationships with other
agents, giving rise to a social aspect in the agent behavior. The Em mod-
ules closely follows the OCC [142] model, but several simplifications were
introduced. The generated emotions are then communicated to the other
modules. The agent’s behavior is determined by the Hap module. The Hap
module is goal-based, although it does not perform explicit planning: goals
are divided into canned sequences of sub-goals and/or actions. Goal failures
or successes are transmitted to the Em module, leading to the possible elic-
itation of emotions. The generated emotions influence the Hap module in
various ways, thus modulating the agent’s behavior. The interface with the
world is symbolic. Natural language modules were developed to allow verbal
communication. The Oz project led ultimately to the inception of the Zoesis
spin-off company6 which commercialized virtual characters.

Bill Tomlinson, together with Bruce Blumberg and others, developed the
AlphaWolves project, consisting of a social environment of a pack of virtual
gray wolves [185, 186]. External users can interact with the pack by utter-
ing sounds to a microphone, while the wolves are displayed in a 3-D virtual
reality installation. The wolves generate emotional memories by associat-
ing emotional states to stimuli sensed simultaneously, following Damásio’s
Somatic Marker Hypothesis [55]. The next time a wolf encounters the same
stimuli, the memorized emotional state is reinstated. Since the system aimed
at realism, it was evaluated in the following way: subjects watched a video
from National Geographic explaining real gray wolves behavior, and then
they interacted with the system. Afterwards, they were asked to fill a ques-
tionnaire [186].

Drawing on the OCC theory, Clark Elliott proposed a model of emo-
tions, the Affective Reasoner (AR), with the goal of simulating several as-
pects of emotion processing in a multi-agent setup [74]. The model matches
a given situation against the agent’s concerns and personality. Using the

6URL: http://www.zoesis.com/
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OCC theory, an emotion may be elicited, followed by an action generation.
Each agent observes the actions performed by other agents, and then for-
mulates structures representing the concerns of other agents, based on the
observed actions. This system was evaluated in a multi-agent simulation,
using about 40 agents [74]. Later work by Elliott covered emotion expres-
sion, using multi-modal output (speech based, morphed faces, and music).
The system was given an emotion category and a text, while the other pa-
rameters (e.g., speech inflection, faces) were automatically selected. Human
subjects evaluated, side by side, the system and an human actor. Inter-
estingly, the results showed an overall better performance with identifying
emotion scenarios generated by the system, than the ones performed by the
human actor [72, 73].

Chisato Numaoka proposed a self-biased conditioning system, targeted for
the design of a personal assistant in a virtual reality setup [140]. The scenario
consists of assisting a user navigating in a 3-D virtual world. This world was
constructed as an extension to the traditional text-based web pages. The
goal of the personal assistant is to indicate potentially interesting navigation
possibilities in the virtual world. The approach is based on associative neural
networks that learn correlations among stimuli, motor responses, and user
preferences.

Carlos Martinho, together with Ana Paiva and colleagues, developed a
virtual reality installation for the Expo 98 World Fair, consisting of a pair
of virtual dolphins interacting with the audience [127, 128]. Each dolphin
has a specific personality. The emotion generation model is based on the
OCC theory [142], as well as on the believable agent models from the Oz
Project [155]. The main goal is to attain ethologically plausible behaviors.
However, this goal sometimes contradicts the needs of the audience to have
immediate feedback of the interaction. Hence, a balance among these two
aspects is necessary.

The implemented dolphins are called Tristão and Isolda. The former has
an introvert personality, thus avoiding contact with others, while the latter
is more playful. Tristão has a “crush” on Isolda, so that it has to balance
among its introversion tendency and the desire to interact with Isolda. Each
character functions according to a four phase cycle. The first phase is desig-
nated the perception phase, where sensor data is filtered, followed by a world
model update. Then, a reaction phase follows, where immediate emotional
responses are appraised. Third, a reasoning phase performs a cognitive evalu-
ation, taking into account the internal world model. Finally, an action phase
generates the agent actions, based on the results from the previous phases.

Taking a behavioral approach, Ruth Aylett engaged in constructing vir-
tual Teletubbies (based on the well-known homonymous TV series for chil-
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dren) [13]. Together with Carlos Delgado, they targeted collective behaviors
of virtual sheep [14]. Simple (sensori-motor) behaviors are combined using
a utility value assigned to each behavior (called behavior patterns). Then,
these are activated by structures of pre-conditions (behavior packets). These
structures can then be organized in sequences of behavior packets (behavior
scripts). Internal motivations in the form of a set of drives push the agent’s
behavior. These drives control a set of priority queues that ultimately lead to
a selection of a specific behavior script. Emotions are seen as internal behav-
iors, that are able to influence the agent’s external behavior. There are three
levels at which emotions can be modeled: as a behavior pattern, where mo-
tor outputs are other behavioral packets, as an internal sensor pre-condition,
and as a modulation of behavior scripts.

3.5.6 Affective Computing

The term Affective Computing was coined by Rosalind Picard in 1994, and
appeared in print for the first time in a Technical Report from 1995. She
defines the concept as “computing that relates to, arises from, or deliberately
influences emotions” [150]. This publication was followed by the formation
of the Affective Computing Lab lead by her, and by an influential book [148]
authored by her. The paradigm of affective computing is to shift the way
humans interact with machines, from a traditional rational and deterministic
basis, towards an interaction conveying affective content. This implies both
the ability of detecting emotional states in the user, as well as conveying
affectively loaded content to the user. Most of the initial research work at
Picard’s group addresses emotional state detection from physiological sen-
sors [210, 152]. In one of the studies, physiological data7 was systemati-
cally collected from an actress (stimulated with visual imagery), and many
state-of-the-art pattern classification methods were tested, resulting in high
recognition rates (about 80%) over a set of eight emotions. Other sensor
modalities used for emotional state classification are, for instance, cameras
for pupil tracking, and a sensor chair for posture recognition [104]. An ap-
plication akin to Picard’s group is the design of wearables — clothes with
embedded active devices that interact with the wearer — such as an affective
DJ that chooses music according to her/his affective state [95], and a glove
that lights up a LED depending on the user’s skin conductance [151]. Re-
search efforts have also been directed towards what Picard, together with her
colleagues at the MIT Media Lab, designate as Affective Learning [149]. The

7Four sensors measuring facial muscle tension, blood volume pressure, skin conduc-
tance, and respiration volume.
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proposal of Affective Learning is to use the paradigm of Affective Computing
to develop tools to aid in the learning process of persons. It is well known
that affect plays a crucial role in learning, and thus a system sensitive to the
user’s affective state could promote a more prolific learning process. More-
over, the idea of a learning companion learning a certain subject together
with the user, through interaction, is also part of the proposal.

Focusing on the social interaction between robots and humans, Cynthia
Breazeal developed Kismet [31, 30, 32]: a robotic head sketching the salient
features of a face, such as the lips, eyebrows, eyelids, and ears. Although
the presence of these features gives it an anthropomorphic look, the face
does not quite resemble a human face. The head is capable of expressing
several kinds of emotions, by means of appropriate smooth movement of its
parts in coordination. These movements can be represented as points in
a three dimensional space. These dimensions represent high/low arousal,
positive/negative valence, and open/closed stance. Ekman’s six basic emo-
tions [70] are mapped onto this space: joy, anger, disgust, fear, sorrow, and
surprise. Kismet uses a microphone to recognize affective intent from the
user speech. Depending on its nature and intensity, Kismet may express
an emotional posture in accordance. This allows interaction with a user in
the form of a dialog composed by user speech conveying emotional intent,
answered back by emotion expression by the head.

Building on Ronald Arkin’s AuRA robot architecture [5], Lilia Moshk-
ina and Arkin developed a framework for affective robot behavior (TAME),
with the goal of an increased ease and pleasantness of human-robot inter-
action [136, 137]. TAME models personality traits, attitudes, moods, and
emotions. Each one of these aspects has different characteristics and impacts
on the architecture, e.g. emotions and moods are dynamic, varying accord-
ing to robot interaction, while the other model components are not. The
lower levels of the architecture follow the schema-based paradigm [4], where
the specific parameters can be altered by the modules implementing TAME.
For instance, the object avoidance gain can be increased whenever the robot
is in fear. To evaluate the impact of TAME on human-robot interaction, a
study was conducted allowing human subjects to interact with a Sony AIBO
(dog-like) robot. Two versions of the robot were tested, with and without
emotional behavior. The subjects were asked to answer questionnaires af-
ter several sessions of interaction with the robots. Four hypotheses were
tested, addressing the ease of use, the pleasantness of the interaction, the
recognizability of emotion display, and the impact of the displayed emotion
on the subject’s own mood. Briefly, a statistically significant preference of
the emotional version over the other was found in the ease of use hypothe-
sis, while the other hypotheses showed no significant difference. However, a
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curious, statistically significant trend was found indicating that female sub-
jects found the emotions expressed by the emotional robot more recognizable
(when compared with the non-emotional version) than male subjects.

Cristina Conati developed a probabilistic model of a user while interact-
ing with educational games [45, 46]. The goal is to develop a pedagogical
agent that takes decisions about its course of action based on this model of
the user. The model is based on Dynamic Decision Networks [161], which
extend Bayesian networks with decision-theoretic behavior and with the mod-
eling of changes over time. The user emotional state, as it changes through
time, is estimated by looking at its possible causes (e.g., user traits, goals),
as well as at its effects (bodily expressions, tracked by biometric sensors).
Emotions are modeled according to the OCC theory [142], using a subset
of six emotions (joy/distress, pride/shame, and admiration/reproach). The
model was assessed in a pedagogical game based on factorization of numbers
(Prime Climb). The model was used during a practicing phase, where the
pedagogical agent served as an instructor helping the user attaining the game
objective.



Chapter 4

Conceptual model

4.1 Introduction

This chapter presents the conceptual model that underlies the research pre-
sented on this thesis. The model was originally developed by a group of
researchers (including the author) at the Institute for Systems and Robotics
(IST) in Lisbon, Portugal. Several publications (reviewed in section 4.7, at
the end of this chapter), MSc theses, as well as funded projects, reflect the
development of the model along many directions over the subsequent years.

After presenting the scope of and motivation behind the model, it is
presented from a conceptual standpoint, followed by a discussion of some hy-
pothesized consequences. The above-mentioned research based on this model
is then briefly reviewed, including several extensions and implementations.

4.2 Scope

As discussed in section 3.2, the name of the field Artificial Intelligence (A.I.)
refers to both artificial systems [173], constructed by humans to achieve a set
of prescribed goals, and about intelligence [138], which relates to biological
entities, namely to human intelligence. Thus, thinking about A.I. appeals for
these two perspectives. On the one hand, the need to satisfy a set of design
goals, with the available methodologies and techniques, and on the other,
the biological inspiration arising from human intelligence.

Taking into account the radical differences between biological (neurons,
synapses, neurotransmitters, and a massive parallel architecture) and compu-
tational systems (gates, digital circuits, and serial computation), it is natural
to assume that best methodologies to attain a given set of design goals with an
artificial system ought to be radically different from the ones emerging from
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biological evolution. For instance, massively search algorithms have proved
successful by beating the chess grandmaster Gary Kasparov in 1997 [39].
The machine (Deep Blue) is able to search over 100 million positions per
second, while a human player supposedly examines far less positions. The
comparison between the serial processing performed by computers, and the
parallel nature of the brain [209] is often mentioned to justify such diverse
approaches. However, the history of science has shown that, for centuries,
biology has provided fertile ground of inspiration for the design of artificial
systems. Consider for instance biologically inspired research for the design of
marine and aerial vehicles, based on the biology of fishes and birds [188, 130].
The design of such machines differs in many aspects from their biological
counterparts, although the study of the latter teaches invaluable lessons.
The streamlined design of modern planes holds little resemblance with birds,
however, bird-like wings are visible in Leonardo Da Vinci’s drawings of flying
machines.

Many A.I. researchers have shared similar concerns. On the one hand, a
plethora of biologically inspired research can be found in the literature. This
research attempts to reproduce in machines aspects only found in natural
intelligence. And on the other, there is research oriented towards machines
accomplishing well specified tasks, making use of methodologies where bio-
logical aspects are, at least directly, absent. However, it would be unwise
to assume that these two approaches follow completely independent paths.
Often, the initial steps of a new field resort to biologically inspired method-
ologies1. As that field matures, the focus often shifts towards methodologies
orthogonal to the initial biological inspiration.

The approach followed in this research does not fall in either of the two
above-mentioned approaches in stricto senso. Rather, it is based on a bi-
ologically plausible hypothesis, while aiming at a self-contained model of
autonomous agents [214]. In other words, the proposed model does not at-
tempt to closely mimic the biological counterpart, since the set goal is to
come up with a self-contained model formulation.

The biological inspiration for the present research are the emotional mech-
anisms in the brain. The nature of the related background material reviewed
in chapter 2 is largely descriptive. Its purpose is to provide descriptive mod-
els of how the mind works, with a particular focus on emotion mechanisms.
Therefore, such models are empirical hypotheses supported by experimental
data from human subjects, in order to draw conclusions about their valid-
ity. When the problem of designing intelligent machines is faced, a different
approach is necessarily required, since the goal is not to model the human

1The RobotCub project [132] is a good example of what is said here.
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mind, but rather to design systems that exhibit appropriate behavior (ac-
cording to some performance metric) in the environments they are exposed
to. Therefore, the goal here is to construct a prescriptive model, rather than
a descriptive one. Choosing a prescriptive model, however, implies certain
concessions to the biological exactness of the model, in order to make it as
functionally self-contained and self-consistent as possible. Therefore, some
aspects from biology were factored out, so that the model ends up being
a partial view of biology. In sum, there is a trade-off between biological
plausibility and structural consistency of the model.

4.3 Motivation

In the book “Descartes’ Error” [55], António Damásio proposes that the
mechanisms in the brain behind appropriate decision making crucially de-
pend on emotional mechanisms associated with the body. Extensive clinical
studies performed by his research group have corroborated his theory. This
view challenged the traditional (Cartesian) view of a rational thought func-
tioning independently of the realm of the body. According to Damásio,
the body and the emotional mechanisms are a sine qua non condition for
intelligence. In this thesis, the problem of appropriate decision-making is
addressed, under the light of the biological inspiration provided by the role
of the emotional mechanisms in the brain.

One of the first approaches to the study of these mechanisms was ad-
vanced by William James, with the counter-intuitive idea that the perception
of an emotion followed the emotional response to a stimulus [102]. It was only
after neurophysiological studies of the brain, performed by Cannon and Bard,
that it was realized that sensory information is relayed by the thalamus, fol-
lowing two distinct and parallel branches in the brain [112]. LeDoux fleshed
out the details of these two paths after his extensive study of the fear cir-
cuitry [113]. The idea of these two processing paths — termed by LeDoux as
the high and the low roads — suggests that stimuli is represented by the brain
in two different ways. On the one hand, a rough representation (allowing a
quick response) following the low-road, and on the other, a elaborate and
complex one (requiring a slower processing) following the high-road. More-
over, according to Damásio, these two levels are not independent, but rather
the mental imagery holds a close relationship with the brain’s representa-
tion of the body state, which is closely related with the low-road of LeDoux.
The Damásio Somatic Marker Hypothesis (SMH) states that mental imagery
are marked with representation of body states [55]. These associations are
crucial for appropriate decision-making, according to Damásio.
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The first decades of the A.I. field have been dominated by the modeling of
high-level cognitive capabilities, such as reasoning, planning, problem solv-
ing, among others. In the human brain, this kind of tasks is performed by
the cortex, the brain’s higher and evolutionary newer levels. The shortcom-
ings of this trend in A.I. surfaced when A.I. systems attempted to link with
the real world via sensors and actuators, as in robots. It was realized that
the problem of relating symbol systems with sensor data was harder than
initially thought, for instance, by the physical symbol hypothesis [139]. This
problem, often designated as symbol anchoring problem, has then captured
the attention of several researchers [48].

As a response to these difficulties, Rodney Brooks advanced a radical
new strategy [34, 35]. Brooks proposed to approach A.I. bottom-up, i.e.,
starting with simple (reactive) behaviors, uphill towards complex (cognitive)
ones. And the simplest ones are reactive, reflex-like, behaviors. This kind
of behaviors is performed by the lower and evolutionary older levels of the
brain.

In a sense, these two approaches in A.I. can be thought as approaches to
intelligence from two opposing directions. These directions can be compared
with the two levels of stimulus processing in the brain. In the A.I. community,
these two approaches — the so called GOFAI2, and the Nouvelle A.I. —
raised much controversy in the field spawning a period of several years since
the late 1980’s. Between these two approaches lies a deep conceptual gap,
concerning representational, methodological, algorithmic, and other issues.
Many attempts have been made since then to bridge this gap, often in the
form of layered agent architectures (see section 3.5.1).

4.4 Structure

This thesis addresses an agent model formulated taking into account the
biological inspiration provided by the role of emotions in decision-making
processes. The model departs from the traditional approaches in the sense
that it focuses on the representational aspects of stimuli, rather than on the
layering of levels. The approach taken here to introduce the model considers
first a simple agent [205].

4.4.1 First level: Perceptual

The simplest agent architecture, which one can call intelligent (granting a
minimalistic meaning of the word) consists of a sensorimotor map among

2Good Old Fashioned A.I.
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sensors and actuators. This level is here designated perceptual level, since
actuation is directly derived from perception, i.e., there are no intermediate
levels of representation other than the ones directly derived from perception.
At this level, certain sensor reading configurations trigger certain actions to
be performed, according to a built-in mapping. It can be implemented, for
instance, using a lookup table such that for each possible sensor reading, a
corresponding actuation command is performed. The sensorimotor map of
this level may either elicit a certain behavior for some stimuli, or may not
respond at all to some other stimuli. This level can be genetically evolved in
order to ensure the survivability of the agent in a given environment niche.
Some properties shown by an agent with such level implemented are: sim-
plicity, fast response, and robustness. This level is simple and fast because
it can be implemented with a simple sensorimotor map (e.g., lookup table,
neural network, etc.). The agent design encodes how the agent shall react
to certain situations. This hard-wired encoding includes both the detection
of situations as well as the actions elicited. Robustness, here considered in
the sense of coping with varying environmental conditions, without explicit
world representation, is a consequence of the reactive nature of this level.
Properties of this kind of systems has been thoroughly discussed in the lit-
erature about reactive agents, e.g., Brooks [34, 35] is accounted for being
the precursor of the idea of reactive agents, dismissing any explicit repre-
sentation and reasoning about the world, and Kaelbling [157] has further
developed these concepts, including formal approaches. Many publications
following the reactive agents paradigm (Nouvelle A.I.) can be found in the
literature.

4.4.2 Second level: Cognitive

Increased environment complexity on one hand, and the need of better com-
petence on the other, demand, at a first glance, increased sensor diversity
and richness, as well as more sophisticated processing of data. Together,
these ideas imply that in order for such an agent to scale to more complex
environments, the sensors, as well as the sensorimotor maps, have to be rich
enough to capture the world’s complexity. All relevant aspects of the world
must therefore be visible to the agent’s perception. Moreover, the sensori-
motor maps have to accompany this complexity increase, since they need
to encode all motor responses to the high-dimensional configuration space
of the world. However, when the above methodology is attempted, the di-
mensionality increment of sensor data makes the design of sensory maps an
intractable task. In addition, such built-in maps may show difficulties in
accommodating environment changes (adaptation). In order to preserve per-
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formance, the sensorimotor maps ought to incorporate all that environment
variety.

Let us consider an alternative approach other than incorporating addi-
tional complexity at the perceptual level. This approach consists of adding
a second level of processing, that has to process stimuli simultaneously, in
parallel, with the perceptual level. The parallel nature of these levels is es-
sential so that the level of competence accomplished by the perceptual level
alone is not compromised. This second level, called cognitive level, provides a
complex, but consequently slower, processing of stimuli. It aims at attaining
a cognitive level of competence, e.g. recognition, reasoning, planning, and so
on. Consequently, this involves a rich and complex representation of stimuli.

It must be readily acknowledged that the names “cognitive” and “per-
ceptual” fail to capture the full nature of each level described. The model
discussed here would remain the same if we replaced them by any other pair
of names, e.g., “high” and “low” levels, “complex” and “simple” levels, “first”
and “second” levels, etc.

The parallelism of these two levels is a key point of the model. Other
possibilities, such as a serial arrangement of the levels, bring conceptual
problems. Considering first a perceptual level followed by a cognitive one,
the former may throw away information which could be crucial for recog-
nition purposes, because of its low dimensionality. In the alternative serial
arrangement, since the cognitive level is slow because of the complex pro-
cessing implied, the perceptual would lose its key property: fast response
to ensure survivability. These two serial topologies can be compared with
two classical models from psychology: the William James model in the for-
mer case (“we are afraid because we run”), and the appraisal theories in the
latter, where the emotional response follows an appraisal process on stimuli3.

The parallel nature of the model raises questions of synchronization, since
the perceptual level is able to provide a response to stimuli faster than the
cognitive one. One way to circumvent this issue is to allow the perceptual
response to wait for the cognitive outcome, unless the situation demands an
urgent response (as assessed by the agent). In other words, the perceptual
layer is responsible for taking steps, either by waiting, preparing, or respond-
ing immediately, based on its assessment of the urgency of the situation.

3Some proposals account for a multiple stage appraisal process, hence accommodating
both fast/rough and slow/accurate assessments of situations [165].
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4.4.3 Double-representation paradigm

The distinct nature of the processing performed by each level demands that
stimuli are represented differently in each one of them. Thus, while the per-
ceptual level manipulates simple and basic representations, the cognitive one
uses complex representations of stimuli. The former is oriented to capturing
the relevant aspects of the environment, aiming at a quick response to urgent
situations, while the latter is directed towards high-level cognitive process-
ing. This constitutes what is here designated as the double-representation
paradigm of stimuli. The complex representation is called cognitive image,
while the simple one is called perceptual image. The first level provides a
fast path from sensors to actuators. We consider that this mapping is per-
formed in two steps: a first step that extracts a representation of the stim-
ulus of reduced dimensionality, i.e., the perceptual image, and a second step
which maps the resulting perceptual image to action space. Simultaneously,
a cognitive image is extracted from the stimulus, and subject to cognitive
processing. These two representations are then associated and stored in a
memory. By associating these two images, the agent establishes a one-to-one
link between a rich representation and a basic one. When shall the agent
associate and store these pairs of images? It should depend on a relevance
assessment made by the agent, e.g., stimuli that elicit a perceptual response
(a threat?), novelty, and so on.

Also, the agent requires a mechanism to permit the assessment of the
desirability of stimuli. This is accomplished by the introduction of a third
representation schema termed desirability vector (DV). This vector charac-
terizes stimuli according to a set of dimensions relevant to the agent, such as
dangerous/safe, interesting, demanding urgent action, threatening, to name
a few. Following Damásio’s SMH inspiration, the associated cognitive and
perceptual images are further marked by this representation. This way, the
recollection of a cognitive and perceptual images pair is accompanied by
the corresponding DV, thus providing the agent with an assessment of the
recalled images. It is a multi-dimensional vector, hence extending the tradi-
tional scalar utility value (valence). Based on the DV values of the available
options, the agent is then able to choose the most desirable course of action.

Deciding according to an assessment of desirability provided by the DV
representation raises a question of how the agent bootstraps upon initializa-
tion. To do so, the agent needs a built-in mechanism to assess DV values
of stimuli. This model hypothesizes that, in addition to the built-in senso-
rimotor map performed by the perceptual layer, the agent should also be
embodied with a built-in map between the perceptual image and the DV.
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Since emotions correspond to internal4 responses to events, from an indi-
vidual standpoint, one can identify the DV components with this concept of
emotions.

Let us now examine closely the consequences of associating a complex
(cognitive image) with a simple representation (perceptual image) of the same
stimulus. The purpose of storing these pairs (associations) is twofold: on the
one hand, the agent may use the cognitive image extracted from the stimulus
to search the memory for a pair containing a similar cognitive image — we
call this matching —, and on the other hand, the perceptual image extracted
from the same stimulus may be used to guide the matching mechanism — we
call this indexing. The perceptual image, in such an association, ascribes a
sensorimotor-based representation to a complex representation. For instance,
imagine that the agent associates the shape of some object with certain
features that triggered a run-away behavior (built-in). The cognitive image
containing a rich representation of this shape (e.g., a bitmap) was stored
together with the perceptual image representing the threat level that elicited
the run-away behavior. Whenever the agent encounters a stimulus with a
similar cognitive image (i.e., a similar shape), this cognitive image is matched
against the memory, and the previous association is recalled. Depending for
instance on the degree of similarity, the agent may exhibit the same run-
away behavior, even when the perceptual image of the stimulus does not
trigger it by itself. Moreover, when the perceptual image is obtained prior to
the cognitive one, the former can be used to guide the search for matching
cognitive images. This corresponds to the indexing mechanism, and it is
essential in order to make the search for a cognitive match computationally
feasible, since the number of stored associations can become very large. We
argue that this mechanism allows the agent to ascribe relevance to the stored
associations, in the sense of constraining the search for cognitive matches to a
subset. This subset corresponds to the associations indexed by the perceptual
image extracted from the stimulus.

The idea of marking the cognitive image with a perceptual one is based
on the Somatic Marker Hypothesis (SMH) developed by António Damásio,
reviewed in the section 2.4.2 of this thesis. According to this hypothesis, the
brain is able to associate in memory cognitive mental imagery with represen-
tations at the level of the body, and later, to enact these body representations
after the recollection of that mental imagery [55].

4Possibly externalized, if one thinks about the etymological origin of the word. How-
ever, emotions also encompass those responses that are not externally visible (but never-
theless measurable, e.g. SCR).
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4.5 Mechanisms

The operationalization of the above concepts is performed by three mecha-
nisms: (1) the marking mechanism, which establishes and stores in memory
associations between the cognitive and the perceptual images, together with
DV marks, (2) the matching mechanism, which searches the memory for a
previously stored association, with the same (or similar) cognitive image,
and (3) the indexing mechanism which leverages the efficiency of the match-
ing mechanism, by exploiting the different complexity levels of the associ-
ated schemata. The marking mechanism creates new associations, while the
matching and the indexing ones work together to retrieve matching images
from memory.

The marking mechanism creates an association between a cognitive image,
a perceptual image, and a DV mark. The goal is to establish an association
between instances of these different schemata. The mechanism is triggered
according to built-in criteria, for instance, when the agent faces a novel situ-
ation. Only associations arising from situations relevant to the agent — with
impact on its life — should be stored. Otherwise, the memory would be
flooded with repeated and/or irrelevant associations.

The use of these associations, stored in the agent’s memory, is done by
the matching mechanism. This mechanism is activated each time the agent
is exposed to a new stimulus. The goal of this mechanism is to identify
the cognitive images, in memory, that best match the one extracted from
the stimulus. Together with these matching cognitive images, the agent
also retrieves the DV markings, thus providing an assessment of the stored
association in terms of its desirability to the agent.

Taking into account that the perceptual representation is simple and fast
to compute, a third mechanism is considered — termed indexing — that is
used to efficiently perform matching. It involves a two step algorithm: in
the first step, a perceptual image is obtained from the stimulus and matched
against the perceptual images in memory. For the ones yielding a closer
match, the agent, in the second step, matches the cognitive image extracted
from the stimulus with those indexed by the closest perceptual images. Con-
sidering that the cognitive matching mechanism is an operation more complex
than the perceptual one, this mechanism allows for a narrowing of the candi-
date cognitive images, thus providing an efficient algorithm to find cognitive
matches.

The level of competence described so far leaves open several degrees of
freedom. They can be exploited to spawn a diverse agent design space, from
which varied agent personalities can emerge. Recall that the goal is to im-
plement an efficient system, in the sense of responding adequately and in
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time to the solicitations of the environment, notwithstanding the complex-
ity of the environment (the problem solved by nature). As for the marking
mechanism: when shall the agent create the images associations? Possible
answer: depending on the stimulus desirability. How can the agent prevent
from storing repeated associations? In other words, a criterion is required
to discard redundant information. How shall the agent update previous as-
sociations when faced with contradictory assessments? (e.g., contradiction
between a stimulus DV and the on associated with a matching cognitive im-
age) As with the matching mechanism: what are the criteria for a cognitive
match (e.g., exact match? A metric among images? Until what degree of
dissimilarity do two cognitive images match?) Since the perceptual level is
faster, when/how shall the agent wait for the (necessarily slower) cognitive
matching mechanism? An urgency assessment, using the DV, can be used
here. What is the impact of this wait on the agent’s performance?

A stimulus is relevant if either the perceptual image elicits a non-neutral
DV, or a match in memory is found which is marked with a non-neutral DV.
The salience assessment of stimuli is then provided by the perceptual layer,
namely the DV. Thus, the relevance of stimuli is established by the DV, in
the sense of filtering out irrelevant stimuli from further consideration.

A cognitive match gives the agent a more sophisticated range of possibil-
ities. These possibilities include mechanisms like reasoning, planning, and so
on, that can exploit the richness of the cognitive representation. If, on the
contrary, no cognitive match is found, the agent is constrained to the limita-
tions of the perceptual representation. Simple behaviors can result from the
sole utilization of the perceptual layer. However, these may allow for a basic
set of behaviors that ensure the survivability of the agent in an unknown
environment.

Considering the matching mechanism in further detail, the following com-
binations arise from the matching process [198], as illustrated in table 4.1.
A strong perceptual impression is here understood as a non-neutral DV value,
i.e., eliciting one or more DV components. When a stimulus has both a good
cognitive match and a strong perceptual impression, one can say the stim-
ulus is known and relevant. In other words, there is a coherence between
the cognitive aspects of the stimulus and its meaning in terms of desirability
(assuming of course a consistent environment). If the perceptual impression
is strong, but there is no cognitive match, then the stimulus is unknown
but relevant. For instance, a threatening stimulus, with undefined contours,
so that the agent is unable to recognize its origin, but its perceptual im-
pression impels it to respond to it, e.g. a flight-or-fight behavior. But if,
on the contrary, there is a cognitive match, but no perceptual impression,
the stimulus is considered irrelevant. Ascribing relevance using perceptual
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cognitive perceptual match
match none strong

weak Unknown
Irrelevant

Unknown
Relevant

perfect Known
Irrelevant

Known
Relevant

Table 4.1: The four possibilities arising from the cognitive and perceptual
matches.

impressions can contribute to reduce the complexity — both temporal and
spatial — involved in cognitive matching processes, since irrelevant images
may be discarded (or at least deserve less attention). However, in the ab-
sence of other relevant aspects, the agent can invest its resources at finding
a cognitive match. Finally, a stimulus both without cognitive match and
perceptual impression is found by the agent to be unknown and irrelevant.
In a complex environment, most stimuli may fall into this latter category.

The presence of a second level on top the first one may give origin to
conflicting situations. These situations occur whenever the outcome of the
perceptual level (action or behavior) differs, more or less dramatically, from
the perceptual impression retrieved from memory. Different approaches to
resolve this conflict can be used, leading to different agent personalities. For
instance, an agent taking excessively into account the outcome of the cog-
nitive match (memory), may experience difficulty with discriminating fine
distinctions in the environment: since it tends to consider the perceptual im-
pression of the associations in memory; the perceptual impression extracted
from the stimulus tends consequently to be dismissed. On the contrary, an
agent taking the cognitive match too little into account, may not be exploit-
ing appropriately the “lessons” of the past: the tendency to only take into
account the perceptual impression from the stimulus prevents the agent from
anticipating future consequences, that could be exploited/avoided by the use
of the stored associations.
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4.6 Discussion

4.6.1 Meaning

Associating cognitive and perceptual images, together with DV marks, can
be understood as basic meaning formation. Such basic meaning is primarily
provided by the desirability vector. Take an example of a threatening stim-
ulus, that elicits a desirability vector reflecting fear. The agent can respond
to such a stimulus with an behavior concomitant with the threat assessment.
In this case, one can say that the stimulus has a meaning to the agent.

Such ascription of “meaning” cannot be done in a lighthearted manner,
since this is a controversial topic. For instance, John McCarthy legitimates
the ascription of mental states to machines as far as it “expresses the same
information about the machine that it expresses about a person.” Moreover,
he asserts that “it is useful when the ascription helps us understand the
structure of the machine, its past and future behavior, or how to repair or
improve it” [129]. Taking a different standpoint, John Searle discards the
possibility of any meaning being accessible to a machine at all, at least as
far as syntactic systems are concerned. To do so, he uses the argument of
the Chinese Room [169]: Searle collocates himself inside a room where all
connections with the exterior are done by the means of incoming and outgoing
strips of paper. These strips contain Chinese symbols. In the room there is
a book of rules expressing how to write outgoing streams of symbols, given
the input. With the premise of the possibility of building a rule set such that
the outgoing stream corresponds to answers to questions, about a given story
previously provided, also in Chinese, Searle claims that although it may seem
he understands Chinese flawlessly (given the correctness of the answers),
he in fact does not understand Chinese at all. One can even imagine the
same scenario, but with the story and the questions written in plain English.
Assuming that in both versions the answers are sufficiently correct, Searle
concludes that, even though from an external point of view the answers are
equally good in any language, he understands the English story, while he
does not understand the Chinese one at all.

Following Searle’s metaphor, one can now imagine a Chinese room sce-
nario where, instead of black characters on a white paper strip, some of those
characters are colored. Assuming that these colors have a built-in meaning
to the agent, e.g., blue is desirable and red is undesirable, such colored sym-
bols acquire a primary meaning to the agent. The coloring of symbols can
be taken as metaphors of DV marks. The symbols marked this way acquire
a meaning for the agent: it can respond to them with some action, it can
associate a symbol’s visual shape with a certain DV, and so on. Moreover,
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one can consider more sophisticated processes of meaning creation, on top of
such primordial ones, thus forming networks of associations bearing powerful
cognitive capabilities to the agent [201].

4.6.2 Relevance

The ability to appropriately determine the relevant aspects of a given sit-
uation is a sine qua non condition for an agent to cope with complex and
dynamic environments. The proposed model addresses this issue in the fol-
lowing way. At a primordial stage, the perceptual layer alone filters out
irrelevant stimuli, by being only sensitive to stimuli directly related with
the basic aspects (e.g., survivability). By associating together cognitive and
perceptual representations, the agent can propagate relevance assignments
to cognitive representations. Thus, the cognitive layer may consult the per-
ceptual one, for instance, to guide cognitive processes on focusing search
processes. Other possibilities include the attention focus being driven by
perceptual assessment.

The sub-space of stimuli relevant to the agent is therefore dynamic, start-
ing with a minimum set, and growing to include previously irrelevant stimuli.
However, mechanisms are also necessary to allow for assigning relevance by
alternative ways. For instance, curiosity (e.g., exploratory behaviors) can
permit the agent to consider irrelevant stimuli. By exploring the possibilities
of these situations, the agent can discover new potentialities in the environ-
ment. When this happens, the agent should establish associations with DV
values accordingly, so that the related stimuli become relevant.

4.6.3 Bootstrapping from built-in structures

When the agent is first exposed to an environment, an amount of built-in
structures (e.g., maps, associations) is needed in order for the process of
interacting and establishing new associations to begin. Otherwise, the agent
would stay passive and insensitive to the world. If all goes well, the agent
will thereafter keep on constructing new associations and on improving its
knowledge of the environment. This mechanism of initializing from a minimal
set of maps is here called bootstrapping.

Obtaining a successful bootstrapping is not a trivial task. There are two
problems that have to be addressed. On the one hand, there is the question
of what are the appropriate built-in structures. These should be as minimal
as possible, so that the adaptation capability of the agent is not compro-
mised. Too many assumptions about the environment tend to constrain its
adaptability in the face of unpredictable and/or changing conditions. And
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on the other hand, they should be rich enough so that the agent is impelled
to explore the environment. A too basic built-in base may constrain the
developmental possibilities of the agent.

The engineering of a set of built-in structures may employ evolutionary
techniques (e.g., genetic algorithms [89]). Agents with different built-in con-
figurations could be tried out, and evaluated in terms of survivability, adapt-
ability (by exposing them to different environments with the same built-in
structures), competence level, and so on. The fittest agent, according to a
given criterion based on these aspects, could then be selected for further use.

4.6.4 Efficiency

One of the goals of the presented agent model is to cope with complex envi-
ronments efficiently. Efficiency is here understood as the quality of utilizing
as few computational resources as possible to reach a certain competence
level. At a first glance, complex environments demand complex agents. How-
ever, Brooks’ robots [34] have shown that simple (reactive) mechanisms can
lead to robust and appropriate, although simple, behaviors in the presence
of complex environments.

The agent model here proposed addresses efficiency from two sides. First,
from the double processing of stimuli, two strategies for coping with a situa-
tion result: a simple and basic level of competence provided by the perceptual
level alone, and a higher competence level resulting from the cognitive layer.
In unknown situations (i.e., no cognitive matches), the perceptual level en-
sures a basic competence level, aiming for survival, as well as bootstrapping
mechanisms. In known situations, the cognitive level has the potential to
provide mechanisms to exploit the complexity of the world (e.g., planning,
reasoning, etc.). And second, the indexing mechanism provides an efficient
way to find cognitive matches, saving the agent exhaustive searches over
all cognitive images in memory. This efficiency gain results from both the
double-representation paradigm, and the association between cognitive and
perceptual images.

4.6.5 Homeostasis

Living organisms employ homeostatic mechanisms for maintaining certain
physiological variables within appropriate values. Examples of such vari-
ables include body temperature, nutrient concentration in the blood, and
so on. Whenever one (or more) of these variables become unbalanced, the
organism responds to the event, either internally (e.g., muscle movement to
increase body temperature), or by taking a course of action (e.g., looking for
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food). Thus, homeostatic balance can be seen as a source of motivation. The
organism’s behavior is determined by the need of maintaining homeostatic
balance.

This concept can been transported to the autonomous agents field as a
mechanism for motivation. To do that, first a set of homeostatic variables
have to be established, together with its dynamics. These variables may
depend on internal (e.g., battery charge, motors temperature), or on external
conditions (e.g., light, wind). Then, the action selection of the agent is
guided by the need to keep these variables balanced. The agent may employ
a diversified set of strategies to cope with homeostatic unbalance, depending
for instance on the world context.

Although homeostasis is an apparently basic mechanism, one can extend
it to attain sophisticated levels of competence. For instance, curiosity to
explore a part of the environment can be impelled by a homeostatic variable
representing the familiarity of the surroundings. Homeostasis can be seen as
an unifying concept, similar to the concept of energy in physics or value in
economics, capable of embracing a broad range of applications.

4.7 Related work based on this model

The first papers proposing the principles of the agent model here presented
were published in 1998 [200, 201, 197, 198]. These papers address the concep-
tual model, along with a discussion of some of the above-mentioned issues.
Some initial implementations were then put together, allowing for some ex-
perimentation with the architecture [203, 202, 196]. A brief account of these
implementations is presented next.

In the first implementation (called damasio), cognitive images — points
in R

2 — were associated with perceptual ones (points in R
2 as well). Since

this implementation pre-dated the introduction of the desirability vector,
the components of the perceptual image have here a direct connotation in
terms of desirability: the first component holds a positive desirability, while
the second a negative one. After the presentation of a stimulus, the agent
searches the memory for the image pair which cognitive image is closest to
the one from the stimulus. Distances are evaluated by an Euclidean distance
in R

2. The agent’s somatic response (same structure and interpretation as the
perceptual images) is obtained by a linear weighting (with a parameter λ) of
the perceptual image extracted from the stimulus and the one associated with
the cognitive match. The associations are established each time the agent
receives a stimulus. This simple structure was able to illustrate the marking
mechanism, as well as the ability to discriminate among similar stimuli, and
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to generalize for dissimilar ones (a consequence of the instance-based nature
of the learning mechanism employed).

The second implementation (faces) comprises stimuli formed by colored
bitmaps (a pixel can be either background, black, red or green). The name
faces arises from the fact that the system was experimented with stylized fig-
ures of faces. The cognitive and perceptual images extracted from a stimulus
correspond to the bitmap itself, and to the total count of pixels for each one
of the non-background colors (thus forming a vector with three components).
The colors green and red were given positive and negative connotations in
terms of desirability. For instance, a face with red strokes elicits a negative
desirability. Depending on the assessed desirability, the agent can either ac-
cept, reject, or be indifferent to the presented stimulus. Like the previous
implementation, this one also demonstrates the marking mechanism. For in-
stance, after being presented with a certain face with green pixels (perceptual
assessment responds with an accept; then, both images become associated in
memory), the agent hereafter responds with an accept after the presentation
of a similar face, even in the absence of any green pixel. This implementation
also uses an indexing mechanism, utilizing the perceptual representation: the
associations in memory with similar pixel count vectors are searched first for
a match.

Recalling Damásio’s Iowa Gambling Task (IGT), the third implementa-
tion aims at similar results, using an implementation of the agent model.
Each time the agent is asked to choose among one of the four decks, it as-
sesses each one of them in terms of desirability. An important innovation
over the previous two implementations is the adaptability of the perceptual
layer. The cognitive layer learning is event based, i.e., it stores episodes of
deck choices along with the desirability of the corresponding outcomes, while
the perceptual one learns a mapping from the decks to a vector of desir-
ability. The results obtained were similar to the ones published by Bechara
et al [23, 24]. The frontal patients condition was simulated by preventing
the agent from utilizing associations between the cognitive and perceptual
images.

These three implementations, along with the presentation of the model,
constitute the main contribution of the author’s MSc dissertation [196].
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4.7.1 The DARE project

The goal of the DARE project5 included extending the above-mentioned
model, aiming at its application to mobile robots. Under this project, several
directions of research work were developed.

Several extensions were introduced by Márcia Maçãs et al., and tested in
successively more complex environments [120, 122, 121]. These extensions
included the introduction of a homeostatic vector (HV ), inspired by the
idea of a physiological body state (see section 4.6.5). The agent seeks to
balance this state to a pre-defined nominal operating point. The desirability
vector (DV ) is here understood as an assessment of the stimulus per se, thus
regardless of the agent internal state (namely the HV ). From the DV , a
homeostatic change vector (∆HV ) is determined, depending on the current
homeostatic vector HV of the agent, as well as on the stimulus DV . The
homeostatic change vector represents the change on the HV inflicted by the
current stimulus. The agent’s decision about the action to perform depends
on the evaluation of an estimate of ∆HVi for each action ai that it can
perform. Each of the cognitive and perceptual layers contribute to these
estimates, designated the expected body change after an action. Márcia Maçãs
used the Damásio’s Iowa Gambling Task (IGT) as an initial testbed. She
experimented with several variations of her architecture [120], achieving in
some of them results similar to Damásio’s.

Another testbed where she applied the architecture was a 2-D maze world,
where the agent moves around in a grid-like fashion. This world contains light
sources, good and rotten food. The agent seeks light sources, but has also to
satisfy its needs in terms of feeding (energy source). In this implementation,
Márcia Maçãs used internal stimuli, to implement the agent’s motivation to
satisfy its energy needs. The agent was capable of achieving the expected
results: it was able to learn to distinguish rotten from good food, using the
shape of visual stimuli (and using the cognitive image for discrimination);
the agent uses marks on the floor, previously deployed by it, to find its way
home, as well as to sites where it previously encountered good food [122]. To
do so, a memory structure records sequences of moves, in such a way that
the agent is able to walk its way back.

Another extension proposed by Márcia Maçãs et al. targeted augmenting
the model with an extra layer: a symbolic layer [121]. This extension was
implemented in a market environment, where products are exchanged for
money among agents. The agents seek survival, as well as the maximization

5DARE stands for Emotion-based Robotic Agent Development (the acronym derives
from the translation to Portuguese), a research project funded by the Portuguese Foun-
dation for Science and Technology in 1999–2004 (project PRAXIS/P/EEI/12184/98).
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of profit from selling goods. This was the first implementation where the
model was tested in a multi-agent setup. There is explicit communication
among agents, in which the symbolic layer plays a central role. Moreover,
it is also responsible for creating sympathy bounds among agents. In this
framework, the cognitive and the symbolic layers distinguish themselves in
the fact that, while the former is focused on individual behavior, the latter
accounts for social issues. Social interaction enables an agent not only to
take into account its own experience, but also the experience of others. The
agents were tested in the following fashion: first, with the perceptual layer
only, then with the cognitive added, and finally with all three layers. The
agents showed improved performance levels, as higher levels layers are added,
thus showing increased levels of competence.

Taking Márcia Maçãs’ early work [122] as a starting point, Rui Sadio et
al. implemented a variation in a real robot [162, 163], a Scout6 platform. The
task consists of surviving in a world with good and rotten food, represented
by colored signs. There is also a ball with which the robot can play with.
An internal energy level decreases as the robot moves around. The internal
energy level is represented by a homeostatic variable which the robot seeks
to balance. The implemented behaviors include Approach objects, Deviate
from obstacles, Play with the ball, Rest. During the conducted experiments,
the robot has shown appropriate behaviors. For instance, it is able to learn
to distinguish between good and rotten food signs, and to choose among
seeking food or playing with the ball, depending on its energy level.

With the purpose of exploring the learning possibilities of the architec-
ture, Pedro Vale et al. experimented with introducing a reinforcement learn-
ing module in the architecture [191, 192]. The Q-learning technique [181] was
employed, with state identification being provided by the cognitive7 match
mechanism. The action selection is based not only on the Q-values, but also
on the anticipated desirability vector (DV) for each of the available actions.
The latter also depends on the current body state of the agent, using the
homeostatic vector (HV) idea previously presented.

Bruno Damas et al. approached the model by using an associative mem-
ory to implement somatic marking [51]. He has researched several methods of

6The Scout robots were manufactured by the former Nomadic company. They are
differential drive robots, including, in the base platform, an on-board PC motherboard,
and a sonar ring for obstacle detection. The employed units were upgraded with a CCD
camera, and with wireless communication, which was used solely for development and
debugging purposes; all processing was performed on-board.

7In some of Vale’s publications the layer names were renamed: from cognitive and
perceptual layers to slow and quick levels, and cognitive and perceptual images to detailed

and characteristics images.
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memory management, in order to retain in memory the most relevant infor-
mation. Damas’ work differs in several respects from the DARE architecture.
Instead of the double-representation paradigm, a perception P (t) is obtained
from the environment. From this perception, a connotation vector C(t) is
derived, taking also into account the agent’s internal state. The agent seeks
to lead the connotation vector to an equilibrium value, in the same spirit
of homeostasis. However, the performance of such a greedy approach would
degrade in complex and challenging environments, so that this tendency is
weighted with an exploratory behavior. Exploration is based on information
theoretic measures obtained from the matching mechanism. Some interest-
ing results were obtained in the domain of the RoboCup simulator [106]. In
his MSc thesis, Damas has explored several further domains, such as the
Blackjack game, and the inverted pendulum problem [52].
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Chapter 5

Causal models and anticipation

5.1 Principles

One of the strategies the mind uses to make decisions is by pondering the
consequences of the available response options in a given situation. To do so,
it anticipates the consequences of each option under consideration, and then
decides by evaluating these resulting anticipations.

Transporting this idea to the domain of A.I., anticipation is here under-
stood as the capability of an agent to represent, internally, the consequences
of its actions upon the environment, when exposed to a given situation. How-
ever, to do so, the agent requires a mechanism to formulate the consequences
of a given action. In other words, it needs a causal model of the environment
to derive the effects of its actions. This chapter addresses these two issues —
the formulation of causal model, and anticipation — in the context of the
conceptual model presented in the previous chapter.

With the purpose of approaching this problem, a simple experiment was
devised, consisting in applying the emotion-based architecture to a problem
of control supervision (section 5.2). The well-known problem of balancing an
inverted pendulum was used as a testbed [199]. The explicit formulation of
causal models was considered next (section 5.3), using a stochastic discrete
event system as environment. In the experiments, the agent supports two
modes of functioning: it is allowed to interact with the environment, collect-
ing relevant information (online mode), and from time to time, it formulates
and re-organizes its causal models (offline mode).

According do Damásio, emotions play a crucial role in decision making
situations, where a person is faced with various scenarios, and various possi-
ble courses of action. The consequences of the available possibilities are then
pondered in a means-end analysis fashion. When considering one of possi-

81



82 CHAPTER 5. CAUSAL MODELS AND ANTICIPATION

bilities, the emotional circuits of the brain are capable of responding to it.
Such responses are usually in the form of an actual (measurable) physiological
change1. The body changes are then signaled to the brain, leading to either a
prompt dismissal of some possibilities, or attraction towards others. This ef-
fect is often covert and unconscious, but sometimes it reaches consciousness,
and people are then aware of those feelings. The novel aspect pointed out by
Damásio’s research was that such phenomena happen more often than was
commonly thought. Even in apparently rational, non-emotional decisions,
such body changes have an effect in the decision-making process.

5.2 A supervision control problem

5.2.1 Motivation

One of the mechanisms discussed by Damásio is what he calls the movie-in-
the-brain [56]. Far from the ancient idea of the homunculus inside the brain
watching a “movie” of sensory input while deciding what the body should do,
this movie-in-the-brain (MITB) conceptualizes a structure registering, over
a period of time, the sequence of perceptions, actions, and bodily responses.
In Damásio’s terminology, these form images representing objects outside
the body, as well as representations of the body state. Such a structure al-
lows an individual access to her/his recent history, encompassing not only
her/his interaction with the world, but also how her/his body responded to
it. Damásio discusses the movie-in-the-brain in the context of the formation
of consciousness [56]. He views consciousness as a two step process, where
first, a core consciousness is constructed, based on the individual experience.
The movie-in-the-brain holds this experience in its various dimensions (per-
ception, body state, and so on), as in an orchestra score containing different
staffs for different instruments. On top of core consciousness, a second level
is proposed — the extended consciousness — pertaining an autobiographical
view of the individual. Such an autobiography is a second order account,
made out of fragments of the movie-in-the-brain construed at the core con-
sciousness level.

Daniel Dennett dismisses the Cartesian Theater idea of a place in the
brain where all perception is put together. Rather, he recalls that the ner-
vous system is made of several parallel paths from perception to action. Per-
ception is made of various processes distributed over the brain. Thus, per-

1To be precise, Damásio also refers to what he calls the “as-if loop”, that short-circuits
the body loop. In other words, the brain simulates the effects in the brain, thus skipping
the actual body changes. However, it is as if the body was involved anyway.
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ception is formed by a continuous revision of perceptual data, what Dennett
calls the Multiple Drafts Model [65]. Dennett goes a bit further, proposing
that his model is also applicable to all varieties of mental activity. The Mul-
tiple Drafts Model cannot however be considered to stand in contradiction
with Damásio’s movie-in-the-brain, since the latter can be seen as a unified
conceptualization of the representations held widespread among the brain.
Recent neurophysiological evidence seems to corroborate these two views,
as in Baars’ Global workspace theory [15]. Information is distributed among
various specialized brain structures, however, according to Baars, only a part
of it is dominant at any given moment.

The design of the supervisor agent was biologically inspired by Damásio’s
movie-in-the-brain [56]. This computational implementation of the movie-
in-the-brain (MITB) is employed here to store the sequence of the agent’s
perceptions and actions, together with their desirabilities. The agent’s de-
cision making is based on the information held in the MITB, hence, on the
experience of its interaction with the world. To do so, the agent has to man-
age two kinds of activities. On the one hand, it must explore the environment
by trying certain actions for which it is ignorant about their consequences,
and on the other, it matches its current percepts against the MITB, with
the purpose of choosing an appropriate action, taking into account its con-
sequences after matching the current percepts with the stored MITB.

5.2.2 Testbed

The testbed employed in this experiment consisted in a simulation of the clas-
sic inverted pendulum control problem. A linearized version of this problem
can be easily solved by traditional methods2 using a state-space approach
(example 10-2 from [141]). An in depth discussion in depth about related
issues, such as stability analysis, can be found in [170].

The system was modeled as a non-linear dynamic system. Taking the
variables indicated in figure 5.1, the system was modeled in the following
way. The dynamic expressions for the Cartesian coordinates of the pendu-
lum (xp(t), yp(t)) can be written in the form (the time dependency will be
hereafter dropped from the dynamical variables, for the sake of readability)

{

mpẍp = −fp cos y +Kpẏ sin y
mpÿp = −fp sin y −mpg +Kpẏ cos y

(5.1)

2The system is controllable in state space, in terms of both car and pendulum position.
To do so, the controller requires full access to the dynamic state of the system. In this
case, the car and pendulum positions and velocities.
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Figure 5.1: Illustration of the inverted pendulum system, with the kinematic
state variables shown.

where mp is the mass of the pendulum, fp(t) is the force with which the
rigid bar (of length l) pulls the pendulum (balanced by the reaction force
fc(t) exerted on the cart of mass mc). There is a friction in the junction
between the pendulum bar and the cart of magnitude Kpẏ onto the pendulum
mass. The g is the constant acceleration due to gravity. Time derivatives are
denoted with dots over the dynamical variables. Regarding the cart, which
can only move along the x axis, one can write

mcẍc = f + fc cos y −Kcẋ (5.2)

where f(t) is the actuation force exerted on the cart (the system input), and
Kc the friction coefficient of the cart wheels.

Two more equations are required to express the kinematic relationship
between the cart position x(t) and the pendulum coordinates:

xp = x+ l cos y (5.3)

yp = l sin y (5.4)

which after double time derivation results in the expressions:

ẍp = ẍ− l cos y (ẏ)2 − l sin y ÿ (5.5)

ÿp = −l sin y (ẏ)2 + l cos y ÿ (5.6)

Finally, the forces exerted on the pendulum bar have to balance each other:

fc = fp (5.7)

Solving the above equations with respect to ẍ(t) and ÿ(t), it is possible to
simulate the dynamics of the system. This boils down to a four dimensional
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state vector x(t) = (x(t), ẋ(t), y(t), ẏ(t)). The state trajectories along time
are described by an equation in the form ẋ(t) = Φ (x(t), f(t)).

A fourth order Runge-Kutta method [47] was used in the implementation
to numerically solve the obtained non-linear equations. The parameters em-
ployed during simulations were the following: mp = 0.3, mc = 0.2, l = 60,
and Kc = Kp = 0.1. The simulation step was set to 0.1.

The system is controlled by a simple proportional controller given by
f(t) = K [yref − y(t)], where yref is the desired angular position of the pen-
dulum (e.g., vertical position) and K is the proportional gain of the con-
troller. This is the same to say that the controller aims only at the vertical
equilibrium of the pendulum, regardless of the car speed. This is a strong
simplification, since when the pendulum is successfully balanced, the car
usually keeps moving. Both balancing the pendulum and stopping the car
would require a controller with feedback from the pendulum position time
derivative and the car velocity (and position, if a certain final position was
desired). In terms of the supervisor, the output would involve more than one
proportional gain. However, it was decided to keep this example as simple
as possible, and only the problem of balancing the pole, regardless of the car
speed, was considered.

A control system supervisor (figure 5.2) is built by adding a module — the
supervisor — which observes the state of the system, and tunes the controller
parameter. In this case, the supervisor and the controller constitute the
agent: stimuli are the system state and the actions are the new controller
parameter (proportional gain).

signal
control

Controller

System

Supervisor

output

tuning

Agent

K

x(t)

y(t)

x(t)f(t)

Figure 5.2: The complete system, including the controller and its supervisor,
which embodies the emotion-based agent.

To get a realistic flavor of this setup, picture an agent watching the pen-
dulum and measuring the objects’ positions and velocities by means of its
sensors, and trying to balance the pendulum by exerting a force on the car.
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In this metaphor, the controller can be understood as a low-level reactive
layer.

5.2.3 Supervisor design

Fundamentals

For each simulation step, the supervisor is stimulated with the state of the
system, which corresponds to the vector x(t). Then, according to the ar-
chitecture previously described, the cognitive and perceptual images are ex-
tracted. In this implementation, the cognitive image equals the state vector,
ic(t) = x(t) (fc is in this case the identity), whereas the perceptual one
has two components, ip(t) = fp(x(t)) = (i1p, i

2
p). These components are the

deviation between the pendulum angular position and the vertical position
(equilibrium) i1p = y − yref , and the sum of the absolute speeds of the car
and pendulum i2p = |ẋ| + |ẏ|.

This choice of cognitive and perceptual images follows the observation
that for a complex control problem (a plant, in control theory terminology),
using the full state vector (considering it is directly observable or estimable
in a reliable way) is intractable, either analytically or in a learning system
(recall Richard Bellman’s “curse of dimensionality”). Hence, the cognitive
image reflects the full complexity of the system, while the perceptual one
contains a reduced set of features.

The desirability vector (DV) components represent basic assessments of
the desirability of stimuli. In this case, two components were considered:
vd(t) = (vval

d , vurg
d ), denoting valence (vval

d ∈ [−1, 1], positive if vval
d > 0,

neutral if vval
d = 0, and negative otherwise) and a degree of urgency (vurg

d ∈
[0, 1], 1 means maximum urgency).

The mappings fd between the ip (the perceptual image) and the vd (the
DV) are decomposed on two linear piece-wise functions as shown in figure 5.3.
The valence is positive when the pendulum is near to equilibrium, and neg-
ative when far from it, thus depending on the first perceptual component
i1p = y− yref . The urgency increases, until reaching saturation, with the sec-
ond perceptual component i2p, which heuristically assesses the general “speed”
of movement (the sum of the absolute values of the first derivatives).

Movie-in-the-brain

For each time step, the agent stores a memory frame in the form

mf(t) = 〈ic(t), ip(t), vd(t), a(t)〉 (5.8)
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Figure 5.3: Profiles of the functions used to obtain the DV components
(L+ = 0.1, L− = 0.4, and Lu = 250).

into the MITB. The MITB is a sequence of memory frames

M(t) = [mf(t1), mf(t2), . . .] (5.9)

where tk < t for k = 1, 2, . . . represent the time instants at which the agent
receive the stimuli, up to time t.

In the following, a generic time t is always assumed, and, therefore, the
argument t will be dropped for clarity’s sake.

Topographic map

Action selection is based on a mechanism called topographic maps (abbre-
viated to topmap), inspired by the homonym structure found in the brain:
“neurons in the visual areas of the cortex [...] are arranged topographically,
in the sense that adjacent neurons have adjacent receptive fields and collec-
tively they constitute a map of the retina. Because neighboring processing
units (cell bodies and dendrites) are concerned with similar representations,
topographic mapping is an important means whereby the brain manages to
save wire and also to share wire” (pages 31–32, [43]). However, the use of
topmaps is here limited to the representation of actuation: “A similar hier-
archy of multiple topographic maps is found [...] for muscle groups in the
motor system” (page 33, [43]), among others. The biologically inspired idea
of topographic maps has been used in neural networks [107], among other
areas. However, in the context of this work, the idea of topographic maps
was adopted in a different, simpler perspective.

The topmap is a function T (x) ∈ R defined in a bounded interval x ∈
[xmin, xmax]. This function represents a map between a variable x and a real
value. For instance, one of the topmaps utilized in the implementation maps
values of the controller gain K to degrees of ignorance, so that the agent can
identify which action it is most “ignorant” about, in terms of its effects.
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Such a topmap function is obtained by combining a set of “building-block”
functions ψ(x) defined and parametrized as follows:

ψ(x; x0, k, τ) = k e
−τ

|x−x0|
xmax−xmin (5.10)

where x0, k, and τ > 0 are parameters. This function equals k for x = x0

and decays exponentially with a decaying coefficient τ . The denominator
xmax − xmin makes the decay coefficient invariant of the variation range of
x. The idea of the topmap is to find the argument x that maximizes this
function, where ψ functions with positive k contribute as “attractors” and
with negative k as “repulsors.”

Given a set of contributions 〈x(n)
0 , A(n), τ (n)〉, with n = 1, . . . , N , the re-

sulting topmap is constructed in the following way. For each contribution
(n), a function ψ(n)(x) is added (point-wise) to T (n−1)(x).

T (n)(x) = T (n−1)(x) + ψ(n)(x) (5.11)

where the topmap is initialized with zero, i.e., T (0)(x) = 0.
Each contribution is calculated from ψ by adjusting the amplitude pa-

rameter A(n) in such a way that T (n)(x0) = A(n). This prevents that many
ψ functions centered at the same point overload the topmap. Thus, given
a contribution ψ(x; x

(n)
0 , A(n), τ (n)), the topmap accumulates the following

function:

ψ(n)(x) = ψ(x; x
(n)
0 , A(n) − T (n−1)(x

(n)
0 ), τ (n)) (5.12)

The parameters x
(n)
0 , A(n), and τ (n) parametrize each contribution indi-

vidually. However, in this implementation, all A(n) and τ (n) had the same
value. Topmaps were implemented by quantizing the interval [xmin, xmax] in
equally spaced (small) discrete steps in x.

Decision-making

The agent’s decisions are based on the recent history of its interaction with
the environment, as recorded in the MITB structure. Briefly, it searches
the MITB for situations similar to the present one. The consequences of
the actions performed in those situations are then analyzed. The agent’s
decision is either to experiment a new action (not yet performed in similar
situations), or to perform the action that in the past has led to the most
desirable consequences.

A more detailed description of the decision making process follows. At
each simulation step, the agent receives a stimulus, formed by the system
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state vector x(t). It then obtains the perceptual image ip, followed by the
desirability vector vd, as defined in section 5.2.3. If the urgency desirability
vector component is above a threshold, the perceptual layer takes precedence,
and the perceptual action is immediately performed. The perceptual action
consists in setting the controller gain to a fixed value if the valence DV
component is negative, and zero otherwise.

Unless an urgent situation is encountered and addressed in such a way,
the cognitive layer is called to decide whenever the DV values change beyond
some other threshold. The DV change is calculated by measuring the Eu-
clidean distance between two successive DV vectors. Additionally, to prevent
too long periods without cognitive intervention, there is a maximum period
over which a certain gain value is maintained. When this period expires, the
cognitive layer is called to decide once again.

1. Match the present cognitive image ic against the MITB. The metric used
in this match is a normalized Euclidian distance. Given two vectors
u = (u1, ..., uN) and v = (v1, ..., vN) the distance between them is
given by

d(u,v) =

√

√

√

√

1

N

N
∑

k=1

(

vk − uk

vmax
k − vmin

k

)2

(5.13)

where vmin
k and vmax

k are the minimum and maximum values of the k-th
component, among all cognitive images in the MITB.

This matching process assigns to each memory frame mM
f in the MITB,

with cognitive image iMc , a degree of match given by (the inverse of)
d(iMc , ic).

2. Find local minima of the matching degrees. The local minima are a
subset of memory frames for which the matching degree is less than or
equal to the ones of the predecessor and the successor (whenever more
than one memory frame satisfy this condition, only the most recent in
time is considered). These are the best matches, when looking locally
at the MITB. Because of the smoothness of the state dynamics, this
method yields a manageable amount of cognitive matches.

3. Pick a sub-sequence after each cognitive match. The sub-sequence of
memory frames following a cognitive match represents the immediate
future after the agent was previously faced with a similar stimulus.
This sub-sequence is also dependent on the actions the agent took dur-
ing that corresponding period of time. This sequence of associations
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between cognitive and perceptual images, DVs and actions are the ba-
sis for the agent decision making process. There is a fixed parameter
that limits the size of each sub-sequence.

4. Evaluate each sub-sequence. For the first frame of each sub-sequence,
the DV and action are extracted (v1

d and a1), then the first next frame
for which the DV changes (in vector distance, with respect to v1

d) more
than a threshold is searched for (v2

d and a2), i.e., ‖v2
d−v1

d‖ greater than
a threshold. If no such change is found, this sub-sequence is ignored.
The amount of change is obtained from a weighted sum of the DV
components difference, thus forming an evaluation of DV change

ech =
∑

k

wk

[

(v2
d)k − (v1

d)k

]

(5.14)

In this implementation, the weights wk determine to what extent the
agent takes into account the valence or the urgency components of the
DV.

5. Construct action topmaps with respect to “ignorance” and to “evalua-
tion.” Two topmaps are constructed: one called ignorance, T ign(x),
representing the degree of ignorance about the effects of a certain action
x = a(t), and another called evaluation, T eval(x), representing whether
the agent considers the effects of the action x = a(t) desirable or not
(positive values mean “desirable,” while negative ones mean “undesir-
able”).

The “ignorance” topmap is obtained by combining a ψ function for the
actions of each cognitive match (and local minimum). Each contribu-
tion ψ has a negative amplitude, so that each tried action functions as
a repulsor. The “evaluation” topmap is obtained in a similar fashion,
except that the amplitude of the ψ function depends on the evalua-
tion (5.14).

6. Action selection. At this stage, the agent has to decide whether to
maximize ignorance (exploration of the environment) or evaluation (ex-
ploitation). First, the ignorance topmap is maximized:

imax = max
x∈[xmin,xmax]

T ign(x) (5.15)

Then, if imax is greater than a pre-specified threshold TI , the agent
chooses to try a different action (exploration). Otherwise, the agent
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chooses the action which maximizes the evaluation topmap:

ac = arg max
x∈[xmin,xmax]

T (x) (5.16)

where T is T ign if imax > TI , or T eval otherwise. In this case, if there is
at least one contribution with positive amplitude, the agent will choose
the one with the greatest amplitude. If all contributions have negative
amplitude, a new untried action will be chosen (the farthest apart from
the tried ones, taking the absolute difference as distance function).

As explained previously, the agent action a is one of ap (perceptual) or ac

(cognitive), depending on the urgency of response. In this implementation,
a threshold TU is used, such that if the DV component vurg

d > TU , the
perceptual action is chosen (a = ap), otherwise, the cognitive one is chosen
(a = ac). The function fap obtains the perceptual action ap: it sets the gain
to 200 if vval

d < 0, and to 0 otherwise. In other words, this function simply
turns off the controller gain when the valence component of the DV is not
negative, and uses a large value otherwise. This results in a bang-bang kind
of control, which purposefully promotes instability3. The challenge for the
cognitive layer is to come up with gain values that balance the pendulum,
thus yielding a better level of competence than the perceptual layer alone.

5.2.4 Experimental results

The inverted pendulum system described above is unstable in open loop. If
we take a linearized, frictionless, model of the pendulum, it can be shown that
it is unstable for any gain value K. However, in the utilized non-linear model,
the friction coefficient contributes to stabilize the system, thus simplifying
the control problem significantly. To illustrate this, figure 5.4 shows Monte-
Carlo simulations of the system for three different friction coefficients (Kp

and Kc). The Monte-Carlo method took the initial condition (initial angular
deviation of the pendulum from the vertical position) and the proportional
gain K as random variables.

The perceptual layer, per se, is unable to hold the pendulum straight,
because it uses a too high gain value (200) when the urgency DV component
is high enough, and zero otherwise. Thus, it performs a bang-bang kind of
control. The goal of these experiments is to assess whether the agent is capa-
ble of experimenting with several gain values, and choosing the one yielding
good results. Figure 5.5 shows two simulations, one with the perceptual layer

3The value of 200 was chosen for this purpose.



92 CHAPTER 5. CAUSAL MODELS AND ANTICIPATION

Kp = Kc = 0.05 Kp = Kc = 0.1 Kp = Kc = 0.2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  50  100  150  200  250

in
iti

al
 c

on
di

tio
n 

(d
eg

)

proportional gain

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  50  100  150  200  250

in
iti

al
 c

on
di

tio
n 

(d
eg

)

proportional gain

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  50  100  150  200  250

in
iti

al
 c

on
di

tio
n 

(d
eg

)

proportional gain

Figure 5.4: Impact of the friction coefficients on the stability of the sys-
tem, using a proportional controller with fixed gain. The three plots depict
Monte-Carlo simulations, for different friction coefficients Kc = Kp, with the
initial condition and the proportional gain as random parameters. Plus signs
(+) denote stable outcomes, while the small squares (�) denote outcomes
where the pendulum falls below the horizontal position. Each run took 200
simulation time units.

alone, and the other comprising the full architecture. In this example, the
full architecture was able of stabilize the pendulum.

The following experiments exposed four versions of the agent (supervisor)
to the system (pendulum+controller), assessing whether it was able to not
let the pendulum fall down, for a pre-defined amount of time (termed lifetime
below). About 1000 runs where performed, for each version, with random
initial pendulum deviations within the interval [0, 20◦]. The versions are
described below:

1. perceptual — an agent formed by the perceptual layer alone, thus re-
sulting in a bang-bang kind of control;

2. random K — a complete agent, where the cognitive layer always decides
for a random value of gain K;

3. full — the complete agent, but initializing the MITB at the beginning
of each run;

4. full with MITB — The complete agent, with a pre-loaded MITB pre-
viously captured. The pre-loaded MITB was obtained by running the
complete agent for 100 times, accumulating the MITB each time. Each
one of the 1000 runs began with the same pre-loaded MITB.

The results obtained are summarized in table 5.1. First, as expected,
using the perceptual layer alone, the agent lets the pendulum fall at almost
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Figure 5.5: Two runs for 6o initial deviation. The upper plot shows the
performance of the perceptual layer alone, while the lower one shows the
full architecture. The “y” labeled trace represents the angular position, in
degrees (vertical position equals 90o); the “Kp” represents the controller gain
Kp, which is the action a(t) performed by the supervisor; the values for each
of the DV components vval

d and vurg
d are also shown as “DV val” and “DV urg”,

relative to two horizontal lines denoting the zero of each component.

every run. When longer lifetimes are used, the percentage raises to 100%,
thus suggesting that the 99% value in the 60 time units simulations is only
due to small lifetimes. With 60 time units of simulation, the full agent seems
to outperform the random K version, although not by a large margin. But
when longer lifetimes are tested, the performance of the former is much worse.
Moreover, using a pre-loaded MITB seems to worsen results.

These results suggest that, although the agent seems to be able to ex-
periment with several gain values, it has difficulties in utilizing the past
experience to choose appropriate gain values. In the short-term it seems to
perform better than random choices of the gain. But in the long-term, it
performs as badly as the first version (perceptual layer alone).
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version lifetime
60 200

perceptual 99.0% 100.0%
random K 39.7% 54.4%
full 26.9% 84.0%
full with MITB 100.0% 99.8%

Table 5.1: Results obtained with the four versions of the agent (see text).
The values express percentages of number of runs where the pendulum fell
down below the horizontal position.

Running the experiments for a longer period of simulation time (2000 time
units), no single run was able to stop the pendulum from falling. Results
assessed in terms of time before the fall of the pendulum were collected in
the form of the histograms shown in figure 5.6. These results were obtained
for 1000 runs, except for the fourth one (full with MITB), which was limited
to 100. The pre-loaded MITB employed in this latter version was obtained
running 5 times for 200 time units (or less, if the pendulum falls before),
accumulating the MITB over successive runs.

Statistics of the obtained lifetimes are shown in table 5.2. It is hard
to draw clear conclusions from these results. The random K agent version
has a very dispersed histogram, although there is a large number of runs
with lifetimes smaller than about 10. The full architecture exhibits a less
dispersive histogram, but in terms of the mean and the maximum values,
it is worse than the former. Comparing the random K version with the full
architecture with pre-loaded MITB, the results suggest an improvement (e.g.,
the mean is higher), but the histogram still shows a very erratic performance.

version mean stddev min max

perceptual 35.5 9.4 19.1 77.8
random K 261.2 286.1 2.8 1444.7
full 127.0 80.8 15.3 595.8
full with MITB 197.4 180.4 6.9 673.3

Table 5.2: Statistics of the attained lifetimes of the simulations.

The agent implementation used in the above simulations depends on many
parameters. In the previous experiments these parameters were hand-tuned
throughout the development of the implementation. Thus, there is a strong
possibility that the agent’s performance could be improved by a patient fine-
tuning of these parameters. Taking a more systematic approach to improve
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agent performance, a Monte-Carlo simulation was performed, for random
parameters values within a range of reasonable values. For each set of pa-
rameters values (instance), the performance of the system was measured by
simulation.

There are six main parameters that were subject to this process. Two
of them are introduced here, which in the past had shown no improvement
empirically (and therefore not used in the experiments presented above): a
low-pass filtering of the DV values, in the form

ṽi
d[k] = λiṽ

i
d[k − 1] + (1 − λi)v

i
d[k], i = 1, 2 (5.17)

where ṽi
d[k] is the filtered version of the DV value vi

d[k], at simulation step
k. The goal of this filtering is to smooth the DV variations over time. The
two new parameters introduced here are λ1 and λ2. The remaining param-
eters are the threshold of DV change (*dv-change-threshold*), the max-
imum period for which an action is maintained before calling the cognitive
layer (*maintain-max-period*), the threshold on the topmap maximum ig-
norance level above which the corresponding action is performed, instead
of exploiting via an evaluation topmap maximization (*max-ignorance*),
and the weight of the urgency DV component in the evaluation of the DV
(*t6c-dvw-urg*).

The system was simulated for each Monte-Carlo instance to assess whether
the pendulum fell for a pre-defined amount of simulation time (200 time
units). Given the resulting cloud of instances, in parameter space, each one
associated to a Boolean value (did the pendulum stay up during the simula-
tion run?), the following procedure was applied: for each true valued point
(i.e., the pendulum did not fall), the number of true valued points within the
N closest4 ones was maximized. The point with the greatest number of true
points within the closest N neighbors was then chosen. Two iterations of the
Monte-Carlo process were performed. In the second iteration the intervals of
parameter variation were narrowed, based on the maximization in the first
iteration. The second iteration served for a final choice of parameters. The
N value used was 100, although the solution was stable for values of N from
about 50 up to about 300. Table 5.3 shows the best instance found by the
Monte-Carlo process (rightmost column), as well as the intervals in the first
and second Monte-Carlo runs.

Using the same methodology as in the above experiments, the histograms
and the statistical results of the simulations with this set of parameters
can be found in figure 5.7 and table 5.4. The perceptual and random K

4Euclidean distance in the space of parameters, after a normalization of zero mean and
unit variance, for each one of them.
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parameter original intervals final

*lambda-dv1* 0.0 [ 0.0; 1.0] [ 0.4; 0.9 ] 0.74600
*lambda-dv2* 0.0 [ 0.0; 1.0] [ 0.0; 0.5 ] 0.14068

*dv-change-threshold* 1.0 [ 0.0; 2.0] [ 0.0; 0.15] 0.037811
*maintain-max-period* 5.0 [ 0.0; 20.0] [ 0.0; 15.0 ] 9.7428

*max-ignorance* -0.2 [-1.0; 0.0] [-0.5; 0.0 ] -0.20046
*t6c-dvw-urg* -0.5 [-2.0; 0.0] [-1.4; -0.5 ] -1.1801

Table 5.3: Parameters obtained using the Monte-Carlo method. Two itera-
tions were performed, with the intervals shown in the two middle columns.
The leftmost column shows the original hand-tuned parameter values, while
the rightmost one shows the resulting parameter values (up to 5 significant
digits).

agent versions were affected because of the DV low-pass filtering process,
and in the latter case, also because the K change timing depends on the
*dv-change-threshold* and *maintain-max-period* parameters. The
full version has a statistically significant5 higher mean lifetime value than
the random K one, thus showing better performance. Moreover, the former
mean lifetime is also higher than the one using hand-tuned parameters (also
statistically significant5). Concerning the full version with pre-loaded MITB,
although the mean lifetime is higher than for the plain full version, the his-
togram prevents us from drawing conclusions of statistical significance. Still,
there is a clear improvement in two aspects: (1) much fewer runs with life-
times smaller than 200 time units, and (2) an higher amount of runs with
lifetimes greater than 800 time units.

version mean stddev min max

perceptual 20.9 1.8 18.0 30.9
random K 175.7 193.9 10.1 1032.5
full 264.4 108.8 31.8 679.7
full with MITB 368.8 242.9 150.8 1246.1

Table 5.4: Statistics of the lifetimes of the system in the simulations employ-
ing the parametrization of the agent from the Monte-Carlo method.

5Statistically significance asserted with 99% of confidence level, assuming normal pop-
ulations, and using the approximation (for large populations) that X̄−Ȳ

r

S2
x

n
+

S2
y

m

has a unit

normal distribution (page 225, [158]).
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5.2.5 Lessons learned

In a paper presenting the research presented in this section [199] a comparison
with other models, namely experimental results obtained using a reinforce-
ment learning approach [19], can be found. In the context of this thesis,
however, the role of the supervisor experiment is not to propose an alterna-
tive approach to the control problem. Rather, its purpose is to identify the
issues raised in the design of an agent, in a situation demanding interacting
with an unknown world, learning through the interaction with it, and being
able to act based on the anticipation of future consequences.

Several factors contribute to make it very hard to analyze the reasons
behind the poor results.

The first problems that arise when applying the agent model to a contin-
uous time control system are the problem of identifying salient events, and
the problem of action persistence. Even though the simulation provides a
natural discretization, it is too fine grained and therefore not appropriate
for decision making. On the one hand, the system state changes slightly for
successive time steps. And on the other, the contribution of the actions in
the dynamical system during a single time step is negligible, when compared
to the net effect of actions performed in the past. Therefore, an action has
to persist along a reasonable time interval, so that the consequences can
be attributed to that action. In the implementation, events where detected
using ad-hoc schemes: the agent decided based on significant DV change,
and memory matches in the MITB were detected based on local minima of
matching degree.

The second problem is how to extract meaningful information from the
MITB. Experiments showed that the accumulation of experiences in the
MITB worsens dramatically the agent’s performance.

Taking into account that the goal of this research was to experiment with
the proposed emotion-based agent model, this implementation has raised
issues mostly out of the scope of the model, as the ones above-mentioned.
Therefore, two research paths were investigated. One consisted in simplifying
the testbed, so that conclusions could be more easily drawn. This corresponds
to a back-to-basics approach, described in the following section. The second
research path comprised the study of the proposed mechanisms. Chapter 6
describes the conducted research focusing on the indexing mechanism.
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Figure 5.6: Histograms of the number of runs where the pendulum fell down
with respect to the time units (log scale) elapsed before falling. The four
experiments correspond to the agent versions described in the text.
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Figure 5.7: Histograms of the number of runs where the pendulum fell down
with respect to the time units (log scale) elapsed before falling, employing
the parametrization of the agent from the Monte-Carlo method.
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5.3 Anticipations in a discrete event world

The continuous time system employed in the previous experiments proved
too complicated for making progress. Therefore, a back-to-basics approach
was taken here. The continuous time environment was replaced by a discrete
one, where cause and effect could be made easier to identify. This allows
to factor out the problem of identifying situations in a discrete way, given a
continuous stream of stimuli.

A second simplification was to replace stimuli by discrete symbols. Some
of these symbols have a built-in connotation (e.g., the symbol ‘X’ is unde-
sirable). The others are initially meaningless to the agent. The symbols
are generated by a Partially Observable Markov Decision Process (POMDP)
model. It is partially observable to prevent the agent to have full access to
the environment state. In this way, synthetic environments exhibiting cer-
tain regularities can be constructed. These regularities are crafted in a way
to provide enough information for the agent to formulate coherent causal
hypotheses. For instance, it is possible to deterministically anticipate the
undesirable ‘X’ symbol, from the occurrence of certain previous symbols. In
other words, relevant aspects of the world are made deterministic, while the
rest remains random.

Moreover, the agent’s actions ought to influence the world in a determin-
istic way. For instance, the ‘AVOID’ action, which is employed by the agent
once it anticipates the occurrence of an ‘X’, always prevents its occurrence.

In summary, the world presents a sequence of stimuli to the agent, in
the form of symbols, one at a time. Some of these symbols are undesirable
for the agent. Although the sequences are stochastic, it is possible to model
deterministically predictors of relevant stimuli, namely the ‘X’ symbol. An
AVOID action, performed in the step immediately preceding the ‘X’, deter-
ministically changes the course of events, i.e., the next symbol is other than
‘X’. Finally, the world provides enough information to allow the construction
of a causal model, allowing to anticipate undesirable outcomes.

In this context, what we are looking for is a mechanism capable of antic-
ipating the effects of the agent’s actions (and non-actions), given a situation
percepted by the agent. Such anticipation can be made explicit, as in this
research, or implicit, as in methods that learn based on propagating the util-
ity of states. Examples of such implicit learning can be found in adaptive
dynamic programming, reinforcement learning,, and so on. Instead, this re-
search seeks to represent explicitly the relevant aspects of cause and effect,
gathered through interaction with the environment.

With the goal of constructing and utilizing those causal models, two ap-
proaches were experimented with. The first one uses a decision tree as causal
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model. The agent interacts with the environment, and collects fragments
(cases) of that interaction, using a certain policy. From time to time, it uses
the set of collected cases to formulate, or re-formulate, the causal model (de-
cision tree). In a second approach, the causal model is entirely supported by
the double representation paradigm of the architecture.

5.3.1 First approach

Implementation

The agent begins its interaction cycle with a minimal a priori knowledge
about the environment. In this implementation, the negative DV produced
by the X symbol. Through interaction it formulates and puts a causal model
into practice, which relates received stimuli and performed actions, with fu-
ture consequences.

First of all, the agent has to be able to store, in memory, a sequence
of the latest symbols to which the agent has been exposed so far. To do
so, we use the same idea of a movie-in-the-brain (MITB), as in previous
implementations. Next, the agent needs to collect and store cases, i.e., sub-
sequences of stimuli, which the agent finds relevant to formulate a causal
model. Before being exposed for the first time to an X symbol, the agent
never performs any action. When the first X symbol appears, the N previous
stimuli (present in the MITB) are stored in a database of cases (N being a
parameter: the size of the MITB).

The agent implements two distinct modes of operation: the online mode,
where the agent interacts with the environment, collects cases when appropri-
ate, and acts according to a previously formulated causal model (if any), and
an offline mode, where all collected cases are analyzed, in order to formulate
a new causal model, or to refine an existing one (if any).

We do not restrict the causal model to a particular technique. In this
experiment we used a decision tree structure, using the C4.5 algorithm [153].
However we would like to stress that this implementation can use any other
technique. In fact, it could be interesting to consider a portfolio of causal
model mechanisms, which may be tested upon the environment, and chosen
by the agent, depending on their performance. We believe that complex
environments demand a broad variety of modeling techniques.

To build a causal model (as a decision tree) it does not suffice to take
sub-sequences leading to negative DV stimuli. The algorithm also requires
cases which do not end up in a negative DV. In the case of decision trees,
the attribute space is partitioned according to the decision outcomes, re-
quiring the training set to contain cases associated to all possible outcomes.



102 CHAPTER 5. CAUSAL MODELS AND ANTICIPATION

Therefore, the agent has to be also equipped with the capability of collecting
counter-examples, namely those ending up in neutral stimuli. To do so, and
avoiding the trivial solution of storing one case per stimulus, the following
strategy was used: when a sub-sequence ending in a negative DV is stored in
the database of cases, all symbols found in that sub-sequence are associated
with that case. This way, symbols that occur before a negative DV stimulus
become associated, each one, with one (or more) cases where they took part.
When any one of those symbols is found, the stored case is recalled, compared
with the past, and held for tracking: all differences the agent finds between
the recalled case and the current one are registered. When the tracking of
the recalled case ends, and if any differences were registered, a new case is
added to the database of cases. The underlying idea is to associate the oc-
currence of a negative DV with the context provided by previous stimuli. By
becoming associated with a negative DV case, all symbols participating in
that context impel the agent to compare the present course of events with
past cases, and to store any relevant disparities found, as new cases.

This database of cases is used next time an offline mode period occurs.
When an offline mode occurs for the first time, a brand new decision tree
is built. As mentioned, the decision tree is generated using the C4.5 algo-
rithm [153]. The examples used by this algorithm consist of sub-sequences
of stimuli. The attribute values are pairs in the form (n, v), where n is an
integer representing the temporal position of either a stimulus v = s or action
v = a, in the sub-sequence. The outcomes are the DV values — negative
or neutral — of the final stimulus in the sub-sequences. The final stimu-
lus and action itself are not included in the attributes, since the decision
tree is supposed to anticipate the DV before it happens. Finishing an offline
mode period, the agent discards the database of cases. For the subsequent
offline mode periods, an ad-hoc refinement algorithm was used, which will be
explained below.

Once an initial causal model is formulated (a decision tree, in this imple-
mentation), the agent uses it to be able to anticipate negative DV situations.
However, it may happen that the model fails to anticipate correctly a nega-
tive DV, or that it anticipates a negative DV that does not occur. In these
cases, the model needs to be refined. To accomplish this, these cases where
the decision tree fails are added to the database of cases, so that in the next
offline period, the agent uses them to refine the causal model.

Refining a decision tree requires supplemental information, taken from
the initial training set. For instance, statistical information extracted from
the training set has been used to incrementally build a decision tree [190]. For
the sake of simplicity, we use a simple ad-hoc scheme, that works as follows:
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the agent adds to each leaf6 the subset of cases associated with that outcome.
The decision tree refinement is performed using these subsets. The algorithm
consists of, for each example, starting at the root, and walking through the
tree, until one of the following situations is encountered:

1. An attribute ramification does not account for the corresponding value
in a given example: in this case, a new leaf is added at this ramification,
associating the new attribute value with the example outcome;

2. An outcome leaf has a different outcome from the one of a given exam-
ple: a new decision tree is generated, using the C4.5 algorithm, solely
using the examples stored in that leaf, together with the given one.

This algorithm is not optimal; however, optimality does not concern us
in this experiment. Other algorithms could replace this one. Or even a new
decision tree could be generated, taking the union of all the examples stored
in the tree, and the new examples, at the price of an additional computational
cost. In sum, the idea of the offline mode is to implement the concept of
knowledge re-structuring, whenever novel data is available to the agent.

The formulated causal model can be used to prevent exposure to negative
DV stimuli. The agent is endowed with a built-in behavior consisting in
performing a pre-defined action (symbol AVOID) once it anticipates a negative
DV for the immediately following stimulus. If that action gives rise to a
neutral DV, then this corresponds to an unexpected event (because a negative
DV was predicted before). As mentioned before, this originates the storage of
a new case, which will be used in the next offline period to refine the causal
model. In the end, the causal model contains knowledge, not only about
relevant stimuli which precedes a negative DV, but also about the actions
capable of preventing negative DV stimuli. This allows the formulation of
response options to certain situations. These options associate courses of
action with future consequences (in terms of DV values), according to the
causal model.

Figure 5.8 shows the architecture of the described agent. During the
online mode, stimuli (1) are stored in the movie-in-the-brain (MITB). Un-
der certain circumstances, sequences from the MITB are stored (2) and/or
tracked (3). The tracking of cases is triggered by a match of a present situa-
tion with a previous case (4). Unexpected events during tracking are stored
as new cases (5). During the offline period, a decision tree is constructed or
refined (A). The decision tree is used (6) to anticipate (7) what can happen

6The ramifications of a decision tree correspond to possible attribute values, and the
leafs correspond to possible outcomes.
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next. This information is used to formulate courses of action (8), and to
choose an action to perform (9).
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M.I.T.B.

decision
making

M.D.P.

decision
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Figure 5.8: Agent architecture. The relationships among the several mod-
ules are: (A) decision tree generation or refinement; (1) stimuli the agent
is exposed to; (2) storing a case, after an unexpected DV; (3) tracking the
differences from a recalled case; (4) recalling a case; (5) storing a tracked
case; (6) consulting the decision tree; (7) anticipating future consequences of
actions; (8) using anticipations to choose a course of action; (9) action.

Experimental results

To test this simple agent, a synthetic environment was constructed, using a
Partially Observable Markov Decision Process (POMDP) as a symbol gen-
erator. Each simulation run comprises five periods: three in online mode,
interleaved by two offline periods between them. These three online peri-
ods have all the same number of stimuli (a parameter of the experiment).
The POMDP state is not reset between the online periods, and no symbol
is generated during the offline periods. The idea behind this scheme is to
provide a first online period where the agent is able to collect cases, a sec-
ond period to test the generated causal model, where the agent performs an
(built-in) AVOID action whenever it anticipates a negative DV stimulus, and a
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third period where it decides according to the consequences collected during
the second period. The difference between the second and the third online
periods is that the causal model used by the former does not include the
effects of performing the AVOID action (because none was performed during
the first period), while the latter includes the refinements arising from the
agent performing AVOID actions.

The POMDP used to obtain the results presented below can be found
in figure 5.9, here designated world A. To correctly anticipate the X symbol,
in this Markov chain, the agent just has to look for a B symbol, followed
by any symbol (irrelevant), followed by a D, and followed by another irrele-
vant symbol. Whenever this happens, an X symbol follows immediately with
probability equal to one, unless an AVOID action is performed. There is no
other possible way of preceding an X. Note that the POMDP was crafted
such that the D symbol can appear in either states (6) or (7), and that the
symbol three time steps before an X can either be A, in state (2), or C, in
state (3). An identical situation arises at states (9), (10), and (11). Since
the causal model used by the agent does not account for uncertainty, the
POMDP used here was crafted such that there exists a decision tree capable
of correctly anticipating the X symbol (negative DV).
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Figure 5.9: The Partially Observable Markov Decision Process (POMDP)
used to generate the synthetic environment (world A) used in the exper-
iments. The notation used is state/symbol inside the state circles, and
either the transition probabilities of the corresponding arrows (when the ac-
tion performed is irrelevant), or the corresponding action/probability pair
(when the probabilities depend on the performed action). The initial state
is (0), and the state that outputs an X is highlighted in bold. The transi-
tions grouped with the dashed ellipses denote transitions sharing the same
action/probability pair.
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The criterion used to evaluate the agent performance is the number of
negative DV symbols the agent was exposed to, during each experiment
period. The results presented in figure 5.10 are plots of this number as a
function of the number of stimuli that each online period takes, and of the
size7 of the MITB. In the topmost plots the MITB size was kept equal to 5,
while in the ones at the bottom, the period length was set to 100. The results
are presented as averages after running each experiment 1000 times.
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Figure 5.10: Sensitivity of the agent performance to the length of the online
periods — plots (a) and (b) —, and to the size of the “movie-in-the-brain” —
plots (c) and (d). Plots on the left show the agent performance in terms of
number of negative DV stimuli perceived, while the ones on the right show
the performance in terms of number of performed AVOID actions.

Performance is assessed in two ways: counting the number of negative DV
stimuli, and the number of AVOID actions performed. In the ideal case, during
the first period the agent receives a number of negative DV stimuli, while
no AVOID action is performed. In the second period, no negative DV stimuli
is perceived, while a number of AVOID actions are performed (approximately

7The number of stimuli taken into account to create a case.
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equal to the number of DV stimuli in the first period, since the POMDP is
the same). The results depicted in figure 5.10 show this trend. However,
some deviations exist. Both in the cases of small period lengths and MITB
sizes, performance degrades. This can be explained taking into account that,
in the former case, there are too few cases to formulate a sufficiently accurate
causal model. Concerning the latter case, the number of negative DV stimuli
decreases down to around zero as soon as the MITB size is at least 4. This
is a consequence of the way the POMDP was crafted: a four-step history
memory is the minimum required to predict the occurrence of the X symbol.
With a sizes of 2 or 3, the D symbol can help anticipating the X, but it can
also occur during state (6). However, with a size of 4, the sub-sequence [B,
(any symbol), B, (any symbol)] allows for a correct anticipation.
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Figure 5.11: Decision trees generated by the offline processing, after the
first (a) and second (b) periods.

Example decision trees generated by the agent, after a single run, are
shown in figure 5.11. The first tree depicts the generated tree after the first
period. This tree is only capable of anticipating the negative DV stimulus,
thus not accounting for any AVOID actions (because none was performed
during the first period). During the second period, however, since the agent
is now capable of anticipating the X, it attempts AVOID actions. Because
these actions successfully change the course of events, deviations from the
causal model are collected in the cases database. The offline period that
follows refines the tree, adding the effect of the AVOID action, as the second
tree in the same figure shows.

Figure 5.12 shows some results obtained from using a classic Q-learning al-
gorithm [181] with the same POMDP used above as environment (world A).
In order to do so, the Q-values were implemented by a table indexed by
the string of the latest N symbols concatenated, where N is a parameter.
Moreover, the experiments were conducted for two periods: during the first
period (exploration), AVOID actions were randomly performed with probabil-
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ity of 1/2, and during the second one (exploitation), the action performed
corresponded to the maximization of the Q-values. The reward is −1 for
the X symbol, −0.1 whenever the agent performs an AVOID action8, and zero
otherwise. The plots in figure 5.12 show the sensitivity of the number of
negative DV stimuli (same performance criterion as before) to the number of
stimuli in each period, and to the N is a parameter mentioned above. The
results are presented as averages after running each experiment 100 times.
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Figure 5.12: Sensitivity of the reinforcement learning agent performance to
the trial length (a), and to the number of stimuli contained in the state
representation (b). The agent performance is measured as the ratio between
the amounts indicated and the total number of stimuli in each period.

On the one hand, it is interesting to note how performance degrades
as the state dimension (i.e., number of past stimuli included in the state
representation) increases: an effect of the “curse of dimensionality.” On the
other hand, the length of the exploration period required for performance
convergence is relatively high: about 3000. Note that one has to be cautious
when directly comparing these results to the former ones, since the proposed
architecture makes use of built-in knowledge about what to do whenever a
negative DV stimulus is anticipated.

The environment used in the above experiments is very simple. So it
was decided to construct another one, here designated as world B, with two
innovations. First, the X symbol requires a two-step anticipation, under cer-
tain circumstances, to be successfully avoided with an AVOID action. In other
words, an AVOID action performed one step before the anticipated occurrence
of X, will not prevent it. Rather, only an AVOID performed two steps ahead is
able to prevent the occurrence of X. The second innovation is that a symbol

8This penalization is needed to prevent the agent from performing AVOID actions all
the time.
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Y, having a positive DV connotation, was introduced. The goal here is for
the agent to anticipate Y, and attempt an exploratory action to facilitate
its occurrence. The devised environment allows for an APPROACH action to
facilitate the occurrence of Y: the natural occurrence of Y has only 20% prob-
ability after state (0), while there is 100% probability of its occurrence after
performing an APPROACH in that same state. The diagram of the POMDP
implementing this environment is shown in figure 5.13 (world B).
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Figure 5.13: The POMDP of the world B environment. The notation used
here is the same as in figure 5.9, with the addition that unlabeled arrows
denote transitions with probability 1. The nil actions mean no action, as
usual.

Using the same parameters as in the previous experimentation, the re-
sults show that the agent significantly underperforms. Figure 5.14 shows the
results with respect to period length and MITB size.

The second and third periods show an improvement with respect to the
first period, in terms of exposure to negative DV stimuli. However, the agent
is not capable to anticipating all of its occurrences. The reason is simple:
the agent is only capable of anticipating negative stimuli with a single step
of antecedence. The POMDP branch leading to the X passing through the
state (6) is successfully dealt with, while the one passing through state (8)
is unavoidable with one-step anticipation. Since the probability of jumping
onto any one of these states is the same (0.1), the number of negative stimuli
in the second and thirds periods is roughly half the amount of the first period.

An example decision tree generated using the same environment is shown
in figure 5.15. Note that this tree only allows avoiding the negative DV
following the state (6). Since this tree uses the F symbol in state (8), it is
only able to anticipate the negative DV that follows one step too late. A
different strategy is thus required for this kind of anticipation.
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Figure 5.14: Results of the experimentation using the world B POMDP. No
results concerning positive DV are shown because the agent does nothing
when it anticipates them.

Lessons learned

The role of the decision tree is to represent relevance. Its structure aims
at representing the minimal knowledge necessary to successfully anticipate
the DV of situations. The training set utilized to build the tree contains
sequences of stimuli (and performed actions). These sequences include the
perceived stimuli until (and including) one step prior to the relevant event.
As a consequence, it is possible to deterministically anticipate negative DV
situations, using the stimuli up to one step before it happening. In partic-
ular, consider a tree may containing an attribute value for a stimulus one
step before the event of a negative DV, in one of its ramifications. If this
is the case, negative DV anticipation through that ramification will require
the perception of that stimulus, one step before the relevant event. Conse-
quently, two-step anticipations through that ramification are not possible.
This limitation results from the way the decision tree is constructed.

Two other difficulties arising from the usage of decision trees were also
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Figure 5.15: A decision tree generated by the offline processing, after the
second period, using the world B POMDP.

found: first, a poor handling of uncertainty, namely if the occurrence of the X
cannot be deterministically anticipated; and second, if for the same sequence
there is more than one way of anticipating the X, the decision tree will account
for only one of them9.

In fact, it is possible that some, if not all, of these limitations could be
circumvented by the use of sophisticated decision tree techniques. However,
a different methodology was chosen. Instead of using a decision tree as
representation model, the research was directed towards the investigation of
techniques that used the double-representation paradigm. The results of this
investigation are presented in the next section.

9In the POMDP of the world B one such case exists: once in the state (5), the symbol
sequence that necessarily follows is [E, F, X]; since either E or F anticipate deterministically
the X, a decision tree generated with examples from this POMDP will employ only one of
these symbols.
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5.3.2 Second approach

The goal of this approach is to overcome some of the limitations found in
the previous one. The decision tree utilized proved hard to scale with envi-
ronment complexity. The design choice consisted in replacing the decision
tree by associations, as proposed in the double-representation paradigm of
the model proposed in this thesis.

Implementation

The application of the double-representation paradigm to a problem requires
the definition of the cognitive and perceptual schemata. The considered cog-
nitive images represent sequences of stimuli (symbols), while the perceptual
images represent sets of features extracted from the MITB. Each feature com-
prises a symbol and a temporal offset with respect to the end of the sequence
(present time). For instance, a feature 〈C, 2〉 represents a C symbol percepted
two time steps ago, with respect to the present time. Perceptual images can
be more or less specific, depending on the number of features they contain.
A perceptual match is only considered whenever all of its features match the
MITB (conjunction).

A cognitive image represents a sequence of symbols. With respect to
a reference time step, this sequence spans not only an amount of symbols
preceding that step, but also an amount of symbols that follow it into the
future. The symbols representing the past allow the agent to match this
image with the agent’s current situation, while the ones representing the
future enable the agent to formulate predictions about the future occurrence
of symbols. This latter feature can be used for planning purposes, although
this possibility was not explored in the implementation. Once a cognitive
image is stored, it is incomplete, since it cannot account for future stimuli. In
the following time steps, that cognitive image is completed with the missing
symbols, as the agent is sequentially exposed to new stimuli. The size of
these sequences is fixed, and is specified by a fixed parameter.

The cognitive and perceptual images are associated in the following man-
ner (see figure 5.16). Each perceptual image contains pointers to structures
representing the consequences of performing certain actions (including no ac-
tion). Each one of these structures is here termed option, since it represents
an optional course of action available to the agent. Since the implementation
uses only three actions (AVOID, APPROACH, and REACT), a perceptual image
points to at most four options: one for each action plus one for no action
(denoted nil).

Each option references a set of associated outcome structures, containing



5.3. ANTICIPATIONS IN A DISCRETE EVENT WORLD 113

... ...

ic

features

options

ip

action

outcomes

option

futurepast
templates

DV

ic

outcome

stat

Figure 5.16: Schematic representation of the data structures in the implemen-
tation (ic: cognitive image, ip: perceptual image, stat: statistical counters;
see text for the description of the remaining elements).

a specific desirability vector, and a cognitive image representing the past
and future stimuli percepted in that situation. Each option points to at
least one outcome. Various outcomes associated to the same option are
possible, thus representing different possible outcomes of the same action in a
given situation. For a given option, the corresponding outcomes are grouped
by DV. For simplicity, the implementation employs only three discrete DV
values — positive, negative, and neutral — and thus, for each option, up to
three outcome structures can be found.

As the agent interacts with the environment, it constructs a web of
these structures and associations. The perceptual images tend to over-
generalize what features are relevant for a certain future consequence, while
the cognitive ones tend to over-specialize. The degrees of over- and under-
generalizations vary dynamically, as the agent compares its hypothesis with
its world experience. Statistics are collected in several locations of this web.
During development, the issues that required most effort were the manage-
ment policies of the creation, refinement, and deletion of these images and
their associations.

In an ideal case, a stable situation is reached as soon as perceptual im-
ages get as specific as needed, in the sense of providing correct anticipations.
Then, the cognitive gets as general as possible, given the agent experience.
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Taking the world A, for which the POMDP is depicted in figure 5.9, a per-
ceptual image containing the feature set

{〈D, 2〉, 〈B, 4〉} (5.18)

has 100% success ratio in anticipating the negative DV originated by the
symbol X. Cognitive images indexed by perceptual ones contain templates,
for instance in this case a template

[B, A, D, A/AVOID, A] (5.19)

can be indexed by the above perceptual image. This template may be gen-
eralized to

[B, ∗, D, ∗/AVOID, A] (5.20)

where ∗ denotes “any symbol,” and a slash followed by a symbol denotes the
action performed at that time step.

Taking now the world B (figure 5.13), a perceptual image with a single
feature 〈F, 1〉 anticipates the following X correctly, but an associated cognitive
image with the template

[∗, C, E, F, X/REACT] (5.21)

does not get any more generic than this, as long as no actions are performed
prior to the REACT one.

In a given situation, the agent first selects the subset of perceptual images
whose features match the agent’s present stimulus together with its recent
interaction history (as recorded in the MITB). For each of these match-
ing perceptual images, all option and outcome structures are retrieved from
memory. These structures can then be used to anticipate the DV of the next
stimulus, depending on the agent choice of action. Moreover, each outcome
structure indexes a cognitive image referencing a sequence template.

Prior to the agent’s interaction, its memory is cleared. The only built-in
association is between the X symbol and a negative DV, and between the
Y and a positive DV. Until encountering the first stimulus eliciting a non-
neutral DV (i.e., one of these two symbols), the agent performs no action.
Once a non-neutral DV is elicited, the agent forms an initial hypothesis of
its cause. This involves the creation of a single cognitive image, containing
the past sequence leading to the present stimulus. Moreover, in the next few
steps, this image will record the sub-sequence that will follow. The number
of steps considered, both before and after the present step, is a parameter
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of the agent (Nmitb)
10. Next, a set of perceptual images is created. For each

feature found along a Nmitb number of preceding steps, a perceptual image
is created. Recall that a feature is here considered to be a pair 〈s, δ〉 where
s is a symbol and δ an offset, as discussed above. Thus, a perceptual image
(with the corresponding feature) is created for each symbol found in the
window formed by the Nmitb previous steps. Moreover, each perceptual image
points to a single option structure (with null action), which by itself points
to a single outcome structure, containing the corresponding DV, as well as
the cognitive image mentioned above. Note that the perceptual images do
not share neither the option nor the outcome structures. This way, these
structures register the agent’s experience, separately, from each perceptual
image point of view.

With exception of the trivial case of all hypotheses correctly anticipating
the next DV, improvements of the memory structures are needed. This
happens whenever an outcome structure (indexed by a perceptual image and
option structure that match the situation) incorrectly anticipates the DV.
These improvements boil down to a pair of processes. The first process takes
care of updating the statistics of success of each outcome structure, while the
second one refines perceptual images by instantiating new ones with more
specific sets of features.

Statistics are collected in each outcome structure (slot stat in figure 5.16),
counting the number nuses of times the referrer perceptual image and option
structure do match, as well as the number of times the DV does match
(nsucc). The ratio of these two values expresses a success ratio of the antic-
ipation proposed by that outcome structure. Moreover, the agent only con-
siders an anticipation as reliable as long as nuses is above a threshold (i.e.,
maturity). It can be said that this constitutes a mechanism for handling
the exploration vs. exploitation issue, since an outcome is only taken into
account (for decision making purposes) after its anticipation hypothesis has
been tested against experience at least a certain number of times. Note that
more general perceptual images tend to be more used than the more specific
ones. Consequently, the outcomes associated with them mature faster, thus
providing the agent with a rough anticipative power, until the more specific
images reach maturity.

The process of refining perceptual images functions by instantiating copies
of perceptual images already present in the memory, and modifying them to
make them more specific. This happens whenever the agent is unable to

10It was only for a matter of simplicity that the same parameter was used for the amount
of symbols to retain before and after the present step. Nothing here constrains the equality
of these two amounts.
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correctly anticipate the current stimulus DV, i.e., whenever there is a DV
mismatch between an outcome structure and the current situation. Given
a perceptual image ip, pointing to an option a, referencing an outcome u,
the agent compares the sequence template of the indexed cognitive image
ic against the MITB to derive discriminating features. The discriminating
features are the ones that are present in one sequence and not in the other.
This forks into two sets of features: S1 with the features found in the MITB
but not in ic, and S2 with the converse. For each one of the S1 features, a
new perceptual image is formed by adding that feature to ip, and creating
associated option and outcome structures reflecting the action performed
and DV experienced. Then, mutatis mutandis for the S2 feature set, where
the option and outcomes structures reflect the situation represented by the
cognitive image from the agent memory.

Take for instance the world A (figure 5.9), and a perceptual image with
a single feature {〈B, 4〉}, associated with the template

[B, A, D, A, X] (5.22)

Consider now that the agent’s interaction results in the following sequence
of stimuli:

. . . , B, A, A, A, A (5.23)

When perceiving the last stimulus, the above perceptual image will match.
Since the DV associated with the last stimulus is neutral, discriminations
will be created using these two sequences. Apart from the last stimuli, which
do not count for anticipation purposes, these sequences differ at the third
step, and thus S1 = {〈A, 2〉} and S2 = {〈D, 2〉} are the discrimination sets,
as defined above. Two new perceptual images (with associated structures)
are created, one with the feature set {〈B, 4〉, 〈A, 2〉} associated with a neutral
DV, and the other with {〈B, 4〉, 〈D, 2〉} associated with a negative DV.

As a result of these mechanisms, the number of perceptual images (and
associated structures) grows with the agent interactions, until stability is
reached. However, the agent only adds a new perceptual image to its memory
unless there is already one with exactly the same set of features. Moreover,
recall that the refinement process is only called if there are no perceptual
images that correctly anticipate the DV.

The agent functioning works according to the following algorithm. Each
time the agent is exposed to a stimulus, it first obtains a DV assessment of
it. If the DV is negative, it performs a reactive response (a REACT action).
Otherwise, it runs through two processes. The first one (called anticipate)
performs a perceptual match, thus gathering all the perceptual images that
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match the current situation. Based on the estimated reliability of the an-
ticipated outcomes, measured by the collected statistics, it decides on what
action to perform. The second process (update) performs another percep-
tual match, but now checking whether the anticipations valid in the previous
step, do or do not match the current situation. Depending on the result,
more specific perceptual images may be created, as described above. These
two processes are further detailed in the following paragraphs.

Given a situation, the decision-making is based on the construction of
a set of anticipative scenarios, one for each possible action. Thus, for each
action a, a set of 〈ip, u〉 pairs is selected, among the perceptual images that
match the current situation. For each set, a preference measure Q(a) is
calculated using the expression

Q(a) =

∑

k V (uk)Rank(uk)
∑

k Rank(uk)
− C(a) (5.24)

where V (u) depends on the DV of the outcome u (plus one if positive, minus
one if negative, and zero otherwise); C(a) represents the cost of performing
the action a (set to 0.2 for all actions other than nil), and Rank(u) is
a measure of the reliability of the outcome u. Since perceptual images of
different degrees of specificity (i.e., number of features) coexist in memory, for
an outcome u, its Rank(u) depends non-linearly on the statistics associated
with the anticipated outcome. After experimentation, the following form of
Rank(u) showed good results:

Rank(u) =











100 if nuses = nsucc,

10R(u) if 0.9 ≤ R(u) < 1,

R(u) otherwise.

(5.25)

where R(u) stands for the ratio nuses/nsucc. The above coefficients allow for
an outcome with 100% success ratio to overcome all others, as well as giving
preference to the ones with at least 90%.

When faced with a new and unknown environment, the agent needs an
exploratory mechanism. This mechanism works as follows. From the above
algorithm, the agent obtains the best value ofQ by maximization with respect
to the actions, thus obtaining the best Q value Q∗ and the corresponding best
action a∗:

Q∗ = max
a
Q(a) (5.26)

a∗ = arg max
a

Q(a) (5.27)
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If Q∗ is below a (negative) threshold, the agent checks if it has performed the
AVOID action before (i.e., there is at least one anticipation for that action).
If yes, the agent considers the current situation as too undesirable, thus
changing the current DV value to a negative one (Note that this means
overriding the DV assessed from the stimulus). If not, the agent “flips a
coin” and performs the AVOID action with 1/2 of probability.

If Q∗ is above a (positive) threshold, it checks whether an anticipation
with APPROACH exists. If there is such anticipation, the agent changes the
current DV to a positive one. Otherwise, the agent performs an APPROACH

action.

Finally, if Q∗ lays between the two thresholds, the agent performs the
action a∗, which is the one that maximizes Q(a).

This mechanism requires two commentaries. The first one is that it con-
stitutes a mechanism of propagating DV values back in time. Without it,
this agent would not be capable of anticipating with more than one step of
antecedence. But once DV values can be propagated, the agent may end
up propagating anticipations several steps back, and since the DV values
are discrete, and there is no time discount mechanism (as in Q-learning, for
instance), there is a plausible risk of propagating DV values indefinitely. Ex-
tensive experimentation was carried out to overcome this problem, adding
continuous values of DV, but no satisfactory results were obtained.

The second commentary is that DV values can have origin in two sources,
one is a direct assessment of the stimuli, and the other is internal. If the agent
realizes that the best it can do, in a given situation, is too undesirable (or
desirable above a threshold), it decides to declare that situation as having a
negative DV by itself (or to be sufficiently interesting to be considered with
a positive DV). In other words, this allows for the elicitation of DV values
by internal causes.

In each time step, the update process runs through all matching percep-
tual images, descending through the outcomes associated with the performed
action (option structure). First, the statistics of the outcomes are updated,
according to the current DV value. Then, the agent evaluates whether more
specific perceptual images have to be generated. If there are no matching
perceptual images, a set of initial hypotheses is created. This means creat-
ing single feature perceptual images, one for each feature found in the last
Nmitb MITB steps. When there is at least one reliable11 outcome, the update
process ends here. Otherwise, the agent generates a set of discriminations
following the algorithm outlined above.

In summary, one can say that the anticipate process gathers perceptual

11An outcome is reliable iff it is mature and R(u) ≥ 0.9.
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matches aiming at anticipating the next step, while the update process looks
one step back, comparing the anticipation with the current situation. This
is why, for the same time instant, the perceptual match results in different
sets of perceptual images for each one of these two processes.

Experimental results

The following experiments utilized the same POMDP worlds as in section 5.3.1
(worlds A and B, figures 5.9 and 5.13). Two batches of evaluation were per-
formed: (1) the behavior of the agent along time, and (2) the final perfor-
mance after a specified number of steps. In the first batch 1000 simulation
trials were executed for each one of the worlds. The amounts of non-neutral
stimuli (X and Y) and non-null actions were counted, in time intervals of 50
steps, and averaged over the 1000 trials. The results for the two worlds can be
found in figures 5.17 and 5.18. Regarding the second batch of simulations,
the agent was run for a pre-determined amount of steps, so that a steady
state could be reached, followed by accounting the total number of events
(non-neutral DV stimuli and actions) for another pre-determined amount of
steps. As in the previous case, the results are presented as statistics over 1000
trials.
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Figure 5.17: Performance of the agent when interacting with the world A
(figure 5.9), measured in terms of number of X symbols perceived (negative
DV) and number of AVOID actions performed. These quantities where ac-
counted for successive 50 step periods. The theoretical minimum number of
AVOID actions is indicated with a dotted line.

Analyzing the results for the world A (figure 5.9), after about 1000 steps,
the occurrence of negative DV was eradicated, and the rate of AVOID actions
approached the theoretical value quite closely. This theoretical value was
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mean stddev min max

X stimuli 0.00 0.00 0 0
AVOID actions 53.23 17.82 36 590

Table 5.5: Statistics of 1000 trials, using the world A. The number of the
above events were collected during 1000 steps, after running the agent 2000
steps. In this case, the theoretical expected number of AVOID actions is 52.63.

calculated from the stationary state probabilities of the Markov chain12, ob-
tained by performing the AVOID at states 9, 10, and 11 of the POMDP. This
amounted for a probability of 0.05263. This probability times the number
of steps in each period (50) gives the expected number of AVOID actions per
period (2.631 actions). Table 5.5 shows the statistics after reaching a steady
state: a first period of 2000 steps, followed by a 1000 step period in which
the events were counted. The theoretical expected value of the number of
AVOID for this second period is therefore 52.63.
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Figure 5.18: Performance of the agent when interacting with world B (fig-
ure 5.13). The performance is measured in the same way as in figure 5.17,
taking also into account the number of Y stimuli and APPROACH actions. The
theoretical minimum number of AVOID actions is indicated with a dotted line
in both plots. These values differ because of the presence of APPROACH actions
in the second plot. The (a) plot corresponds to the agent version without
APPROACH actions, while the (b) one corresponds to the complete one.

12Given a Markov chain with a state transition probability matrix P = [pij ], where
pij is the probability of going to state sj given the current state si, the stationary state
probability vector π is an eigenvector of the transpose of P , corresponding to the eigenvalue
of 1. Each component πi is the probability of being in state si, assuming stationarity. The
actual probability values are obtained by normalizing the π vector such that

∑

i πi = 1.
For further details see the textbook [42].
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mean stddev min max

X stimuli 0.026 0.3570 0 7
AVOID actions 52.35 6.622 29 77

Y stimuli 55.76 6.060 36 74

Table 5.6: Statistics of the results after exposing the degraded version of the
agent to world B.

Figure 5.18 shows the results obtained from experimentation using world B
(figure 5.13). Two versions of the agent were experimented with: a degraded
version where the agent does not perform any APPROACH actions, and a com-
plete one. The results of these two versions correspond to the (a) and (b)
plots. In the former case, the agent is able to prevent the occurrence of neg-
ative stimuli after about 5000 time steps, with a rate of AVOID actions close
to the theoretical expected value of 2.602 (probability of 0.05204 times 50
time steps per period). This value was calculated in the same fashion as be-
fore: AVOID actions were considered at states 5 and 6 of the POMDP. Note
that in this world the agent needs to be able to anticipate with two steps of
anticipation at state 5. Table 5.6 shows the statistics for this world using
the degraded agent version. This data was collected in a similar fashion as
before, except that the first period was raised to 6000 steps, since this world
has shown a slower stabilization rate. A residual value of X stimuli can still
be found. Note that the mean approaches the theoretical expected value
of 52.04 (for a 1000 step period).

mean stddev min max

X stimuli 0.225 1.544 0 19
AVOID actions 52.73 59.00 11 447

Y stimuli 153.2 92.60 0 259
APPROACH actions 209.8 203.7 0 658

Table 5.7: Statistics for the results using the complete agent with the world B.

Taking the complete version of the agent into consideration, the results
showed both the ability to eradicate negative DV stimuli, and the increase of
positive DV stimuli, by means of APPROACH actions (plot (b) from figure 5.18).
However, two problems are visible. First, the agent performs much more
APPROACH actions than the ones required to promote positive DV situations.
This is a result from the shortcomings of the way DV values are propagated
back in time. And second, the rate of performed AVOID actions exceeds the
theoretical ideal value. Some ideas to overcome these problems are discussed
in the next section.
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Table 5.7 shows the statistics collected using the complete version of the
agent, with world B as above. Taking as ideal the behavior where the agent
performs AVOID actions at states 5 and 6, and performs APPROACH actions
at state 0, the probabilities of performing these two actions only on these
conditions are 0.03226 for the AVOID, and 0.24194 for the APPROACH one. The
theoretical expected value for the number of AVOID actions is therefore 1.613,
for the 1000 steps for the second period. This value is clearly below the one
observed in the simulations.

To gather an understanding of the agent memory structure, after inter-
acting with the world, a sample run was performed using world A. At the
end of 3000 steps, the memory contained 82 perceptual images. From these,
only 17 were associated with at least one non-neutral DV outcome with 100%
success ratio (nuses = nsucc). The outcome with greater amount of matches
(nuses) is shown in figure 5.19. The number of matches of the no-action option
is much smaller than the other ones, since as soon as the agent becomes aware
of the benefits of performing the AVOID action, this outcome is no longer up-
dated. Note how the cognitive images reflect correct generalizations, thus
retaining the relevant knowledge about the situations they represent.

Lessons learned

The experiments described above have shown that this second approach was
capable of anticipating with a two-step antecedence, thus overcoming a lim-
itation of the first approach (section 5.3.1). However, this was accomplished
at the cost of propagating DV values back in time. Since there is no time
discount mechanism for the DV values, there is a real danger of the agent
performing actions almost in any situation, because of non-discounted prop-
agation of the DV associations. Moreover, the update process does not take
into consideration whether the DV value it uses is a “real” one (originated
by stimuli), or a DV assigned by the anticipate phase.

Several modifications to the presented implementation were experimented
with, aimed at solving at the implementation level the above-mentioned lim-
itation. However, we failed to achieve yield better results than the ones
presented here. Research along this path was abandoned for several reasons.
First, because the solutions being worked out differed in nature from the
core issues of the agent model. And second, the increased complexity of
the implementations made it very hard to draw plausible conclusions about
conceptual aspects of the model.
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(5.28)

Figure 5.19: Sample perceptual image and associated structures, obtained
after a run of 3000 steps using the world A.

Related work

The idea of anticipatory systems is not new. Similar techniques, aiming for
the explicit representation of anticipations can be found in the literature.
Based on the work of the psychologist Joachim Hoffmann, Wolfgang Stolz-
mann introduced the Anticipatory Classifier Systems (ACS) in 1998 [180],
where sensory input in the form of vectors of binary features is used to trig-
ger production rules that anticipate future consequences, both in terms of
sensory inputs and valence. These rules are learned as the agent interacts
with the environment. ACS accounts for the generalization of rules, and also
includes a chaining mechanism allowing for multi-step anticipations. How-
ever, unlike the model proposed here, Stotzmann’s system uses an external
reinforcement signal. Moreover, there are two separate learning mechanisms,
one to reinforce the value of rules, and another one to learn anticipations.
This model was further studied regarding non-Markovian environments by
Mérivier et al. [131]. Butz added a genetic mechanism to improve generaliza-
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tion of rules [38]. Another example of research on anticipation is the one of
Witkowski. He formulated a theory of anticipatory learning, based on animal
learning studies [212].



Chapter 6

Indexing mechanisms

6.1 Motivation

The approach taken in the previous chapter was founded on the goal of exper-
imenting with full systems, by closing the loop with the environment. This
implies that all aspects regarding the functioning of the agent interacting
with its world have to be tackled. Regardless of how many simplifications
are made, in order to make the analysis of the implementation tractable,
as well as permitting to draw conclusions from the ideas under scrutiny, is-
sues like perception, memory management, decision-making, and so on, have
to be implemented. Although this kind of approach provides fully work-
ing systems, the performance of which can be evaluated and compared, it
poses many obstacles that deviate the attention from the core issue of the
double-representation paradigm. In fact, during that research, much of the
development effort was directed to problems unrelated with these core issues.

In contrast, this chapter presents research conducted under a different
methodology: the focus is directed exclusively towards one of the mechanisms
of the proposed model. In particular, the indexing mechanism described in
section 4.5 was chosen as object of research. One of the hypothesized conse-
quences of the association between cognitive and perceptual representations
is the efficiency gain obtained by, first, a fast perceptual matching process,
and second, the guided retrieval of the matching cognitive images from mem-
ory. The goal of the indexing mechanism is to obtain these cognitive matches
in an efficient manner. The research presented in this chapter attempts to an-
swer several questions: What is the magnitude of the efficiency gain? What
is the price to pay for this efficiency gain, and how can it be mitigated? What
is the adequate perceptual schema at the perceptual layer?

The research presented in this chapter comprises three different perspec-
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tives of the problem. The first one, presented in the following section, ap-
proaches it from a probabilistic standpoint, with the goal of expressing the
efficiency benefits of the mechanism. Then, section 6.3 considers that the
cognitive and perceptual images form two metric spaces. Given an assump-
tion about the relationship between the metric spaces, in plausible agreement
with the model properties presented in chapter 4, some theoretic conclusions
are drawn, accompanied by illustrative experimental results. Finally, sec-
tion 6.4 addresses the problem of constructing a perceptual representation
(and metric) with the goal of improving the indexing efficiency. To do so,
Multidimensional Scaling techniques were employed to devise an optimiza-
tion algorithm.

It should be stressed that the research methodology taken here pursues,
in addition, the goal of developing a formal approach to the presented con-
ceptual model.

6.2 Probability analysis

6.2.1 Preliminaries

Let S denote the set of all possible stimuli the agent can be exposed to.
According to the model, the agent represents stimuli using two different rep-
resentation schemata. Let the sets Ic and Ip stand for the possible cognitive
and perceptual images. The association among these images is represented
by a set of pairs M ⊂ Ic × Ip. For simplicity, any given pair of images is
either associated or not.

The matching processes between stimuli and images are here considered to
yield Boolean results, i.e., given a stimulus and an image, they either match
or do not match. Two functions will be used to denote these processes:

mc : S × Ic −→ {0, 1} (6.1)

mp : S × Ip −→ {0, 1} (6.2)

For a given stimulus s ∈ S and a cognitive image ic ∈ Ic, mc(s, ic) equals 1
if there is a match between the given stimulus and image, and 0 otherwise
(and mutatis mutandis for the perceptual case).

Consider that the agent is exposed to a random source of stimuli. There-
fore, for each possible stimulus s ∈ S, there is an associated probability
P {S = s} of the agent being exposed to it, where S stands for the stimulus
random variable. For clarity, this function will be written p(s). The above
matching functions (6.1) and (6.2) induce two random events, representing
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the match of a specific image to a stimulus, whose probability functions can
be expressed as

P {mc(ic)} =
∑

s∈S

p(s)mc(s, ic) (6.3)

P {mp(ip)} =
∑

s∈S

p(s)mp(s, ip) (6.4)

since the agent is exposed to only one stimulus at a time.
For each image pair in memory, it is possible to write the joint probability

distribution for both of the associated images matching a stimulus

P {mc(ic), mp(ip)} = P {mc(ic) |mp(ip)} P {mp(ip)}
= ρ (〈ic, ip〉) P {mp(ip)}

(6.5)

The term ρ (〈ic, ip〉) above is defined by the conditional probability

ρ (〈ic, ip〉) ≡ P {mc(ic) |mp(ip)} (6.6)

This conditional probability can be interpreted as a measure of the efficiency
of a given association 〈ic, ip〉 in memory, since it represents the probability
of the associated cognitive image matching the stimulus, given that the per-
ceptual one does match. This quantity can be estimated during the agent’s
interaction with the environment, in a similar fashion as was performed in
the implementation described in section 5.3.2.

It is assumed here that the agent memory consists of a set of associ-
ations M ⊂ Ic × Ip. The sets of all cognitive and perceptual images in
memory are thus the projections of this set:

Mc = {ic ∈ Ic : 〈ic, ip〉 ∈ M} (6.7)

Mp = {ip ∈ Ip : 〈ic, ip〉 ∈ M} (6.8)

6.2.2 Indexing mechanism

The goal of the indexing mechanism is to identify a subset of cognitive images
candidate to the cognitive matching process. Assuming that mp is computa-
tionally much cheaper than mc, such an indexing mechanism can provide an
efficient way of finding cognitive images that match the stimulus, while reduc-
ing the number of computations of mc to a number desirably much smaller
than the total number of cognitive images in memory (i.e., the cardinality
of Mc).
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Noting that the number of cognitive images in memory that match a
given stimulus s is

∑

ic∈Mc
mc(s, ic), the expected number of cognitive and

perceptual matches can be written as

ECM =
∑

s∈S

p(s)
∑

ic∈Mc

mc(s, ic)

=
∑

ic∈Mc

∑

s∈S

p(s)mc(s, ic)

=
∑

ic∈Mc

P {mc(ic)}

(6.9)

and mutatis mutandis for the perceptual case

EPM =
∑

s∈S

p(s)
∑

ip∈Mp

mp(s, ip)

=
∑

ip∈Mp

∑

s∈S

p(s)mp(s, ip)

=
∑

ip∈Mp

P {mp(ip)}

(6.10)

Given a stimulus s, the first step carried out by the indexing mechanism
is to perform a perceptual matching, thus obtaining a set Ap(s) of perceptual
images (a subset of Mp) which match the stimulus. This set is defined by

Ap(s) = {ip ∈ Mp : mp(s, ip) = 1} (6.11)

Then, the cognitive images from Mc having at least one association with the
ones from Ap(s) are retrieved from memory. This set (a subset of Mc) is
here designated the active set, and is denoted Ac(s)

Ac(s) =
{

ic ∈ Mc : ∃〈ic,ip〉∈M ip ∈ Ap(s)
}

(6.12)

This set corresponds to the cognitive images indexed by the perceptual images
matching the stimulus s. Next, the agent computes the cognitive match
function mc for each one of these images, resulting on a set of cognitive
matches, denoted RIM(s)

RIM(s) = {ic ∈ Ac(s) : mc(s, ic) = 1} (6.13)

The expected number of indexed cognitive images can thus be written as

EIM =
∑

s∈S

p(s) ‖RIM(s)‖ (6.14)
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It is possible to find lower and upper bounds for EIM , taking into account
that a given ic can be indexed by one or more perceptual images, i.e., the
cardinality of the RIM(s) set can be bounded by

∑

〈ic,ip〉∈M

mc(s, ic)mp(s, ip)

‖B(ic)‖
≤ ‖RIM(s)‖ ≤

∑

〈ic,ip〉∈M

mc(s, ic)mp(s, ip) (6.15)

where B(ic) is the set of all perceptual images associated with ic, here desig-
nated the base set of ic

B(ic) = {ip ∈ Mp : 〈ic, ip〉 ∈ M} (6.16)

The upper bound in (6.15) amounts for the total number of pairs that are
simultaneously perceptual and cognitive matches, but since a single ic can be
shared by several of these pairs, this number overestimates ‖RIM(s)‖. The
lower bound divides each term of the sum by the number of pairs sharing that
same ic, thus being an underestimate (at most, there are ‖B(ic)‖ perceptual
matches associated with a given ic). Thus, using (6.14) and (6.15), EIM can
be bounded by

∑

s∈S

p(s)
∑

〈ic,ip〉∈M

mc(s, ic)mp(s, ip)

‖B(ic)‖
≤ EIM ≤

∑

s∈S

p(s)
∑

〈ic,ip〉∈M

mc(s, ic)mp(s, ip)

(6.17)
Observing that the joint probability in (6.5) can be also expressed in the
form

P {mc(ic), mp(ip)} =
∑

s∈S

p(s)mc(s, ic)mp(s, ip) (6.18)

the inequality (6.17) can be re-written, after exchanging the summation signs
and employing expression (6.5), in the following form

∑

〈ic,ip〉∈M

ρ (〈ic, ip〉) P {mp(ip)}
‖B(ic)‖

≤ EIM ≤
∑

〈ic,ip〉∈M

ρ (〈ic, ip〉) P {mp(ip)}

(6.19)
Consider now the conditional probability

σ (〈ic, ip〉) ≡ P {mp(ip) |mc(ic)} (6.20)

corresponding to the probability of a perceptual match of ip indexing an ic,
given that there is a cognitive match of ic, for an associated pair 〈ic, ip〉.

Noting that equation (6.9) can be re-written as follows, using the cardi-
nalities of the base sets to cancel the repeated summations of pairs sharing
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the same ic

ECM =
∑

ic∈Mc

P {mc(ic)}

=
∑

〈ic,ip〉∈M

1

‖B(ic)‖
P {mc(ic)}

(6.21)

the bounds for EIM can be expressed taking (6.17), and using the σ function
defined above, as well as the equality P {mc(ic), mp(ip)} = σ (〈ic, ip〉)P {mc(ic)}.

∑

〈ic,ip〉∈M

σ (〈ic, ip〉) P {mc(ic)}
‖B(ic)‖

≤ EIM ≤
∑

〈ic,ip〉∈M

σ (〈ic, ip〉) P {mc(ic)}

(6.22)
Definition. A cognitive image ic ∈ Ic is said to be fully-indexed iff for all

stimuli s ∈ S, a cognitive match (mc(s, ic) = 1) implies that all associated
perceptual images also do match, i.e., ∀ip∈Bc(ic) mp(s, ip) = 1. This also
implies that ∀ip∈Bc(ic) σ (〈ic, ip〉) = 1

If all cognitive images in memory are fully-indexed, then by using (6.21),
the lower bound in (6.22) equals ECM . The expected number of indexed
cognitive images is greater than or equal to the expected number of cognitive
matches, since the fully-indexed property implies that all matching cognitive
images are in the active set.

In this generic setting it is hard to estimate the probability of a cognitive
image matching a stimulus, given a set of indexing perceptual images. To
understand why, consider a cognitive image ic indexed by i1p and i2p. As-
suming that a stimulus matches both of these two perceptual images, what
can be concluded about the probability of ic matching that stimulus? Us-
ing the compact notation C ≡ mc(s, ic) and Pk = mp(i

k
p), k ∈ {1, 2}, the

cognitive match probability can be written as P {C|P1, P2}. Expanding this
probability using the Bayesian rule, one can obtain

P {C|P1, P2} = P {P1, P2|C}
P {C}

P {P1, P2}
(6.23)

If ic is fully-indexed by both perceptual images, then P {P1, P2|C} is one,
and the above equation can be developed into

P {C|P1, P2} = ρ
(

〈ic, i1p〉
) 1

P {P2|P1}
(6.24)

Since P {P2|P1} is lower than or equal to one (as well as non-strictly pos-
itive), the above probability is greater than or equal to ρ

(

〈ic, i1p〉
)

, which
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corresponds to the probability of the cognitive match of ic only knowing that
i1p matches. The probability P {P2|P1}, related with the statistical depen-
dence between the matching probabilities of each one of the perceptual im-
ages involved, seems to have an effect of leveraging ρ

(

〈ic, i1p〉
)

. For instance,
if statistical independence is assumed among P1 and P2, this leveraging cor-
responds to the inverse of P {P2}.

6.2.3 Computational efficiency

The indexing mechanism aims at computational efficiency, obtained from re-
ducing the quantity of candidate cognitive images, at the price of requiring
a prior match of the stimulus with all perceptual images in memory. Desig-
nating by Jc and Jp the computational costs of performing a cognitive and a
perceptual match, and assuming that they are measured in the same units,
the cost of a full cognitive (f.c.) match1 is

Jfc = Jc ‖Mc‖ (6.25)

while the cost of a full perceptual (f.p.) match2 is

Jfp = Jp ‖Mp‖ (6.26)

Note that a full perceptual match is always required by the indexing mech-
anism, while the goal of this mechanism is to replace a full cognitive match.
It is assumed that Jc ≫ Jp, i.e., a cognitive match is computationally much
more expensive than a perceptual one. Using the indexing mechanism, the
total computational cost becomes uncertain, since the active set ‖Ac(s)‖ de-
pends on the stimulus. However, its expected value can be computed using

E {JI} = Jp ‖Mp‖ + Jc E {‖Ac‖}
= Jp ‖Mp‖ + Jc EIM

(6.27)

The (expected) efficiency gain can be assessed as a ratio between this value
and Jfc.

η =
E {JI}
Jfc

=
Jp

Jc

‖Mp‖
‖Mc‖

+
EIM

‖Mc‖
(6.28)

The lower eta, the higher the efficiency of the mechanism. The bounds found
in (6.19) and (6.22) can be used here to find an upper bound for η. Namely,

η ≤ Jp

Jc

‖Mp‖
‖Mc‖

+
1

‖Mc‖
∑

〈ic,ip〉∈M

ρ (〈ic, ip〉) P {mp(ip)} (6.29)

1This means performing a cognitive match of a stimulus with all cognitive images in
memory.

2The same as f.c., but regarding perceptual matching.
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Note that the first term in (6.28) depends on the agent’s computational
resources and memory occupancy, while the second term depends also on the
statistical properties of the images in the world.

6.2.4 Indexing errors

The indexing mechanism can be understood as an efficient replacement for a
full cognitive match, i.e., matching a given stimulus with all cognitive images
from memory. However, “there ain’t no such thing as a free lunch” [213], and
the price to pay is the possibility of this mechanism excluding a matching
cognitive image. This happens whenever there is a matching cognitive image
in memory that is not associated with any matching perceptual image.

Consider now a stimulus s ∈ S subjected to the indexing mechanism.
Focusing on a specific cognitive image, say ic ∈ Mc, together with the asso-
ciated perceptual images B(ic), let two Boolean events be defined as

CM ≡ {mc(s, ic) = 1} (6.30)

and
PM ≡

{

∃ip∈B(ic) mp(s, ip) = 1
}

(6.31)

These events correspond to the cognitive match of ic, and to the presence
of a perceptual image which simultaneously matches the given stimulus and
indexes ic. Figure 6.1 depicts the four possible combinations resulting from
these two Boolean events. The cases marked with a ‘

√
’ raise no concern, since

¬PM PM

¬CM
√

(a)

CM (b)
√

Table 6.1: Four possible outcomes of the Boolean events CM and PM defined
in the text.

they correspond to the desired behavior: at least one matching ip indexing a
matching ic, or a non-matching ic not indexed by any matching of ip. The (a)
case corresponds to the existence of at least one a perceptual match that
yields a non-matching cognitive image, thus an inefficiency of the indexing.
In other words, the indexing mechanism serves up an image for cognitive
matching that will not be found to match. The only impact of such an
occurrence is a wasted computation of mc. On the contrary, the (b) case has
a stronger impact, since it amounts to a matching cognitive image which is
not indexed by any perceptual image. The indexing mechanism would not
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consider such ic as relevant, thus not submitting it to the cognitive match
process.

Designating pa(ic) the probability of outcome (a), it is possible to develop
an upper bound for it as follows:

pa(ic) = P {¬MC ∧ MP}

= P







¬mc(ic) ∧
∨

ip∈B(ic)

mp(ip)







= P







∨

ip∈B(ic)

¬mc(ic) ∧mp(ip)







≤
∑

ip∈B(ic)

P {¬mc(ic) ∧mp(ip)}

(6.32)

This last term can be expressed in function of ρ, since

P {¬mc(ic) ∧mp(ip)} = P {¬mc(ic)|mp(ip)}P {mp(ip)}
= [1 − P {mc(ic)|mp(ip)}]P {mp(ip)}
= [1 − ρ (〈ic, ip〉)]P {mp(ip)}

(6.33)

Therefore, an upper bound of pa(ic) can be written as follows

pa(ic) ≤
∑

ip∈B(ic)

[1 − ρ (〈ic, ip〉)]P {mp(ip)} (6.34)

This upper bound accumulates the contributions from all perceptual images
indexing ic. Pairs with low ρ values contribute to make this kind of er-
rors more probable. Such pairs correspond to perceptual images that index
cognitive images with low conditional probability after perceptual match.
Procedures to clean the memory from association pairs with low ρ help low-
ering the probability of this kind of error, thus contributing to the efficiency
of the mechanism.

Considering now the probability of case (b), which is the one that raises
more concerns with respect to indexing error. Let pb(ic) be the probability
of this case occurring, then

pb(ic) = P {MC ∧ ¬MP}

= P







mc(ic) ∧
∧

ip∈B(ic)

¬mp(ip)







= P







∧

ip∈B(ic)

mc(ic) ∧ ¬mp(ip)







(6.35)
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The probability of each one of the events in the last conjunction can be
written as

P {mc(ic) ∧ ¬mp(ip)} = P {¬mp(ip)|mc(ic)}P {mc(ic)}
= [1 − P {mp(ip)|mc(ic)}]P {mc(ic)}

=

[

1 − ρ (〈ic, ip〉)P {mp(ip)}
P {mc(ic)}

]

P {mc(ic)}

= P {mc(ic)} − ρ (〈ic, ip〉)P {mp(ip)}

(6.36)

An upper bound of pb(ic) can be found by observing that the probability of a
conjunction of events is never higher than any of the individual probabilities
of the contributing events. Hence, from (6.35)

pb(ic) ≤ min
ip∈B(ic)

P {mc(ic) ∧ ¬mp(ip)}

= P {mc(ic)} − max
ip∈B(ic)

ρ (〈ic, ip〉)P {mp(ip)}
(6.37)

Unlike the sum in the bound of pa(ic) previously developed, this one depends
on a maximum over all indexing perceptual images. Thus, a single indexing
perceptual image with high ρ may lower this bound (provided the probability
of perceptual match is not too low), contributing to make this kind of error
less probable.

Taking into account that the (b) kind of errors are much more prejudicial
than the (a) ones, one can conclude that it is more important to seek for
perceptual images with high values of ρ, than for instance getting rid of the
low ones.

6.3 Metric analysis

6.3.1 Preliminaries

The probabilistic approach taken in the previous section simplified the prob-
lem assuming that two images of the same schema either match or do not
match. So, no further structure was assumed within the images schemata.
This section deals with the assumption of a metric relationship, thus giving
the Ic and Ip a metric space nature. Each one of these two spaces is as-
sumed to be equipped with its own metric function. These metric functions
are designated dc and dp, mapping pairs of images of the same schema to the
set R

+
0 of non-negative real numbers

dc : Ic × Ic −→ R
+
0 (6.38)
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dp : Ip × Ip −→ R
+
0 (6.39)

Both of these metrics ares assumed to satisfy the usual metric axioms:

(i). d(x, x) = 0

(ii). d(x, y) ≥ 0

(iii). d(x, y) = d(y, x)

(iv). d(x, y) + d(y, z) ≥ d(x, z)

for d being either dc or dp, and for any x, y, and z in the respective space
(Ic or Ip). Given a stimulus s ∈ S, the following two functions stand for the
processes of extracting the cognitive and perceptual images from it:

{

pc : S −→ Ic

ic = pc(s)
(6.40)

{

pp : S −→ Ip

ip = pp(s)
(6.41)

The setting differs from the one employed in section 6.2 in the following: the
matching functions (mc andmp) are each one replaced by an image extraction
function together with a metric function (pc and dc for the cognitive schema,
pp and dp for the perceptual one).

One key idea behind the cognitive and the perceptual images is for the
former to be a complex representation of a stimulus, while the latter is a
simple representation of the same stimulus. In other words, the cognitive
representation has a greater resolution power than the perceptual one. Mo-
tivated by this property, an assumption tenet of this section is raised: the dc

and dp metrics are such that, for all s1, s2 ∈ S,

dc (pc(s1), pc(s2)) ≥ dp (pp(s1), pp(s2)) (6.42)

Intuitively this means that, for any given two stimuli, their corresponding
cognitive images are never closer than their perceptual counterparts.

The goal of the matching mechanism is to find, in the associations memory
M (as defined in section 6.2.1), a pair where the cognitive image best matches
a given stimulus received by the agent. The cognitive match, for a cognitive
image ic extracted from a given stimulus s, is here considered to correspond
to the minimization of the cognitive distance:

〈i∗c , i∗p〉 = cm∗(ic) = arg min
〈iMc ,iMp 〉∈M

dc(ic, i
M
c ) (6.43)
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This corresponds to comparing a given cognitive image ic with all cogni-
tive images in memory, and selecting the one yielding the smallest distance.
Note that this procedure is similar to the one termed full cognitive match in
section 6.2.3, except that in this case, a single best match is sought.

6.3.2 Indexing

The first step performed by the indexing mechanism consists in narrowing
the cognitive match process to a subset of memory pairs. A perceptual match
is employed to obtain this subset. A simple strategy to select this subset,
denoted Sp(ip), is considered first: for a given perceptual image ip, the subset
Sp(ip) ⊆ M is defined by

Sp(ip) =
{

〈iMc , iMp 〉 ∈ M : dp(ip, i
M
p ) ≤ Tp

}

(6.44)

where Tp is some threshold. This strategy is here designated thresholding.
Having obtained Sp(ip), a cognitive match is then performed, restricted to
this subset of pairs:

〈i+c , i+p 〉 = cm+(ic) = arg min
〈iMc ,iMp 〉∈Sp(ip)

dc(ic, i
M
c ) (6.45)

The efficiency gain obtained from restricting the cognitive match to Sp(ip)
is higher the fewer pairs are contained in it. The price to pay is the need
to evaluate the perceptual distance dp(ip, i

M
p ) for all memory pairs in M.

Therefore, if the perceptual representation is simple to process, in the sense
that the perceptual metric dp is fast to compute, the indexing mechanism is
an efficient mechanism.

Using the assumption expressed in (6.42), the following theorem can be
trivially proved:

Theorem 1 Given the dc and dp metrics satisfying the condition (6.42), and
Sp(ip) ⊂ M as defined in (6.44), whenever dc(ic, i

M
c ) ≤ Tp, then 〈iMc , iMp 〉 ∈

Sp(ip).

Proof. Observing that dp(ip, i
M
p ) ≤ dc(ic, i

M
c ) ≤ Tp it follows that 〈iMc , iMp 〉 ∈

Sp(ip) by definition of Sp(ip) in (6.44).
An interesting consequence of this theorem is that, whenever the best

cognitive match 〈i∗c , i∗p〉 = cm∗(ic) (from (6.43)) satisfies dc(ic, i
∗
c) ≤ Tp, then,

〈i∗c , i∗p〉 ∈ Sp(ip) and 〈i+c , i+p 〉 = cm+(ic), obtained from (6.45), are the same
(〈i∗c , i∗p〉 = 〈i+c , i+p 〉). This is the same as to say that, under the above con-
ditions, one gets an equally good cognitive match, using only the restricted
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set Sp(ip) for the cognitive match, thus preventing the computation of the
cognitive distance dc for all memory pairs in M.

Pre-defining a value for the threshold Tp can be very problematic, since it
depends on the metric properties of the domain, as well as on the cognitive
and perceptual representations. On one hand, for a too high value of Tp, the
Sp(ip) degenerates on Sp(ip) = M, if dp(ip, i

M
p ) ≤ Tp for all 〈iMc , iMp 〉 ∈ M.

On the other hand, for a too low value of Tp, it may happen that the desired
i∗c is such that dc(ic, i

∗
c) > Tp, not only breaking the premises of theorem 1,

but also possibly leading to 〈i∗c , i∗p〉 6∈ Sp(ip). Note that this latter case
corresponds to an indexing error, as defined in section 6.2.4.

To tackle the difficulty of pre-defining the threshold Tp, an alternative
strategy is proposed, which is here designated N-best: instead of obtaining
Sp(ip) from Tp, the idea is to include in Sp(ip) the Np memory pairs with the
lowest perceptual distance dp(ip, i

M
p ). This means that

Tp ∈ R
+
0 such that ‖Sp(ip)‖ = Np (6.46)

provided that ‖M‖ ≥ Np. This results in an upper bound to the number
of cognitive distances dc to be computed3. Then, the best cognitive match
〈i+c , i+p 〉 in Sp(ip) can be found using (6.45). Suppose now that there is one
memory pair 〈iSc , iSp 〉 ∈ Sp(ip) such that

dp(ip, i
S
p ) ≥ dc(ic, i

+
c ) (6.47)

Since Sp(ip) was defined in such a way that, for all 〈i′c, i′p〉 ∈ M \ Sp(ip),

dp(ip, i
′
p) ≥ dp(ip, i

S
p ) (6.48)

it follows that, for all 〈i′c, i′p〉 ∈ M \ Sp(ip)

dc(ic, i
′
c) ≥ dp(ip, i

′
p) by (6.42)

≥ dp(ip, i
S
p ) by (6.44)

≥ dc(ic, i
+
c ) by (6.47)

(6.49)

which means that, by transitivity, dc(ic, i
′
c) ≥ dc(ic, i

+
c ). Together with def-

inition (6.45), this inequality has an interesting consequence: the 〈i+c , i+p 〉
pair minimizes the cognitive distance dc(ic, i

M
c ) over the whole memory M,

in other words, 〈i+c , i+p 〉 = cm+(ic) = 〈i∗c , i∗p〉 = cm∗(ic). This result proves
the following theorem:

3This assertion fails if there are several memory pairs with exactly the same perceptual
distance to a given ip. Choosing Sp(ip) with the Np best perceptual matches does not
yield a unique solution in this case. However, any of the possible solutions is a priori

equally good.
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Theorem 2 For a subset Sp(ip) ⊂ M as defined in (6.44), and the mini-
mizations in (6.43) and (6.45), whenever dp(ip, i

S
p ) ≥ dc(ic, i

+
c ) for some pair

〈iSc , iSp 〉 ∈ Sp(ip), one has cm+(ic) = cm∗(ic).

Both the thresholding and N-best strategies can be seen as stop criteria of
the cognitive matching mechanism. Given a stimulus s, the agent computes
the perceptual distances of the extracted ip to the ones stored in memory M.
The goal of the thresholding and N-best strategies is to select a subset Sp(ip),
which will be used to perform the computations of the cognitive distances
and their minimization.

Theorem 2 can be used as a third stop criterion, in the following way. The
Sp(ip) subset can be constructed incrementally: first considering the memory
pair with the smallest perceptual distance dp(ip, i

M
p ), then with the second

best, and so on. Whenever the hypothesis of theorem 2 is met, one has the
guarantee that the cognitive match cm+(ic), in the subset Sp(ip) is the best
one globally.

Looking at expression (6.42), the reader might be intrigued by the rela-
tionship between the two different metrics. Does it make sense to compare
cognitive with perceptual distances? One could scale one of them arbitrar-
ily, thus probably changing the inequality validity. Consider then replacing
condition (6.42) with

λ dc(ic1, ic2) ≥ dp(ip1, ip2) (6.50)

for some positive λ, which is the same as scaling the cognitive metric by a
scalar λ (or the perceptual one by 1/λ). If condition (6.42) is not satisfied
by some pair of metrics dc and dp, it may happen that, for some sufficiently
large value of λ, condition (6.50) is. However, the hypothesis of theorem 2
can be re-written using the λ scaling value:

dp(ip, i
S
p ) ≥ λdc(ic, i

+
c ) (6.51)

one can observe that, as λ increases, this condition becomes more difficult to
satisfy. By difficult it is meant that more memory pairs need to be accumu-
lated in Sp(ip), in order to satisfy (6.51).

However, this argument is reversible in the following sense: assuming that
a pair of metrics already satisfy condition (6.42), it may be possible to choose
a value of λ, between 0 and 1, such that not only condition (6.50) is true, but
also the inequality (6.51) is more easily satisfied. In other words, by scaling
the cognitive metric, a stop criterion based on theorem 2 may improve the
efficiency of the indexing mechanism. The drawback of scaling the cognitive
distance is that it may violate condition (6.42).
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The following items summarize and discuss the three strategies of con-
structing Sp(ip) that were proposed above:

• The thresholding strategy allows adjusting a value up to which a cog-
nitive distance is considered to be a successful match. After setting Tp

to that distance, the subset Sp(ip) is constructed by the means of per-
ceptual distances, and then, by theorem 1, one has the guarantee that,
if the best cognitive match distance does not exceed Tp, that match is
in Sp(ip). However, the choice of a threshold value Tp is very sensitive
to the range of numerical values taken by the distances: too low or
too high values of the threshold can lead to degenerated subsets Sp(ip)
(empty or equal to M);

• The N-best strategy addresses the above domain dependency problem
by constructing Sp(ip) based on the Np best perceptual matches, rather
than on a threshold value. Moreover, depending on the computational
resources and/or time available to process the stimulus, Sp(ip) can con-
tain more or less pairs in Sp(ip) to perform the cognitive match, thus
trading time to process for quality of the result (as in anytime algo-
rithms [218]). The drawback is that there is no guarantee of finding
the best cognitive match (theorem 1 is not applicable);

• The strategy based on theorem 2 can be used in conjunction with the
previous one, in the sense that, when the conditions of the theorem are
met, one has the guarantee that the best cognitive match was found;
there is no benefit from considering further pairs from memory. How-
ever, depending on the magnitude range of the metrics, these conditions
may never be met. One can scale the cognitive metric in order to facil-
itate the satisfaction of those conditions. The drawback of this scaling
is that choosing an appropriate scale factor λ is domain dependent.

The following section presents an implementation devised to test em-
pirically the above methodology. The results presented below show some
interesting results which illustrate and quantify the efficiency gains that can
be obtained by the indexing mechanism.

6.3.3 Illustrative example

The problem considered here consists of the classical hand-written digit
recognition problem. Each digit consists of a binary image, being classified
with the respective digit symbol: 0 to 9. The task is to perform recognition
using the double-representation paradigm, comparing the performance of the
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pure cognitive match (exhaustive search comparing cognitive images) with
the guidance provided by the indexing mechanism. A stimulus is considered
successfully recognized whenever the digit corresponding to the stimulus is
the same than the one from the memory match.

Implementation

The cognitive image corresponds to the binary image itself (ic = s, i.e., pc

is the identity function, and Ic = S). Considering W to be the width and
H the height (in pixels) of the images, the stimuli and the cognitive images
have the form:

ic = s =







b11 · · · b1W

...
. . .

...
bH1 · · · bHW






(6.52)

where bkl ∈ {0, 1} (for k = 1, . . . , H and l = 1, . . . ,W ). The digit foreground
is 1, and the background is 0. The perceptual image is a vector of size W
(same as the images width) constructed by counting the number of foreground
pixels for each column:

ip =
[

n1 · · · nW

]

(6.53)

where each nk ∈ N0 (non-negative integers) is computed using the following
expression:

nk =

H
∑

l=1

blk, k = 1, . . . ,W (6.54)

The perceptual metric dp is a simple Euclidean distance between two
vectors (the superscripts A and B distinguish each vector involved)

dp(i
A
p , i

B
p ) =

√

√

√

√

W
∑

k=1

(nA
k − nB

k )
2

(6.55)

while the cognitive metric corresponds to the Hamming distance between two
binary images:

dc(i
A
c , i

B
c ) =

W
∑

k=1

H
∑

l=1

∣

∣bAlk − bBlk
∣

∣ (6.56)

These two metrics satisfy the metric axioms: the perceptual metric (6.55)
is trivial, since it is an Euclidean norm; it is fairly easy to check that the
cognitive one (6.56) also verifies them.
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Given two stimuli sA and sB, the cognitive and perceptual images ex-
tracted are denoted iAc = pc(s

A), iAp = pp(s
A), iBc = pc(s

B), and iBp = pp(s
B).

Defining X as follows

X =
[

dc(i
A
c , i

B
c )
]2 −

[

dp(i
A
p , i

B
p )
]2

(6.57)

and using the definitions for dc, dp, and nk above, one obtains

X =

[

W
∑

k=1

H
∑

l=1

∣

∣bAlk − bBlk
∣

∣

]2

−
W
∑

k=1

[

H
∑

l=1

(

bAlk − bBlk
)

]2

(6.58)

Since |
∑

i xi| ≤
∑

i |xi|, one obtains the following inequality

X ≥
[

W
∑

k=1

∣

∣

∣

∣

∣

H
∑

l=1

(

bAlk − bBlk
)

∣

∣

∣

∣

∣

]2

−
W
∑

k=1

[

H
∑

l=1

(

bAlk − bBlk
)

]2

= Y (6.59)

Defining Y as above, and taking into account that (
∑

i xi)
2 ≥

∑

i x
2
i (because

xi ≥ 0)4, one can write

Y ≥
W
∑

k=1

[

H
∑

l=1

(

bAlk − bBlk
)

]2

−
W
∑

k=1

[

H
∑

l=1

(

bAlk − bBlk
)

]2

= 0 (6.60)

Therefore X ≥ Y ≥ 0, which is the same to say that

[

dc(i
A
c , i

B
c )
]2 ≥

[

dp(i
A
p , i

B
p )
]2

(6.61)

Since the metrics satisfy the metric axiom (ii), it can be concluded that

dc(i
A
c , i

B
c ) ≥ dp(i

A
p , i

B
p ) (6.62)

which satisfies condition (6.42). This means that the theoretical results ob-
tained in section 6.3.2 can be applied in this example.

Results

In the following experiments a test-set from an well known Machine Learn-
ing repository was employed5. This test-set consists of 1934 samples of

4Whenever a, b ≥ 0, one can write (a + b)2 = a2 + 2ab + b2 ≥ a2 + b2. Therefore, by

induction, (
∑

i xi)
2 ≥∑i x2

i , provided that xi ≥ 0 for all i.
5Optical Recognition of Handwritten Digits, from E. Alpaydin, C. Kayna, URL

(in 2006): ftp://ftp.ics.uci.edu/pub/machine-learning-databases/optdigits
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handwritten digits (0 to 9), scanned into binary images of 32 by 32 pix-
els (W = H = 32). Figure 6.1 shows four examples of these digits, together
with the corresponding perceptual images extracted from each one of them.
From these samples, a training and a test set were randomly picked up, form-
ing two disjoint sets. An usual cross-validation procedure was employed to
evaluate the recognition performance.

Figure 6.1: Four example digits from the data-set. The top row shows the
bitmaps (corresponding to the stimuli and cognitive images), while the bot-
tom row shows bar graphs of the extracted perceptual images. The size of
each bar is proportional to the number of black pixels found on the corre-
sponding column of the bitmap.

The training process consists in running through all elements of the train-
ing set, and for each one of them, storing in memory the pair of the cognitive
and perceptual images extracted. In order to evaluate the recognition success
ratio, the corresponding digit symbol was also attached to each pair.

The results shown here were obtained by averaging over 10 trials, each
one using disjoint training and test sets, containing 1500 and 200 digits re-
spectively, randomly chosen from the pool of 1934 patterns. Four matching
mechanisms were evaluated:

1. Pure perceptual matching — the memory pair where the perceptual
image is closest to the one extracted from the stimulus:

〈i(1)c , i(1)p 〉 = arg min
〈iMc ,iMp 〉∈M

dp

(

ip, i
M
p

)

(6.63)

2. Pure cognitive matching — the memory pair where cognitive image is
closest to the one extracted from the stimulus:

〈i(2)c , i(2)p 〉 = arg min
〈iMc ,iMp 〉∈M

dc

(

ic, i
M
c

)

(6.64)
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3. Guided cognitive matching (indexing), using thresholding — like the
pure cognitive matching but where the set of memory pairs considered
is restricted by a pure perceptual matching. This restriction is based
on thresholding the perceptual distances, as discussed above:















Sp(ip) =
{

〈iMc , iMp 〉 ∈ M : dp(ip, i
M
p ) ≤ Tp

}

〈i(3)c , i(3)p 〉 = arg min
〈iMc ,iMp 〉∈Sp(ip)

dc

(

ic, i
M
c

) (6.65)

4. Guided cognitive matching (indexing), using N-best — like the previous
one, but the restriction corresponds to choosing the Np best perceptual
matches, as previously discussed:











Tp ∈ R
+
0 such that ‖Sp(ip)‖ = Np

〈i(4)c , i(4)p 〉 = arg min
〈iMc ,iMp 〉∈Sp(ip)

dc

(

ic, i
M
c

) (6.66)

The implementation of the matching mechanisms (3) and (4) was based
on the following algorithm: for a 〈ic, ip〉 pair extracted from a given stimulus,

1. Compute the perceptual distance dp(ip, i
M
p ) for all pairs in memory

〈iMc , iMp 〉 ∈ M;

2. Sort the pairs in memory M by increasing order of its perceptual dis-
tance dp(ip, i

M
p );

3. Scan the obtained list until the corresponding stop criterion is met: the
threshold value in (3), or the number of best matching pairs in (4).

To illustrate the relationship between the cognitive and perceptual dis-
tances obtained after the sorting operation in step 2, figure 6.2 plots these
two distances between a randomly chosen input stimulus, and images from
the test set. Thus, the memory images bearing closer perceptual distances
with the given stimulus are the leftmost ones. Note that the bottom left
area of the upper cloud of points, are the ones corresponding to the memory
images with both small cognitive and perceptual distances.

Table 6.2 shows the results for the matching mechanisms (1) and (2).
There is a clear trade-off between an extremely slow cognitive matching,
with a high success rate, and the fast perceptual matching leading by itself
to poor results.
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Figure 6.2: Cognitive and perceptual distances of a typical stimulus, with
respect to the memory pairs in memory, sorted by increasing perceptual
distances dp(ip, i

M
p ). The lower dots sketching the (visually) continuous line

correspond to the perceptual distances.

mechanism min (%) avr (%) max (%) time

cognitive 94.0 96.45 100.0 130
perceptual 66.0 69.45 72.0 1

Table 6.2: Results for the pure cognitive and perceptual matching. The
minimum, average, and maximum success rates for all trials, as well as the
computational time (ratio, perceptual=1) are shown.

Regarding the other two mechanisms (3) and (4), evaluating the indexing
mechanism in this domain, the plots in figure 6.3 show the success rates
in function of the relevant parameter. Using thresholding (figure 6.3a), the
parameter is the threshold value (Tp), and using N-best (figure 6.3b), the
parameter is the number of perceptual matches (the closest ones) considered
for indexing (Np).

The two plots shown in figure 6.3 express basically the same outcome,
since they both result from the indexing mechanism. What makes them
different is the dependency on the parameter: in (a) the dependency on Tp

is explicit, while in (b) the relationship is implicit. It is easy to realize that
there is a non-linear monotonic relation between the horizontal axis, since
each value of Tp leads to some number of pairs in Sp(ip). And this number
of pairs increases monotonically with Tp.
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Figure 6.3: Success rates obtained using the indexing mechanism: (a) thresh-
olding, as function of the threshold value; (b) N-best, as function of the num-
ber of perceptual matches used. The values for execution time are expressed
as a percentage of the time taken by the pure cognitive match (first line of
table 6.2). In both plots, the two horizontal lines denote the average success
rate for the pure cognitive (higher) and pure perceptual (lower) matching
mechanisms. Note the different scales in the rightmost axis (time) of each
plot.

In the (b) plot, the relative execution time increases linearly with the
Np parameter, because it determines how many cognitive distances have to
be computed. However, it is interesting to note that the success rate rises
above 90% when just about 10 perceptual matches (in Sp(ip)) are used. At
this point, the cognitive match after indexing is using about 2.5% of the time
taken by a pure cognitive match.

One possible use of theorem 2 is as a stop criterion for an incremental
construction of Sp(ip). A direct implementation of it alone led to poor results:
the subset Sp(ip) often degenerated to M, because the assumptions of the
theorem were rarely met. Therefore, a scaling of the cognitive metric as
in (6.51) was attempted. In doing so, the condition (6.62) does not hold
always. Figure 6.4 shows the obtained results in function of the scaling
parameter λ.

This plot shows the sensitivity of the results with respect to the λ parameter.
For too low values of λ, (6.62) is easily satisfied, leading to the same success
rate as a pure perceptual match. For too high values of λ, the stop criterion
tends to be never used, degenerating in a slow pure cognitive match (the
processing time raises at a significant rate, in direction of 100%). However,
for a range of λ values it is possible to obtain very good results, keeping the
processing time at low levels. Note that in these results, the stop criterion
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Figure 6.4: Results obtained using theorem 2 as a stop criterion (same plot
format as in figure 6.3).

based on theorem 2 replaces entirely either the thresholding or the N-best
strategies.

6.3.4 Discussion

The experimental results presented above show significant efficiency gains:
for instance, identical recognition success rates (about 95%) resulted from
using as few as 5% of the time taken by an exhaustive cognitive search. This
corresponds to restricting the cognitive match to a few tenths of memory
pairs, from a pool of 1500 pairs in memory.

It should be stressed that the goal of the experiments is not to obtain
a good recognition rate. The recognition rates obtained here are the sole
merit of the Hamming distance used in the cognitive metric6. The goal of
the indexing mechanism is rather to approach the level of performance of
the cognitive metric, without the necessity of evaluating the cognitive metric
for all memory pairs. A good indexing mechanism should obtain results
of similar quality as the ones from a pure cognitive match, with much fewer
computations than exhaustive matching with all cognitive images in memory.

The theorems derived above do not demand the satisfaction of all metric
axioms by the two distance functions. They are based on order relations

6In the test set used, the Hamming distance yields a good performance level. However,
the Hamming distance is obviously unable to deal with invariance to translation, rotation,
and scaling of the digits. A review of state-of-the-art methods for pattern recognition can
be found in [101].
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among distances. A partially ordered set (poset) is a binary relation ≤,
together with a nonempty set P, satisfying the following axioms:

(i) a ≤ a

(ii) a ≤ b and b ≤ a imply a = b

(iii) a ≤ b and b ≤ c imply a ≤ c

for every a, b, c ∈ P. If in addition a ≤ b or b ≤ a for any a, b ∈ P, it is
called a chain, or a totally ordered set [61]. From an algebraic standpoint,
any two functions dc : Ic × Ic → P and dp : Ip × Ip → P, where P is a
chain with order relation ≤, satisfy both theorems. This can be checked by
examining that the formalism utilized to prove the theorems only makes use
of properties of chains7. Therefore, the theoretical results obtained in this
section can be generalized to domains beyond metric spaces.

6.4 Learning a perceptual metric

6.4.1 Motivation

The previous section presented a formulation of the indexing mechanism un-
der the assumption that the matching of the cognitive and perceptual images
are performed in metric spaces. The cognitive and the perceptual distance
functions were assumed to be known a priori. However, for an agent to cope
with unknown and dynamic environments, it may be desirable to be able
to adapt the perceptual representation and metric. The research presented
in this section concerns the following problem: how to construct a percep-
tual representation (and metric) with the goal of optimizing the indexing
efficiency [208, 206, 207]. In other words, the ideal perceptual representa-
tion and metric are the ones that yield small perceptual distances iff the
corresponding cognitive distances are also small. To do so, two strategies
are explored. One corresponds to adapting a perceptual metric, via a set of
parameters, such that cognitive proximity implies perceptual nearness:

dc(i
1
c , i

2
c) < dc(i

1
c , i

3
c) ⇒ dp(i

1
p, i

2
p) < dp(i

1
p, i

3
p) (6.67)

for all arbitrary image pairs 〈ikc , ikp〉 (k = 1, 2, 3). The second strategy ad-
dresses the improvement of the perceptual representation, in the following

7Care has to be taken with the operator arg min in (6.43) and (6.45), noting that any
nonempty finite subset of a chain has a minimum (descending chain condition).
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sense. Assuming that the perceptual representation is a vector of features
extracted from stimuli, when these features are not sufficiently representative
to satisfy (6.67), the goal is to upgrade the perceptual representation with
new, more representative, features. Both of these strategies are approached
here using Multidimensional Scaling techniques [49].

The Multidimensional Scaling (MDS) is a technique from statistics with
the goal of recovering the coordinates of a set of points, provided that the all
distances among them are known [49]. This technique proved an interesting
inspiration to the research presented in this section. But before presenting
it, the basic MDS techniques are reviewed first8.

6.4.2 Multidimensional Scaling

Having its origins in the field of statistics, the Multidimensional Scaling
(MDS) comprises a group of techniques sharing a common goal: given a
set of n objects, together with a measure of dissimilarity among them, to
assign point coordinates to each one of the objects, in a metric space, so that
their distances approximate as much as possible the given dissimilarities. For
a pair of objects r and s, the dissimilarity between them is a real value, being
denoted by δrs. It is here assumed that two properties are satisfied: δrr = 0
(identity) and δrs = δsr (symmetry).

In the context of the MDS, the terms dissimilarity and distance have dis-
tinct and specific meanings: the dissimilarities set {δrs} is given beforehand,
and may or may not constitute a metric, while the distances result from the
metric space E where the points live, and whose coordinates are sought.

The MDS techniques distinguish between two major categories: metric
and non-metric. The difference between them lies in the kind of constraints
imposed upon the distances on E .

Metric Multidimensional Scaling

In the metric MDS category, the goal is to find coordinates for the objects
such that the distances among them, in E , approximate as much as possible
the given dissimilarities, according to a continuous monotonic function f

drs ≈ f(δrs) (6.68)

where drs stands for the Euclidean distance in E between the objects r and s.
The simplest case corresponds to an identity function f (termed classic

metric MDS), where a solution can be found (under certain restrictions)

8This following review is mainly based on the book [49].
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using spectral decomposition techniques, as follows. Consider for now that
the n objects are points in R

p with coordinates xr = (xr1, . . . , xrp)
T for

r = 1, . . . , n. Let a matrix B denote the matrix of inner products among
them

[B]rs = brs = xT
r xs (6.69)

Assuming that the centroid of the point set is at the origin, i.e.,
∑n

r=1 xri = 0
for all values of i, the B matrix can be written in the following form, after
some algebraic manipulation

B = HAH (6.70)

where the matrices H and A are defined by

[A]rs = ars = −1

2
d2

rs (6.71)

H = I − n−111T (6.72)

In this last equation, I stands for a n × n identity matrix, and 1 denotes a
vector of n ones (1, . . . , 1)T .

Note that the matrix B is thus constructed from the distances drs. Next,
a spectral decomposition of this matrix is performed

B = VΛVT (6.73)

where Λ is a diagonal matrix with the eigenvalues

Λ = diag(λ1, . . . , λn) (6.74)

and the corresponding eigenvectors in the columns of V

V = [v1| · · · |vn] (6.75)

It can be mathematically shown that the rank of B is p, hence n − p eigen-
values are zero. Using the non-zero ones, Λ1 = diag(λ1, . . . , λp), as well as
the corresponding eigenvectors V1 = [v1| · · · |vp], B can be expressed in the
following way

B = V1Λ1V
T
1 (6.76)

Taking (6.69) into consideration, the original coordinates can then be recov-
ered (apart from an arbitrary translation and an uniform scaling) using

[x1| · · · |xn] = V1Λ
1

2 (6.77)

where Λ
1

2 = diag(λ
1

2

1 , . . . , λ
1

2
p ).
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In the classic metric MDS, the distances drs above are set to the dissimi-
larities δrs. If the B matrix thus obtained is a positive semi-definite matrix
of rank p, then a configuration in a p-dimensional Euclidean space can be
found that faithfully replicates the given distances. Otherwise, a constant
can be added to all dissimilarities (except δrr), in order to facilitate B to
become positive semi-definite.

In the general case, if an Euclidean space with fewer than p dimensions
is sought, then one can employ the eigenvectors with the highest eigenvalues
to derive the point coordinates. Moreover, there are techniques to help de-
termine the dimension of the Euclidean distance, for instance, by comparing
the magnitude of the eigenvalues to select a subset of them considered more
relevant.

One common applications of MDS techniques is the visualization of data-
sets. In this case, depending on whether a 2-D or a 3-D view is desired, the
dimension of the Euclidean space is set to either 2 or 3.

Besides this classical approach, there is a least squares formulation, as-
suming a continuous monotonic function f mapping dissimilarities to dis-
tance values. The goal is then to find the objects coordinates satisfying (6.68).
This can be accomplished by minimizing the cost function

S =

∑

r 6=swrs (drs − f(δrs))
2

∑

r 6=s d
2
rs

(6.78)

The weights wrs can be appropriately chosen, for instance, such that large
dissimilarities dominate lower ones (e.g., wrs = δ−1

rs ). The function f has to
be given beforehand. For instance, a parametric function f(δrs) = α + βδrs

is a straightforward choice. The above cost function has to be minimized
numerically, with respect to the coordinates, as well as to the parametrization
of f (α and β).

Nonmetric Multidimensional Scaling

The second category of MDS techniques is the one used in the research pre-
sented here, since it imposes looser constraints between the dissimilarities
and the metric distances. Here, the functional relationship (6.68) is replaced
by a monotonic one:

δrs < δtu ⇒ drs ≤ dtu (6.79)

for any two pairs of objects (r, s) and (t, u). In other words, for any two
pairs of objects, the distance between the two more dissimilar ones will not
be less than the distance between the more similar ones. Here it is assumed
that no two dissimilarities are equal (ties). However, the case of ties among
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the dissimilarities can be easily accounted for, as described at the end of this
section.

The commonly used Kruskal approach to nonmetric MDS will be taken
here [108, 109] (alternative approaches are reviewed by Trevor Cox et al.
in [49]). This method introduces a third set of distances — {d̂rs} — thus
dividing the original problem in two: in the first one, the {d̂rs} distances are
adjusted such that they are monotonically coherent with the dissimilarities:

δrs < δtu ⇒ d̂rs ≤ d̂tu (6.80)

and in the second one, the point coordinates are adjusted such that the dis-
tances between them approximate, as much as possible, the distances {d̂rs}.
The latter is performed by the minimization of a cost function, termed
stress (S), assessing the degree of this approximation:

S =

√

S∗

T ∗

S∗ =
∑

r,s

(

drs − d̂rs

)2

T ∗ =
∑

r,s

d2
rs

(6.81)

These summations are performed for r = 1, . . . , (n−1) and s = (r+1), . . . , n,
since δrr = 0 and δrs = δsr.

This formulation uses a Minkowski metric for the distances determination,
defined by

drs =

[

p
∑

i=1

|xri − xsi|λ
]

1

λ

(6.82)

where λ > 0 (e.g., λ = 2 corresponds to the usual Euclidean metric), and p
is the metric space dimension (xri ∈ R

p).
Given a distances set {drs}, the set {d̂rs} is obtained by an isotonic re-

gression algorithm, which can be proved [49] to satisfy two conditions:

1. the set {d̂rs} satisfies condition (6.80), and

2. it minimizes S∗ (and thus S) with respect to the distances {d̂rs}, re-
stricted to the previous condition.

For the description of the isotonic regression procedure, an alternative
notation is required here, for clarity: all distances sets are renumbered, re-
placing the two indices by a single one, in such a way that δi < δi+1, for
i = 1, . . . , n(n − 1)/2. This establishes a mapping from the rs indexing
schema to a single index i, thus ordering all distance sets by ascending dis-
similarities. Note that the same mapping is also used to re-index the distance
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sets {d̂rs} and {drs}. Both notations will be used below, depending on con-
venience; they are easily distinguishable by the number of indices.

Using this ordering, let the cumulative sums of distances be defined by

Di =
i
∑

j=1

dj (6.83)

for i > 0, and D0 = 0. As the distances are positive, Di is monotonically
increasing (with i). The isotonic regression is defined as the greatest convex
minorant of these cumulative sums. This can be easily visualized by imag-
ining a plot of the Di points, and then stretching a string attached to these
points. Figure 6.5 illustrates this idea with an example. The resulting graph
(dashed line) is convex, coinciding with the graph Di in as many points as
possible, as well as in the first and last ones. Wherever convexity prohibits
such coincidence, the points are obtained by linear interpolation.

 0
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i

cumulative sums
greatest convex minorant

Figure 6.5: Illustration of a sample isotonic regression, corresponding to
the greatest convex minorant, obtained from a given set of cumulative sums
(adapted from figure 3.1, page 47 of [49]). In this example, 4 points are
considered, yielding a total of 6 distances among them. Note that a point at
the origin (0, 0) corresponds to D0 = 0..

The resulting points, here denoted {D̂i}, give rise to the set {d̂i} using
d̂i = D̂i−D̂i−1, for i > 0, i.e., the slope of each segment of the D̂i graph. Con-
vexity of D̂i implies that the {d̂i} is (non-strictly) monotonically increasing,
thus satisfying (6.80).
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The isotonic regression algorithm works by partitioning the set of dis-
tances {di} into blocks of consecutive ones (with respect to i), within which
the values of d̂i are the same (thus resulting in a linear interpolation). The
process is iterative, starting with the most fine grained partitioning, i.e.,
blocks of a single point (singletons). The idea is to find, iteratively, whether
two consecutive blocks ought to be merged. Considering two consecutive
partitions of indices Pk = {r, . . . , s} and Pk+1 = {(s + 1), . . . , u} (because
of the equality of the d̂i distances within each block, d̂r = · · · = d̂s, and
d̂s+1 = · · · = d̂u), whenever d̂s > d̂s+1, these two partitions are merged into
a single one, i.e., P ′

k = {r, . . . , u}. The distances d̂′i within the new partition
are all equal to the average of the distances di whose index belong to the new
partition:

d̂′r = · · · = d̂′u =
1

u− r + 1

u
∑

i=r

di (6.84)

The algorithm iterates until no two blocks can be merged. Taking the exam-
ple depicted in figure 6.5, the result of the isotonic regression would be

{{1, 2}, {3, 4, 5}, {6}} (6.85)

Further computational aspects of the isotonic regression can be found in
Kruskal’s companion paper [109].

The stress can then be determined using (6.81). Since the goal consists
in minimizing the stress with respect to the point coordinates, a gradient
descent method can be employed, since S is differentiable. The stress gra-
dient ∇S is obtainable by differentiating S with respect to the point co-
ordinates. For a coordinate i of the point xu, the corresponding gradient
components are then

∂S

∂xui

= S
∑

r,s

(δru − δsu)

[

drs − d̂rs

S∗
− drs

T ∗

]

|xri − xsi|λ−1

dλ−1
rs

sgn(xri − xsi)

(6.86)
where δij is the usual Kronecker function (1 iff i = j, 0 otherwise), and
sgn(x) is the signum function (+1 or −1 depending on whether x is positive
or negative).

The complete nonmetric MDS algorithm consists of the following steps.
Note that all distances are computed using the Minkowski metric given
above (6.82).

1. Start with an initial configuration of points, e.g. randomly distributed
with an uniform distribution;
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2. Normalize9 the configuration by translation and uniform scaling, such
that the centroid is at the origin and the mean square distance from it
is unitary;

3. Compute the distance set {drs};

4. Perform the isotonic regression to obtain the intermediate set of dis-
tances {d̂rs};

5. Find the gradient of the stress with respect to all the coordinates of all
points (concatenated into a vector x)

∇S =
∂S

∂x
(6.87)

When the norm of the gradient is below some pre-defined threshold ǫ,
stop the algorithm. Note that the stress values have no units, being
commonly expressed as percentages.

6. Perform a step of the gradient descent method using

x(t+ 1) = x(t) − η
∇S(t)

‖∇S(t)‖ (6.88)

where η is the descent rate. Kruskal proposes this rate to vary along
the descent, using a heuristic update rule;

7. Go to step 2.

In sum, this algorithm alternates between adjusting the d̂i distances using the
isotonic regression procedure, and descending through the stress gradient.
As in many optimization problems, the descent path converges to a local
minimum (but for pathological conditions, such as too large step size), but
not necessarily to the global one. One way of mitigating this sub-optimality is
to repeat the algorithm from several different (random) initial configurations,
choosing the one yielding the least final stress.

The above algorithm works under the assumption that there are no ties
among the dissimilarities set, i.e., δi 6= δj for all i 6= j. When this is not the
case, one of the following two strategies can be employed:

1. whenever δi = δj , do not constrain the order relationship between d̂i

and d̂j. Implementation: for each subset of equal dissimilarities, re-
arrange the indices such that the distances di are in ascending order
within that block;

9Note that the stress S is invariant to translation and uniform scaling.
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2. whenever δi = δj, constrain d̂i and d̂j to be equal. Implementation:
initialize isotonic regression with blocks of distances of equal dissimi-
larities (thus forcing the d̂i to be equal within each of them), instead
of singleton sets.

According to [49], the second approach is less satisfactory than the first one,
since it imposes more restrictive constraints than the other.

6.4.3 Methodology

Recall that the goal of the indexing mechanism is to provide good candidates
for cognitive matching, using the perceptual representation. Therefore, as-
suming that the matching is metric, a good perceptual representation is one
which satisfies the implication (6.67) for all image pairs. Note that this goal
is similar to the MDS one, once one considers the cognitive distances to be
the dissimilarities, and the perceptual ones to be the distances among ob-
jects. However, there are differences. In the case of the MDS, the metric is
given while the object coordinates are sought. In the case of the indexing,
the object coordinates (perceptual images) are given, while the (perceptual)
metric is subject to adaptation.

To do so, and in agreement with the goals set in section 6.4.1, a gra-
dient descent is proposed, within the framework of MDS, with respect to
a parametrization of the perceptual metric, instead of with respect to the
point coordinates. Thus, the perceptual metric is assumed to depend on a
vector of parameters. For instance, these parameters can assign a degree of
relevance to each feature of the perceptual representation. Regarding the
construction of additional perceptual features, it is proposed to append the
perceptual image with a pre-determined amount of additional components.
These components represent the values that the new features ought to take,
for each of the perceptual images in the training set. Their values are ran-
domly initialized, and subject to gradient descent as in the nonmetric MDS.
However, nothing is said about how to obtain these values from new stim-
uli. The idea advanced here is to utilize the obtained values to construct a
regression model. That regression model can then be used to obtain the new
feature values for new stimuli.

The above assumes that a training set of cognitive and perceptual image
pairs is employed. This training set can be seen as the agent memory after
storing an amount of perceptual and cognitive image pairs. It is further as-
sumed that the associations among the perceptual and cognitive images in M
are one-to-one, i.e. neither two perceptual images index the same cognitive
one, nor two cognitive images are indexed by the same perceptual one. The
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reason for this is to avoid complications arising from a dissimilarity/distance
being zero, while the corresponding distance/dissimilarity is non-zero.

Metric adaptation

The adaptation of the metric parameters will be considered first. Let the
perceptual images be made of vectors of N numeric features each, using the
notation

irp = (xr1, . . . , xrN)T (6.89)

for the r’th perceptual image, from a training set of T image pairs (r =
1, . . . , T ). The perceptual metric dp is parametrized in the form dp(i

r
p, i

s
p; Θ)

with a vector of q parameters Θ = (θ1, . . . , θq)
T . The gradient of S with

respect to one of these parameters, say θk, is given by

∂S

∂θk

= S
∑

r,s

(

drs − d̂rs

S∗
− drs

T ∗

)

∂drs

∂θk

(6.90)

Note that this gradient has q components (the number of parameters of the
perceptual metric), while the number of components of the gradient employed
by the nonmetric MDS equals the number of points times their dimension.

The cost function considered here is the sum of the MDS stress, as defined
above, with a regularization term penalizing the absolute values of the metric
parameters:

J = S + ξ

q
∑

i=1

|θi| (6.91)

∂J

∂θk

=
∂S

∂θk

+ ξ sgn(θk) (6.92)

The summation term in (6.91), weighted by ξ, in the cost function for two
reasons. First, if the stress is invariant to a perceptual component, the stress
gradient with respect to the corresponding weight would be zero, and there-
fore the initial parameter value would stay at the same value during the
descent. The second reason is due to the quadratic contribution of the pa-
rameters to the stress. In order to prevent a slow asymptotic convergence to
zero (and therefore never reaching zero exactly), the gradient of their abso-
lute values forces them to approach zero at a faster pace10 In sum, this term
contributes to reduce the number of non-zero parameters θi. The usefulness

10Numerically this makes parameters close to zero to oscillate around zero, so, they are
set to zero once they become negative. The implementation further forces them to stay
at zero thereafter.
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of this will become evident in the next section, where each parameter θi

is used to weight a feature. Therefore, once one such parameter is zero,
the corresponding feature can be deleted from the perceptual representation.
The more metric parameters are zero, the lower the dimensionality of the
perceptual space.

Weighting features

A simple option for the perceptual metric is to start with the traditional
Euclidean distance, and weighting each dimension i with a parameter θi.

drs =

√

√

√

√

N
∑

i=1

θ2
i (xri − xsi)2 (6.93)

This parametrization corresponds to assigning a weight (relevance) to each
perceptual feature before computing the Euclidean metric. Moreover, when
the algorithm assigns a zero weight to a feature, that feature can be deleted
from the perceptual representation, since it is irrelevant.

The partial derivative of this distance with respect to each parameter is
then

∂drs

∂θk

=
(xrk − xsk)

2

drs

θk (6.94)

Discovering new dimensions

To address the second problem stated in section 6.4.1, the following approach
was taken: each perceptual image in the training set is augmented with a
pre-defined amount of new components, in such a way that the stress is re-
duced. This is accomplished within the framework of nonmetric MDS, by
subjecting these components to the stress gradient descent. Doing so corre-
sponds to solving the problem only partially, since a method to derive these
components for new stimuli is still required. However, regression methods
can be considered to estimate these values.

Using yri to designate the i-th appended component of the perceptual
image irp, each image takes thus the form

irp = (xr1, . . . , xrN , yr1, . . . , yrM)T (6.95)

for M added components. These components are initialized randomly and
subject to the gradient descent method as in the nonmetric MDS. The out-
come of this minimization is a set of values that these new features ought to
take for each ip, such that the stress is (locally) minimized.
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The features values thus found concern solely the images in the training
set. Nothing is said about the feature values for new stimuli. With the objec-
tive of determining a way to derive these values for new stimuli, a regression
technique is proposed here. Given a set of training images, together with the
yri values, a regression technique can create a model for the data. That model
can then be used to estimate feature values for new stimuli. This requires not
only the “output” values (the yri) but also the “input” data. Theoretically,
any regression technique can be used here. An arbitrary regression model
can be written as

yri = R(ur1, . . . , url) (6.96)

for l input variables ur1, . . . , url. For instance, these variables can include
features extracted from the stimulus.

The simple metric in (6.93) can be augmented to take into account the
new features, in the following way

drs =

√

√

√

√

N
∑

i=1

θ2
i (xri − xsi)2 +

M
∑

i=1

(yri − ysi)2 (6.97)

The additional components are not weighted since doing so would just add
redundant degrees of freedom.

To express the gradient of the stress one can consider a generic parameter
vector Λ from which the distances drs depend:

Λ = [λ1 · · ·λN+TM ]T = [θ1 · · · θN |y11 · · · yTM ]T (6.98)

The partial derivative of the stress S with respect to a parameter λi is thus

∂S

∂λi

= S
∑

r,s

(

drs − d̂rs

S∗
− drs

T ∗

)

∂drs

∂λi

(6.99)

If λi corresponds to a metric parameter θi, the expression (6.94) can be used.
Otherwise, if it corresponds to a component yui, then

∂drs

∂yui

=
yri − ysi

drs

(δru − δsu) (6.100)

The gradient of the cost function J is then

∂J

∂λk

=







∂S
∂λk

+ ξ sgn(λk) if λk corresponds to a metric parameter

∂S
∂λk

otherwise

(6.101)
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The dimension of the gradient thus obtained is therefore N + TM , recalling
that N is the number of the metric parameters, T is the number of images in
the training set, and M the number of new features added to each perceptual
image.

Different possibilities for obtaining the input variables ur1, . . . , url using
the regression model in (6.96) can be considered. One is to use a larger pool
of features, selecting a subset of them for the base perceptual image vector,
and to use a disjoint set to feed the regression model. Another is to extract
more features from the stimulus. This extraction can be, for instance, guided
by the yri values, e.g. a parametrized feature extraction algorithm, whose
parameters can be tuned based on the values obtained for the training set.

A third possibility consists in using the features already present in the
perceptual image. To understand why this may not be redundant, consider
the following. An Euclidean distance between two vectors xr and xs can be
written in matrix form as

drs =
√

(xr − xs)T (xr − xs) (6.102)

Consider now scaling each component k = 1, . . . , N with a positive weight
θk. The vectors in the new space formed by the above scaling can be written
as x′

r = Θxr, where the Θ = diag(θ1, . . . , θN) is a diagonal matrix. The
Euclidean distance in this space is thus

d′rs =
√

(xr − xs)TΘ2(xr − xs) (6.103)

using the notation Θ2 = diag(θ2
1, . . . , θ

2
N ). Note that this is another way of

writing the metric (6.93), meaning that the metric parametrization is equiva-
lent to scaling the space coordinates with Θ. If the regression model (6.96) is
linear, and the input variables are the components of the perceptual vector,
each vector of new features yr = (yr1, . . . , yrM)T is then

yr = Rxr (6.104)

where the matrix R (M×N) represents the linear model. Considering a new
vector formed by appending each weighted vector x′

r with these components

x′′
r =

[

x′
r

yr

]

=

[

Θxr

Rxr

]

(6.105)

the Euclidean distance in this augmented space takes the form

d′′rs =
√

(x′′
r − x′′

s)
T (x′′

r − x′′
s)

=
√

(xr − xs)TΘ2(xr − xs) + (yr − ys)T (yr − ys)

=
√

(xr − xs)TΘ2(xr − xs) + (xr − xs)TRTR(xr − xs)

=
√

(xr − xs)T (Θ2 + RTR)(xr − xs)

(6.106)



160 CHAPTER 6. INDEXING MECHANISMS

This expansion can be interpreted in the following way: first, note that
the Euclidean metric on the space formed by (6.105) is equivalent to the
metric (6.97), when a linear regression model is used, because it equals
the second line of the expansion; and second, the last expression is a non-
diagonal metric on the original space of perceptual images. In other words,
this last metric is more general, since the matrix Θ2 + RTR has more de-
grees of freedom than the diagonal one (6.103). For instance, a generic metric
√

(xr − xs)TG(xr − xs) can be replicated by d′′rs, as long as G can be fac-
torized11 into RTR and Θ is zero.

In sum, the regression over already existing features in the perceptual im-
age is capable of overcoming limitations of a perceptual metric. Alternatively,
one could replace this metric by a more general one, from the start. However,
this leads to a larger amount of parameters (as long as M < N − 1), thus
complicating the stress minimization procedure: the diagonal metric matrix
has N degrees of freedom, a general metric matrix G has N2, while the one
from (6.106) has N(1 + M). Adding new features, one at at time, provides
an incremental way of increasing the complexity of the perceptual metric.

Grouping images

A single metric parametrization may not be satisfactory for the whole stim-
ulus space. So, it could be interesting to consider specializing the metric
according to characteristics of the stimuli. That could be accomplished by
first finding a partition of the training set, and by applying the gradient de-
scent separately, to each one of the resulting subsets. The outcome would
be a separate parametrization, found by a minimization of the stress within
that subset.

For instance, imagine a situation where separating the gradient descent
into two non-trivial12 subsets would lead to very small stress values in each
one of them, way below the global stress (when determined over the whole
original set). It is possible in this case that the global stress (considering
all images) did not drop below a certain value, because the gradient did
counter-balance two trends towards two distinct parametrizations.

Using such a mechanism would require, first, a clustering technique to
isolate subsets from the training set, in such a way that the sum of all the
stress values would be minimal, and second, a classification engine to identify
to which cluster a new stimulus would fit better (in terms of minimizing the
cognitive distance in the end).

11According to the Cholesky decomposition, any real square symmetric positive-definite
matrix A can be decomposed as A = LL

T , where L is a lower triangular matrix.
12Assuming the cardinality of the subsets is much larger than the number of features.



6.4. LEARNING A PERCEPTUAL METRIC 161

Several approaches in this direction were attempted, but no satisfactory
results could be obtained. These approaches can be divided into two groups:
(1) constructive approaches, staring from many small subsets, and proceeds
by merging them according to a criterion, and (2) partitioning approaches,
starting with the global training set, and trying to devise partitions accord-
ing to a criterion, based for instance on the stress within candidate subsets.
The major cause of impasse encountered consisted in the following: how can
one determine whether a certain operation is profitable, in terms of stress
reduction, without actually performing the gradient descent? A brute force
approach of trying out all possible partitions would be intractable. More-
over, the stress, which is unit-less, is usually smaller for small subsets, since
there is a lower number of constraints imposed by the dissimilarities, and
therefore, there is an inherent bias towards partitioning into the degenerate
set of singletons.

Algorithm

Taking into account the above considerations, and based on the standard
nonmetric MDS algorithm [49], we propose the following one:

1. Start with an initial vector of variables Λ. For instance, the metric
parameters θk (k = 1, . . . , N) may be initialized to all ones, and the
additional components {yri} (for r = 1, . . . , T , and i = 1, . . . ,M) may
be drawn from a uniform distribution;

2. Normalize the metric parameter vector Θ = (θ1, . . . , θN )T to unit norm,
since the stress is invariant to scaling of this vector. The additional
components {yri} are, however, not normalized13;

3. Compute the distances {drs} using the parametrized perceptual met-
ric (6.97);

4. Perform the isotonic regression on the cumulative sums (6.83), to obtain
the set of distances {d̂rs};

5. Compute the cost (6.91); if its value is below a threshold ǫ, stop the
algorithm (stopping criterion);

6. Find the gradient of the cost function (6.91) w.r.t. the variables vec-
tor Λ;

13Normalizing them would constrain a priori the relative weights of the additional com-
ponents w.r.t. the original features in (6.97). Normalizing the parameters vector pre-
vents its norm from growing or shrinking because of numerical errors. Moreover, because
of (6.97), the additional components do not grow/shrink arbitrarily.
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7. Perform a step of the gradient descent method using

Λ(t+ 1) = Λ(t) − η ∇J(t) (6.107)

where η is the descent rate.

8. Go to step 2.

Further details concerning the gradient descent method can be found in sec-
tion 6.4.5.

6.4.4 Related work

Methods related to the presented methodology include traditional dimension
reduction algorithms such as Principal Component Analysis (PCA) [105], In-
dependent Component Analysis (ICA) [100], Local Linear Embedding (LLE)
[159], Non-negative Matrix Factorization (NMF) [115], and Latent Semantic
Analysis (LSA) [64]. All of these methods fall into the category of unsuper-
vised learning. They all have in common the analysis of a given (training)
data set in order to obtain a reduced dimension space, capable of repre-
senting the original data set. For instance, the PCA selects a linear space
spawned by the orthogonal axis along which the training points have greater
variance, thus being able to reconstruct the original dataset with a smaller
number of dimensions (the ones with higher eigenvalues); ICA is similar to
PCA but uses a criterion of statistical independence instead; LLE relies on
the identification of a lower-dimensional manifold capable of representing the
original dataset. All of these methods employ information from the dataset
itself. Their distinctions consist broadly in the criteria used to select the
most relevant dimensions.

The proposed method, on the contrary, uses information originating from
a second representation space. The algorithm relies on the cognitive distance
among the instances. Thus, depending on how this metric is expressed, dif-
ferent weights can be attributed to components, and thus different relevance
values are extracted.

Another method for extracting relevance, can be found in [183], which
utilizes Rate Distortion Theory on an information theoretic framework. This
method consists in coding a signal x such that it preserves as much relevant
information as possible about another signal y. Relevant Component Analy-
sis (RCA) employs side-information, in the form of equivalence relations, to
learn a Mahalanobis metric [18]. Other applications of metric learning can
be found in classification [66] and clustering [217].
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6.4.5 Experimentation

Optimization technique

Plain gradient descent methods are slow to converge. Thus, to speed up
convergence, a momentum term was added to (6.107), in a similar fashion to
back-propagation techniques for neural networks [160]:

∆λk(t+ 1) = −ηk

∂S

∂λk

+ αk ∆λk(t) (6.108)

∆λk(t+ 1) = λk(t+ 1) − λk(t) (6.109)

where ηk and αk are parameters that control the rate of the descent and the
momentum inertial effect. This dependence on k (introduced here) expresses
that two pairs of parameters were used, 〈ηθ, αθ〉 and 〈ηy, αy〉, depending on
whether a given λk corresponds to a component of the parameter vector
or a new component. For instance, if λ1 = θ1, then η1 = ηθ and α1 =
αθ. The momentum term accelerates convergence, since it tends to increase
the descent rate whenever the descent is successively performed in the same
direction.

Another issue requiring consideration is a stop criterion to detect whether
to stop the descent. To do so, the total cost J is monitored along the descent.
Two moving averages, for two contiguous windows, are computed in each
step. If the percentual change is below a threshold, the descent is terminated.
The purpose of the moving average is to filter out possible small oscillations
that might occur during final stabilization (e.g., numerical round-off errors).
Thus, even if the cost oscillates around a stable value, the detector is able to
put a stop to the descent. The parameters for this criterion are the moving
average window size, and the variation threshold (set to 20 steps and 0.1%
respectively in the conducted experiments).

Since the gradient is differentiable, faster optimization methods can be
considered, such as the Newton-Raphson method. This method requires the
computation of the Hessian matrix in each step

[H]ij =
∂2J

∂θi∂θj

(6.110)

with the corresponding update rule

u(t+ 1) = u(t) − γ H−1(u(t)) ∇J(u(t)) (6.111)

This is a second order procedure, since it uses the second derivative of the
cost function, in contrast to the first order plain gradient descent. In ex-
perimental validation, this method failed to bring significant improvements,
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probably because the algorithm interleaves the gradient descent with the
isotonic regression procedure, thus modifying the structure of the optimiza-
tion problem at each step. Hence, the simpler gradient descent method was
employed.

Performance metric

In order to evaluate the results, a measure of performance called eval-order
was introduced, aimed at assessing how well an indexing mechanism would
behave. This assessment is performed using a test set disjoint from the train-
ing set employed in the gradient descent (cross-validation). Inspired by the
N-best indexing algorithm described in [204], the eval-order is defined in the
following way: given a cognitive and perceptual images pair 〈ic, ip〉, deter-
mine all perceptual distances from it to images in the perceptual memory
(i.e., the training set); then, after sorting all these images with respect to
the perceptual distances, determine which n-th image pair 〈ikc , ikp〉 on the re-
sulting ordered list has the minimum cognitive distance to 〈ic, ip〉. In the
ideal case, it corresponds to the first one, and thus an eval-order of one.
Higher values correspond to worse performance.

This measure is admittedly reductionist, since it disregards what happens
in sub-optimal situations, for instance, when the second best cognitive match
corresponds to a relatively small perceptual distance. But since the eval-order
is averaged over a large training set, this problem is assumed to be at least
partially mitigated.

Normalization and initial conditions

The features in the perceptual images were all (training and test sets) nor-
malized to zero mean and unit variance, prior to any experiment. Unless
otherwise stated, the parametrization Θ of the perceptual metric was ini-
tialized to all ones. The additional components, when used, were initialized
with a uniformly distributed random configuration, as in the nonmetric MDS
algorithm.

Synthetic data set

To validate the proposed methodology, a simple test-bed was devised. Ran-
dom points x ∈ R

c (simulating stimuli) are uniformly drawn from an hy-
percube of unit side length. The cognitive images ic ∈ R

c were set to the
components of x multiplied by random coefficients {w1, . . . , wc} between 0
and 2 each

ic = diag(w1, . . . , wc) x = Wx (6.112)
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These coefficients introduce different degrees of relevance of the components
of ic. The perceptual images were obtained by concatenating two vectors:
the p first components of x multiplied by a second set of random weights
{v1, . . . , vc} (p ≤ c); and n random numbers between 0 and 1 (noise, uniform
distribution). Thus, the perceptual images have p+ n components.

ip =

(

[diag(v1, . . . , vp)|0] x

u

)

=

(

Vx

u

)

(6.113)

where 0 stands for a matrix of zeros of appropriate dimension, and u for
the vector of noise. The weights in W and V, randomly drawn (uniform
distribution) from the [0; 2] interval, together with the numbers c, p, and n,
define a world, represented by a tuple

〈c, p, n,W,V〉 (6.114)

Figure 6.6 illustrates graphically the above computations.

x =

Wx
i  =c

. . .

. . .

Vx
i  =p

noise

. . .. . .

Figure 6.6: Illustration of how the cognitive and perceptual images are de-
termined from a random vector x.

The cognitive distances were computed by applying a non-linear mono-
tonic function to the Euclidean distance among the images

dc(i
r
c, i

s
c) = f (‖irc − isc‖)

= f
(

(xr − xs)
TW2(xr − xs)

) (6.115)

while the perceptual ones employ the metric (6.93). By construction of the
nonmetric MDS, the form of the f function is irrelevant14, thus it was set to
the identity function, except in one of the experiments.

Note that the cognitive distances in (6.115), assuming f to be the identity,
are invariant to rotations after applying the weights (the W diagonal matrix)

14As long as it is strictly monotonic.
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to the x points (i.e., i′c = RWx), but the converse is not necessarily true
(i.e., i′′c = WRx). This is so because

‖irc − isc‖ =

(xr − xs)
TW2(xr − xs) = (xr − xs)

TWTRTRW(xr − xs)

= (xr − xs)
TWTW(xr − xs)

6= (xr − xs)
TRTW2R(xr − xs)

(6.116)

since rotation matrices are unitary (R−1 = RT ).

Results

The experimentation was conducted in two phases. In the first phase (exper-
iments 1–6), no additional perceptual components were considered, leaving
the experiments with additional ones to the second phase (experiments 7–10).

For the following experiments, a single world in the form (6.114) was
generated with random parameters. The weights in V are irrelevant, because
the normalization of the perceptual vectors cancels their scaling effect.

Experiment 1. The algorithm was run for 100 generated training sets
with the same world parameters, each one containing 100 patterns (and
thus 4950 distances among them). The world dimensions were c = p = 10
and n = 3. For each training set, a test set containing 100 patterns was
also generated, for posterior eval-order assessment. The descent parameters
for (6.108) were ηθ = 0.01 and αθ = 0.8.

Figure 6.7 shows the results: the bar graph (a) represents the weights
in W, while (b) represents the perceptual metric weights found by the algo-
rithm. Note that the latter values faithfully represent the relative importance
of the x coordinates in the cognitive metric. The observed extinguishing of
the third weight is due to the combined effect of its diminished importance
(i.e., low value in W), and the penalization of non-zero weights in (6.91).
Moreover, the last three components (noise) were all zero, thus showing a
successful capability of discarding irrelevant features.

Concerning the eval-order assessment, the results are shown in table 6.3.
These are consolidated values, obtained in the following way: for each run,
a training set and a test set were randomly generated, as mentioned above;
then, the weights obtained in each run were tested against the test set (cross-
validation), determining the mean, minimum, and maximum values of the
obtained eval-orders for all images in the test set. The results shown here
correspond to the mean of these means15 (central tendency), the minimum

15This is equivalent to a mean over all image pairs, since all test sets have size.
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Figure 6.7: Results of Experiment 1 (100 training sets randomly drawn):
(a) the weights W of the employed world, and (b) the metric weights found
by the algorithm (error bars represent standard deviation values). Both
vectors are normalized to unit norm, in order to be comparable.

of all minima, and the maximum of all maxima (worst case of eval-order).
These results show a significant improvement in the eval-order performance
after using the metric weights found by the algorithm. Namely, the worst
case (maximal eval-order) went down from 92 to just 2. Note that the test
set has 100 image pairs, therefore, the worst possible eval-order value is 100.

metric mean min max

unweighted 11.44 1 92
weighted 1.003 1 2

Table 6.3: Evaluation of Experiment 1 in terms of the eval-order performance
metric.

Experiment 2. All gradient descent methods are prone to local minima,
unless the cost function is convex. In the present case, the cost function
structure changes at each step, because the isotonic regression alters the {d̂rs}
distances. In order to determine the sensitivity of the solution with respect
to local minima, the algorithm was run with initial metric weights other
than all ones. In each run, the parameter were initialized with random
values uniformly distributed between 0 and 2. The (a) plot of figure 6.8
shows a much higher variance in all weights, notably on the noise ones, when
compared with figure 6.7. However, this effect was found to be a consequence
of outlier runs. These outliers corresponded to runs where one of the weights,
other than the noise ones (indexes 11 to 13) and the component index 3 (see
above), were initialized close to zero, and were set to zero during the descent.
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Because zero weights are kept at zero (as explained before), the algorithm
was unable to find an appropriate result fitting the data. Leaving out these
outliers, using the criterion by which a run is considered outlier whenever
any of the noise weights is non-zero at the end, the results in plot (b) of the
same figure approach significantly the ones of the previous experiment. This
criterion considered 11% of the runs as outliers. Table 6.4 shows the results
for the eval-order assessment, including the ones before and after removing
the outlier runs.
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Figure 6.8: Obtained weights in Experiment 2 (random initial conditions):
(a) before, and (b) after removing outlier runs (11%). Error bars denote
standard deviations, as before.

metric mean min max

unweighted 10.17 1 73
weighted 1.217 1 41

w/o outliers 1.017 1 9

Table 6.4: Results for the eval-order performance metric for Experiment 2.

Experiments 3 and 4. These experiments addressed the impact of
reducing the training material. In Experiment 3, smaller training sets were
used, while in Experiment 4, a subset of all dissimilarities were used (while
keeping the training set size). The results are shown in terms of eval-order
values with respect to either the training set size (Experiment 3, figure 6.9a),
or the percentage of dissimilarities employed (Experiment 4, figure 6.9b).

Since the number of degrees of freedom of the perceptual metric is low
(13 parameters), when compared with the full dimensionality of the training
set, it can be expected that with a significantly smaller training set size, the
correct values can still be obtained. The experimental results corroborate
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Figure 6.9: Results in terms of eval-order for Experiment 3 and 4, in plots
(a) and (b) respectively.

this intuition: both with about 10 training patterns, or with about 0.5% of
the total number of dissimilarities16, the results were as good as with the
original training set.

Experiment 5. The introduction of a strictly monotonic non-linear
distortion function f in the cognitive distance computation was also tested.
An arbitrary cubic polynomial was employed (plotted in figure 6.10).

f(x) = x3 − 3x2 + 3x (6.117)
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Figure 6.10: Plot of the cubic distortion function (6.117) employed in Exper-
iment 5.

16Random sampling from the 4950 dissimilarities originated by the 100 patterns of the
training set.



170 CHAPTER 6. INDEXING MECHANISMS

The results can be found in figure 6.11 for the weights, and in table 6.5
for the eval-order assessment. Comparing the former plot with the one in
figure 6.7, it can be observed that the resulting weights are identical, as
expected, by construction of the nonmetric MDS.
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Figure 6.11: Weights obtained in Experiment 5 (using the distortion func-
tion (6.117)).

metric mean min max

unweighted 11.47 1 97
weighted 1.004 1 2

Table 6.5: Results of the eval-order performance metric for Experiment 5.

Experiment 6. The relationship between the cost values and the eval-
order is critical to the success of the approach. The algorithm seeks the
reduction of the cost function (6.91), while the quality of the result is mea-
sured by the eval-order performance metric. For this synthetic world, the
relationship between the cost and the eval-order during the gradient descent
was examined. Figure 6.12 plots a sampling taken from 25 runs, by sampling
randomly 1 out of 5 descent steps. This illustrates how, in this test-bed,
smaller cost values lead systematically to better generalization in the test
set. This kind of analysis can be useful to assess whether the method is ap-
propriate for a given world, with respect to the generalization performance.

The second phase of the experimentation comprised the introduction of
new components to the perceptual representation. To do so, the dimension
of the cognitive images was made higher than the perceptual one, i.e., c > p.
Thus, the perceptual metric is performed with fewer components than the
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Figure 6.12: Samples of cost and mean eval-order pairs taken from 25 runs.
The corresponding stress values are also shown.

cognitive one. The first impact of this is that, without the introduction of
new components in the perceptual representation, the final cost values are
much higher than before, due to lack of fit (previous experiments reached
final costs between 0.02 and 0.03).

In the following experiments, the descent parameters were set to ηy =
0.04 and αy = 0.8 (ηθ and αθ remained at the same values as previous
experiments).

Experiment 7. Figure 6.13 shows the obtained initial and final costs,
after testing four different generated worlds. The algorithm was run for
several numbers of new components for each one of the worlds. The plots
display the mean and the standard deviation of the initial and final costs,
after 100 runs performed in each world. The only difference among runs
sharing the same world parameters is the initial values for the new dimension
coordinates (initialized to random values, as explained above). The training
set contained 20 patterns.

These plots corroborate the idea that, once the number of new compo-
nents reaches c− p, the final cost stabilizes in values close to the ones found
in previous experiments. This observation suggests a methodology for the
estimation of how many new components are required for a given problem of
unknown structure: to try successively higher amounts of new components,
until the final cost value stabilizes.

Experiment 8. In this experiment, a single additional component to the
cognitive representation was considered (c = p + 1). This setting (without
additional perceptual components) results in a high final cost, as shown by
the previous experiment, thus meaning a lack of fit. Then, a single new
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Figure 6.13: Statistics of initial and final costs with respect to the number of
new components, for various world parameters (indicated below each plot).
Error bars denote the standard deviation of the cost values across the 100
runs.

perceptual component was added to the perceptual representation. It was
observed that, not only a good fit was observed, but also that the values
obtained for this new component were very close to the ones of the cognitive
component missing in the perceptual image, apart from an affine transform.

This can be recognized by making the following observation: rewriting
equation (6.97) for a single new dimension (L = p, the dimensionality of the
perceptual representation)

d2
rs =

p
∑

i=1

θ2
i (xri − xsi)

2 + (yr − ys)
2 (6.118)

and considering that, if drs = dc(i
r
c, i

s
c) is a solution17 (assuming f to be the

17It is here assumed that the metric parameters make both metrics numerically equal.
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identity), then, one can write

p
∑

i=1

θ2
i (xri − xsi)

2 + (yr − ys)
2 = (xr − xs)

TW2(xr − xs)

=
c
∑

i=1

w2
i (xri − xsi)

2

=

p
∑

i=1

w2
i (xri − xsi)

2 + w2
c (xrc − xsc)

2

(6.119)

because c = p+ 1. Letting θi = wi for i = 1, . . . , p, this equation is satisfied
by any pair of points xr and xs if yr = wcxrc. Thus, in this case, the new
component is able to recover the values of original one, which is missing in
the perceptual representation.

This reconstruction power was evaluated by measuring the signal-to-noise
ratio (SNR) between the missing component and the recovered one, after
normalizing them to zero mean and unit variance. The SNR was determined
by dividing the energy of the reconstructed signal yr (with respect to r) by
the energy of the error yr − xrc, and then expressing it in decibel (dB) units

SNR = 10 log10

∑

r y
2
r

∑

r(yr − xrc)2
(6.120)

Figure 6.14 shows the cognitive weights of the world, together with the
weights obtained after running the algorithm. The world parameters were
c = 6, p = 5, and n = 3. The trials consisted of 100 trials, with training sets
of 20 patterns each. Note that the 6th component in (a) is the one that is
hidden from the perceptual representation, and thus there is no corresponding
weight in (b). The SNR results, then, measure how well the additional
dimension reconstructs the values of this 6th component. The 6th to 8th
weights in (b) correspond to the three noise components (and thus take
negligible values in the end).

The SNR values (in dB) were collected in a histogram displayed in fig-
ure 6.15a. The shape of this histogram indicates the presence of a few out-
lier runs. To get rid of the outliers, the criterion SNR > 20dB was used;
figure 6.15b shows the histogram for the SNR after excluding these out-
liers (5%). Table 6.6 summarizes the statistics of the SNR, with and without
outliers considered. Values of SNR between 40 and 50dB mean errors of
about 0.3% to 1%, which are reasonably small.

Experiment 9. Regression methods can be employed to construct new
features, based on the values found by the algorithm. As a proof of concept,
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Figure 6.14: Weights obtained by Experiment 8: (a) world weights, (b) mean
and standard deviation values of the obtained weights after 100 runs. See
the main text for the explanation regarding the weights labeled 6–8.

outliers mean stdev min max

with 44.87 10.92 -3.855 53.05
without 47.27 2.920 40.46 53.05

Table 6.6: Results of Experiment 8 regarding the eval-order performance
metric.

a set of components from the cognitive image was hidden from the perceptual
representation, as in the previous experiment, and the algorithm was run for
various amounts of additional components. After each run, a linear regression
was performed in order to obtain a linear model mapping cognitive images
to the new perceptual components. The perceptual images from the test set
were augmented with the prediction coming from the regression model. Then,
an eval-order assessment using the regression model over the test set was
performed, as usual. Since the missing components belong to the cognitive
images, the task is trivial: the regression model just needs to pick up the
missing components from the cognitive image. The experimental parameters
were: c = 8, p = 5, n = 3, 10 runs, 50 training patterns, 100 test patterns,
and the number of new components ranged from 0 to 6. The results can be
found in figure 6.16. The stabilization of the final cost values, for at least 3
new dimensions, can be verified in the plot (a) of this figure. Correspondingly,
the eval-order drops to low levels, as it can be seen on plot (b) of the same
figure.

Experiment 10. This experiment explored the idea advanced in sec-
tion 6.4.3 regarding the possibility of overcoming the limitations of a given
perceptual metric. Recall that the cognitive distances are invariant to a rota-
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Figure 6.15: Results of Experiment 8: (a) Histogram of the SNR reconstruc-
tion values for the 100 runs, and (b) weights after leaving out the outliers
(5% of outliers, for SNR ≥ 20dB).

tion after applying the weighting, but not the converse. So, the latter case is
beyond the degrees of freedom of the perceptual metric under use (6.93). To
experiment whether the regression method over the perceptual images could
overcome this limitation, this experiment used the same form of synthetic
worlds, but with the cognitive images generated by

ic = WRx (6.121)

instead of (6.112), where R is a random unitary matrix (a world parameter,
and therefore shared by all points). Figure 6.17 shows the obtained results
for several amounts of new components, both in terms of initial and final
costs, and in terms of eval-order assessment.

The world parameters were set to c = p = 5, n = 3, while the results
were collected after 10 runs with different worlds (and therefore with different
R matrices), for each number of new components. The training and test
sets contained 50 and 100 points respectively (and therefore, the maximum
eval-order value was 50). Preliminary results had shown a tendency for the
gradient descent to be stuck in local minima. So, in each run the gradient
descent was performed 10 times, where only the results from the descent with
minimum final cost were collected. These results are presented in figure 6.17.

The obtained results show a good capacity to overcome the perceptual
metric limitation. This limitation is visible when no new components are
added: although the average is relatively low (about 4), the maximum eval-
order is high (48 with weights), which is about the same value as without
weights (49). With as few as 3 new dimensions, the eval-order drops to values
close to one.
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Figure 6.16: Results for Experiment 9: plot (a) displays the initial and
final costs for various amounts of new components, while plot (b) shows
the statistics for the eval-order, over all 10 runs. Error bars in (b) denote
minimum and maximum eval-order values, over all test set points and runs.
The bar labeled “u/w” denotes the eval-order results for the unweighted
perceptual metric. The minimum eval-order for all bars (in (b)) is 1, and
the maximum eval-order values for the first two bars were beyond the plot
vertical range (42 and 17, respectively).

6.4.6 Concluding remarks

The experimental results presented above provide an illustration of the po-
tentialities of the proposed method. The results were evaluated using the
eval-order performance metric, designed to provide an assessment of the in-
dexing efficiency. In the experiments it was observed that the algorithm,
seeking the reduction of the cost function, led to good eval-order perfor-
mance levels. This cost function is the sum of the stress, measuring the
structural relationship between the cognitive and perceptual metrics, and a
solution cost, aiming at the eradication of non-relevant perceptual compo-
nents. Furthermore, the methodology for the improvement of the perceptual
representation showed good results: the introduction of new components
yielded a stress reduction. The way to derive these component values for
new stimuli remained, however, an open issue.

At first glance, it might seem dubious to perform these experiments with
cognitive and perceptual image spaces of approximately the same dimension,
since the former was defined in chapter 4 as having a much higher dimen-
sionality than the latter. However, note that the representation of cognitive
images as vectors in R

c is purely instrumental for the generation of the train-
ing sets. Since these vectors are randomly distributed in R

c, there is no way
to find a perceptual representation with fewer dimensions that faithfully rep-
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Figure 6.17: Results of Experiment 10. See caption of figure 6.16 for a
description of the plots. The minimum eval-order in (b) for all bars is 1,
and the maximum eval-order values for the first four bars were: 49, 48, 49,
and 14.

resents the R
c structure. Nowhere in the algorithm are these vectors actually

used. Instead, distances are computed in this space, and used as cognitive
distances. This is the generation law of the world. One can consider, for
instance, a complex cognitive representation (e.g., vision images) from which
a slow cognitive process extracts a lower dimension space spawning the world
structure. At the same time, the perceptual representation is based on a fast
feature extraction procedure.

During experimentation it was observed that one of the major limitations
of the method was that, unless a relatively good fit is found, the weights
assign relevance to irrelevant components. For instance, the weights corre-
sponding to the noise components only converged to zero if a good fit was
found18. Therefore, good results are to be expected only for worlds where the
perceptual metric is able to approximate the cognitive one over the full range
of distances, i.e., not only the closer pairs, but also the more distant ones.
This limitation is particularly serious for domains where one is concerned
with good cognitive matches (small distances) only.

18Recall that one of the criteria utilized to leave out outlier runs was based on the
non-nullity of those weights.
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Chapter 7

Concluding discussion

7.1 Introduction

This thesis introduces the exploration of the possibilities arising from a spe-
cific emotion-based agent model. Thus, the work reported here should be
taken as a snapshot of the state of this exploration. The starting point
for this agent model consisted in a biologically inspired view of the role of
emotions in decision-making. Contrary to common belief, and according to
Damásio, the emotional mechanisms in the brain are crucial for appropriate
decision making, even in domains of apparent rational dominance. Since this
hypothesis concerns mechanisms, rather than specific emotions, the agent
model is focused on mechanisms, and not on specific emotions. This option
was taken from the initial formulation of the model, and has been followed
throughout the developed research. This is why there are scarce references
to emotions, apart from the initial chapters about the background and the
review of the state-of-the-art. The conceptual architecture described in chap-
ter 4 makes no explicit references to emotions, and the research that followed
did not aim at the simulation of emotions. However, once can a posteriori
discuss, for instance, whether it makes sense to relate emotions with the
desirability vector.

7.2 Results

Two different methodologies where adopted in this work. The first one
sought to experiment with complete agents, interacting with testbed environ-
ments. This research, presented in chapter 5, led to the development of two
testbeds — an inverted pendulum system, and a symbolic POMDP — for
which solutions concerning the anticipation of future outcomes were explored.

179
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Constructing complete agents requires taking care of the various aspects in-
volved, such as perception, action selection, memory management, and so
on. The resulting behavior is therefore a non-trivial composition of all of
these aspects. Thus, it becomes hard to assign credit to individual aspects
of the agent architecture. Moreover, whenever the agent is able to cope with
the environment, the question of whether the same methodology scales up to
other domains remains unanswered. It is not trivial to separate the domain
independent from the domain dependent parts of the architecture.

These difficulties suggested that a different methodology could provide
more fruitful results. Thus, a back-to-basics approach was taken next, pre-
sented in chapter 6, where individual aspects of the architecture were selected
and explored in depth. Among the mechanisms discussed in chapter 4, the in-
dexing one was chosen, following the principle of the path-least-traveled. The
marking mechanism, for instance, shows many similarities with the class of
reinforcement learning techniques, which have already received extensive re-
search attention [103] over recent years. Moreover, the indexing one seemed
more interesting to explore, since it relates more closely to the differences
between the two representation schemata of the model.

The indexing mechanism was then approached from two perspectives.
The first one modeled the occurrence of stimuli as a probabilistic event,
in order to draw conclusions with respect to the probabilities of matching.
This approach encompassed analyses of efficiency and of the probabilities of
incurring errors. A second approach assumed that the two representation
schemata form distinct metric spaces. The consequences of the different res-
olutions of the cognitive and perceptual representations were explored, under
an assumption relating the two metric spaces. An illustrative example — the
handwritten digits classification domain — accompanies the theoretical con-
siderations, assessing the benefits of the double-representation paradigm in
that specific domain. It was interesting to verify that, even with features
yielding poor information about the digits class, significant efficiency gains
were obtained.

Following the metric space formulation, the problem of developing appro-
priate perceptual representations aiming at an efficient indexing of cognitive
images was addressed. To tackle this problem, two complementary strategies
were explored: the problem of identifying and adapting an appropriate per-
ceptual metric, and the problem of improving the perceptual representation
itself. Chapter 6 reports progress made on these two fronts. Experimental
results were obtained using synthetic data sets consisting of random points
in finite dimensional spaces. The results have corroborated the formulated
theoretical hypotheses. However, it was not possible to obtain, so far, sim-
ilarly good results with data sets from real domains. Possible explanations
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for this shortcoming were discussed at the end of the previous chapter.

7.3 Future research directions

From the two methodologies discussed above, the second one seems the most
promising one. Providing the conceptual model with a solid theoretical basis
is a fundamental endeavor. Nonetheless, one must always keep in mind that
the raison d’être of the model is its integration into an fully functional agent
architecture. Therefore, the first methodology should be resumed as soon as
the theoretical framework of the agent model reaches a sufficient degree of
maturity.

Regarding the perceptual metric and representation adaptation problem
(section 6.4), it is crucial to orient experimental work towards domains be-
yond those of synthetic data points uniformly distributed in space. To do
that, it is important to relax the need for a good data fit. It was observed
experimentally that when the data does not fit the adapted metric (and/or
representation), the results are not satisfactory. This was quite visible in the
experimental results: dimensions not represented in the perceptual represen-
tation led the algorithm, for instance, to ascribe relevance to noise features
(as non-zero metric weights). One way to relax the optimization is to allow
for ambiguity in the perceptual matching, leaving the finer discrimination
to the cognitive one. In this way, the problem of finding a good cognitive
match is divided in two phases: the perceptual match, taking into account
a perceptual representation of low dimensionality, yielding an intermediate
result, on which the final match is performed by the cognitive layer.

Following the same methodological path, the remaining aspects of the
conceptual model deserve a theoretical treatment. Associating cognitive and
perceptual images with desirability vectors, for instance, is an essential mech-
anism for providing meaning to stimuli, grounding it in terms of desirability
for the agent. This research crosses necessarily other areas, such as utility
theory, as well as decision theory, dynamic programming, planning, among
others.

Although not in a completely overt fashion, this thesis assumes that the
cognitive and the perceptual images are internal representations of stimuli,
i.e., stimuli originating from the agent’s sensors. It could be interesting
to explore the idea of extending the proposed model beyond stimulus rep-
resentation. For instance, one could consider a cognitive (complex) and a
perceptual (simple) representation of actions. One could also consider more
complex representations involving not only actions, but also interaction, as
for instance in the case of manipulation tasks involving mechanical hands
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with visual feedback. Neuroscientific evidence has suggested the occurrence
of shared representations across sensory and motor spaces. The discovery
of mirror neurons in monkeys supports this hypothesis: it was found that
certain neurons were active both when the subject were performing a task,
and when the subject was observing another monkey performing the same
task [86]. This discovery suggests that the brain uses such shared represen-
tations to perform imitation.

One key issue of the agent model is efficiency. Real-time systems require
agents that perform adequately, taking into account that they cannot take
an unreasonable amount of time to respond to a solicitation from the envi-
ronment. This implies a trade-off between the optimality of a solution, and
the ability to respond to the environment in due time, thus providing a satis-
fying, but useful, solution. Herbert Simon discussed this trade-off within the
larger context of optimizing vs. satisfycing [171]. Anytime algorithms [218]
address this issue by providing the best solution possible for any time con-
straint, where ideally, the longer the available time, the better the quality
of the solution. Note that the indexing mechanism can be formulated as a
anytime algorithm, once one considers that the cognitive match is performed
in the order determined by the preceding perceptual match, and that the
decision process could use the best cognitive match found within the allotted
time.

The quest for real-life problems originates from the biological motivation
behind the use of emotions: the biologically inspired hypothesis that one
of the main contributions of emotional mechanisms resides in the capability
shown by humans of dealing with complex, dynamic, and unpredictable envi-
ronments. Even with sophisticated cognitive competences, when there is an
impairment of the emotional mechanisms, subjects are no longer capable of
adequately dealing with simple day-to-day decisions. Their cognitive capa-
bilities are intact (as asserted by IQ tests), but the same cannot be said about
their capability to deal with their daily lives. Therefore, and transporting
this point to the domain of this work, it should be kept in mind that the
ultimate goal is a sustained capability of dealing appropriately with real-life
complex problems. It is then crucial to orient research towards this kind of
problems.

The challenges posed by real-life problems should. however, not be con-
fused with the sheer complexity of, for instance, combinatorial problems.
Current state-of-the-art algorithms are capable of dealing efficiently with
combinatorial problems of considerable complexity. However, there are many
issues that prevent them to address real-life domains in a straightforward
fashion. One of the key issues is the structure of the world that can be
exploited, yielding efficient ways of coping with it. Exploring the world
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structure is closely related with the problem of representing it internally.
Appropriate representations can have a huge impact on the computational
costs to find a solution.
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Carlos Pinto-Ferreira. Sociedades de agentes e implementação de in-
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