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ResumoNa �ultima d�e
ada a modela�
~ao, an�alise e 
ontrolo de sistemas 
omplexos, embebidos e de larga es
ala,tem vindo a ser alvo de aten�
~ao 
res
ente. Os avan�
os e o reduzido 
usto de novos e mais performantesdispositivos de 
omuni
a�
~ao, 
�al
ulo e sensoreamento alargam 
onsideravelmente os limites do que �ehoje exequ��vel. As apli
a�
~oes a
tuais ultrapassam j�a o 
onhe
imento formal e te�ori
o que existe sobreestes sistemas pelo que uma abordagem formal reveste-se de parti
ular importân
ia. Neste sentido,prop~oe-se algumas solu�
~oes nesta tese ao 
onsiderar Sistemas H��bridos 
omo modelo formal para sistemasembebidos.Neste trabalho introduz-se um enquadramento te�ori
o e abstra
to para o estudo de sistemas de 
ontroloin
lu��ndo sistemas de 
ontrolo dis
retos, 
ont��nuos e h��bridos. Uma no�
~ao de abstra�
~ao �e apresentadapara sistemas de 
ontrolo h��bridos que pode ser en
arada 
omo um sistema quo
iente que preservaas propriedades de interesse enquanto ignora detalhes de modela�
~ao. �E dedi
ada espe
ial aten�
~ao asistemas de larga-es
ala que s~ao usualmente 
onstru��dos atrav�es da interliga�
~ao de subsistemas. Umano�
~ao formal de 
omposi�
~ao �e tamb�em introduzida por forma a modelar a interliga�
~ao e sin
roniza�
~aode subsistemas. Mostra-se que a no�
~ao de abstra�
~ao �e 
omposi
ional no sentido em que a 
omposi�
~ao deabstra�
~oes de subsistemas �e uma abstra�
~ao do sistema global. �E tamb�em proposto um algoritmo para
al
ular abstra�
~oes de sistemas h��bridos. Estes resultados perspe
tivam uma metodologia hier�arqui
apara efe
tuar tarefas de an�alise e s��ntese em sistemas de 
ontrol h��bridos.Palavras Chave: Sistemas H��bridos, Sistemas de Controlo, Abstra
�
~oes, Composi
ionalidade, Hierar-quias. iii
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Abstra
tIn the last de
ade an in
reasing attention has been paid to the modelling, analysis and 
ontrol of large-s
ale, embedded, 
omplex systems. The advan
es and the low 
ost of new and more powerful 
omputing,sensing and 
ommuni
ating devi
es push further the limits of what is now possible to a

omplish. Todaysappli
ations have gone way beyond the formal and theoreti
al understanding we have about those systems.This fa
t suggests a formal approa
h and this thesis provides some answers by regarding Hybrid Systemsas a formal model for embedded systems.In this work we introdu
e an abstra
t framework for the study of 
ontrol systems 
apturing 
ontinuous,dis
rete and hybrid 
ontrol systems. A notion of abstra
tion is de�ned for hybrid 
ontrol systems whi
h
an be regarded as a quotient system that preserves properties of interest while ignoring modellingdetails. Spe
ial attention is devoted to large s
ale systems whi
h are usually built by inter
onne
tingsmaller subsystems. A formal notion of 
omposition is also introdu
ed to model the inter
onne
tionand syn
hronization of subsystems. It is shown that the notion of abstra
tion is 
ompositional in thesense that by 
omposing abstra
tions of subsystems one obtains an abstra
tion of the overall system.An algorithm is proposed to 
ompute abstra
tions of hybrid 
ontrol systems providing a useful toolto deal with the inherent 
omplexity of embedded systems. These results perspe
tivate a hierar
hi
almethodology to perform analysis and design tasks for hybrid 
ontrol systems.Keywords: Hybrid Systems, Control Systems, Abstra
tions, Compositionality, Hierar
hies.
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CHAPTER 1Introdu
tionIn the last de
ade an in
reasing attention has been paid to the modeling, analysis and 
ontrol of large-s
ale, embedded, 
omplex systems. The thrust from the appli
ation side has been tremendous andin
ludes, among others:� Automotive engines, where dis
rete phenomena su
h as torque generation and spark ignitionintera
ts with the 
ontinuous evolution of the power train and air dynami
s [9℄, see also [8℄.� Air-TraÆ
 management where dis
rete de
isions about the 
ontinuous evolution of several air
raftsare addressed [82℄.� Chemi
al bat
h plants operating in multi-bat
h mode where a dis
rete sequen
e of 
ontinuousa
tions su
h as mixing, heating or 
ooling produ
ts needs to be determined in order to produ
ethe desired produ
t [54℄.� Manufa
turing industry where some pro
esses are modeled by a 
ontinuous and a dis
rete layer.In the 
ontinuous, time driven layer, the manufa
turing of produ
ts is des
ribed by 
ontinuousdynami
s whereas on the dis
rete layer, a dis
rete event system models the manufa
turing systembased on events generated by the 
ontinuous pro
esses [22℄.� Pro
ess 
ontrol [68℄.� TCP 
ongestion 
ontrol [28℄.� Biomole
ular networks [3℄.� et
.It is fair to say that embedded systems are now everywhere where we mean by embedded systems all thoseappli
ations where 
omputing systems interfa
e the 
ontinuous world through sensors and a
tuators. Theadvan
es and the low 
ost of new and more powerful 
omputing, sensing and 
ommuni
ating devi
es pushfurther the limits of what is now possible to a

omplish. Todays appli
ations have gone way beyond theformal and theoreti
al understanding we have about those systems. In fa
t, designing embedded systemsis a very diÆ
ult task sin
e several di�erent domain spe
i�
 te
hniques must be 
ombined together.Software engineering and 
on
urren
y theory te
hniques as well as real-time s
heduling need to meetsignal pro
essing and 
ontrol theory to a

ommodate the needs of embedded systems. The in
reasinglysophisti
ation of the produ
ts, the large number of modes of operation as well as intera
tivity and dynami
re
on�gurability render impossible for single engineer to 
ompletely design an embedded system. These1



2 1. INTRODUCTIONdiÆ
ulties 
all for a formal approa
h. In this spirit we regard Hybrid Systems as a formal model forembedded systems sin
e it allows to spe
ify both the 
ontinuous (world) dynami
s as well as the dis
rete(
omputational) dynami
s.The emerging 
omplexity of embedded systems also raises a fundamental question that we partially ad-dress in this work: how to ensure that embedded systems satisfy their spe
i�
ations? The high 
omplexityof these systems as well as the di�erent s
ienti�
 te
hniques used in their design makes almost impossibleto formally prove that the system satis�es desired properties. Two approa
hes to this question seem spe-
ially promising: one is to satisfy the spe
i�
ations by 
onstru
tion so that it is not required to prove thatthe �nal system meets its requirements. The other is to prove the desired properties by taking advantageof the stru
ture of large-s
ale 
omplex embedded systems. In any 
ase, formal methods are ne
essaryto understand how the properties of subsystems are propagated or preserved by the inter
onne
tion andsyn
hronization of these subsystems. This 
learly demands for formal notions of 
ompositionality betweensubsystems or submodules. It is also ne
essary to have formal notions of abstra
tion for 
omplexity re-du
tion of these systems. Abstra
tions allows ma
ro modeling by ignoring modeling details that areunimportant at a desired level of abstra
tion. When an engineer is developing a parti
ular module heonly needs to take into 
onsideration the behavior of the general system that in
uen
es or is in
uen
edby the spe
i�
 module under development. He would therefore 
onsider only two systems: the moduleto be designed and an abstra
tion of the remaining system that hides irrelevant details. The 
on
epts ofabstra
tion and 
ompositionality will be re
urrent themes through this thesis.1. Hierar
hies of Compositional Abstra
tionsIt has been re
ognized and widely a

epted that hierar
hies are a very useful way of dealing with the
omplexity of large s
ale systems. Examples of the use of hierar
hies are 
ommonly spread throughoutsystems engineering. However, its use in real appli
ations, and sometimes even in the a
ademi
 worldhas not been followed by an e�ort to formalize and to understand the modeling power and expressivenessor the analysis and synthesis advantages/drawba
ks when 
ompared with single-layered models. Ex
eptfor the theoreti
al 
omputer s
ien
e 
ommunity whi
h has already developed very mature notions ofabstra
tion and 
omposition, in parti
ular, in the areas of 
on
urren
y theory [52℄ [89℄, and 
omputeraided veri�
ation [48℄, no su
h e�ort was ever made in the 
ontrol 
ommunity. This e�ort, by the
omputer s
ientists, has resulted in formal and very meaningful notions of abstra
tion whi
h are usedto ta
kle exponential explosion of purely dis
rete systems. Given a dis
rete system, an abstra
tion 
anbe seen as a quotient system that preserves some properties of interest while ignoring modeling details.Language equivalen
e, simulation, and bisimulation are established notions of abstra
tion for dis
retesystems that preserve properties expressed in various temporal logi
s.



1. HIERARCHIES OF COMPOSITIONAL ABSTRACTIONS 3We believe, however, that these ideas, notions and 
on
epts are so general and useful that it is veryworth it to transpose them to the 
ontinuous as well to the hybrid world. From the 
ontinuous side thisline of resear
h initiated in [62℄ and has resulted in automati
 
onstru
tions of abstra
tions for linear
ontrol systems, nonlinear 
ontrol systems [63, 64℄ and Hamiltonian 
ontrol systems [77℄ while preserving
ontrol theoreti
 properties. Preliminary investigations trying to 
ombine the 
ontinuous with the dis
reteresults were presented in [77℄, however, we take a di�erent and more general approa
h in this thesis that
omprise those results as a spe
ial 
ase. Other approa
hes to this problem in the hybrid 
ase are des
ribedin [4, 15, 18, 69℄.The approa
h taken in this work regards dis
rete, 
ontinuous and hybrid systems as parti
ular examplesof a more general notion of abstra
t 
ontrol systems. It is within this 
lass of systems that the notions ofsimulation, bisimulation and abstra
tion will be formulated. We identify the stru
ture of abstra
t 
ontrolsystems and restri
t the 
lass of maps between them to those that respe
t that stru
ture. This is elegantlypresented by making use of some elementary notions of 
ategory theory. We therefore de�ne the 
ategoryof abstra
t 
ontrol systems whi
h will serve as the domain of mathemati
al dis
ourse for our study. Anabstra
tion of a given abstra
t 
ontrol system will simply be another abstra
t 
ontrol system su
h thatthere is a stru
ture preserving (morphism) surje
tive map from the original system to the abstra
tion.This quotienting or aggregation map de�nes what is ignored and what remains from the original model.All the properties that will be preserved from the original system to the abstra
tion or re
e
ted from theabstra
tion to the original system will depend 
riti
ally on the stru
ture that is preserved by the maprelating both systems. We determine whi
h further assumptions on the abstra
ting maps are required topreserve hybrid systems relevant properties.Stru
ture preserving maps are 
losed under 
omposition and this property allows to build an hierar
hyof di�erent levels of abstra
tion. If one starts with system A, one 
an extra
t an abstra
tion B and thenfurther abstra
t C from B. By 
omposing the aggregation maps we ensure that C is still an abstra
tionfrom the original system, as displayed in Figure 1. By this pro
ess we 
an formalize an hierar
hy with any�nite number of levels and provide a 
on
eptual basis for a hierar
hi
al approa
h to proof, veri�
ationor design methodologies for large-s
ale systems. Suppose we want to prove that property P is true forsystem A. If the maps between system A and its abstra
tions are su
h that all the models are equivalentwith respe
t to that property, then determining if the property holds for A is equivalent to determiningif the property holds for C, whi
h has lower 
omplexity.Another related 
on
ept that is extremely useful in dealing with the 
omplexity of large s
ale systemsis 
ompositionality. Common large-s
ale systems are built by inter
onne
ting smaller subsystems. Thisshould be 
onsidered as stru
ture for those parti
ular systems that should be exploited to further redu
ethe 
omplexity of analysis and/or design tasks. We introdu
e a formal notion of parallel 
ompositionwith syn
hronization, modeling this aspe
t of large-s
ale systems, and show how we 
an use it to simplify



4 1. INTRODUCTION

System A

System B

System C

p

�

System A

System C

p h �

Figure 1. A hierar
hy of abstra
tions of system A.
the task of 
omputing abstra
tions. Indeed, we show that abstra
tions are 
ompatible with parallel
omposition in the sense that if system A is in fa
t built by inter
onne
ting subsystems A1, A2 and A3,then we 
an abstra
t ea
h Ai to Bi, individually. Compatibility now means that the system obtained byinter
onne
ting the subsystems B1, B2 and B3 is an abstra
tion of system A as displayed in Figure 2.Clearly the task of abstra
ting ea
h subsystem will be easier to a

omplish then abstra
ting the wholesystem A, spe
ially for large-s
ale systems.

System A

System B

A1

p�

A2 A3

p� p�p

B1 B2 B3

=

=

Figure 2. Abstra
tion of system A as a whole and subsystem by subsystem.These ideas will be dis
ussed in grater detail in the next se
tion where we summarize the thesis 
hapters.



2. THESIS OUTLINE 52. Thesis outlineThis thesis is divided into 6 
hapters 
overing some aspe
ts of 
ontinuous abstra
tions, hybrid abstra
tionsand multi-agent systems.2.1. Mathemati
al Ba
kground. In this 
hapter we review some mis
ellaneous mathemati
alfa
ts required through the thesis. We introdu
e some elementary notions of 
ategory theory whi
hwill provide the formal setup for our study of 
ompositional abstra
tions. Some ideas from theoreti
al
omputer s
ien
e provide the ne
essary ba
kground for the dis
rete part of hybrid systems while the
ontinuous part requires some notions of di�erential geometry and di�erential geometri
 
ontrol theorywhi
h are also presented in this se
tion.2.2. A Walk Through the Continuous World. With the goal of developing a general theory ofabstra
tions for hybrid 
ontrol systems 
omprising the already existing theory for dis
rete systems andthe re
ent developed theory for 
ontinuous system, we fa
ed the need to extend the existing 
ontinuousresults. A
tually, we wanted to de�ne a parallel 
omposition operator with syn
hronization for hybridsystems that would have as a spe
ial 
ase the existing results for 
omposition of transition systems withevent syn
hronization. It so happens that, in our interpretation, the events 
orrespond to the inputs ofa 
ontrol system and the existing results for 
ontinuous abstra
tions did expli
itly model the inputs. Wehave thus extended the 
ontinuous abstra
tion theory from the state spa
e manifold to the 
orresponding
ontrol bundle. In this 
hapter we present a notion of simulation expli
itly modeling the inputs thatis equivalent to the existing one, and 
hara
terize the geometry of the 
ontrol bundle of a simulationindu
ed by an equivalen
e relation on the base spa
e of the original 
ontrol system. We were stronglyin
uen
ed by some ideas of 
ategory theory and handled the problem in a 
ategori
al way. This turnedout to be useful in various ways sin
e we gained a mu
h deeper insight into the stru
ture of 
ontinuous
ontrol systems. But, perhaps even more important, is the fa
t that we were able to distinguish whi
hproperties of 
ontinuous 
ontrol systems where intrinsi
 and whi
h depended on the additional stru
turewe assumed (smoothness). With these insights, provided by the 
ategori
al approa
h, we developed asimilar theory for hybrid 
ontrol systems in the next 
hapter. It was also extremely rewarding the fa
tthat a large number on interesting problems and resear
h dire
tions were also unveiled in this walk troughthe 
ontinuous world.This 
hapter aimed at a 
on
eptual and formal understanding of the stru
ture of a hierar
hy of 
ontrolbundles indu
ed by an hierar
hy of abstra
tions. We have also exposed the stru
ture of the maps relatingthe inputs of a 
ontrol system to the inputs of its abstra
tion. Although the results enable the developmentof a hierar
hi
al 
ontrol theory for 
ontinuous systems it was never the purpose to pro
eed towards resultsdire
tly useful to the pra
titioner. In fa
t, the s
ar
e examples and the language of 
ategory theory may



6 1. INTRODUCTIONrepeal some readers although we have only used some elementary fa
ts from 
ontrol theory and di�erentialgeometry in our approa
h. To over
ome these diÆ
ulties we made Chapter 4 independent of Chapter 3,ex
ept for some referen
es that 
an safely be ignored without risking the 
omprehension of that 
hapter.2.3. Hybrid Control Systems. This 
hapter of the thesis 
ontains the major 
ontributions. A
ompletely abstra
t and general theory of 
ontrol systems is presented. In this general framework,strongly in
uen
ed by simple 
ategori
al ideas, we de�ned and proved all the relevant 
on
epts andresults that we later spe
i�ed to hybrid 
ontrol systems. On the �rst part of this 
hapter we providea general notion of 
ontrol system en
ompassing dis
rete, 
ontinuous and hybrid 
ontrol systems. Weintrodu
e a notion of abstra
tion and determine some preserved properties. This notion of abstra
tionalso de�nes an equivalen
e relation on the 
lass of 
ontrol systems if we render it symmetri
 sin
e it wasalready transitive and re
exive. We give 
onditions for equivalen
e whi
h are, in prin
iple, easier to 
he
kthan the de�nition and move towards 
ompositionality. We de�ne a 
omposition operator that models asystem built by the inter
onne
tion and syn
hronization of two (or any �nite number of) subsystems. Wealso show that our operator is 
ompatible with the introdu
ed notion of abstra
tion. On the se
ond partof the 
hapter all of these results are instantiated for the hybrid 
ase and some suÆ
ient results (whi
hare easier to 
he
k then the suÆ
ient and ne
essary ones) are also given. We also provide a very brieftreatment of the additional assumptions required for abstra
tions to preserve a purely hybrid phenomena:Zeno sequen
es. It is fair to say that most of the work in this 
hapter was strongly in
uen
ed by 
omputers
ien
e ideas spe
ially in the �elds of 
on
urren
y and 
omputer aided veri�
ation and that we followed
losely [89℄ in our developments. We have, however, taken a 
ontrol theory twist in the interpretation ofsome of the 
on
epts and results.Although we provide the standard de�nition of hybrid 
ontrol systems, the hybrid automaton, we pre-ferred to work in the abstra
t setting introdu
ed in the �rst part of the 
hapter. However, when spe-
ializing the developed results for hybrid 
ontrol systems, we returned to the notation and 
on
epts ofthe hybrid automaton to make the developed results a

essible to a wider audien
e. As in the se
ond
hapter, the abstra
t formulation of the addressed problems and the language of 
ategory theory may notplease all of the readers, spe
ially those from the 
ontrol 
ommunity where 
omputer s
ien
e ideas and
ategori
al language are rather new. We feel, however, that it is a risk worth taking as the te
hnologi-
al advan
es are pushing the limits of our knowledge further and further with in
reasingly 
ompli
atedproblems. This 
an only be mat
hed by an e�ort from the 
ontrol 
ommunity to use more sophisti
atedand diverse mathemati
al tools to address these new problems. In this sense, this work represents a steptowards this new interdis
iplinary vision of the new systems and 
ontrol theory.2.4. Formations and Abstra
tions of Multi-Agent Systems. This 
hapter 
olle
ts some re-sults on formations of multi-agent systems as an illustrative example of some of the 
on
epts introdu
ed



2. THESIS OUTLINE 7in Chapter 4. Sin
e the word agent may have di�erent meaning a

ording to the s
ienti�
 
ommunitywhere it is employed it matters to stress that we mean by multi-agent systems, systems 
omposed byseveral 
ontrol systems that usually require some form of 
ommuni
ation, 
oordination or 
ooperation toa
hieve the desired spe
i�
ations. In this regard we introdu
e a formal model for formations allowing thestudy of the feasibility problem: Given a set of agents, their kinemati
s, a set of inter-agent 
onstraintsde�ning the formation, determine if there are traje
tories for the individual agents satisfying all the 
on-straints. This problem is solved and the 
omputations ne
essary to determine the answer to this questionlead also to the solution of the group abstra
tion problem: Given a feasible formation, extra
t a smaller
ontrol system, the group abstra
tion, representing the formation as a whole. This new 
ontrol systemthat we 
all the formation or group abstra
tion has smaller 
omplexity than the original 
ontrol systemsand also ensures that all its traje
tories satisfy the formation 
onstraints.The group abstra
tion introdu
ed in this 
hapter is in fa
t an instantiation of the notion of parallel
omposition with syn
hronization that was introdu
ed for abstra
t 
ontrol systems in Chapter 4. Inparti
ular, the group abstra
tion is no more then the parallel 
omposition of the individual agents withsyn
hronization over the formation 
onstraints.This work on formation was 
on
eived in order to be a

essible to wide audien
e 
omprising the roboti
s,
ontrol and aerospa
e 
ommunities. In this sense we have deliberately emphasized the readability overthe mathemati
al sophisti
ation. We have, therefore, preferred to talk about pointwise solving equationsof the form Ax = b on manifolds than to talk about exterior di�erential systems with independen
e
onditions.2.5. Con
lusions. In the last 
hapter we review the 
ontributions of this thesis, present the overall
on
lusions as well as several important topi
s for further resear
h.



8 1. INTRODUCTION



CHAPTER 2Mathemati
al Ba
kgroundIn this se
tion we review the basi
 mathemati
al 
on
epts required for the presentation of the ideas inthis work. 1. Mis
ellaneousWe start by reviewing some mis
ellaneous mathemati
al fa
ts to set notation. If A is a set, we denotethe set of all subsets of A, also 
alled the power set of A, by P(A). Let f : A �! B be a map, if S is asubset of A we denote by f(S) the subset of B de�ned by:f(S) = [s2S f(s)(2.1)When f is a linear map between modules or ve
tor spa
es we denote the range of f by R(f) = f(A). Wealso use the set notation f�1(b) to refer to all the points a 2 A su
h that f(a) = b and if S is a subset ofB we denote by f�1(S) the set: f�1(S) = [s2S f�1(s)(2.2)1.1. Relations. A relation is a generalization of a fun
tion in the sense that it assigns to ea
helement in its domain a set of elements in its 
odomain. Mathemati
ally a relation R between the setsS1 and S2 is simply a subset of their Cartesian produ
t, that is:R � S1 � S2(2.3)The domain of a relation is the set:dom(R) = fs1 2 S1 : 9s2 2 S2 (s1; s2) 2 Rg(2.4)and the range of a relation is de�ned by:range(R) = fs2 2 S2 : 9s1 2 S1 (s1; s2) 2 Rg(2.5)A relation is said surje
tive if range(R) = S2. Given two relations R � S1�S2 and R0 � S2�S3 we 
ande�ne their 
omposition to be the relation R0 ÆR � S1 � S3 de�ned by:R0 ÆR = f(s1; s3) 2 S1 � S3 : 9s2 2 S2 (s1; s2) 2 R ^ (s2; s3) 2 R0g(2.6) 9



10 2. MATHEMATICAL BACKGROUNDGiven a relation R � S1 � S2 we denote its inverse relation as R�1 � S2 � S1, given by:R�1 = f(s2; s1) 2 S2 � S1 : (s1; s2) 2 Rg(2.7)An obje
t that we will use frequently is the set valued map R : S1 �! P(S2) indu
ed by a relation R andde�ned by: R(s1) = fs2 2 S2 : (s1; s2) 2 Rg(2.8)Given a map f : S1 �! S2 it indu
es the relation R = f(s1; s2) 2 S1 � S2 : s2 = f(s1)g. Conversely,every relation R � S1�S2 with domain dom(R) = S1 and su
h that R(s1) is a singleton for every s1 2 S1de�nes a map f : S1 �! S2, by f(s1) = R(s1).We also introdu
e some notation for later use. Given relations R1 � S1 �S2, R2 � S3 �S4 and a subsetL � S1 � S3 we de�ne the new relations R1�2 and R1�2jL as:R1�2 = f((s1; s3); (s2; s4)) 2 (S1 � S3)� (S2 � S4) : (s1; s2) 2 R1 ^ (s3; s4) 2 R2g(2.9) R1�2jL = f((s1; s3); (s2; s4)) 2 R1�2 : (s1; s3) 2 Lg(2.10)The Cartesian produ
t S1 � S2 
omes equipped with two proje
tion maps �S1 : S1 � S2 �! S1 and�S2 : S1 � S2 �! S2. If we now 
hoose a subset R of the produ
t su
h that �S1(R) = S1 we 
an regardthis subset R as a (set theoreti
) �ber bundle over the base spa
e S1 and we 
all R a �bering relation.The �ber over s 2 S1, denoted by Rs = ��1S1 (s) is given by all the elements r 2 R su
h that �S1(r) = s.We also denote an element r = (a; b) 2 R by ba when we whish to emphasize the �ber part of r.1.2. Monoids. A monoid is a triple (M; �; ") whereM is a set 
losed under the asso
iative operation� :M�M�!M and " is a spe
ial element ofM 
alled identity. This element satis�es " �m = m � " = mfor any m 2M. We will usually denote m1 �m2 simply by m1m2 and refer to the monoid simply asM.Given two elements m1 and m2 fromM we say that m1 is a pre�x of m2 i� there exists another m 2Msu
h that m1m = m2. Suppose now that we have a �bering relation R � S �M with base spa
e S. If��1S (s) 
ontains (s; ") and is pre�x 
losed for every s 2 S then we 
all R a �bering monoid.We now relate relations with �ber bundles and monoids. Suppose that the sets S1 and S2 are in fa
t�ber bundles. Then a relation R � S1 � S2 indu
es a relation RB � B1 �B2 on the base spa
es B1 andB2 of S1 and S2, respe
tively, de�ned by:(b1; b2) 2 RB i� (b1; b2) = (�S1(s1); �S2(s2)) and (s1; s2) 2 R(2.11)If the �ber bundles have a ri
her stru
ture su
h as �bering monoids we need the relation to respe
t thatstru
ture. We then say that a relation R � S1 � S2 between two �bering monoids is �bering monoidrespe
ting i� satis�es:� Identity: (b1; b2) 2 RB ) ((b1; "); (b2; ")) 2 R



2. CATEGORY THEORY 11� Semi-group: ((b1;m1); (b2;m2)); ((b01;m01); (b02;m02)) 2 R and (b1;m1m01) 2 S1) ((b1;m1m01); (b2;m2m02)) 2 R.
2. Category TheoryIn this work we will not have the opportunity to fully take advantage of the doors opened by 
ategorytheory, but we will rather make an elementary use of it. We point the reader to [43℄ for further detailsas well to [44℄ and [5℄ (by this order) for a sequen
e of books that provide the ne
essary \maturity"for [43℄. Informally speaking, a 
ategory is a universe of mathemati
al dis
ourse and is perhaps betterdes
ribed by examples. If one is interested in group theory one would 
ertainly work in the universe ofgroups and group homomorphism, whereas if one is learning elementary topology the natural universeare topologi
al spa
es and 
ontinuous maps between then. In linear algebra one deals with ve
tor spa
esand linear maps, in di�erential geometry with smooth manifolds and smooth maps between then, et
.This idea of universe of mathemati
al dis
ourse 
an be formally de�ned as follows:Definition 2.1 (Category). A 
ategory is a tuple (O; hom; id; Æ) 
onsisting of:� A 
lass of obje
ts O.� For ea
h pair of obje
ts (A;B) belonging to O, a set hom(A;B). The elements of hom(A;B)are 
alled morphisms from A to B. An element of this set f 2 hom(A;B) is usually denotedgraphi
ally as A f�! B.� For ea
h obje
t A 2 O a spe
ial morphism A idA�! A, 
alled the identity on A.� A binary operation whi
h maps a pair of morphisms (A f�! B;B g�! C) to the 
omposite1A gÆf�! C while satisfying:{ Asso
iativity: h Æ (g Æ f) = (h Æ g) Æ f whenever the 
omposition is de�ned.{ Identity: for a morphism A f�! B we have idB Æ f = f = f Æ idA.{ The sets hom(A;B) are pairwise disjoint.In the above examples the obje
ts are the groups, topologi
al spa
es, et
, while the arrows are the grouphomomorphisms, 
ontinuous maps, et
, between them. As morphisms are displayed graphi
ally, moreelaborate relations between morphisms are usually displayed in 
ommutative diagrams. We shall say thata diagram 
ommutes i� the 
omposition of morphisms in any path from one obje
t to another obje
t is1Note that 
omposition of f and g is only de�ned if the target of f equals the sour
e of g.



12 2. MATHEMATICAL BACKGROUNDthe same. Consider for example the following diagram
C D-jA B-f?h ?g(2.12)where 
ommutativity simply means that the two existing paths from A to D are equal, that is gÆf = jÆh.We will almost only use 
on
rete 
ategories where all the obje
ts 
an be seen as sets with added stru
-ture and the morphisms are maps between the sets that preserve the stru
ture. This is easily seen fortopologi
al spa
es whi
h are sets with the added 
olle
tion of open sets as stru
ture or manifolds whi
hare sets equipped with a maximal atlas.We shall make some use of the following obje
ts:Definition 2.2 (Produ
t). Let A and B be obje
ts in a 
ategory. The produ
t of A and B is the triple(C; �A; �B) su
h that for any other triple (C 0; �0A; �0B) there exists one and only one morphism � makingthe following diagram 
ommutative:

C 0�0A ����IA C� �A B-�B6� �0B�����(2.13)Note that the produ
t 
aptures the relevant notion of produ
t with respe
t to the 
orresponding 
ategory.The produ
t on the 
ategory of sets and maps between them is the usual Cartesian produ
t, while in the
ategory of groups is the dire
t produ
t, in the 
ategory of topologi
al spa
es is the Cartesian produ
tof the supports equipped with the produ
t topology, et
.Another obje
t that we will use to 
apture the notion of embedding a system into a larger system is theequalizer:Definition 2.3 (Equalizer). Let g and h be morphisms in a 
ategory. The equalizer of g and h is themorphism f satisfying g Æ f = h Æ f and su
h that for any other morphism f 0 satisfying g Æ f 0 = h Æ f 0there is one and only one morphism f su
h that the following diagram 
ommutes:A B-fA06f f 0����� C-g -h



3. LABELED TRANSITION SYSTEMS 13The notion of 
o-equalizer, dual to the notion of equalizer, will also play an important role sin
e 
o-equalizers 
an be regarded as the 
ategori
al formalization of the 
ontinuous abstra
tion pro
ess des
ribedin Chapter 3:Definition 2.4 (
o-Equalizer). Let g and h be morphisms in a 
ategory. The 
o-equalizer of g and h isthe morphism f satisfying f Æ g = f Æh and su
h that for any other morphism f 0 satisfying f 0 Æ g = f 0 Æhthere is one and only one morphism f su
h that the following diagram 
ommutes:B C-ff 0����RC 0?fA -g -h
Another relevant 
on
ept is that of free obje
t, we now provide a parti
ular version of the 
on
ept thatis enough for our needs:Definition 2.5 (Free Obje
t). Let A be an obje
t in a 
ategory, S a set and i : S �! A the in
lusionmap taking s 2 S to i(s) = s 2 A. We say that A is free on the set S or that A is freely generated byS i� for every map i0 from S to A0 there exists one and only one morphism i su
h that the followingdiagram 
ommutes: S A-ii0����RA0?iThe elements of S are also usually 
alled the generators of A. We then see that in order to spe
ify amorphism from a freely generated obje
t to another obje
t it suÆ
es to de�ne the morphism on thegenerators sin
e it extends in a unique way to a morphism de�ned on its domain. This is something wellknown, for example, in the 
ategory of ve
tor spa
es. To de�ne a linear map between ve
tor spa
es itsuÆ
es to de�ne it on the basis of that spa
e sin
e it extends in a unique way to all the elements of theve
tor spa
e by linearity. 3. Labeled Transition SystemsAs already stated in the introdu
tion several ideas from theoreti
al 
omputer s
ien
e play a 
ru
ial rolein hybrid systems theory and also on this thesis. We now re
all the 
on
ept of labeled transition systems:Definition 2.6 (Labeled Transition Systems). A labeled transition system is a triple (Q;�;�!) whereQ is a set of states, � is a set of labels or events and �!� Q � � � Q is a (transition) relation. Iffurthermore Q and � are �nite we have a dis
rete labeled transition system.



14 2. MATHEMATICAL BACKGROUNDAlthough this notion has its roots in theoreti
al 
omputer s
ien
e and digital systems [29℄ we shallinterpret it in a 
ontrol theoreti
 way whi
h even di�ers from the dis
rete event systems 
ommunity [70,71, 16℄:The setQ is our model for the \state-spa
e", � is a set of labels asso
iated with the 
hoi
es and the relation�! determines how the 
hoi
es govern the evolution. An element (q1; �; q2) 2�! is usually representedgraphi
ally as q1 ��! q2 and is interpreted as the 
hoi
e � e�e
tuated at state q1 has the e�e
t of makingthe system evolve to the new state q2. Note that by using a relation to model the evolutions we allownondeterminism in the sense that both triples (q1; �; q2) and (q1; �; q3) may belong to �!, for example.However in this work we will make the assumption that all the systems are deterministi
 so that we 
anrepla
e the relation �! with the partially de�ned next-state map Æ : Q�� �! Q.Definition 2.7 (Input Traje
tories). Given a dis
rete transition system (Q;�;�!) and a state q0 2 Q,an input traje
tory (also 
alled a sequen
e, string or tra
e) starting at q0 is a �nite sequen
e of labels�1�2 : : : �i : : : �n su
h that q0 �1�! q1, q1 �2�! q3, .... and qn�1 �n�! qn, for some qi 2 Q, i = 1; : : : ; n.Although the emphasis on dis
rete 
ontrol systems in on the input traje
tories that 
an be feed (or thatare a

epted by) to the transition system, for 
ontinuous 
ontrol systems the emphasis is on the sequen
eof states that are visited by some 
hoi
e of inputs. In fa
t, we regard the labels � 2 � as inputs that we
an 
ontrol to in
uen
e the evolution des
ribed by Æ, where as in the 
omputer s
ien
e 
ommunity eventsare triggered by some external element that is beyond our 
ontrol.4. Di�erential GeometryWe now review the ne
essary 
on
epts from di�erential geometry following more or less 
losely [1℄ and [12℄.In this work we understand by a smooth manifold an Hausdor�, se
ond 
ountable di�erentiable manifold.Let M be a smooth manifold and TxM its tangent spa
e at x 2M . The tangent bundle of M is denotedby TM = [x2MTxM and �M is the 
anoni
al proje
tion map �M : TM �! M taking a tangent ve
torX(x) 2 TxM � TM to the base point x 2 M . We re
all that TxM has a ve
tor spa
e stru
ture overthe real �eld. Dually we de�ne the 
otangent bundle to be T �M = [x2MT �xM , where T �xM is the linearspa
e of all linear maps from TxM to the real �eld. The 
otangent bundle also 
omes equipped with anatural proje
tion map from T �M to M . Both TM and T �M 
an be endowed with the stru
ture of amodule over the ring of smooth real fun
tions on M . Now let M and N be smooth manifolds and � :M�! N a smooth map, we denote by Tx� : TxM �! T�(x)N the indu
ed tangent map whi
h maps tangentve
tors from TxM to tangent ve
tors at T�(x)N . If � is su
h that Tx� is surje
tive at x 2M we say that� is a submersion at x. When � is a submersion at every x 2 M we simply say that it is a submersion.When � has an inverse whi
h is also smooth we 
all � a di�eomorphism. We say that a manifold M isdi�eomorphi
 to a manifold N , denoted by M �= N , when there is a di�eomorphism between M and N .



4. DIFFERENTIAL GEOMETRY 15When this is the 
ase we 
an de�ne the pullba
k of a ve
tor �eld Y 2 TN , denoted by ��Y , as the ve
tor�eld X 2 TM given by X(x) = T�(x)��1Y (�(x)).To later des
ribe 
ontrol systems we will need the 
on
ept of �ber bundle:Definition 2.8 (Fiber Bundle). A �ber bundle is a tuple (B;M; �B ;F ; fOigi2I), where B, M and Fare smooth manifolds 
alled the total spa
e, the base spa
e and standard �ber respe
tively. The map�B : B �!M is a surje
tive submersion and fOigi2I is an open 
over of M su
h that for every i 2 I thereexists a di�eomorphism 	i : ��1B (Oi) �! Oi �F making the following diagram 
ommutative:��1B (Oi) Oi �F-	i
Oi?�B �oi������	(2.14)that is, satisfying �oi Æ	i = �B , where �oi is the proje
tion from Oi�F to Oi. The submanifold ��1B (x)is 
alled the �ber at x 2M and is di�eomorphi
 to F .We will usually denote a �ber bundle simply by � : B �!M . The morphisms in the 
ategory that has asobje
ts �ber bundles are 
alled �ber preserving maps:Definition 2.9 (Fiber Preserving Maps). Given a smooth map ' : B1 �! B2 between two �ber bundleswe say that ' is a �ber preserving map i� for any a; b 2 B1:�B1(a) = �B1 (b)) �B2 Æ '(a) = �B2 Æ '(b)(2.15)Note that a map ' : B1 �! B2 being �ber preserving implies and is implied by the existen
e of a map� :M1 �!M2 making the following diagram 
ommutative:
M1 M2-�B1 B2-'?�B1 ?�B2(2.16)Given �ber bundles B1 and B2 we will say that B1 is a subbundle of B2 if the in
lusion map i : B1 ,! B2is �ber preserving.



16 2. MATHEMATICAL BACKGROUNDGiven a map h :M �! N de�ned on the base spa
e of a �ber bundle we denote its extension to all of thebundle B by he, de�ned by the following 
ommutative diagram:
M N-h he����RB?�B(2.17)that is he = h Æ �B . We now 
onsider the extension of a map H : B �! TM to a ve
tor �eld in B. Wewill de�ne lo
al and global extensions of H . Globally, we de�ne He as the set of all ve
tor �elds X 2 TBsu
h that:

B TM-HX�����
��TB?T�B(2.18)
ommutes, that is T�B(X) = H . When working lo
ally, one 
an be more spe
i�
 and sele
t a distin-guished element of He, denoted by H l, whi
h satis�es in trivializing 
oordinates T�F(H l) = 0, where�F is the proje
tion from Oi � F to F . Using trivializing 
oordinates (x; b) this simply means thatH l = H ��x + 0 ��b . A ve
tor �eld Y : M �! TM on the base spa
e M of a �ber bundle 
an also beextended to a ve
tor �eld on the whole bundle. It suÆ
es to 
ompose Y with the proje
tion �B : B�! M and re
over the previous situation sin
e Y Æ �B is a map from B to TM . Given a distribution Don M we denote by De the extension of D de�ned as:De = [X2DXe(2.19)Note that the previous de�nitions imply the equality Ker(The) = (Ker(Th))e sin
e Ker(The) =Ker(T (h Æ �B)) = Ker(Th Æ T�B) = fY 2 TB : T�B(Y ) 2 Ker(Th)g = (Ker(Th))e.We re
all that a distribution is a smooth assignment of a subbundle of the tangent bundle, that is, atea
h point x 2M a distribution � assigns a linear subspa
e of TxM . Given ve
tor �elds X1; X2; : : : ; Xnsu
h that SpanfX1(x); X2(x); : : : ; Xn(x)g = �(x) for every x 2 M we abuse notation and identify �with the set of ve
tor �elds fX1; X2; : : : ; Xng. On the 
otangent bundle we have similar obje
ts, namely
odistributions. A 
odistribution assigns in a smooth way a subspa
e of T �xM at ea
h x 2 M . Also inthis 
ase we identify a distribution ! with the set of 
ove
tor �elds or one-forms f�1; �2; : : : ; �ng whenSpanf�1x; �2x; : : : ; �nxg = !x for every x 2 M . Given a distribution � there is a unique annihilating
odistribution ! de�ning �. This 
odistribution is de�ned as:! = f� 2 T �M j �(X) = 0 8X 2 �g(2.20)



5. CONTROL THEORY 17Conversely, a 
odistribution ! de�nes a unique distribution Ker(!) given by the set of all ve
tor �eldsX 2 TM su
h that !(X) = 0. If a 
odistribution ! de�nes a distribution � by annihilation we have that� = Ker(!).Consider for example a uni
y
le type robot. If we model its state spa
e by the manifold M = R2 � S1,denoting a point in M by (x; y; �) where x and y represent the position of the robot and � its orientationwe 
an de�ne its kinemati
s by a distribution. Consider the following basis for TM :X1 = 2666400137775 X2 = 26664
os �sin �0 37775 X3 = 26664� sin �
os �0 37775(2.21)With respe
t to this basis the kinemati
s is des
ribed by the distribution:� = X1u1 +X2u2(2.22)where u1 2 R and u2 2 R are 
ontrol inputs. Equivalently the kinemati
s is given by the 
odistribution:! = � sin �dx+ 
os �dy(2.23)sin
e any ve
tor �eld X 2 TM su
h that !(X) = 0 is of the form (2.22).Given distributions �1 on M1 and �2 on M2 we denote their dire
t sum �1 � �2 as the �ber bundlede�ned pointwise by: (�1 ��2)(x1; x2) = T i1(�1(x1))� T i2(�2(x2))(2.24)where i1 : M1 �! M1 �M2 and i2 : M2 �! M1 �M2 are the 
anoni
al inje
tions. Note that the dire
tsum on the right side of (2.24) is performed on the ve
tor spa
e T(x1;x2)(M1 �M2).
5. Control TheoryWe regard 
ontrol systems as dynami
al systems where 
hoi
es in
uen
ing the evolution 
an be madeduring the evolution. Another interesting and useful interpretation of 
ontrol systems are families ofdynami
al systems (or their traje
tories if one adopts a behavioral point of view [66℄) parameterized byone or more 
ontrols. By 
hanging the 
ontrols we are 
hanging the dynami
al system, and therefore thetraje
tories or solutions.Continuous 
ontrol systems are usually des
ribed by di�erential equations on some manifold M withthe 
hoi
es parameterized by one or more 
ontrol inputs in
uen
ing dire
tly the di�erential equations.Consider, for example, the simplest me
hani
al system: a point mass on a line without any potential. If



18 2. MATHEMATICAL BACKGROUNDwe denote by x the position and by v the velo
ity we 
an des
ribe the equations of motion as:_v = 0_x = v(2.25)However if we have a mean of exerting a for
e F on that point mass the equations of motion would 
hangeto: _v = F_x = v(2.26)whi
h 
an be regarded as a family of di�erential equations parameterized by F . Changing the value ofF will 
hange the solutions of the di�erential equation.Resorting to the 
on
epts introdu
ed in Subse
tion 4 we introdu
e the notion of 
ontrol se
tion that is
losely related with 
ontrol systems and whi
h will be fundamental in our study of 
ontinuous abstra
tions:Definition 2.10 (Control Se
tion). Given a smooth manifold M , a 
ontrol se
tion on M is a subbundle�SM : SM �!M of TM .We denote by SM (x) the set of ve
torsX 2 TxM su
h that X 2 ��1SM (x). When we impose more stru
tureon SM we re
over more familiar obje
ts, su
h as if to ea
h x 2 M we assign a linear subspa
e of TxM ,then SM will be a distribution on M , if on the other hand, we assign an aÆne subspa
e then SM willbe an aÆne distribution. When SM is an aÆne distribution we may need to refer to the asso
iateddistribution denoted by � and de�ned pointwise by:�(x) = S(x) � S(x) = fX 2 TxM : X = Y � Z for some Y; Z 2 S(x)g(2.27)Sin
e the early days of 
ontrol theory it was 
lear that in order to give a global de�nition of 
ontrol systemsthe notion of input 
ould not be de
oupled from the notion of state [13, 88℄. The natural mathemati
alobje
t to 
onsider are �ber bundles:Definition 2.11 (Control System). A 
ontrol system �M = (UM ; FM ) 
onsists of a �ber bundle �UM : UM �!M
alled the 
ontrol bundle and a smooth map FM : UM �! TM making the following diagram 
ommutative:UM TM-FM
M?�UM �M�����	(2.28)



5. CONTROL THEORY 19that is, �M ÆFM = �UM , where �M : TM �!M is the tangent bundle proje
tion. Given a 
ontrol system�M = (UM ; FM ), the 
ontrol se
tion SM � TM of 
ontrol system �M , is naturally de�ned pointwise by:SM (x) = FM (��1UM (x))(2.29)for all x 2M .The 
ontrol spa
e UM is modeled as a �ber bundle sin
e in general the 
ontrol inputs available maydepend on the 
urrent state of the system. In lo
al 
oordinates, De�nition 2.11 redu
es to the familiarexpression _x = f(x; u) with u 2 ��1UM (x). The notion of 
ontrol se
tion allows us to refer in a 
on
ise wayto the set of all ve
tors that belong to the image of FM by saying that X 2 TxM belongs to SM (x) i�there exists a u 2 UM su
h that �M (u) = x and F (u) = X .We shall 
all a 
ontrol system, 
ontrol aÆne i� there exists 
oordinates around ea
h x 2 M su
h thatFM 
an be written as: FM = f(x) + nXi=1 gi(x)vi(2.30)where f(x); g1(x); g2(x); : : : ; gn(x) are (lo
ally de�ned) ve
tor �elds and v1; v2; : : : ; vn are 
ontrol inputs,that is, 
oordinates for the �ber above x. We also 
all ve
tor �eld f(x) the drift and 
all an aÆne 
ontrolsystem drift-free when f(x) = 0. We shall use the expression full nonlinear 
ontrol system to refer to anonlinear 
ontrol system that is not 
ontrol aÆne.Note that the stru
ture of the 
ontrol se
tion depends on the stru
ture of the 
ontrol system. For 
ontrolaÆne systems we have aÆne distributions as 
ontrol se
tions, if there is no drift we re
over distributionsas 
ontrol se
tions, however, in general, we will have to 
onsider arbitrary 
ontrol se
tions on M .Returning to the example of the point mass moving on the line we see that the state spa
e manifold M isR2 and the �ber bundle UM is in fa
t the trivial bundle UM = R2 �R. This 
ontrol system is an exampleof a 
ontrol aÆne system as 
an be seen by the expression of FM in 
oordinates:FM = f(x; v) + g1(x; v)v1 = 240v35+ 241035 v1(2.31)where v1 = F 2 R is the 
ontrol input.A 
ontrol system 
an alternatively be de�ned by a 
ontrol se
tion SM onM in the sense that at ea
h pointx 2M , SM (x) de�nes all the possible dire
tions along whi
h we 
an 
ow or steer our system. Sin
e we willneed to work with su
h 
ontrol systems in Chapter 3 in a 
ategori
al framework we introdu
e them alreadyusing 
ategori
al language. Given a 
ontrol se
tion SM there 
an be several 
ontrol parameterizations forSM and it matters to understand in what sense all those parameterizations represent the same 
ontrolsystem. This will be a

omplished by giving a 
ategori
al de�nition of 
ontrol parameterization.



20 2. MATHEMATICAL BACKGROUNDDefinition 2.12 (Control Parameterization). Let SM be 
ontrol se
tion on M , g : TM �! N andh : TM �! N two smooth maps su
h that SM = fX 2 TM : g(X) = h(X)g. A 
ontrol parameterizationfor SM is a 
ontrol system (UM ; FM ) su
h that g Æ FM = h Æ FM and for any other 
ontrol system(U 0M ; F 0M ) su
h that g ÆF 0M = h ÆF 0M there exists one and only one �ber-preserving map FM making thefollowing diagram 
ommutative: UM TM-FMU 0M6FM F 0M����� N-g -h(2.32)Sin
e the 
ontrol parameterization was de�ned through an universal property, any two 
ontrol parame-terizations are isomorphi
. It is in this sense that we do not need to distinguish between 
ontrol systemswith the same 
ontrol se
tion. They are the same 
ontrol system, up to a 
hange of 
ontrol 
oordinates.This will be important when 
onsidering the e�e
t of feedba
k sin
e this 
hange of 
ontrol 
oordinates 
anbe regarded as feedba
k. It is also important to mention that a 
ontrol parameterization is an equalizerin the 
ategory of smooth manifolds.Having de�ned 
ontrol systems the 
on
ept of traje
tories or solutions of a 
ontrol system is naturallyexpressed as:Definition 2.13 (Traje
tories of Control Systems). A 
urve 
 : I �! M , I � R+0 is 
alled a traje
toryof 
ontrol system �M = (UM ; FM ), if there exists a 
urve 
U : I �! UM making the following diagrams
ommutative:
I M-

U�����UM?�UM I TM-T

U�����UM?FM(2.33)where we have identi�ed I with TI .The above 
ommutative diagrams are equivalent to the following equalities:�UM Æ 
U = 
T 
 = FM (
U )whi
h mean in lo
al 
oordinates that x(t) is a traje
tory of a 
ontrol system if there exists an input u(t)su
h that x(t) satis�es _x(t) = f(x(t); u(t)) and u(t) 2 ��1UM (x(t)) for all t 2 I .



CHAPTER 3A Walk Through the Continuous World1. Introdu
tionIn the abstra
ting methodology proposed in [63, 64℄ it was impli
it that 
ertain states might be
omeinputs on the abstra
ted model. It is perhaps surprising that this abstra
ting methodology inter
hangesthe role of state and input. However, this fa
t is the 
ru
ial fa
tor that perspe
tivates a hierar
hi
al
ontrol theory. A 
ontrol design performed on a abstra
ted model is a 
ontrol law asso
iated with 
ertaininputs, but these are in fa
t states of a more detailed model. We 
an therefore regard a 
ontrol design as aspe
i�
ation for the evolution 
ertain state variables on the more detailed model. In a hierar
hi
al designparadigm those spe
i�
ations would then be re�ned to obtain a 
ontrol law that 
ould again be regardedas a spe
i�
ation for a even more detailed model. A 
omplete and thorough understanding of how thestates and inputs propagate from models to their abstra
tions will enable su
h a hierar
hi
al designs
heme. The purpose of this 
hapter is to give the �rst steps in this dire
tion. We address the problemof des
ribing the relation between states and inputs of di�erent levels of abstra
tion. To a

omplish thisgoal we will study quotients of 
ontrol systems sin
e they 
apture the notion of abstra
tion introdu
edin [63, 64℄.We will build on several a

umulated results of di�erent authors that in one way or another have made
ontributions to this problem. One of the �rst approa
hes was given in [40℄ where the analysis of the Liealgebra of a 
ontrol system lead to a de
omposition into smaller systems. In [72℄, Lie algebrai
 
onditionsare formulated for the parallel and 
as
ade de
omposition of nonlinear 
ontrol systems while the feedba
kversion of the same problem was addressed in [56℄. A di�erent approa
h was based on redu
tion ofme
hani
al systems by symmetries. In [83℄, symmetries were introdu
ed for me
hani
al 
ontrol systems,and further developed in [25℄ for general 
ontrol systems. The existen
e of su
h symmetries was then usedto de
ompose 
ontrol systems as the inter
onne
tion of lower dimensionality subsystems. The notion ofsymmetry was further generalized in [57℄, where it was shown that the existen
e of symmetries implies thata 
ertain distribution asso
iated with the symmetries was 
ontrolled invariant. This related the notion ofsymmetry with the notion of 
ontrolled invarian
e for nonlinear systems. Controlled invarian
e [55, 32℄was also used to de
ompose systems into smaller 
omponents. A di�erent approa
h was taken in [50℄where it was shown how to study 
ontrollability of systems evolving on prin
iple �ber bundles throughtheir proje
tion on the base spa
e. More re
ently, a modular approa
h to the modeling of me
hani
al21



22 3. A WALK THROUGH THE CONTINUOUS WORLDsystems has been proposed in [84℄, by studying how the inter
onne
tion of Hamiltonian 
ontrol systems
an still be regarded as a Hamiltonian 
ontrol system.In several of the above approa
hes, some notion of quotienting is involved. When symmetries exist, oneof the blo
ks of the de
ompositions introdu
ed in [25℄ is simply the original 
ontrol system fa
tored bythe a
tion of a Lie group representing the symmetry. If a 
ontrol system admits a 
ontrolled invariantdistribution, it is shown in [55, 32℄ that it has a simpler lo
al representation. This simpler representation
an be obtained by fa
toring the original 
ontrol system by the equivalen
e relation de�ned by 
onsideringthe leaves of the foliation indu
ed by the 
ontrolled invariant distribution, equivalen
e 
lasses. The notionof abstra
tion introdu
ed in [64℄ 
an also be seen as a quotient sin
e the abstra
tion is a 
ontrol systemon a smaller dimensional state spa
e de�ned by an equivalen
e relation on the state spa
e of the original
ontrol system. These fa
ts motivate fundamental questions su
h as existen
e and 
hara
terization ofquotient systems.In this 
hapter, we take a new approa
h to the study of quotients by introdu
ing the 
ategory of 
ontrolsystems as the natural setting for su
h problems in systems theory. The use of 
ategory theory forthe study of problems in system theory also has a long history whi
h 
an be tra
ed ba
k to the worksof Arbib (see [6℄ for an introdu
tion). More re
ently several authors have also adopted a 
ategori
alapproa
h as in [45℄ where the 
ategory of aÆne 
ontrol system is investigated. We mention also [74℄,where a 
ategori
al approa
h has been used to provide a general theory of systems.We de�ne the 
ategory of 
ontrol systems whose obje
ts are fully (non-aÆne) nonlinear 
ontrol systems,and morphisms map traje
tories between obje
ts. The morphisms in this 
ategory extend the notion of�-related systems in [60℄. In this 
ategori
al setting we formulate the notion of quotient 
ontrol systems,and show that under mild regularity assumptions on the state and 
ontrol spa
es, quotients always exist.This should be 
ontrasted with several other approa
hes whi
h rely on the existen
e of symmetries or
ontrolled invarian
e to assert the existen
e of quotients. We also show that the 
onstru
tion proposedin [64℄ 
omputes quotients up to isomorphism. We introdu
e the notion of proje
table 
ontrol se
tions,whi
h will be a fundamental ingredient to 
hara
terize the stru
ture of quotients. This notion is in fa
tequivalent to 
ontrolled invarian
e, and this allows to regard quotients based on symmetries or 
ontrolledinvarian
e as a spe
ial type of quotients. General quotients, however, are not ne
essarily indu
ed bysymmetries or 
ontrolled invarian
e and have the property that some of their inputs are related to statesof the original model. This fa
t, impli
it in [64℄, is expli
itly 
hara
terized in this paper by understanding,how the state and input spa
e of the quotient is related to the state and input spa
e of the original 
ontrolsystem.



2. ABSTRACTIONS OF CONTROL BUNDLES 232. Abstra
tions of Control BundlesWe start by reviewing the abstra
tion framework developed in [60, 64℄ and single out the fundamental
on
epts that will support the desired extension towards 
ontrol inputs. Then we present a 
ategori
alformalization of abstra
tions based on the notion of simulation and show that abstra
tions at the levelof 
ontrol bundles are equivalent to the abstra
tion theory in [63, 64℄.2.1. �-related Control Systems. We re
all the notion of �-related 
ontrol systems whi
h is themain pillar of the abstra
tion theory:Definition 3.1 (�-related Control Systems). Let �M and �N be two 
ontrol systems de�ned on smoothmanifolds M and N , respe
tively. Given a smooth map � :M �! N we say that �N is �-related to �Mi�: Tx�(SM (x)) � SN Æ �(x)(3.1)for every x 2M .In [60℄ it is shown that this notion, lo
al in nature, is equivalent to a more intuitive and global relationbetween �M and �N .Proposition 3.2 ([63℄). Let �M and �N be two 
ontrol systems de�ned on smooth manifolds M and N ,respe
tively and let � : M �! N be a smooth map. Control system �N is �-related to �M i� for everytraje
tory 
(t) of �M , �(
(t)) is a traje
tory of �N .Propagating traje
tories from a system to another is 
learly a desired property. If, in fa
t, system �Nis lower dimensional than system �M , then we are 
learly redu
ing the 
omplexity (dimension) of �M .We 
an therefore regard �N as an abstra
tion on �M in the sense that some aspe
ts of �M have been
ollapsed or abstra
ted away, while others remain in �N . This motivated a notion of abstra
tion [60℄based on traje
tory propagation whi
h de�ned an abstra
tion of a 
ontrol system �M as a �-related
ontrol system �N by a surje
tive submersion �. However this pro
ess is des
ribed in terms of 
ontrolse
tions and the 
ontrol inputs are not expli
itly modeled although they 
an be impli
itly re
overed bythe algorithms proposed in [60, 64℄ to 
ompute abstra
tions.The idea of sending traje
tories from one system to traje
tories of another system has been used manytimes in 
ontrol theory to study equivalen
e of 
ontrol systems. We mention for example linearizationby di�eomorphisms [39℄ or feedba
k linearization [14, 31, 34℄. In these examples the maps � relating the
ontrol systems were in fa
t di�eomorphisms so that no aggregation or abstra
tion was involved. Howeverthe 
on
ept of using other maps besides di�eomorphisms for 
ontrol systems 
an be tra
ed ba
k to theworks of Arbib (see [6℄ for an introdu
tion) where it is shown that (dis
rete time) 
ontrol systems and�nite state automata are just di�erent manifestations of the same phenomena.



24 3. A WALK THROUGH THE CONTINUOUS WORLD2.2. Constru
ting �-related Control Systems. We now re
all the 
onstru
tion of �-related
ontrol systems given in [64℄. We shall restri
t ourselves to a purely lo
al treatment without expli
itfurther mention of this fa
t.Given an aÆne 
ontrol system �M = (UM ; FM ) over a smooth manifold M and a smooth surje
tivesubmersion � : M �! N , we want to build a new aÆne 
ontrol system �N = (UN ; FN ) over N that is�-related to �M . We start by realizing that if �M is an aÆne 
ontrol system then the 
ontrol se
tion SMis an aÆne subspa
e of TM so that it 
an be written as SM = XM +�M , where XM is a ve
tor �eld and�M a linear subspa
e of TM . We will denote by K the subbundle of TM given by K = Ker(T�) andnote that it is an integrable subbundle in the Frobenius sense whose leaves 
orrespond to points where� is 
onstant. We start by giving a 
hara
terization of aÆne subbundles invariant under a given ve
tor�eld.Proposition 3.3 (Invarian
e of AÆne Subbundles [64℄). Let A = X +� be an aÆne subbundle of TMand Y 2 TM a ve
tor �eld. A is invariant under Y i�:[Y;A℄ � �(3.2)Based on the above proposition we 
an give a 
onstru
tive pro
edure to 
ompute invariant aÆne sub-bundles:Definition 3.4. Let SM = XM +�M be an aÆne 
ontrol se
tion on M . The K-invariant aÆne 
ontrolse
tion 
anoni
ally asso
iated with SM is given by:SM = XM + LM [ [K; LM ℄ + [K[K; LM ℄℄ + : : :(3.3)with LM = K [�M [ [K; XM ℄.The 
ontrol se
tion SM is 
anoni
al in the following sense:Proposition 3.5 ( [64℄). The 
anoni
al K-invariant aÆne 
ontrol se
tion SM 
anoni
ally asso
iatedwith SM is the smallest K-invariant aÆne 
ontrol se
tion that 
ontains SM .Invarian
e under K allows to 
ompute a 
ontrol se
tion on N as follows:Definition 3.6 (Canoni
al 
onstru
tion). Let �M = (UM ; FM ) be an aÆne 
ontrol system on M with
ontrol se
tion: SM = XM +�M(3.4)and let � :M �! N be a surje
tive submersion. The aÆne 
ontrol se
tion on N de�ned by:SN (y) = Tx�(SM (x))(3.5)



2. ABSTRACTIONS OF CONTROL BUNDLES 25for any x 2 ��1(y) is said to be 
anoni
ally �-related to SM . Any aÆne 
ontrol system �N = (UN ; FN )with 
ontrol se
tion SN is said 
anoni
ally �-related to �M .Note that SN is well de�ned sin
e by K-invarian
e Tx�(SM (x1)) = Tx�(SM (x2)) for any x1; x2 2M su
hthat �(x1) = �(x2). The 
ontrol se
tion SN on N de�nes therefore an abstra
tion of SM so that any
ontrol system �N with 
ontrol se
tion SN is the desired abstra
tion. It is also important to mention thatin this pro
ess there is no expli
it 
onstru
tion that allows to 
ompute �N from SN . The 
hara
terizationof �N , spe
ially of UN will be the topi
 of the remaining 
hapter.2.3. From �-related Control Systems to Abstra
tions of Control Bundles. There are twomain motivations to work at the level of 
ontrol bundles. The �rst one 
omes from 
on
rete real problemswhere often it is ne
essary to build a hierar
hy of di�erent models (abstra
tions) that would allow to
ontrol the system with di�erent levels of detail. A better understanding of how to transform 
ontrolinputs between di�erent levels of abstra
tion would allow the design of 
ontrol laws for the 
oarser(abstra
ted) models and then re�ne then until obtaining 
ontrol laws for the more detailed 
ontrolsystems. The se
ond reason 
omes from the following proposition whose proof we delay for now.Proposition 3.7. Let �M and �N be two 
ontrol systems de�ned on smooth manifolds M and N ,respe
tively and let � : M �! N be a smooth map. Control system �M is �-related to �N i� there is a�ber-preserving lift of �, denoted by ' : UM �! UN su
h that:Tu'(SM (x)e) � (SN Æ �(x))e(3.6)for every x 2M and u 2 ��1M (x).The above proposition suggests that one should study 
ontrol systems as dynami
al or 
ontrol systemsevolving on the 
ontrol bundle rather on the base state spa
e. To pro
eed towards this dire
tion we�rst introdu
e the 
ategory of 
ontrol system, denoted by Con, whi
h has as obje
ts 
ontrol systemsas des
ribed in De�nition 2.11. The morphisms in this 
ategory extend the 
on
ept of �-related 
ontrolsystems des
ribed by De�nition 3.1. Sin
e the notion of �-related 
ontrol systems relates 
ontrol se
tionsand these 
an be parameterized by 
ontrols, the lifted notion should relate se
tions as well as 
ontrolbundles.Definition 3.8 (Morphisms of Control Systems). Let �M and �N be two 
ontrol systems de�ned onsmooth manifolds M and N , respe
tively. A morphism f from �M to �N is a pair of maps f = ('; �),



26 3. A WALK THROUGH THE CONTINUOUS WORLD' : UM �! UN and � :M �! N su
h that both diagrams:
M N-�UM UN-'?�UM ?�UN TM TN-T�UM UN-'?FM ?FN(3.7)
ommute.It will be important for later use to also de�ne isomorphisms:Definition 3.9 (Isomorphisms of Control Systems). Let �M and �N be two 
ontrol systems de�nedon smooth manifolds M and N , respe
tively. System �M is isomorphi
 to system �N i� there existmorphisms f1 from �M to �N and f2 from �N to �M su
h that f1 Æ f2 = idUM and f2 Æ f1 = idUN .In this setting, feedba
k transformations 
an be seen as spe
ial isomorphisms. Consider an isomorphismf = ('; �) with ' : UM �! UM su
h that � = idM . In lo
al 
oordinates (x; u) adapted to the �bers,where x represents the base 
oordinates (the state) and u the 
oordinates on the �bers (the inputs),the isomorphism has a 
oordinate expression for ' of the form ' = (x; �(x; u)). The �ber term �(x; u)representing the new 
ontrol inputs is interpreted as a feedba
k transformation sin
e it depends onthe state at the 
urrent lo
ation as well as the former inputs u. We shall therefore refer to feedba
ktransformations as isomorphisms over the identity map sin
e we have � = idM .The relation between the notions of �-related 
ontrol systems (3.1) and Con morphisms (3.8) is ofequivalen
e as stated in the next proposition:Proposition 3.10. Let �M and �N be two 
ontrol systems de�ned on M and N , respe
tively. Controlsystem �N is �-related to �M i� f = ('; �) is a Con morphism from �M to �N for a �ber preservinglift ' of �.Proof. De�nition 3.8 trivially implies De�nition 3.1 so let us prove that De�nition 3.1 impliesDe�nition 3.8. If �N is �-related to �M then by De�nition 3.1, Tx�(SM (x)) � SN Æ �(x). But SM isparameterized by UM , so we 
an regard the map T� ÆFM : UM �! SN � TN (see the diagram below) asa parameterization of SN and by de�nition of 
ontrol parameterization there is a �ber preserving map �su
h that the following diagram
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M N-�TM TN-T�?�M ?�N
ommutes. By taking ' = �, �UM = �M Æ FM and �UN = �N Æ FN one re
overs De�nition 3.8 and theequivalen
e is proved.We now see that if there is a morphism f = ('; �) from �M to �N , then this morphism 
arries traje
toriesof �M to traje
tories of �N in virtue of Proposition 3.2. In this sense �N is also 
alled in the literaturea simulation of �M sin
e any traje
tory 
M (t) of �M 
an be simulated by a traje
tory 
N (t) = � Æ 
M (t)of �N .We are now in 
onditions of proving Proposition 3.7 whi
h shows that Con morphisms also admit ageometri
al 
hara
terization at the level of 
ontrol bundles:Proposition 3.7. Let �M and �N be two 
ontrol systems de�ned on smooth manifolds M and N ,respe
tively. There exist a Con morphism f = (�; ') from �M to �N i�Tu'(SM (x)e) � (SN Æ �(x))e(3.8)for every x 2M and u 2 ��1M (x).Proof. Assume that �M is �-related to �N and let 
M (t) be a smooth traje
tory of �M su
h that
M (0) = x. By de�nition of traje
tory there is a 
urve 
UM (t) on UM su
h that �UM Æ 
UM = 
M and
UM (0) = u. By �-relatedness the 
urve 
N = �(
M ) is a traje
tory of �N implying the existen
e of a
urve 
UN in UN su
h that �UN Æ 
UN = 
N . However �M being �-related to �N implies that there is aCon morphism f = (�; ') from �M to �N and we have '(
UM ) = 
UN . By time di�erentiation at t = 0we get Tu'(X) = Y with X = ddt
UM (t)jt=0 and Y = ddt
UN (t)jt=0 showing that for any X 2 SM (x)e wehave Tu'(X) = Y 2 (SN Æ �(x))e as desired.Assume now that (3.6) holds. Then, 
ontrol system de�ned by 
ontrol se
tion SeM is '-related to 
ontrolsystem de�ned by 
ontrol se
tion (SN Æ�)e so that Proposition 3.2 ensures that for every traje
tory 
UM (t)of SeM , '(
UM (t)) = 
UN (t) is a traje
tory of (SN Æ �)e. Proje
ting the equality'(
UM (t)) = 
UN (t)(3.9)on the base spa
e we get �(
M (t)) = 
N (t)(3.10)



28 3. A WALK THROUGH THE CONTINUOUS WORLDTime di�erentiation of (3.10) now gives:T� � FM (
UM (t)) = FN (
UN (t))= FN Æ '(
UM (t))(3.11)where the last equality holds by 3.9. We have thus shown that T� � FM = FN Æ ' sin
e the traje
tories
UM 
over all of UM .The previous proposition tell us that by working at the level of 
ontrol bundles we 
an re
over morefamiliar notions su
h as '-relatedness of ve
tors. Besides the 
lari�
ation that 
an be gained at thebundle level we will see at next se
tion that we a
tually need to work at the bundle level when the
ontrol se
tions do not posses enough stru
ture. The previous result 
an also be related with the notionof extended system des
ribed for example in [58℄. Instead of 
onsidering all possible lifts of SM to TUMas isolated ve
tor �elds one 
an regard that 
olle
tion of lifts as a 
ontrol system on UM . That 
ontrolsystem turns out to be the extended 
ontrol system of �M . We will, however, not explore further thislink on this 
hapter. 3. Quotients of Control SystemsGiven a 
ontrol system �M and an equivalen
e relation on the manifold M we 
an regard the quotient
ontrol system as an abstra
tion sin
e some modeling details propagate from �M to the quotient whileother modeling details disappear in the fa
torization pro
ess. This fa
t motivates the study of quotient
ontrol systems as they represent lower 
omplexity (dimension) obje
ts that 
an be used to verify proper-ties of the original 
ontrol system. Quotients are also important from a design perspe
tive sin
e a 
ontrollaw for the quotient obje
t 
an be regarded as a spe
i�
ation for the desired behavior of the original
ontrol system. In this spirit we will address the following questions:1. Existen
e: Given a 
ontrol system �M de�ned on a manifold M and an equivalen
e relation�M on M when does there exist a 
ontrol system on M= �M , the quotient manifold, and a �berpreserving lift pU of the proje
tion pM :M �!M= �M su
h that (pM ; pU ) is a Con morphism?2. Uniqueness: Is the lift pU of pM , when it exists, unique?3. Stru
ture of the quotient 
ontrol bundle: What is the stru
ture of the quotient 
ontrolsystem 
ontrol bundle?We remark that the 
hara
terization of the quotient 
ontrol system system map F : U �! T (M= �M )was already solved for the 
ase of 
ontrol aÆne systems in [64℄ where a 
onstru
tive algorithm for its
omputation was proposed.To 
larify our dis
ussion we formalize the notion of quotient 
ontrol systems:



3. QUOTIENTS OF CONTROL SYSTEMS 29Definition 3.8 (Quotient Control System). Let �L, �M , �N be 
ontrol systems de�ned on manifoldsL,M and N , respe
tively and g, h two morphisms from �L to �M . The pair (f;�N ) is a quotient 
ontrolsystem of �M if f Æ g = f Æ h and for any other pair (f 0;�0N) su
h that f 0 Æ g = f 0 Æ h there exists oneand only one morphism f from �N to �0N su
h that the following diagram 
ommutes:�M �N-ff 0����R�0N?f�L -g -h(3.12)that is, f 0 = f Æ f .Intuitively, we 
an read diagram (3.12) as follows. Assume that the set �= f(u; v) 2 UM �UM : (u; v) =(g(l); h(l)) for some l 2 ULg is a regular equivalen
e relation [1℄. Then, the 
ondition f Æg = f Æh simplymeans that f respe
ts the equivalen
e relation, that is, u � v ) f(u) = f(v). Furthermore it asksthat for any other map f 0 respe
ting relation �, there exists a unique map f su
h that f 0 = f Æ f . Thisis a usual 
hara
terization of quotient manifolds [1℄ that we here use as a de�nition. The same 
hain ofreasoning shows that if we repla
e 
ontrol systems by the 
orresponding state spa
e and the morphisms bythe maps between the state spa
es, then diagram (3.12) asks for N to be also quotient manifold obtainedby fa
toring M by a regular equivalen
e relation �M on M de�ned by g and h. The same idea must,therefore, hold for 
ontrol systems and this means that 
ontrol system �N must also satisfy a uniquefa
torization property in order to be a quotient 
ontrol system.From the above dis
ussion it is 
lear that a ne
essary 
ondition for the existen
e of the quotient 
ontrolsystem is the existen
e of the quotient manifold M= �M . When �M is a regular equivalen
e relation thequotient spa
e M= �M will be a manifold [1℄ and the equivalen
e relation 
an be equivalently des
ribedby a surje
tive submersion. We will, therefore, assume that the regular equivalen
e relation �M is givenby a surje
tive submersion � : M �! N . Similarly, the �ber preserving lift ' of � will also have to be asurje
tive submersion.The �rst two questions of the previous list are answered in the next theorem whi
h asserts that quotientsexist under very moderate 
onditions:Theorem 3.9. Let �M be a 
ontrol system on a manifold M and � : M �! N a surje
tive submersion.If the distribution (TSM +Ker(TT�))=Ker(TT�) has 
onstant rank, then there exists:1. a 
ontrol system �N on N ,2. a unique �ber preserving lift ' : UM �! UN of � su
h that the pair ((�; ');�N ) is a quotient
ontrol system of �M .



30 3. A WALK THROUGH THE CONTINUOUS WORLDProof. We start by de�ning 
ontrol system �N up to an isomorphism over the identity, that is,we de�ne the 
ontrol se
tion of �N to be SN = T�(SM ). As SM is a subbundle of TM we 
an expandT�(SM ) as: SM i1,! TM T��! T�(SM ) = SN i2,! TN(3.13)It then follows that TT� Æ T i1 has 
onstant rank sin
e rank(TT� Æ T i1) = dim(TSM ) � dim(TSM \Ker(TT�)) = dim((TSM +Ker(TT�))=Ker(TT�)) whi
h is 
onstant by assumption. Consequently SNis a manifold and a �ber bundle over N as SM is a �ber bundle over M and T� Æ i1 is a �ber preservingmap. Finally, it is not diÆ
ult to see that i2 is also �ber preserving therefore making SN a subbundle ofTN .We now show that there is a unique �ber preserving lift ' of � su
h that f = (�; ') is a morphism from�M to �N . By de�nition of SN we have T�(SM (x)) � SN Æ �(x) for every x 2 M . Consequently, themap T� � FM : UM �! TN satis�es g Æ T� � FM = h Æ T� � FM for maps g : TN �! P and h : TN�! P satisfying SN = fY 2 TN : g(Y ) = h(Y )g. If we now 
onsider any 
ontrol parameterization(UN ; FN ) for SN it follows, by de�nition of 
ontrol parameterization, that there exists one and only one�ber preserving map FN : UM �! UN making diagram 2.32 
ommutative. It is not diÆ
ult to see thatthis map is the desired ' : UM �! UN .We have thus shown that � de�nes ' uniquely and that f = (�; ') is a morphism. It remains to showthat any other morphism f 0 = (�0; '0) su
h that �0 is 
ompatible with the equivalen
e relation de�nedby � fa
tors uniquely through f . We start by re
alling that sin
e � is a surje
tive submersion, �0 fa
torsuniquely through � in Man [1℄, that is, there exists one and only one map � : N �! N 0 su
h that�0 = � Æ �. From the equality �0 = � Æ � we 
on
lude:Tx�0 = T�(x)� Æ Tx�(3.14)and it follows that: Ty�(SN (y)) � S 0N Æ �(y)(3.15)sin
e, by de�nition of SN , for any Y 2 SN (y) there is a X 2 SM (x) su
h that �(x) = y and Tx� �X = Y ,therefore: Ty� � Y = Ty� Æ Tx�(X)= Tx�0(X) 2 S 0N Æ �0(x) = S 0N Æ �(y)(3.16)By the same argument that was used to show that there is a unique �ber preserving lift of � it followsthat there is also a unique �ber preserving lift ' of � su
h that f = (�; ') is a morphism from �N to �0Nand f 0 = f Æ f . As both � and ' are unique so is f . It remains yet to show that '0 is 
ompatible with



3. QUOTIENTS OF CONTROL SYSTEMS 31the equivalen
e relation de�ned by ', but this is now trivial sin
e the equality f 0 = f Æ f implies:'(u) = '(v)) ' Æ '(u) = ' Æ '(v)) '0(u) = '0(v)(3.17)This result provides the �rst 
hara
terization of quotient obje
ts in Con. It shows that given a regularequivalen
e relation on the base (state) spa
e of a 
ontrol system and a mild regularity 
ondition1, therealways exists a quotient 
ontrol system on the quotient manifold2. Furthermore it also shows that theregular equivalen
e relation on M or the map � uniquely determines a �ber preserving lift ' whi
hdes
ribes how pairs state/input of the 
ontrol system onM relate to the pairs state/input of the quotient
ontrol system.The fa
torization property expressed in diagram 3.12 allows to show that the 
onstru
tive algorithmpresented in [64℄ 
omputes quotients of aÆne 
ontrol systems up to isomorphism:Corollary 3.10. Let �M be an aÆne 
ontrol system on a manifold M and � : M �! N a surje
tivesubmersion. The quotient 
ontrol system 
omputed by the 
onstru
tion presented in [64℄ based on �Mand � is unique up to isomorphism.Proof. Let SN be the 
ontrol se
tion obtained by the 
onstru
tion proposed in [64℄ and let SN bethe 
ontrol se
tion de�ned in the proof of Theorem 3.9, that is SN Æ� = T�(SM ). In [64℄ it is shown thatSN is the smallest 
ontrol se
tion satisfying:T�(SM ) � SN Æ �(3.18)As SN also satis�es T�(SM ) � SN Æ� we have SN � SN . However, by (3.18) we have T�(SM ) = SN Æ� �SN Æ � ) SN � SN by surje
tivity of � and 
onsequently SN = SN . Theorem 3.9 and in parti
ular
ommutativity of diagram 3.12 now imply that SN is unique up to isomorphism.Having answered the �rst two questions from the previous list, we 
on
entrate on the 
hara
terization ofthe quotient 
ontrol bundle. This problem requires a deeper understanding of how � determines ' andwill be the goal of the remaining paper. Sin
e Con was de�ned over Man, that is morphisms in Conare smooth maps and 
ontrol systems are de�ned on manifolds and �ber bundles, the 
hara
terization of' will require an interplay of tools from di�erential geometry and 
ategory theory.1The 
onstant rank 
ondition on (Ker(TT�) + TSM )=Ker(TT�) is only required to ensure that SN is a manifold. If onedoes not require a 
ontrol se
tion to be a manifold, then this 
ondition 
an be weakened.2This fa
t 
an be put in a more general 
ontext by introdu
ing a forgetful fun
tor from Con to Man that asso
iates withea
h 
ontrol system �M de�ned over M the manifoldM and to ea
h morphism from �M to �N the map �. In this 
ontextthe previous result assumes the form of a universal arrow for this fun
tor.



32 3. A WALK THROUGH THE CONTINUOUS WORLD4. Proje
table Control Se
tionsWe now extend the notion of proje
table ve
tor �elds from [49℄ and of proje
table families of ve
tor�elds from [50℄ to 
ontrol se
tions. The notion of proje
table 
ontrol se
tions is weaker then proje
tableve
tor �eld or families of ve
tor �elds but nonetheless stronger than Con morphisms. The motivation forintrodu
ing this notion 
omes from the fa
t that proje
tability of 
ontrol se
tions will be a fundamentalingredient in 
hara
terizing the stru
ture of the quotient 
ontrol bundle. Furthermore, we will also seethat proje
tability, as de�ned in this 
ategori
al setting, will 
orrespond to the well known notion of
ontrolled invarian
e.Given a ve
tor �eld X on M and a surje
tive submersion � :M �! N we say that X is proje
table withrespe
t to � when Y = T� � X , the proje
tion of X , is a well de�ned ve
tor �eld on N that satis�esT� � X = Y Æ � [49℄. The ve
tor �eld Y is also 
alled �-related to X [1℄. This notion was extended tofamilies of ve
tor �elds in [50℄ by requiring that the proje
tion of ea
h ve
tor �eld in the family is a wellde�ned ve
tor �eld on N . However, when working with 
ontrol se
tions, whi
h 
an be regarded as setsof ve
tors at ea
h base point x 2M , one should only require that the proje
tion of these sets of ve
torsis the same set when the base points on M proje
t on the same base point on N . This is formalized asfollows:Definition 3.11. Let M be a manifold, SM a 
ontrol se
tion on M and � : M �! N a surje
tivesubmersion. We say that SM is proje
table with respe
t to � i� SM indu
es a 
ontrol se
tion SN on Nsu
h that the following diagram 
ommutes:
M N-�P(TM) P(TN)-T�6SM 6SN(3.19)We see that if SM is in fa
t a ve
tor �eld we re
over the notion of proje
table ve
tor �elds. The notion ofproje
table 
ontrol se
tions is stronger then the notion of Con morphism sin
e for any x1; x2 2 M su
hthat �(x1) = �(x2) we ne
essarily have T�(SM (x1)) = SN Æ�(x1) = T�(SM (x2)) if SM is proje
table. Onthe other hand, if (�; ') is a Con morphism for a �ber preserving lift ' of �, we only have the in
lusionsT�(SM (x1)) � SN Æ �(x1) and T�(SM (x2)) � SN Æ �(x1). Therefore proje
tability with respe
t to �implies that � 
an be extended to a Con morphism but given a Con morphism f = (�; ') from �M to�N it is not true, in general, that SM is proje
table with respe
t to �.To determine the relevant 
onditions on SM that ensure proje
tability we will need an auxiliary result:



4. PROJECTABLE CONTROL SECTIONS 33Proposition 3.12. Let f :M �! N be a map between manifolds and let Xt be the 
ow of a ve
tor �eldX 2 TM su
h that f ÆXt = f . Then the following equality holds for every x 2M :Txf TXt(x)X�t = TXt(x)f(3.20)Proof. The equality f ÆXt = f is equivalent to:f ÆXt(x) = f(x), f(Xt(x)) = f Æ (Xt)�1 ÆXt(x), f(Xt(x)) = f ÆX�t(Xt(x))(3.21)and by di�erentiation of the previous expression we arrive at the desired equality:TXt(x)f = Txf TXt(x)X�t(3.22)We 
an now give suÆ
ient and ne
essary 
onditions for proje
tability of 
ontrol se
tions.Proposition 3.13 (Proje
table Control Se
tions). Let M be a manifold, SM a 
ontrol se
tion on Mand � : M �! N a surje
tive submersion. Given any 
ontrol parameterization (UM ; FM ) of SM and anyFM 2 F eM , SM is proje
table with respe
t to � i�:[FM ;Ker(T�e)℄ � Ker(T�e) + [FM ; 0e℄(3.23)where 0e = T��1UM (0).Proof. We show ne
essity �rst. Assume that diagram (3.19) 
ommutes. Then we have:Tx�(SM (x)) = Tx0�(SM (x0))(3.24)for all x; x0 2M su
h that �(x) = �(x0), that is, for any x and x0 on the same leaf of the foliation indu
edby Ker(T�). If we denote by Kt the 
ow of any ve
tor �eld K 2 Ker(T�e), expression (3.24) impliesthat: T�UM ÆKt(u)�(FM ÆKt(u)) 2 Tx�(SM (x))(3.25)for every t 2 R su
h that Kt is de�ned and for every u 2 ��1UM (x). Sin
e the left hand side of (3.25)belongs to the right hand side we 
an always �nd a Y 2 0e su
h that its 
ow Yt will parameterize theimage of the left hand side, that is:T�UM ÆKt(u)�(FM ÆKt(u)) = T�UM ÆYt(u)�(FM Æ Yt(u))(3.26)The previous equality implies that for any FM 2 F eM we have:TKt(u)�e(FM ÆKt(u)) = TYt(u)�e(FM Æ Yt(u))(3.27)



34 3. A WALK THROUGH THE CONTINUOUS WORLDhowever, the equalities �e ÆKt = Kt, �e Æ Yt = �e and Proposition 3.12 allow to rewrite (3.27) as:Tu�e(TKt(u)K�t Æ FM ÆKt(u)) = Tu�e(TYt(u)Y�t Æ FM Æ Yt(u)), Tu�e(Kt(u)�FM ) = Tu�e(Yt(u)�FM )(3.28)Time di�erentiation at t = 0 now implies:Tu�e([K(u); FM (u)℄) = Tu�e([Y (u); FM (u)℄)) [K;FM ℄ 2 [Y; FM ℄ +Ker(T�e)(3.29)whi
h trivially implies in
lusion 3.23.To show suÆ
ien
y we use a similar argument. Assume that (3.23) holds, then for any K 2 Ker(T�e)there exists a Y 2 0e su
h that: Tu�e([FM (u);K(u)℄) = Tu�e([FM (u); Y (u)℄), Tu�e([FM (u);K(u)� Y (u)℄) = 0(3.30)Consider now the regular and involutive distribution Ker(T�e). Involutivity and regularity imply thatZ�tW 2 Ker(T�e) for any W 2 Ker(T�e) and the 
ow Zt of any ve
tor �eld Z 2 Ker(T�e) [76℄. Sin
eK 2 Ker(T�e) and Y 2 Ker(T�e) it follows that K �Y 2 Ker(T�e), but from (3.30), [FM ;K�Y ℄ alsobelongs to Ker(T�e) so that we 
on
lude:Tu�e((K � Y )t(u)�[FM ;K � Y ℄) = 0(3.31)where (K�Y )t denotes the 
ow of the ve
tor �eld K�Y . However, the previous expression is equivalentto: Tu�e( ddt (K � Y )t(u)�FM ) = 0, ddtTu�e((K � Y )t(u)�FM ) = 0(3.32)where the last equality follows from the fa
t that T� is a linear map. Sin
e the time derivative is zero,we must have: Tu�e((K � Y )t(u)�FM ) = Tu�e((K � Y )0(u)�FM ) = Tu�e(FM (u))(3.33)From the equality �e = �e Æ (K � Y )t we 
on
lude that Tu�e T(K�Y )t(u)(K � Y )�t = T(K�Y )t(u)�e byProposition 3.12 so that (3.33) 
an be written as:T(K�Y )t(u)�e(FM Æ (K � Y )t(u)) = Tu�e(FM (u))(3.34)and proje
ting on TM we get:T�UM (K0t(u))�(FM Æ (K 0)t(u)) = Tx�(FM (u))(3.35)



4. PROJECTABLE CONTROL SECTIONS 35with K 0 = K � Y . This equality shows that for any X 2 SM (x), Tx� � X 2 Tx0�(SM (x0)), thereforeTx�(SM (x)) � Tx0�(SM (x0)). However, repla
ing x by x0 and K by �K on (3.35) we get Tx0�(SM (x0)) �Tx�(SM (x)) so that we 
on
lude the equality:Tx�(SM (x)) = Tx0�(SM (x0))(3.36)Sin
e any point x00 satisfying �(x00) = �(x) 
an be rea
hed by a 
on
atenation of 
ows indu
ed byve
tor �elds in Ker(T�), transitivity of equality between sets implies that (3.36) holds for any two pointsx; x0 2M su
h that �(x) = �(x0) from whi
h 
ommutativity of diagram (3.19) readily follows.It is interesting to note that if we assume some stru
ture on SM we 
an give 
onditions for proje
tabilitywithout expli
itly mentioning the 
ontrol parameterization. This is the 
ase for 
ontrol aÆne systemswhere the aÆne stru
ture on SM allows to simplify expression (3.23) as follows:Corollary 3.14. Let M be a manifold, AM an aÆne distribution on M and � : M �! N a surje
tivesubmersion. AM is proje
table with respe
t to � i�:[AM ;Ker(T�)℄ � Ker(T�) + �M(3.37)where �M is the distribution asso
iated to AM .By now it is already 
lear that proje
tability and lo
al 
ontrolled invarian
e are equivalent 
on
epts. Were
all the notion of lo
ally 
ontrolled invariant distribution:Definition 3.15 (Lo
ally Controlled Invariant Distributions [58℄). Let �M = (UM ; FM ) be a 
ontrolsystem over a manifold M and let D be a distribution on M . The distribution D is lo
ally 
ontrolledinvariant for FM if for every x 2 M there is an open set O � M , 
ontaining x and a lo
al (feedba
k)isomorphism over the identity su
h that in trivializing 
oordinates (x; v) the new 
ontrol system F 0M =FM Æ � satis�es: [F 0M (x; v);D(x)℄ � D(x)(3.38)for every (x; v) in the domain of �.If a 
ontrol se
tion is proje
table then lo
ally we 
an always 
hose FM = F lM and therefore re
over the
onditions for lo
al 
ontrolled invarian
e from [24℄:Theorem 3.16 ([24℄). Let �M be a 
ontrol system over a manifold M and � : M �! N a surje
tivesubmersion. The distribution Ker(T�) is lo
ally 
ontrolled invariant for FM i� SM is proje
table withrespe
t to �.From the study of symmetries of nonlinear 
ontrol systems [25, 57℄ it was already known that the existen
eof symmetries or partial symmetries implies 
ontrolled invarian
e of a 
ertain distribution asso
iated with



36 3. A WALK THROUGH THE CONTINUOUS WORLDthe symmetries. This shows that 
ontrol systems that are proje
table 
omprise quotients by symmetryand 
ontrolled invarian
e. However there are also quotients for whi
h proje
tability does not hold as wedes
ribe in the next se
tion.5. The Stru
ture of Quotient Control SystemsWe have already seen that the notion of Con morphisms generalizes the notion of proje
table 
ontrolse
tions. This shows that it is possible to quotient 
ontrol systems whose 
ontrol se
tions are not pro-je
table. In this situation the map ' and the 
ontrol bundle of the quotient 
ontrol system will besigni�
antly di�erent from the proje
table 
ase. To understand this di�eren
e we start 
hara
terizing the�ber preserving lift ' of �. Re
all that if f = (�; ') is a morphism from �M to �N we have the following
ommutative diagram:
TM TN-T�UM UN-'?FM ?FN(3.39)Sin
e ' is a surje
tive submersion we know that UN is di�eomorphi
 to UM= �, where � is the regularequivalen
e relation indu
ed by '. This means that to understand the stru
ture of UN it is enoughto determine the regular and involutive distribution on UM given by Ker(T'). However the map ' is
ompletely unknown, so we will resort to the elements that are available, namely FM and � to determineKer(T'). Di�erentiating3 diagram (3.39) we get:

TTM TTN-TT�TUM TUN-T'?TFM ?TFN(3.40)from whi
h we 
on
lude: Ker(TT� Æ TFM ) = Ker(TFN Æ T') = Ker(T')(3.41)where the last equality holds sin
e FN is an immersion by de�nition of 
ontrol parameterization. We
an now attempt to understand what is fa
tored away and what is propagated from UM to UN sin
eKer(T') is expressible in terms of FM and �. The �rst step is to 
larify the relation between Ker(T')3The operator sending manifolds to their tangent manifolds and maps to their tangent maps is an endofun
tor on Man,also 
alled the tangent fun
tor [38℄.



5. THE STRUCTURE OF QUOTIENT CONTROL SYSTEMS 37and Ker(T�). Sin
e ' is a �ber preserving lift of � the following diagram 
ommutes:
TM TN-T�TUM TUN-T'?T�UM ?T�UN(3.42)whi
h implies that: T�UM (Ker(T')) � Ker(T�)(3.43)However this only tell us that the redu
tion on M due to � 
annot be \smaller" than the redu
tion onthe base spa
e of UM due to '. This leads to the interesting phenomena whi
h o

urs when, for e.g. :T�UM (Ker(T')) = f0g � Ker(T�)(3.44)The above expression implies that the base spa
e of UM is not redu
ed by '. However, UN is a �berbundle with base spa
e N and therefore the points redu
ed by � must ne
essarily lift to the �bers ofUN . This will not happen if we 
an ensure the existen
e of a distribution D � Ker(T') su
h thatT�UM (D) = Ker(T�). The existen
e of su
h a distribution turns out to be related with proje
tability asasserted in the next proposition:Proposition 3.17. Let �M = (UM ; FM ) be a 
ontrol system over a manifold M , � :M �! N a surje
tivesubmersion and ' : UM �! UN a �ber preserving lift of �. There exists a regular distribution D on UMsatisfying D � Ker(T') and T�UM (D) = Ker(T�) i� SM is proje
table with respe
t to �.Proof. We start by showing that proje
tability implies the existen
e of D. If SM is proje
table withrespe
t to � then for every x; x0 2M su
h that �(x) = �(x0) we have that Tx�(SM (x)) = Tx0�(SM (x0)).This means that for any x 2M , u 2 ��1UM (x) and X 2 Ker(T�e) there exists a Y 2 0e su
h that:T�UM ÆXt(u)�(FM ÆXt(u)) = Tx�(FM Æ Yt(u))(3.45)for all t 2 R su
h that the 
ows Xt and Yt of X and Y are de�ned. Considering now T� as a mapbetween the manifolds TM and TN , the time derivative of T�(t)�(�(t)) for (�; �) : R �! TM providesT(�(t);�(t))T�(t)�(T�(t)). The same 
onsiderations applied to (3.45) at t = 0 give:T(x;FM (u))Tx� Æ TuFM (X(u)) = T(x;FM (u))Tx� Æ TuFM (Y (u))(3.46)whi
h we rewrite as: T(x;FM (u))Tx� Æ TuFM (X(u)� Y (u)) = 0(3.47)



38 3. A WALK THROUGH THE CONTINUOUS WORLDby linearity of the involved maps. Sin
e (3.47) is true for anyX 2 Ker(T�e) we 
an de�ne the distribution:D = [K2Ker(T�)fZ = X � Y : X 2 Ke ^ Y 2 0e is su
h that (3.47) holdsg(3.48)This distribution 
learly satis�es:TT� Æ TFM (D) = f0g , D 2 Ker(T')(3.49)is regular sin
e dim(D) = dim(Ker(T�)) by 
onstru
tion, satis�es T�UM (D) = Ker(T�) also by 
on-stru
tion and is therefore the desired distribution.The 
onverse is proved as follows. Assume the existen
e of the distribution D, then D � Ker(T') isequivalent to: TT� Æ TFM (D) = f0g(3.50)Let Z 2 D and denote by Zt the 
ow of Z. Expression (3.50) implies that:ddt ���t=0T�UM ÆZt(u)�(FM Æ Zt(u)) = 0 ) ddt ���t=0TZt(u)�e(FM Æ Zt(u)) = 0(3.51)for any FM 2 F eM and for all t 2 R su
h that Zt is de�ned.Noti
ing that Z 2 D � Ker(T') implies ' = ' Æ Zt (sin
e ' is 
onstant on the leaves of the foliationindu
ed by Ker(T')) and �UN Æ ' = � Æ �UM by 
ommutativity of diagram 4.29, we 
on
lude that �e isalso Zt invariant: �e Æ Zt = (� Æ �UM ) Æ Zt = (�UN Æ ') Æ Zt = �UN Æ ' = � Æ �UM = �e(3.52)Proposition 3.12 now ensures that: TZt(u)�e = Tu�e Æ TZt(u)Z�t(3.53)and expression (3.53) allows to rewrite (3.51) as:ddt ���t=0TZt(u)�e(FM Æ Zt(u)) = 0 , ddt ���t=0Tu�e(TZt(u)Z�t Æ FM Æ Zt(u)) = 0, ddt ���t=0Tu�e(Zt(u)�FM ) = 0, Tu�e([Z(u); FM (u)℄) = 0(3.54)or equivalently [Z; FM ℄ 2 Ker(T�e). Sin
e Z is any ve
tor �eld inKer(T�e) it follows that [FM ;Ker(T�e)℄ �Ker(T�e) whi
h by Proposition 3.13 implies that SM is proje
table with respe
t to � as desired.From the proof of the previous proposition it is 
lear that if D is lo
ally of the form D = Ker(T�)l thenwe 
an repla
e proje
tability by the more restri
tive notion of invarian
e:Corollary 3.18. Let �M be a 
ontrol system over a manifold M , � :M �! N a surje
tive submersionand ' : UM �! UN a �ber preserving lift of �. The lo
ally de�ned distribution Ker(T�)l satis�es



5. THE STRUCTURE OF QUOTIENT CONTROL SYSTEMS 39Ker(T�)l � Ker(T') i� Ker(T�)l is invariant for F lM , that is, i�:[F lM (u);Ker(T�)l(u)℄ � Ker(T�)l(u)(3.55)for every u su
h that Ker(T�)l is de�ned.Proposition 3.17 shows that proje
tability 
hara
terizes the stru
ture of the quotient 
ontrol system inthe sense that states lift to the �bers when the 
ontrol se
tion is not proje
table. However we 
an be alittle more detailed in our analysis and try to determine if the �bers of UM are redu
ed or if the �bers ofUM are in fa
t di�eomorphi
 to the �bers of UN and redu
tion takes pla
e only on the base spa
e. Theanswer is given in the next proposition:Proposition 3.19. Let �M = (UM ; FM ) be a 
ontrol system over a manifold M , � :M �! N a surje
tivesubmersion, ' : UM �! UN a �ber preserving lift of � and FM any ve
tor �eld in F eM . A regular andinvolutive distribution E on UM su
h that T�UM (E) = f0g satis�es E � Ker(T') i�:[FM ; E ℄ � Ker(T�e)(3.56)Proof. Assume that the distribution E belongs to Ker(T'), then following an argument similar tothe proof of Proposition 3.17 shows that [FM ; E ℄ � Ker(T�e).Conversely assume that [FM ; E ℄ � Ker(T�e) and let X 2 E . Then, the equality:T�e([FM ; X ℄) = 0(3.57)holds. However this expression is equivalent to:Tu�e([FM (u); X(u)℄) = 0 , ddt ���t=0 Tu�e(Xt(u)�FM ) = 0, ddt ���t=0 TXt(u)�e(FM ÆXt(u))(3.58)where the last equality is a 
onsequen
e of �e ÆXt = �e and Proposition 3.12. Proje
tion on TM gives:ddt ���t=0 T�UM ÆXt(u)�(FM ÆXt(u)) = 0(3.59)whi
h also equals: T(x;FM (u))Tx� Æ TuFM (X(u)) = 0(3.60)therefore implying that X 2 Ker(T') and 
onsequently E � Ker(T').Colle
ting the results given by Propositions 3.17 and 3.19 we 
an now 
hara
terize both ' and UN .Intuitively, we will use proje
tability to determine if the standard �ber of the quotient 
ontrol bundlewill re
eive states from M and Proposition 3.19 to 
hara
terize the amount of redu
tion indu
ed by '.Theorem 3.20 (Stru
ture of Control Systems Quotients). Consider a 
ontrol system �M = (UM ; FM )over a manifold M , (f;�N ) = ((�; '); (UN ; FN )) a quotient of �M , and any ve
tor �eld FM in F eM . Let



40 3. A WALK THROUGH THE CONTINUOUS WORLDE be the involutive distribution de�ned by E = fX 2 0e : [FM ; X ℄ 2 Ker(T�e)g, whi
h we assume to beregular, and denote by RE the regular equivalen
e relation indu
ed by E. Under these assumptions:1. Redu
tion from states to states and no redu
tion on inputsFiber bundle UN has base spa
e di�eomorphi
 to N , and standard �ber FN di�eomorphi
 to FMi�: � SM is proje
table with respe
t to �;� E = f0g.2. Redu
tion from states to states and from inputs to inputsFiber bundle UN has base spa
e di�eomorphi
 to N , and standard �ber FN di�eomorphi
 toFM=RE i�:� SM is proje
table with respe
t to �;� E 6= f0g.3. Redu
tion from states to inputs and no redu
tion on inputsFiber bundle UN has base spa
e di�eomorphi
 to N , and standard �ber FN di�eomorphi
 to FM�Ki�: � [FM ;Ker(T�e)℄ \ �Ker(T�e) + [FM ; 0e℄� = f0g;� [FM ;Ker(T�e)℄ 6= f0g;� E = f0g.4. Redu
tion from states to inputs and from inputs to inputsFiber bundle UN has base spa
e di�eomorphi
 to N , and standard �ber FN di�eomorphi
 to(FM=RE)�K i�:� [FM ;Ker(T�e)℄ \ �Ker(T�e) + [FM ; 0e℄� = f0g;� [FM ;Ker(T�e)℄ 6= f0g;� E 6= f0g.where K is any leaf of the foliation on M indu
ed by the distribution Ker(T�).Proof. We will follow the enumeration of the theorem.1. By de�nition of �ber bundle the �bers of UN are di�eomorphi
 so that it suÆ
es to show thatthe �ber at some point y 2 N has the desired stru
ture. Let x be a point in M , sin
e SMis proje
table it follows from Theorem 3.16 the existen
e of an open set Ox in M , 
ontainingx and a lo
al isomorphism over the identity � : OxU �! OxU , with OxU = ��1UM (Ox), su
h that[(FM Æ�)l;Ker(T�)l℄ � Ker(T�)l. Invoking Corollary 3.18 we see thatKer(T�)l � Ker(T ('Æ�))however, by assumption, E = f0g so that dimension 
ounting implies that Ker(T�)l = Ker(T ('Æ�)). We thus have the following lo
al situation, by shrinking Ox if ne
essary: OxU �= Ox�FM andKer(T ('Æ�)) = Ker(T�)�f0g. Sin
e 'Æ� is a submersion it follows that 'Æ�(OxU ) �= OxU=RK ,
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e relation indu
ed by Ker(T�) � f0g. However OxU beingdi�eomorphi
 to Ox � FM implies that OxU=RK �= (Ox � FM )=RK �= �(Ox) � FM , whi
h showsthat the standard �ber over every y 2 �(Ox) is di�eomorphi
 to FM .Conversely if FM is di�eomorphi
 to FN there does not exist a distribution E � Ker(T')su
h that T�UM (E) = 0, whi
h by Proposition 3.19 implies that E = f0g. Sin
e no states lift intothe �bers of UN there exists a distribution D � Ker(T�) su
h that T�UM (D) = Ker(T�) whi
hby Proposition 3.17 is equivalent to proje
tability of SM with respe
t to �.2. As in item 1 there exists a lo
al isomorphism � : OxU �! OxU su
h that Ker(T�)l � Ker(T (� Æ�)). Sin
e � is an isomorphism over the identity all the ve
tor �elds X 2 Ker(T') su
h thatT�UM (X) = 0 will satisfy T�UM (��X) = 0. This means that the distributionKer(T ('Æ�)) lo
allysplits as Ker(T (' Æ �)) = B � E with B = Ker(T�)l and E = fX 2 Ker(T') : T�UM (X) = 0g.By the same arguments as in item 1, this de
omposition shows that the standard �ber of UNis di�eomorphi
 to FM fa
tored by the regular equivalen
e relation indu
ed by E resulting inFM=RE .Conversely, sin
e FN is di�eomorphi
 to FM=RE , there exists a distribution E � Ker(T')su
h that T�UM (E) = f0g and this implies the se
ond 
ondition by Proposition 3.19. The proofof proje
tability now follows the same arguments as in item 1.3. The �rst two 
onditions 
ombined with Proposition 3.17 and (3.43) show that for every X 2Ker(T'), T�UM (X) = 0. However sin
e E = f0g, by Proposition 3.19 there are no ve
torsX 2 Ker(T') su
h that T�UM (X) = 0. This implies dim(Ker(T')) = 0 or equivalently that ' isin fa
t a lo
al isomorphism between UM and UN regarded as manifolds without the �ber bundlestru
ture. Nevertheless UN possesses also a stru
ture of �ber bundle over N indu
ed by the map� Æ �UM : UM �! N , see [1℄ for details. This means that the standard �ber of UN is di�eomorphi
to (� Æ �UM )�1(y) = ��1UM Æ ��1(y) whi
h lo
ally assumes the form FM �K.The 
onverse is proved by realizing that UM and UN are lo
ally di�eomorphi
 as manifoldsvia '. The 
onditions in item 3 follow dire
tly from this observation.4. The �rst two 
onditions and Proposition 3.17 imply that T�UM (Ker(T')) = f0g. Thereforethe redu
ed states by � on M , modeled by K will lift to the �bers. Sin
e E 6= f0g FN will bedi�eomorphi
 to FM=RE �F .The fa
t that M 
an be seen as a submanifold of UN and Proposition 3.17 imply the �rst two
onditions. Sin
e FM was redu
ed by RE we must have E � Ker(T') and T�UM (E) = f0g whi
hby Proposition 3.19 implies E 6= f0g.It is useful to spe
ialize the above results for the 
ase of 
ontrol aÆne systems due to their importan
ein real appli
ations:
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ture of Control AÆne Quotients). Consider a 
ontrol system �M = (UM ; FM )over a manifold M , (f;�N ) = ((�; '); (UN ; FN )) a quotient of �M and any ve
tor �eld FM in F eM . LetE be the involutive distribution de�ned by E = fX 2 0e : [FM ; X ℄ 2 Ker(T�e)g, whi
h we assume to beregular and denote by RE the regular equivalen
e relation indu
ed by E. Under these assumptions:1. Redu
tion from states to states and no redu
tion on inputsFiber bundle UN has base spa
e di�eomorphi
 to N , and standard �ber FN di�eomorphi
 to FMi�: � SM is proje
table with respe
t to �;� E = f0g.2. Redu
tion from states to states and from inputs to inputsFiber bundle UN has base spa
e di�eomorphi
 to N , and standard �ber FN di�eomorphi
 toFM=RE i�:� SM is proje
table with respe
t to �;� E 6= f0g.3. Redu
tion from states to inputs and no redu
tion on inputsFiber bundle UN has base spa
e di�eomorphi
 to N , and standard �ber FN di�eomorphi
 to FM�Ki�: � [FM ;Ker(T�)℄ \ �Ker(T�) + �� = f0g;� [FM ;Ker(T�)℄ 6= f0g;� E = f0g.4. Redu
tion from states to inputs and from inputs to inputsFiber bundle UN has base spa
e di�eomorphi
 to N , and standard �ber FN di�eomorphi
 to(FM=RE)�K i�:� [FM ;Ker(T�)℄ \ �Ker(T�) + �� = f0g;� [FM ;Ker(T�)℄ 6= f0g;� E 6= f0g.where K is any leave of the foliation on M indu
ed by the distribution Ker(T�).We see that the notion of proje
tability is fundamentally related to the stru
ture of the abstra
ted 
ontrolbundles. If the 
ontrol se
tion SM is proje
table then the 
ontrol inputs of the abstra
ted system arethe same or a quotient of the original 
ontrol inputs. Proje
tability 
an therefore be seen as a stru
turalproperty of a 
ontrol system in the sense that it admits spe
ial de
ompositions [33, 58℄ whenever it isproje
table. However, for general systems not admitting this spe
ial stru
ture, that is, for systems thatare not proje
table, the pro
ess of abstra
tion is still possible and it 
onsists of lifting the negle
ted stateinformation to the �bers. The states of the original system that are abstra
ted away by � are regarded
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ontrol inputs in the abstra
ted system. This shows that from a hierar
hi
al synthesis point of view,
ontrol systems that are not proje
table are mu
h more appealing sin
e one 
an design 
ontrol laws forthe abstra
ted system, that when pulled-down to the original one are regarded as spe
i�
ations for thedynami
s on the negle
ted states.Between 
ases 1 and 2 of proje
tability and 
ases 3 and 4 of non proje
tability there are more intri-
ate des
riptions for the stru
ture of the 
ontrol bundle related with the de
ompositionality of the Liesubalgebra de�ned by Ker(T'). A detailed a

ount of this situation will be given elsewhere.It is also important to mention that all the abstra
ting methodology is strongly rooted on the �berbundle model of 
ontrol systems. If one assumes a Cartesian produ
t between the state spa
e and theinput spa
e, then it is not possible to lift states to inputs sin
e produ
t respe
ting maps are of theform '(x; u) = ('1(x); '2(u)). We thus see that a hierar
hi
al view of 
ontrol design simply meansinter
hanging the role of state and input through the di�erent layers in a hierar
hy. This presents a
ompelling reason to pla
e the distin
tion between states and inputs as a modeling question and not asa 
hara
teristi
 of physi
al systems. 6. ExamplesIn this se
tion we will provide simple examples to illustrate the 
hara
terization of the abstra
ted 
ontrolbundles.Example 3.22. We start with a very simple but very 
hara
teristi
 example. Consider a simple me
han-i
al system on the real line des
ribed as a double integrator. The 
ontrol bundle is given by UM = R2 �Rand the base spa
e M = R2 . Choosing as 
oordinates for M position x1 and velo
ity v1 we have thefollowing des
ription for FM : FM = f + gu = 24v10 35+ 240135u(3.61)We now introdu
e the abstra
ting map � : R2 �! R de�ned by �(x1; v1) = x1. Its tangent map is givenby T� = [1 0℄ and Ker(T�) = spanf240135g. Computing [FM ;Ker(T�)℄ one obtains:[FM ;Ker(T�)℄ = [24v035 ;240135℄ + [240135 ;240135℄ = 241035(3.62)and we see that [FM ;Ker(T�)℄ \ �Ker(T�) + spanfgg� = f0g and [FM ;Ker(T�)℄ 6= f0g whi
h tellus that all the negle
ted states will lift into the �bers of the abstra
ting system. This means thatthe integral manifold of the distribution Ker(T�) whi
h 
an be 
oordinatized by the variable v willbe
ome an input at the abstra
ted model. Let us see now what will happen to the input u. Computing
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h equals Ker(T�) we realize that the 
ontrol �ber FM = R will be fa
toredby E . Theorem 3.20 tells us that the �bers of the 
ontrol bundle UN of the abstra
ted system will bedi�eomorphi
 to (R=RE ) Æ ��1(y) �= R.We now 
ompute the abstra
tion of 
ontrol system (3.61) by the methods reviewed in Subse
tion 2.2.The aÆne distribution SM is de�ned by:XM = 24v035 �M = spanf240135g(3.63)We now 
ompute LM as:LM = �M + [Ker(T�); XM ℄ = spanf240135g+ spanf241035g(3.64)and the abstra
ting aÆne bundle SN is given by:SN (y) = Tx�(SM (x))= Tx�(XM (x) + �M (x))= [1 0℄(24v035+ TxM)= v1(3.65)The last equality holds sin
e SN (y) is given by Tx�(SM (x)) for any x 2 ��1(y). From the aÆne bundleSN we easily obtain the abstra
tion of (3.61) as:_y = _x1 = v1(3.66)where v is now a 
ontrol input. The �ber respe
ting map ' indu
ed by � will then be de�ned as'((x; v); u) = (x; v) whi
h simply abstra
ts away the input u and lifts v from the base spa
e to the �bers,\promoting" it to a new 
ontrol input. This example is 
hara
teristi
 in the sense that it is probablythe simplest example of hierar
hi
al 
ontrol. On the abstra
ted system a 
ontrol law is a spe
i�
ation ofvelo
ity as a fun
tion of position and this will 
orrespond on the original model as a spe
i�
ation to bea
hieved by properly designing an a

eleration 
ontrol law.Example 3.23. Next we 
onsider a simple example of a full nonlinear 
ontrol system where no stateinformation is lifted into the �bers. Consider the nonlinear 
ontrol system des
ribed by:_x1 = x2u1u2_x2 = x21u32where u1 and u2 are the 
ontrol inputs. The state spa
e is given by M = R2 and the 
ontrol bundle bythe trivial bundle UM = R2 �R2 . We now 
onsider the abstra
tion of this 
ontrol system de�ned by themap � : R2 �! R, �(x1; x2) = x2. We take advantage of the fa
t that the bundle is trivial by 
hoosing



6. EXAMPLES 45FM = F lM and de
omposing Ker(T�e) as Ker(T�e) = Ker(T�)l+0e. Proje
tability is now determinedby the in
lusion: [F lM ;Ker(T�)l℄ + [F lM ; 0e℄ � Ker(T�e) + [F lM ; 0e℄(3.67)Computing: [F lM ;Ker(T�)l℄ = spanf[26666664x2u1u2x21u3200
37777775 ;266666641000

37777775℄g = spanf�26666664 02x1u3200
37777775g = spanfXg(3.68)

[F lM ; 0e℄ = spanf[F lM ;266666640010
37777775℄; [F lM ;266666640001

37777775℄g = spanf�26666664x2u2000
37777775 ;�26666664 x2u13x21u2200

37777775g(3.69)and de�ning: Y = �26666664x2u2000
37777775 Z = �26666664 x2u13x21u2200

37777775(3.70)we see that 32x1u2X = �u1Y +u2Z so that [F lM ;Ker(T�e)℄ � Ker(T�e)+[F lM ; 0e℄ and by Theorem 3.20no states will be lifted into the �bers. With respe
t to inputs we have [F lM ; 0e℄\Ker(T�)l 6= f0gwhi
h tellus that the �bers will be fa
tored by the regular equivalen
e relation RE indu
ed by E = spanf[0 0 1 0℄Tg.Theorem 3.20 then asserts that the new 
ontrol bundle is di�eomorphi
 to R�R. Although the methodsproposed in [63, 64℄ to 
ompute abstra
tions only deal with 
ontrol aÆne systems we 
an 
ompute theabstra
tion \manually" for this simple example. Let SM be the 
ontrol se
tion asso
iated with FM , thenby 
omputing Tx�(X) for every X 2 SM (x) we obtain:Tx�(24x2u1u2x21u22 35) = x21u32(3.71)so that the 
ontrol se
tion SN is de�ned by SN = fx21u32 2 TR : x1 2 R ^ u2 2 Rg and 
an equivalentlybe des
ribed by SN = fu 2 TR : u 2 Rg. A 
ontrol parameterization for SN is then given by UN = R�Rand 
ontrol system FN de�ned by: _x = u(3.72)
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h agrees with the results given by Theorem 3.20



CHAPTER 4Abstra
tions of Hybrid Control Systems1. Introdu
tionIn this 
hapter we develop a formal framework to introdu
e abstra
tions for hybrid 
ontrol systems andstudy their properties. Based on the insights obtained in the last 
hapter we use again simple ideas from
ategory theory and introdu
e the 
ategory of abstra
t 
ontrol systems. The obje
ts will be abstra
t
ontrol systems 
apturing dis
rete, 
ontinuous and hybrid 
ontrol systems. To be able to work at su
ha general level we start from the hybrid automaton and extra
t its mathemati
al stru
ture by de�ningan hybrid 
ontrol system as a partial monoid a
tion. This 
hara
terization of hybrid 
ontrol systemsemphasizes its similarity with labeled transition systems and smooth 
ontrol systems thereby suggestingthe general notion of abstra
t 
ontrol systems. As morphisms, in the 
ategory of abstra
t 
ontrol systems,we will 
onsider relations that preserve the partial monoid a
tion stru
ture. There are two main reasonsto adopt relations instead of fun
tions. The �rst is that it allows to de�ne the 
on
ept of bisimulationthrough the use of the inverse relations. While for relations there always exist inverse relations, the sameis no longer true for fun
tions. Although this problem 
ould be solved by adopting other formulationsof bisimulation, of whi
h we mention [36℄ by its intuitive elegan
e, there is still a mu
h more 
ompellingreason to use relations. When aggregating 
ontinuous to dis
rete information we will fa
e the problemof abstra
ting 
ontinuous evolutions to dis
rete jumps. This, as we will see, will require to map pointsin the state spa
e of the original hybrid system to sets of points in the state spa
e of its abstra
tion andrelations are 
exible enough to a

ommodate these requirements.As in the 
ontinuous 
ase we propose a notion of abstra
tion based on simulations whi
h are 
apturedby the morphisms of the 
ategory, that is, system A is a simulation of system B if there is a morphismfrom B to A. However we will also provide a stronger notion of abstra
tion, namely bisimulations. Wede�ne bisimulations as symmetri
 simulations, that is, system A is a bisimulation of system B if there isa morphism (whi
h is a relation is this 
ase) from B to A and the inverse relation is also a morphism fromA to B. Bisimulation de�nes a very spe
ial equivalen
e relation of the 
lass of abstra
t 
ontrol systemssin
e 
ardinality (or dimension, when we 
an talk about it) is not 
onstant on the equivalen
e 
lasses.This fa
t is the essen
e of 
omplexity redu
tion sin
e analysis or synthesis tasks 
an be performed mu
hmore eÆ
iently on lower 
ardinality equivalent systems.47



48 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMSWe also introdu
e a 
omposition operator in the 
ategory of abstra
t 
ontrol systems modeling theinter
onne
tion and syn
hronization of subsystems. This operator is based on the 
ategori
al view of
on
urren
y des
ribed in [89℄ and is another powerful tool for 
omplexity redu
tion. In fa
t, we showthat simulations are 
ompositional in the sense that 
omposing simulations of subsystems results in asimulation of the overall system. We also show that bisimulations are 
ompatible with 
omposition under
ertain 
onditions on the syn
hronization of the subsystems.All of these results are them spe
ialized to hybrid 
ontrol systems where simpler versions of some resultsare given. We also provide an algorithm to 
ompute abstra
tions of hybrid 
ontrol systems and showthat under 
ertain assumptions the algorithm 
omputes bisimulations.2. Hybrid Automata: An operational perspe
tiveHybrid systems originally appeared as a model for systems 
omprising dis
rete and 
ontinuous evolution.Examples range from man engineered systems su
h as 
omputer 
ontrolled physi
al pro
esses to severalexamples from nature like the motion of a boun
ing ball. To 
apture all of these similarly di�erentsystems in a 
ommon model, ideas from 
omputer s
ien
e and 
ontrol theory were merged into what isusually 
alled an hybrid automaton [26℄:Definition 4.1 (Hybrid Automata). An hybrid automaton is a tupleH = (Q;M; Init; Inv;Guard;Reset; F )
onsisting of:� Q is a �nite set of dis
rete states.� M is a smooth manifold.� Init � Q�M is a set of initial states.� Inv : Q �! P(M) is a map assigning to ea
h q 2 Q a subset of M 
alled the invariant.� Guard : Q�Q �! P(M) is a map assigning to a pair of dis
rete states a subset of M 
alled theguard.� Reset : Q�Q�M �!M is a map su
h that given a pair of dis
rete states, maps points in M toa set of points in M .� F : Q�M �! TM is a map assigning a ve
tor �eld F (�; x) 2 TM for ea
h q 2 Q.If F is not a ve
tor �eld, but a 
ontrol system, then we have an hybrid 
ontrol system as opposed to anhybrid dynami
al system. The state spa
e asso
iated with an hybrid system is given by Q �M and apoint is represented by the pair (q; x). The semanti
s asso
iated with a traje
tory of an hybrid automatonis the following: a traje
tory originates in a state (q0; x0) 2 Init and 
onsists of 
on
atenations of dis
retejumps and 
ontinuous 
ows. A 
ontinuous 
ow keeps the dis
rete part q of the state (q; x) 
onstant whilethe 
ontinuous part x evolves a

ording to ddtx(t) = F (q; x(t)) while x(t) belongs to Inv(q). When the
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ontinuous part of the state attempts to leave the invariant either x 2 Guard(q; q0) for some q0 2 Q and adis
rete jump from q to q0 is for
ed or the traje
tory is not de�ned beyond that point and we say that thehybrid automaton has blo
ked or is blo
king. If a dis
rete jump is for
ed, the state jumps instantaneouslyfrom (q; x) to (q0; x0) where x0 2 Reset(q; q0; x). A dis
rete jump may also happen in a 
ontrolled way asopposed to being for
ed. Whenever the 
ontinuous part of the state belongs to both the invariant andthe guard asso
iated to some dis
rete transition, the jump 
an be taken, but is not for
ed to. A 
hoi
e isthen made between taking the dis
rete jump or 
ontinuing to 
ow 
ontinuously. After a dis
rete jump,if the 
ontinuous part of the state belongs to the invariant of the new dis
rete state another 
ontinuousevolution takes pla
e. The traje
tory 
ontinues then evolving by 
ontinuous 
ows and dis
rete evolutionsor blo
ks at some state.An hybrid automaton is usually displayed graphi
ally as a dire
ted graph where the verti
es are repre-sented by 
ir
les 
ontaining the ve
tor �eld F and the invariant. The dis
rete transitions between statesare represented by arrows labeled by the guard and the reset asso
iated with that transition. Consider,for example, an hybrid automaton modeling a thermostat as displayed in Figure 1. The thermostat hastwo modes of operation: OFF and ON . When the OFF mode is a
tive, the temperature de
reasesa

ording to the law _x = �kx, where k is a 
onstant depending on the room 
hara
teristi
s. When in theON mode, the temperature evolution is des
ribed by _x = k(h � x), where h is a 
onstant modeling theheater performan
e. The goal of the thermostat is to keep the temperature between TMAX and TMINwhi
h di
tates the swit
hing logi
 between the ON and OFF modes. This hybrid automaton is thereforede�ned by: Q = fON;OFFgM = RInit = Q�MInv(ON) =℄�1; TMAX ℄Inv(OFF ) = [TMIN ;+1[Guard(ON;OFF ) = fTMAXgGuard(OFF;ON) = fTMINgReset(ON;OFF; x) = fxgReset(OFF;ON; x) = fxgF (ON; x) = k(h� x)F (OFF; x) = �kx
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X �� XFigure 1. Hybrid automaton model of a thermostat.The hybrid automaton model provides an operational des
ription of hybrid systems in the sense that itprovides a way of 
omputing or implementing the traje
tories of an hybrid system. However, it doesnot emphasize the stru
ture of hybrid systems as a mathemati
al obje
t. It is towards this obje
tivethat we pro
eed in the next se
tion, where we will provide an alternative des
ription of hybrid systemsemphasizing their mathemati
al stru
ture.3. Abstra
t Control SystemsIn order to 
apture 
ontinuous, dis
rete, and hybrid systems under an uni�ed model, we need an abstra
tde�nition of 
ontrol systems. The essen
e of a 
ontrol system is re
e
ted into two di�erent aspe
ts: anotion of evolution, and the ability to 
ontrol the evolution. These two fundamental aspe
ts are 
apturedin the following de�nition:Definition 4.2 (Abstra
t Control System). Let S be a set, M a monoid and A a �bering relation onS �M with base spa
e S su
h that As is a pre�x 
losed subset of M 
ontaining the identity for everys 2 S. An abstra
t 
ontrol system over S is a map � : A �! S respe
ting the monoid stru
ture, that is�s : As �! S veri�es:1. Identity: �s(") = s2. Semi-group: ��s(as)(as0) = �s(asas0)Intuitively, we 
an think of the set S as the state spa
e, and the �ber bundle A, also 
alled in this worka �bering monoid, as the set of possible a
tions, that depend on the base point. The map � assigns toea
h point s 2 S a fun
tion from As to S representing all the input 
hoi
es that 
an be made at the points. Given an input 
hoi
e as 2 As, �S(as) returns the state rea
hed under the a
tion of the 
ontrol inputas.We adopt the following intuitive graphi
al notation to denote evolution from s 
ontrolled by a anddes
ribed by �, that is, �s(a) = s0 is represented by s a�! s0.



3. ABSTRACT CONTROL SYSTEMS 51We 
ould model abstra
t 
ontrol systems in a more elegant way by de�ning them to be a generalizedmonoid, that is a small 
ategory. We would then have as obje
ts the elements of S and every as 2 Aswould be 
onsidered a morphism from s to �(s; as). However, we will use the above de�nition sin
e it ismore easily asso
iated and 
ompared with standard notions su
h as monoid and group a
tions. To get abetter understanding of the above de�nition we will see how it applies to three 
lasses of systems.3.1. Dis
rete Control Systems as Abstra
t Control Systems. The usual model for dis
rete
ontrol systems are automata however it will be enough to work with transition systems. Let (Q;�; Æ)be a dis
rete labeled transition system, where Q is a �nite set of states, � is a �nite set of input symbols,and Æ : Q�� �! Q is the next-state fun
tion. Usually, transitions are modeled by a transition relation�!2 Q���Q, but we will restri
t to deterministi
 transition systems. Note also that Æ is in general apartial fun
tion. Let us denote by �� the set of all �nite strings obtained by 
on
atenating elements in�. In parti
ular the empty string " also belongs to ��. With 
on
atenation as a monoid operation, ��
an be taken as the monoid M. The state spa
e is naturally S = Q. The transition fun
tion Æ de�nes aunique partial map from Q��� to Q whi
h is just an abstra
t 
ontrol system � : (S �M)jR = A �! S,where R is the �bering monoid given by R = f(s;m) 2 S �M : �(s;m) is de�nedg.To 
larify the resemblan
es to the 
ontinuous 
ase that we des
ribe next, we elaborate a little on thestru
ture of the monoid ��. This monoid has been de�ned as the set of all �nite sequen
es of elementsin �. Alternatively we 
an regard �� as the disjoint union of the 
olle
tion of maps �? [ �f1;2;:::;tgwith t 2 f1; 2; : : : ; ng. Given any string s = m1m2m3m4 : : :mn 2 �� we 
an identify it with the mapu : f1; 2 : : : ; ng �! � de�ned by u(1) = m1, u(2) = m2, : : :, u(n) = mn. The empty string " is identi�edwith the map u : ? �! � and 
on
atenation of strings 
an be seen as 
on
atenation of maps de�ned asfollows: � : U1;2;:::;t1 � U1;2;:::;t2 �! U1;2;:::;t1+t2(u(t); v(t)) 7! (u � v)(t) =8<: u(t) if 1 � t � t1v(t� t1) if t1 + 1 � t � t1 + t2(4.1)The above operation only allows to 
on
atenate maps su
h that its domain ends in a �nite number, sin
eit is not possible to append the se
ond map at the end of the �rst one, if the end is a non-�nite1 number.This for
es to work with the 
lass of maps de�ned on intervals with �nite end point, that is:�� = at2N0�t(4.2)whi
h is 
losed for 
on
atenation of maps, posses identity " and therefore it is a monoid sin
e 
on
atenationis an asso
iative operation. Note that in this 
ase all the maps we are 
onsidering are de�ned on �nite1In fa
t this is possible but one would have to resort to !-monoids, see for example [65℄. This 
onstru
tion will be sket
hedwhen dealing with the Zeno phenomena.



52 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMSsubsets of the naturals and the 
ondition that the end point of the domain is �nite is equivalent to sayingthat the number of symbols in the string is �nite. This will not be the 
ase for 
ontinuous systems as wewill see shortly.3.2. Continuous Control Systems as Abstra
t Control Systems. For simpli
ity of presen-tation, we 
onsider only time-invariant 
ontrol systems, although the 
onstru
tion to be presented isgeneralizable to time varying systems. Let U be the spa
e of admissible inputs. De�ne the set U t as:U t = fu : [0; t[�! U j [0; t[� R+0 g(4.3)An element of U t is denoted by ut, and represents a map from [0; t[ to U . Consider now the set U� whi
his the disjoint union of all U t for t 2 R+0 : U� = at2R+0 U t(4.4)The set U� 
an be regarded as a monoid under the operation of 
on
atenation, that is, if ut1 2 U t1 � U�and ut2 2 U t2 � U� then ut1ut2 = ut1+t2 2 U t1+t2 � U� with 
on
atenation given by:ut1ut2(t) = 8<: ut1(t) if 0 � t < t1ut2(t� t1) if t1 � t < t1 + t2(4.5)The identity element is given by the empty input, that is " = u0. This 
onstru
tion parallels the
onstru
tion that obtains �� from �, however in this 
ase the �niteness 
ondition on the end point ofthe domain of the map ut no longer implies that ea
h string has only a �nite number of elements. We
an have an in�nite number of 
on
atenations as long as the sum of the duration times 
onverges.We now show how this monoid is used to des
ribe any smooth 
ontrol system as an abstra
t 
ontrolsystem. Let _x = f(x; u) be a smooth 
ontrol system, where x 2 M , a smooth manifold and u 2 U , theset of admissible inputs. Choosing an admissible input traje
tory ut, f(x; ut) is a well de�ned ve
tor �eldand as su
h it indu
es a 
ow whi
h we denote by 
x : [0; t[�!M , su
h that 
x(0) = x. We 
an then 
astany smooth 
ontrol system into our framework by de�ning:� : M � U� �! M(x; ut) 7! 
x(t)(4.6)It is not diÆ
ult to see that � is in fa
t a well de�ned abstra
t 
ontrol system sin
e �(x; ") = 
x(0) = xand �(x; ut1ut2) = 
x(t1 + t2) = 

x(t1)(t2) = �(�(x; ut1); ut2). In general the set of admissible 
ontrolinputs may 
hange with the point x so that the domain of � will be in fa
t a �ber bundle over M . It isalso interesting to note that when U is a singleton for every x 2M (there are no 
hoi
es to be made) theset U t 
an be identi�ed with the number t so that U� is given by U� = `t2R+0 t = R+0 and our abstra
t
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ontrol system � degenerates into an a
tion of R+0 on M , that is, the solution of a di�erential equation(a degenerate 
ontrol system).3.3. Hybrid Control Systems as Abstra
t Control Systems. Hybrid 
ontrol systems also �tin the abstra
t 
ontrol system framework. The state spa
e of an hybrid 
ontrol system is usually des
ribedas Q�M , where Q is a �nite set of states and M a smooth manifold. However it will be 
onvenient torelax this 
on
ept and look at the state spa
e as a �ber bundle. Instead of 
onsidering the same manifoldM for every q 2 Q we 
onsider a set of smooth manifolds Xq parameterized by the dis
rete states anddenoted by X = fXqgq2Q. The dis
rete set Q is thought as the base spa
e, and for ea
h base point q 2 Qwe atta
h a �ber Xq. A point in X is represented by the pair (q; x).As a
tion monoid we will use the set: M = at2N0(U� [ ��)t(4.7)assuming that U� \ �� = f"g and regarding U� and �� simply as sets. Let us elaborate on the produ
toperation onM. This operation is de�ned as the usual 
on
atenation and therefore it requires �nite lengthstrings. To a

ommodate this requirement and still be able to have an in�nite number of 
on
atenationsof elements in U� we pro
eed as follows. Suppose that we want to show that �1ut1ut2 : : : utn : : : �2 belongstoM, where tn is a 
onvergent sequen
e. Instead of regarding ea
h element in the string as an element inM, whi
h would not allow us to de�ne the last 
on
atenation sin
e it would happen after 1, we regard�1 and �2 as elements of M and ut1ut2 : : : utn : : : = ut0 as an element of U� and 
onsequently as anelement of M, where t0 = limn�!1 tn. This string is then regarded as the map u : f1; 2; 3g �! M de�nedby u(1) = �1, u(2) = ut0 and u(3) = �3. The produ
t in M is then the usual 
on
atenation on redu
edstrings, that is, strings where all 
onsequent sequen
es of elements of U� or �� have been repla
ed bytheir produ
t in U� or ��, respe
tively. The monoid M obtained by this 
onstru
tion is 
alled the freeprodu
t of U� and �� and is is fa
t the 
oprodu
t in the 
ategory of monoids. Furthermore we have thefollowing 
hara
terization of M:Proposition 4.3 ([30℄). The monoid M is freely generated by the symbols U� [ ��.Sin
e the 
ontinuous 
ontrol systems will, in general, be di�erent at ea
h �ber Xq, U will be a �nite familyof admissible 
ontinuous 
ontrol input spa
es parameterized by the dis
rete states, that is U = fUqgq2Q.Hybrid 
ontrol systems are now 
ast into the abstra
t 
ontrol systems framework as:Definition 4.4 (Hybrid Control System). An hybrid 
ontrol system H = (X;AX ;�X) 
onsists of:� The state spa
e X = fXqgq2Q.� A �bering relation AX on X �M de�ned by:AX = f((q; x);m) 2 X �M : �X((q; x);m) is de�nedg.



54 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMS� A map �X : AX �! X respe
ting the monoid stru
ture su
h that for all q 2 Q, there is a setInv(q) � Xq and for all x 2 Inv(q), A(q;x) \ U� 6= f"g and �((q; x); ut0) 2 Inv(q) for every pre�xut0 of every ut 2 A(q;x).The semanti
s asso
iated with the evolution from (q; x) governed by � and 
ontrolled by a 2 A(q;x) is thestandard transition semanti
s of hybrid automata [26℄. Suppose that a = ut1�1�2ut2 , then �((q; x); a) =(q0; x0) means that the system starting at (q; x) evolves during t1 units of time under 
ontinuous inputut1 , jumps under input �1 and them jumps again under �2. After the two 
onse
utive jumps, the systemevolves under the 
ontinuous 
ontrol input ut2 rea
hing (q0; x0), t2 units of time after the last jump. Fromthe hybrid system 
onstru
tion we 
an 
learly extra
t the purely dis
rete 
ase (Xq is a singleton andUq = ? for ea
h q 2 Q) as well as the purely 
ontinuous 
ase (Q is a singleton and � = ?).3.4. Control System Abstra
tions. Having 
hara
terized the stru
ture of hybrid systems we now
onsider simulation relations, and in parti
ular abstra
tions, between the general systems 
onsidered inDe�nition 4.2. These notions will be spe
i�ed by requiring that the stru
ture is preserved between theoriginal system and its abstra
tion. Although for dis
rete and smooth systems a notion of simulationbased on a map between �bering monoids is able to model the relevant 
on
epts and 
onstru
tions, thatwill not be the 
ase for hybrid 
ontrol systems. A map between �bering monoids turns out to be toorestri
tive and one is for
ed to look into more general notions of simulation. The link between the �beringmonoids will be provided by a relation2 whi
h is general enough for our purposes. A notion of simulationwill involve a relation between �bering monoids that respe
ts the 
ontrol stru
ture given by the map �.This is formalized as follows:Definition 4.5 (Simulations of Abstra
t Control Systems). Let �X and �Y be two abstra
t 
ontrol sys-tems over X and Y with �bering monoids AX and AY , respe
tively. Let R � AX � AY be a �beringmonoid respe
ting relation. Then �Y is a simulation of �X with respe
t to R or a R-simulation if andonly if: 8x2X (x; y) 2 RB ) 8(x;ax)2dom(R) 9(x;ax;y;ay)2R (�X(x; ax);�Y (y; ay)) 2 RB(4.8)This de�nition slightly generalizes the usual notions of morphisms between transition systems as in [89℄,sin
e we allow the 
ontrol inputs to depend on the state spa
e and sin
e we use relations instead offun
tions. It is not diÆ
ult to see that abstra
t 
ontrol systems and relations satisfying 
ondition (4.8)form a 
ategory, that we 
all the abstra
t 
ontrol systems 
ategory. It is also 
lear that the 
ategory ofdis
rete 
ontrol systems and also the 
ategory of smooth 
ontrol systems are sub
ategories of this larger
ategory.2In fa
t it was by means of a relation that the notion of bisimulation was introdu
ed in [52℄



3. ABSTRACT CONTROL SYSTEMS 55It may seem that 
he
king if R is �bering monoid preserving might be a diÆ
ult task in 
on
rete examples.We will see, however, that for hybrid systems the relations we will 
onsider are �bering monoid respe
tingby 
onstru
tion.If we regard an abstra
t 
ontrol system as a small 
ategory, then a simulation is a fun
tor between
ategories that may be multi-valued on both obje
ts and morphisms.We now propose the following notion of abstra
tion based on simulations:Definition 4.6 (Abstra
tions of Abstra
t Control Systems). Let �X and �Y be abstra
t 
ontrol sys-tems over X and Y with �bering monoids AX and AY , respe
tively. If R � AX �AY is a �ber respe
tingrelation we say that �Y is an R-abstra
tion of �X i� �Y is an R-simulation of �X and R is a surje
tiverelation with domain AX .The notion of bisimulation also follows naturally:Definition 4.7 (Bisimulations of Abstra
t Control Systems). Let �X and �Y be abstra
t 
ontrol sys-tems over X and Y with �bering monoids AX and AY respe
tively. If R � AX �AY is a �ber respe
tingrelation we say that �X is R-bisimilar to �Y i� �Y is a R-simulation of �X and �X is a R�1-simulationof �Y .The approa
h taken to de�ne bisimulation is similar in spirit to the one in [52℄, however instead ofpreserving labels of the abstra
t 
ontrol systems, we relate them through the relation. Several otherapproa
hes to bisimulation are reported in the literature and we point the reader to the 
omparativestudy in [73℄ and the referen
es therein. How this notion relates with the others is an important issuethat will be dis
ussed elsewhere.The importan
e of simulations lies on the fa
t that simulations 
apture all traje
tories of the simulatedabstra
t 
ontrol system. We now make this fa
t pre
ise. Instead of trying to de�ne traje
tories of abstra
t
ontrol systems (whi
h would be as diÆ
ult as de�ning traje
tories of hybrid 
ontrol systems, see thedi�erent approa
hes in [35, 53, 67, 85℄) we will restri
t our attention to the orbits of abstra
t 
ontrolsystems.Definition 4.8. Let �X be an abstra
t 
ontrol system over X with �bering monoid AX . The set Ox isan orbit from the point x 2 X i�:9ax2Ax su
h that Ox = fx0 2 X : x0 = �X(x; a0x) for every pre�x a0x of axg(4.9)Intuitively, the orbit Ox through x is the set of all the points visited by �X while being 
ontrolled by ax.We 
an now relate the orbits of abstra
t 
ontrol systems to the orbits of the 
orresponding simulations:



56 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMSProposition 4.9. Let �X and �Y be abstra
t 
ontrol systems over X and Y with �bering monoids AXand AY , respe
tively. If �Y is a R-simulation of �X with respe
t to a �bering monoid respe
ting relationR indu
ed by a map ' : AX �! AY then:�(Ox) = O�(x) 8x2X 8Ox(4.10)where � : X �! Y is the map indu
ed by RB.Proof. Assume that �Y is a R-simulation of �X and let x 2 X be RB related to y 2 Y . Forany (x; ax) 2 dom(R) there exists a pair ((x; ax); (y; ay)) 2 R su
h that � Æ �X(x; ax) = �Y (y; ay) =�Y ('(x; ax)) by de�nition of simulation and the fa
t that R is indu
ed by '. Therefore:�(Ox) = [a0x pre�x of ax �(�X (x; a0x))= [a0x pre�x of ax�Y ('(x; a0x))Sin
e ' maps pre�xes of ax to pre�xes of ay (as it is a �bering monoid respe
ting map) for (y; ay) ='(x; ax) the previous expression 
an also be written as:[a0x pre�x of ax�Y ('(x; a0x)) = [a0y pre�x of ay �Y (y; a0y)= Oy= O�(x)and the proof is �nished.If the �bering monoids are related by a relation that is not indu
ed by a fun
tion, then we only have aweaker version of Proposition 4.9 as illustrated in the next example.
AY�

AY�

Y� Y�

Y� Y�

X� X� X�

AX�
AX�Figure 2. An abstra
t 
ontrol system and one possible simulation.Example 4.10. Consider the abstra
t 
ontrol system HX displayed in the lower part of Figure 2, wherethe " transitions are not displayed. The abstra
t 
ontrol system displayed in the top part of the �gure is



3. ABSTRACT CONTROL SYSTEMS 57a simulation of HX with respe
t to the relation:R = f((x1; ax1); (y1; ay1)); ((x1; "); (y1; ")); ((x3; ax3); (y3; ay3))((x3; "); (y3; ")); ((x3; "); (y2; ")); ((x4; "); (y4; "))g(4.11)We then see that the evolution x1 ax1�! x3 is simulated by y1 ay1�! y2 while the evolution x3 ax3�! x4is simulated by y3 ay3�! y4. However, y2 6= y3 as a 
onsequen
e of the nondeterminism imposed byRB(x3) = fy2; y3g. Nevertheless, relations will be play an important role in des
ribing simulations forhybrid 
ontrol systems.We have already seen that abstra
tions preserve orbits but in the next se
tion we will see in detail thatabstra
tions may preserve other properties as well.3.5. Preservation of Properties. In this se
tion we will study preservation of properties that willbe
ome important for the later study of hybrid systems.3.5.1. Rea
hability.Definition 4.11 (Rea
hable Spa
e). Let �X be an abstra
t 
ontrol system overX . The rea
hable spa
efrom a point x 2 X , and denoted by Rea
hx(�X ) is given by:Rea
hx(�X) = [a2Ax�X(x; a)(4.12)The rea
hable spa
e from a set X 0 � X is denoted by Rea
hX0(�X) and is de�ned as:Rea
hX0(�X) = [x2X0Rea
hx(�X)(4.13)Simulations preserve rea
hable sets in the sense that given an initial 
ondition x0 2 X there exists a 
hoi
efun
tion � : X �! Y relating the rea
hable spa
e of and abstra
t 
ontrol system with the rea
hable spa
eof its simulation:Proposition 4.12. Let �X and �Y be two abstra
t 
ontrol systems on X and Y , respe
tively. If �Y isa R-simulation of �X for a relation R with domain AX , then for every x0 2 X there exists a map � : X�! Y su
h that (x; �(x)) 2 RB and �(Rea
hx0(�X)) � Rea
h�(x0)(�Y )Proof. Let us de�ne �. For x0, �(x) is any y0 2 Y su
h that (x0; y0) 2 RB . For any x 2Rea
hx0(�X ), �(x) = �Y (�(x0); a�(x0)), where ((x0; ax0); (�(x0); a�(x0))) 2 R and x = �X(x0; ax0). Notethat (�(x0); a�(x0)) exists sin
e the domain ofR isX and by de�nition of simulation (x;�Y (�(x0); a�(x0))) 2RB . This allow us to 
on
lude that for any x 2 Rea
hx0(�X), �(x) = �Y (�(x0); a�(x0)) 2 Rea
h�(x0)(�Y )as desired. We have already shown the desired in
lusion so that the de�nition of � for points not belongingto Rea
hx0(�X) is arbitrary.



58 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMSThis result is in fa
t a natural 
onsequen
e of the fa
t that simulations preserve traje
tories. Safetyproperties expressed in several temporal logi
s 
an also be shown to be preserved based on the notion ofsimulation, however, we shall not explore further this aspe
t.3.5.2. Blo
king. Another important property is the absen
e of dead-lo
ks on the system being mod-eled by a dis
rete or hybrid 
ontrol system. The analogue for 
ontinuous systems is the non-existen
e of�nite explosion times. This property is usually 
alled non-blo
king and is de�ned as:Definition 4.13. Let �X be an abstra
t 
ontrol system. �X is said to be non-blo
king from S � X i�for every x 2 Rea
hS(�X ), Ax 6= f"g.In general simulations do not preserve non-blo
king, however this 
an be a
hieved under the properassumptions:Proposition 4.14. Let �X be an abstra
t 
ontrol system and �Y a R-abstra
tion of �X . If:� �X is non-blo
king from S� for any (x; y) 2 RB su
h that:{ x 2 Rea
hS(�X){ y 2 Rea
hRB(S)(�Y ){ (x0; y) 2 RB for every x0 2 Rea
hx(�X)there exists an a
tion ax 2 [x2R�1B (y)Ax su
h that R(x; ax) 6= f(y; ")gthen �Y is non-blo
king.Proof. We will pro
eed by 
ontradi
tion. Assume that �Y is blo
king from RB(S) and that theproposition 
onditions hold. Sin
e �Y is blo
king from RB(S) there is a y 2 Rea
hRB(S)(�Y ) su
h thatAy = f"g. By surje
tivity of R there is a (x; ax) 2 AX that is R-related to (y; "). Let W be the setof all (x; ax) 2 AX R-related to (y; "). This set satis�es Rea
hx(�X) � �X(W ) for every x 2 �X(W )sin
e from dom(R) = AX it follows that for any ax 2 Ax, (x; ax) 2 W and this in turn implies that(�X(x; ax); y) 2 RB by (4.8). It follows that �X(x; ax) 2 �X (W ) and therefore Rea
hx(�X) � �X(W ).However, we know that there is an a
tion ax 2 [x2�X(W )Ax su
h that ((x; ax); (y; ay)) 2 R with ay 6= "whi
h 
ontradi
ts the fa
t that �Y is blo
king at y.This 
ondition is also ne
essary as we now show:Proposition 4.15. Let �X be an abstra
t 
ontrol system and �Y a R-abstra
tion of �X . If �X isnon-blo
king from S and �Y is non-blo
king from RB(S) then for any (x; y) 2 RB su
h that:� x 2 Rea
h(�X)� y 2 Rea
h(�Y )



3. ABSTRACT CONTROL SYSTEMS 59� (x0; y) 2 RB for every x0 2 Rea
hx(�X)there exists an a
tion ax 2 [x2R�1B (y)Ax su
h that R(x; ax) 6= f(y; ")g.Proof. Admit that �Y is nonblo
king from RB(S). Let W be the set of all elements from X thatare RB-related to some y 2 Rea
hRB(S)(�Y ). If Rea
hx(�X ) * W for any x 2 W then the result isva
uously true. If Rea
hx(�X) � W for some x 2 W then sin
e �Y is nonblo
king from y there is ana
tion ay 2 Ay, ay 6= " su
h that the pair (y; ay) is R-related to (x; ax) with ax 2 [x2WAx by surje
tivityof R.This result is 
learly unpra
ti
al sin
e it involves 
onditions that are not possible to 
he
k in pra
ti
e.However it is diÆ
ult to give 
he
kable 
onditions at this level of generality. When dealing spe
i�
allywith hybrid 
ontrol systems at Se
tion 4 we will be able to take advantage of the stru
ture of hybrid
ontrol systems to be able to give results based on more easily veri�able 
onditions.3.6. When are two abstra
t 
ontrol systems bisimilar? When synthesis (and not analysis) isthe important issue one is interested in ensuring that every traje
tory of the abstra
tion has a feasibleimplementation on the original, more detailed model. This allows to design 
ontrollers for the abstra
tionand then re�ne them on the original system by in
orporating the modeling details not present on theabstra
tion. Feasibility of implementations or re�nements asks for the original model to be a simulation ofthe abstra
tion, emphasizing the role of bisimulations. They allow analysis as well as synthesis pro
essesto be performed more eÆ
iently sin
e they render both models equivalent, although one of the modelshas preferably lower 
omplexity than the other. Furthermore when dealing with hybrid 
ontrol systemswe will provide a 
onstru
tive algorithm to 
ompute simulations of hybrid 
ontrol systems. Ideally, onewould like to produ
e bisimulations through the algorithm and therefore we need to develop alternative
hara
terizations of bisimilar systems to determine when we are in fa
t 
omputing bisimulations. Toa

omplish this we will restri
t attention to �bering monoids AX freely generated by �ber bundles ofgeneratorsGX . This means that any element ax in the �ber Ax over x 2 X 
an be obtained by multiplyingelements g1x; g2x; : : : on the �ber Gx over x 2 X . This assumption is justi�ed by the fa
t that in the hybrid
ase the monoid M is free on the set �� [ U�. Furthermore �� is free on the set � and U� is also freeon a set of in�nitesimal generators. We restri
t our attention to abstra
t 
ontrol systems fa
tored byequivalen
e relations on the state spa
e, sin
e they 
apture the essen
e of the abstra
tion methodologywe will later propose for hybrid 
ontrol systems. Let � : X �! Y be a surje
tive map and de�ne theequivalen
e relation �� X�X by x1 � x2 i� �(x1) = �(x2). Based on this relation we 
an quotient �Xobtaining �Y = �X= �. To de�ne the quotient abstra
t 
ontrol system �Y we introdu
e the operatorRx�X returning the subset of X rea
hable from x 2 X by �X when 
ontrolled by elements in GX , that



60 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMSis: Rx�X = [gx2Gx�X(x; gx)(4.14)This operator allows to introdu
e the �ber bundle GY of the generators of AY de�ned as a �ber bundleover Y = �(X) with �ber over any y 2 Y isomorphi
 (as a set) to:[x2��1(y)� Æ Rx�X(4.15)The quotient 
ontrol system �Y 
an now be de�ned by:�Y (y; ay) = y0 i� 9ax2Ax �X(x; ax) = x0 ^ �(x) = y ^ �(x0) = y0 ^ '(x; ax) = (y; ay)(4.16)for a surje
tive, �bering monoid respe
ting map ' : AX �! AY impli
itly de�ned by the following
ommutative diagram:
AX X-�XAY Y-�Y6' 6�(4.17)or equivalently, by the following equality:� Æ�X(x; ax) = �Y ('(x; ax))(4.18)To show that su
h a map ' exists (and is uniquely de�ned) we note that it suÆ
es to de�ne it from GXto GY . For any ax 2 Gx, '(x; ax) is de�ned to be the unique element (y; ay) 2 GY su
h that �(x) = yand �Y (y; ay) = ' Æ�X(x; ax). Su
h an element ay always exists and is unique by de�nition of GY . Weemphasize that the map ' is uniquely determined by the 
hoi
e of the map �. This fa
t will be importantwhen dealing with hybrid 
ontrol systems where this 
onstru
tion will be used several times. We resumethe above dis
ussion in the following result:Proposition 4.16. Let �X be an abstra
t 
ontrol system over a set X with �bering monoid AX freelygenerated. Given a surje
tive map � : X �! Y , there exists a unique �bering monoid preserving lift' : AX �! AY of � and a quotient abstra
t 
ontrol system on Y with �bering monoid AY whi
h is a'-simulation of �X .Proof. The existen
e of �Y and ' has been shown in the previous paragraph as well as the unique-ness of '. We will only show that �Y is a '-simulation of �X , whi
h is a dire
t 
onsequen
e of the
ommutativity of (4.17).Assume that x ax�! x0 for some ax 2 AX . The element ax 
an be written as a produ
t of generators asax = g1xg2x : : : gnx and in parti
ular we have n = 1 if ax 2 GX . The evolution x ax�! x0 
an then be written



3. ABSTRACT CONTROL SYSTEMS 61as x g1x�! x1 g2x�! x2 g3x�! : : : gnx�! x0. By 
onstru
tion of �Y we know that we have:� Æ�X(x; g1x) = �(x1) = y1 = �Y (y; g1y) = �Y ('(x; g1x))(4.19)But sin
e g2x 2 GX we also have:� Æ�X(x1; g2x) = �(x2) = y2 = �Y (y1; g2y) = �Y ('(x1; g2x))(4.20)so that by making use of the semi-group property of abstra
t 
ontrol systems we 
on
lude that:�Y (y; g1yg2y) = �Y (�Y (y; g1y); g2y)= �Y (y1; g2y)= y2= �(x2)(4.21)A �nite indu
tion argument now shows that y ay�! y0 for (y; ay) = (y; g1yg2y : : : gny ) = '(x; g1xg2x : : : gnx ) ='(x; ax) and �(x0) = y0 implying that �Y '-simulates �X sin
e for any (x; y) 2 � and any (x; ax) 2dom(') the tuple ((x; ax); (y; ay)) 2 ' previously des
ribed satis�es (�X(x; ax);�Y (y; ay)) 2 �.The use of a �ber respe
ting map ' instead of a produ
t respe
ting map shows a di�erent perspe
tivefrom the 
omputer s
ien
e approa
hes as des
ribed in [89℄. This di�erent approa
h is a 
onsequen
eof modeling abstra
t 
ontrol systems as deterministi
 systems whi
h naturally requires extra 
exibilitywhen modeling state and input aggregation as illustrated in the next example.Example 4.17. Consider the following �bering monoidAX = f(x1; a); (x1; "); (x2; a); (x2; "); (x3; "); (x4; ")gand �X(x1; a) = x3, �X(x2; a) = x4. If we model the state and input aggregation by a produ
t respe
tingmap of the form ' = (�; �M) with � : X �! Y and �M :MX �!MY de�ned by:�(x1) = x1 �(x2) = x1 �(x3) = x3 �(x4) = x4�M(a) = a �M(") = "The abstra
tion would satisfy: �Y (x1; a) = fx3; x4g(4.22)whi
h is 
learly nondeterministi
. This modeling problem 
an be over
ome by using a �ber respe
tingmap ' : GX �! GY de�ned by:'(x1; ") = (x1; ") '(x1; a) = (x1; a) '(x2; ") = (x1; ")'(x2; a) = (x1; b) '(x3; ") = (x3; ") '(x4; ") = (x4; ")that assigns a di�erent generator for ea
h di�erent state rea
hable from x1.



62 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMSInspired by the results in [59℄ we 
hara
terize bisimilar systems in terms of the rea
hable spa
e previouslyde�ned:Proposition 4.18. Let �X and �Y be two abstra
t 
ontrol systems over X and Y respe
tively. Givenan equivalen
e relation �� X �X, �X is R�-bisimilar to �Y = �X= � i�:R�B�Rx�X� = R�B�RR�B�1ÆR�B(x)�X�(4.23)Proof. Assuming R�-bisimilarity we will show that R�B�RR�B�1ÆR�(x1)�X� � R�B�Rx1�X� sin
ethe other in
lusion is obvious. Let x2 2 R�B�1 Æ R�B(x1) and x02 2 Rx2�X , that is x2 ax2�! x02 for someax2 2 Gx2 . By the fa
t that �Y is a R�-simulation of �X we get that R�B(x2) aR�B(x2)�! R�B(x02) for someaR�B(x2) 2 GR�B(x2). Using now the fa
t that �X is a R��1-simulation of �Y and x2 2 R�B�1 Æ R�B(x1)we 
on
lude that x1 ax1�! x01 for some ax1 2 Ax1 and for a state x01 su
h that (x01; x02) 2 RB . Howeverby 
onstru
tion of �Y , the preimages of aR�B(x2) under R� have non empty interse
tion with GX andtherefore we 
an assume that ax1 2 GX implying that x01 2 Rx1�X . This allows to 
on
lude that for anyx02 2 RR�B�1ÆR�B(x1) we have R�B(x02) = R�B�x01) 2 R�B(Rx1�X� thereby showing the desired in
lusion.To show the 
onverse, we re
all that by Proposition 4.16 the quotient system �Y is a simulation of �X sothat we only need to show that �X R��1-simulates �Y . Let y0 2 Rea
hy�Y , that is, there is a ay 2 Aysu
h that y ay�! y0 and assume that �(x) = y and �(x0) = y0 (whi
h 
an always be done sin
e � is asurje
tive map). The element ay 
an be written as a �nite multipli
ation of generators as ay = g1yg2y : : : gny ,where n equals 1 if ay 2 GY and the evolution y ay�! y0 de
omposes as y g1y�! y1 g2y�! y2 g3y�! : : : gny�! y0.By 
onstru
tion of �X= � we have that g1y is the image under R� of some g1x 2 GX and the equality� Æ �X(x; g1x) = �Y (y; g1y) holds meaning that the evolution y g1y�! y1 is simulated by the evolutionx g1x�! x1. But by the same argument the evolution y1 g2y�! y2 is simulated by the evolution x1 g2y�! x2 andthe semi group property of abstra
t 
ontrol systems allows to 
on
lude that �Æ�X(x; g1xg2x) = �Y (y; g1yg2y).An indu
tion argument now shows that the evolution y ay�! y0 is simulated by the evolution x ax�! x0with ax = g1xg2x : : : gnx thereby showing that �X R��1-simulates �Y sin
e R�(ax) = R�(g1xg2x : : : gnx) =R�(g1x)R�(g2x) : : : R�(gnx ) = g1yg2y : : : gny = ay.At this level of generality this 
hara
terization of bisimulation is as unpra
ti
al as the de�nition sin
e wehave no means of 
omputing the relevant Rea
h sets. However for dis
rete systems the Rea
h sets 
an be
omputed algorithmi
ally and for 
ontinuous systems there are reasonable in�nitesimal 
hara
terizations.When dealing spe
i�
ally with hybrid 
ontrol systems we will be able to give suÆ
ient 
onditions for thedesired equality between the relevant Rea
h sets.



3. ABSTRACT CONTROL SYSTEMS 633.7. Compositional Abstra
tions. In this se
tion, we follow the 
ategori
al des
ription of tran-sition systems in [89℄, and introdu
e a notion of parallel 
omposition for abstra
t 
ontrol systems, thenwe determine under what 
onditions does this notion of parallel 
omposition respe
t simulations andbisimulations.3.7.1. Parallel Composition with Syn
hronization. The �rst step of 
omposition 
ombines two ab-stra
t 
ontrol systems into a single one by forming their produ
t. Given two abstra
t 
ontrol sys-tems �X : AX �! X and �Y : AY �! Y we de�ne their produ
t to be the abstra
t 
ontrol system�X ��Y : (AX �AY ) �! (X�Y ), �X ��Y (ax; ay) = (�X (ax);�Y (ay)), where the �bers of (AX �AY )are subsets of the dire
t produ
t monoid MX 
MY . The traje
tories of the produ
t 
ontrol system
onsist of all possible 
ombinations of the initial 
ontrol systems traje
tories. The produ
t 
an also bede�ned in a 
ategori
al manner.Definition 4.19 (Produ
t of abstra
t 
ontrol systems). Let �X : AX �! X and �Y : AY �! Y be twoabstra
t 
ontrol systems. The produ
t of these abstra
t 
ontrol systems is a triple (�X � �Y ; �X ; �Y )where �X � �Y is an abstra
t 
ontrol system and �X � (X � Y ) � X and �Y � (X � Y ) � Y areproje
tion relations su
h that �X is a �X -simulation of �X � �Y , �Y is a �Y -simulation of �X � �Y ,and for any other triple (�Z ; pX ; pY ) of this type there is one and only one relation � � Z � (X � Y )su
h that �X ��Y is a �-simulation of �Z , and the following diagram 
ommutes:
�ZpX ������I

�X �X ��Y��X �Y-�Y6� pY�������(4.24)The relations �X and �Y are in fa
t those indu
ed by the 
anoni
al proje
tion maps �X : X � Y �! X ,�Y : X�Y �! Y and the relation � is easily seen to be given by � = (pX ; pY ). This de�nition of produ
tmay seem unne
essarily abstra
t and 
ompli
ated at the �rst 
onta
t, it will, however, render the proof ofthe main result on the 
ompatibility of parallel 
omposition with respe
t to simulations an almost trivialtask.Example 4.20. Consider the transition system inspired from [89℄ and displayed on the left of Figure 3where the " evolutions are not represented. The produ
t of these transitions systems will 
onsist of allpossible evolutions of both systems as displayed on the right of Figure 3.In the produ
t system we 
apture all possible traje
tories of both systems and 
onsequently several nonphysi
ally meaningful traje
tories. One allows, for example, input traje
tories of the form ("; ut) whereno time elapses in system �X and t units of time elapse in system �Y . These traje
tories need to
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Figure 3. Two transition systems on the left and the 
orresponding produ
t transitionsystem on the right.be removed from the produ
t system in order to faithfully model a physi
al system. Another reason toremove transitions from the produ
t system 
omes from the fa
t that in the produ
t system, the behaviorof one system does not in
uen
e the behavior of the other system. Sin
e in general the behavior of asystem 
omposed of several subsystems depends strongly on the intera
tion between the subsystems, onetries to 
apture this intera
tion by removing undesired evolutions from the produ
t system �X � �Ythrough the operation of restri
tion.Given a �bering submonoid3 AL � AW we de�ne the restri
tion of 
ontrol system �W : AW �! W toAL as a new 
ontrol system �W jAL : AL �! L whi
h is given by �W jAL(x; a) = �W (x; a) i� (x; a) 2 ALand �W (x; a0) belongs to L for any pre�x a0 of a. If the �bering submonoid AL has the same base spa
eas AW but \smaller" �bers, then restri
tion is modeling syn
hronization of both systems on the 
ontrolinputs. If on the other hand the �bers are equal but the base spa
e of AL is \smaller" then the basespa
e of AW then both systems are being syn
hronized on the state spa
e. Syn
hronization on inputs andstates is also 
aptured by the operation of restri
tion by 
hoosing a �bering submonoid with \smaller"�bers and base spa
e. This operation also admits a 
ategori
al 
hara
terization.Definition 4.21 (Restri
tion of abstra
t 
ontrol systems). Let �W : AW �! W be an abstra
t 
ontrolsystem, AL a �bering submonoid of AW and g and h two simulation relations su
h that AL = f(w; aw) 2AW j g(w; aw) = h(w; aw)g. The restri
tion of �W to AL is a pair (�W jAL ; iL) where �W jAL is anabstra
t 
ontrol system and iL � L � W is an in
lusion relation su
h that �W is a iL-simulation of�W jAL satisfying g Æ iL = h Æ iL and for any other pair (�Z ; iZ) of this type su
h that g Æ iZ = h Æ iZthere is one and only one relation � su
h that �W jAL is a �-simulation of �Z , and the following diagram3A �bering submonoid A of a �bering monoid B is understood as a �bering monoid su
h that the in
lusion map i : A ,! Bis �bering monoid preserving.
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�X�� Y�	 �X�� Y�	 �X�� Y�	

�A� B	 ��� C	Figure 4. Parallel 
omposition with syn
hronization of the transition systems displayedon the left of Figure 3.
ommutes: �W jAL �W-iL�Z6� iZ����� �V-g -h(4.25)In general the domain of �W jAL , AL, may be stri
tly 
ontained in AL sin
e restri
ting the base spa
eimplies also restri
ting the �bers to the a
tions that do not for
e the abstra
t 
ontrol system to leave therestri
ted base. In any 
ase the relation iL is simply the in
lusion iL(al) = al 2 AW for every al 2 AL.With the notions of produ
ts and restri
tion at hand, we 
an now de�ne a general operation of parallel
omposition with syn
hronization.Definition 4.22 (Parallel Composition with syn
hronization). Let �X : AX �! X and �Y : AY �! Ybe two abstra
t 
ontrol systems and 
onsider a �bering submonoid AL � AX � AY . The parallel
omposition of �X and �Y with syn
hronization over AL is the abstra
t 
ontrol system denoted by�X kAL �Y and de�ned as: �X kAL �Y = (�X ��Y )jAL(4.26)Example 4.23. Consider the transition system displayed on the left of Figure 3. By spe
ifying thesubbundle: AL = f((x1; y1); (a; b)); ((x1; y1); ("; ")); ((x1; y1); (a; b
));((x2; y1); ("; 
)); ((x2; y1); ("; ")); ((x2; y2); ("; "))g(4.27)it is possible to syn
hronize the event a with the event b on the parallel 
omposition of these systems.The resulting transition system is displayed in Figure 4. For purely 
ontinuous examples of parallel
omposition with syn
hronization we defer the reader to Chapter 5 where the abstra
tions of dire
tedformations 
an be seen as the parallel 
omposition of the individual agents with syn
hronization onthe submanifold of the state spa
e de�ned by the formation 
onstraints. Note that 
ontrary to the
onstru
tion des
ribed in this se
tion, in Chapter 5 only the 
ontrol system is the parallel 
ompositionof the individual 
ontrol systems, sin
e the state spa
e remains the produ
t state spa
e.



66 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMS3.7.2. Compositionality of Simulations. We now determine if 
omposition of subsystems is 
ompatiblewith abstra
tion. A positive answer to this question is given by the next theorem whi
h des
ribes howthe pro
ess of 
omputing abstra
tions 
an be rendered more eÆ
ient by exploring the inter
onne
tionstru
ture of hybrid systems.Theorem 4.24 (Compositionality of Simulations). Given abstra
t 
ontrol systems �X , �Z (whi
h is aRX -simulation of �X), �Y , �W (whi
h is a RY -simulation of �Y ) and the �bering submonoid AL �AX �AY , the parallel 
omposition of the simulations �Z and �W with syn
hronization over RX�Y (AL)is a RX�Y jAL-simulation of the parallel 
omposition of �X and �Y with syn
hronization over AL, whereAL = dom(�X kAL �Y ).Proof. Consider the produ
t system (�Z��W ; �Z ; �W ) and the triple (�X��Y ; RX Æ�X ; RY Æ�Y ).By de�nition of produ
t we know that there is one and only one relation � su
h that:
�X ��YRX Æ �X ������I

�Z �Z ��W� �Z �W-�W6� RY Æ �Y�������
ommutes and this relation is given by � = (RX ; RY ) = RX�Y , meaning that �Z � �W is a RX�Y -simulation of �X ��Y . Consider now the following diagram:(�Z ��W )j�(AL) �Z ��W-i�(AL)
(�X ��Y )jAL � Æ iAL�������

��� �V-g -h
(4.28)where g and h are equal on the �bering submonoid �(AL). It is 
lear that g Æ � Æ iAL = h Æ � Æ iAL sin
eAL � AL implies � Æ iAL(AL) = �(AL) � �(AL). Therefore there exists one and only one simulationrelation � from �X kAL �Y to �Z k�(AL) �W whi
h is given by � = �ÆiAL = RX�Y ÆiAL = RX�Y jAL .The above result was stated for parallel 
omposition of two abstra
t 
ontrol systems but it 
an be easilyextended to any �nite number of abstra
t 
ontrol systems. The relevan
e of the result lies in the fa
t that,in general, it is mu
h easier to abstra
t ea
h individual subsystem and by parallel 
omposition obtain anabstra
tion of the overall system.



3. ABSTRACT CONTROL SYSTEMS 673.7.3. Compositionality of Bisimulations. We have already seen that bisimulation is a very powerfultool to deal with the 
omplexity of large s
ale systems. In this subse
tion we will try to extend theprevious 
ompatibility results from simulations to bisimulations. We start with a very simple lemmastating that produ
t respe
ts bisimulations:Lemma 4.25. Given abstra
t 
ontrol systems �X , �Z (a RX -bisimulation of �X), �Y and �W (a RY -bisimulation of �Y ) the produ
t abstra
t 
ontrol system �Z ��W is a RX�Y -bisimulation of �X ��Y .Proof. Consider the following 
ommutative diagrams:
�X �Y�X ��Y�X ����	 �Y����R�Z �W�Z ��W�Z ����I �W�����?RX ?RY

?
�1 �X �Y�X ��Y�X ����	 �Y����R�Z �W�Z ��W�Z ����I �W�����

6R�1X 6R�1Y
6�2

(4.29)By de�nition of produ
t there exists one and only one relation �1 and one and only one relation �2su
h that both diagrams 
ommute. In fa
t, �1 is the relation �1 = (RX Æ �X ; RY Æ �Y ) = RX�Y and�2 = (R�1X Æ �Z ; R�1Y Æ �W ) = R�1X�Y meaning that �X ��Y is RX�Y -bisimilar to �Z ��W .Although the produ
t respe
ts bisimulations the same does not happen with the operation of restri
tion.Consider the example displayed in Figure 5 where the abstra
t 
ontrol system on top is bisimilar to the
AX�

AX�

AX�

X� X�

X� X�

X� X� X�

AX�
AX�

Figure 5. Bisimilar abstra
t 
ontrol systems.system below with respe
t to the relation:
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R = f((x1; "); (x1; ")); ((x1; ax1); (x1; ax1)); ((x2; "); (x3; "));((x2; ax2); (x3; ")); ((x3; "); (x3; ")); ((x3; ax3); (x3; ax3)); ((x4; "); (x4; "))g(4.30)If we now restri
t the �bers of the system below to the set f"; ax1 ; ax3g through the �bering submonoid:AL = f(x1; "); (x1; ax1); (x2; "); (x3; "); (x3; ax3); (x4; ")g(4.31)and restri
t the �bers of the bisimilar system on top to R(AL) the systems will 
ease to be bisimilar sin
ethe system on top 
an move from x3 to x4 by ax3 but the system below 
an not simulate that evolutionwhen on x2 2 R�1B (x3).Assuming some extra stru
ture on the relation R we 
an over
ome this diÆ
ulty as stated in the followingresult:Proposition 4.26. Let �X be an abstra
t 
ontrol system, �Y a R-bisimulation of �X and AL a �beringsubmonoid of AX su
h that R�1jR(AL)ÆRjAL = idAL and RjALÆRjAL�1 = idR(AL) for AL = dom(�X jAL)and R(AL) = dom(�Y jR(AL)). The restri
tion �X jAL is a RjAL-bisimulation of �Y jR(AL).Proof. A similar argument to the proof of Proposition 4.24 shows that �Y is a RjAL-simulation of�X so that we will only show that �X is a Rj�1AL-simulation of �Y . Consider the following diagram:

�X jAL �X-iALR�1 Æ iR(AL)
������R

�Y jR(AL)
�V-g -h(4.32)where g and h are equal on the �bering submonoid AL. We will show that (4.32) 
ommutes by proving theonly nontrivial equality, gÆR�1ÆiR(AL) = hÆR�1ÆiR(AL). Re
all that the assumptions R�1jR(AL)ÆRjAL =idAL and RjAL Æ RjAL�1 = idR(AL) imply that R�1jR(AL) and RjAL�1 are right and left inverses ofRjAL , respe
tively. However, by asso
iativity of 
omposition, inverses are unique and we must haveR�1jR(AL) = RjAL�1 and R(AL) = R(AL). This allows to 
on
lude that:R�1 Æ iR(AL)(R(AL)) = R�1 Æ iR(AL) ÆR(AL)= R�1jR(AL) ÆRjAL(AL) = idAL(AL) = AL � AL(4.33)Sin
e (4.32) 
ommutes we 
an invoke the de�nition of restri
tion to ensure the existen
e of a uniquesimulation relation from �Y jR(AL) to �X jAL whi
h is given by � = R�1 Æ iR(AL) = R�1jR(AL) = RjAL�1thereby showing bisimilarity.



3. ABSTRACT CONTROL SYSTEMS 69The 
onditions R�1jR(AL) ÆRjAL = idAL and RjAL ÆRjAL�1 = idR(AL) are very strong sin
e they implythat RjAL indu
es a set isomorphism between AL and R(AL). However this 
ondition is in fa
t ne
essaryas we now show:Proposition 4.27. Let �X be an abstra
t 
ontrol system, �Y a R-bisimulation of �X and AL a �beringsubmonoid of AX . If the restri
tion �X jAL is a RjAL-bisimulation of �Y jR(AL) then R�1jR(AL) ÆRjAL =idAL and RjAL ÆRjAL�1 = idR(AL), for AL = dom(�X jAL) and R(AL) = dom(�Y jR(AL)).Proof. Consider the following 
ommutative diagrams:�Y jR(AL) �Y-iR(AL)6RjAL ?R�1�X jAL �X-iAL �Y jR(AL) �Y-iR(AL)?RjAL�1 R ?�X jAL �X-iAL(4.34)From the left diagram we get the equality:iAL = R�1 Æ iR(AL) ÆRjALR�1jR(AL) ÆRjAL(4.35)whi
h gives R�1jR(AL) Æ RjAL = idAL by restri
ting the 
odomains to AL. A similar argument for thediagram on the right allows to obtain RjAL ÆRjAL�1 = idR(AL).The above propositions lead to the following result 
on
erning the 
ompositionality of bisimulations:Theorem 4.28 (Compositionality of Bisimulations). Given abstra
t 
ontrol systems �X , �Z (a RX-bisimulation of �X), �Y , �W (a RY -bisimulation of �Y ) and a �bering submonoid AL � AX � AY wehave that the parallel 
omposition of the bisimulations �Z and �W with syn
hronization over RX�Y (AL)is a RX�Y jAL-bisimulation of the parallel 
omposition of �X with �Y with syn
hronization over AL i�R�1X�Y jAL Æ RX�Y jAL = idAL and RX�Y jAL Æ RX�Y jAL�1 = idRX�Y (AL) for AL = dom(�X kAL �Y )and RX�Y (AL) = dom(�Z kR(AL) �W ).From the previous result we 
on
lude that if we have a mean of 
omputing bisimulations and if we
hoose the syn
hronization �bering submonoid 
arefully we 
an 
ompute bisimulations by exploring theinter
onne
ting stru
ture of large-s
ale systems. In the next se
tion we provide an algorithm to e�e
tively
ompute abstra
tions and in 
ertain situations bisimulations for hybrid 
ontrol systems. We thus seethat these results of 
ompositionality of simulations and bisimulations provide eÆ
ient tools to handlethe 
omplexity of today's appli
ations.



70 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMS4. Hybrid Control Systems4.1. Abstra
tions. Simulations of hybrid 
ontrol systems are a simple instantiation of the pre-viously introdu
ed notion of simulation for abstra
t 
ontrol systems. However, hybrid 
ontrol systemsusually 
ome equipped with a set of initial 
onditions X0 � X whi
h must also be related with the set ofinitial 
onditions of its simulation. The proper relation is expressed as follows:Definition 4.29 (Simulations of Hybrid Control Systems). LetHX = (X0; X;AX ;�X) andHY = (Y0; Y; AY ;�Y )be two hybrid 
ontrol systems over X and Y respe
tively and let R � AX � AY be a �bering monoidrespe
ting relation. HY is a R-simulation of HX i�:1. RB(X0) � Y0.2. 8x2X (x; y) 2 RB ) 8(x;ax)2dom(R) 9(x;ax;y;ay)2R (�X(x; ax);�Y (y; ay)) 2 RB .The notion of abstra
tion is an instantiation of abstra
t 
ontrol systems abstra
tions:Definition 4.30 (Abstra
tions of Hybrid Control Systems). Let HX and HY be two hybrid 
ontrol sys-tems overX and Y respe
tively and let R � AX�AY be a �ber respe
ting relation. HY is a R-abstra
tionof HX i� R is a surje
tive relation with domain AX and HY is a R-simulation of HX .as is the notion of bisimulation:Definition 4.31 (Bisimulation of Hybrid Control Systems). Let HX and HY be two hybrid 
ontrol sys-tems over X and Y respe
tively and let R � AX � AY be a �ber respe
ting relation. HY is R-bisimilarto HX or a R-bisimulation of HX i� HY is a R-simulation of HX and HX is a R�1-simulation of HY .4.2. Computing Abstra
tions. The goal of obtaining algorithmi
 pro
edures for 
omputing ab-stra
tions guide us to more amenable 
hara
terizations of hybrid 
ontrol systems. A �rst step in thisdire
tion is given by 
hara
terizing hybrid 
ontrol systems in terms of its generators. From this point onwe will simplify the notation by writing an element of A(q;x) as (q; x; a) instead of ((q; x); a).Proposition 4.32 (Hybrid Generators). A set of initial 
onditions X0 � X, a �nite set of symbols �X ,a family of smooth �ber bundles �qX : U qX �! Xq, a partially de�ned map ÆX : X��X �! X and a familyof smooth 
ontrol systems FX = fF qXgq2Q, F qX : U qX �! TXq de�ned on �ber bundle U qX over an opensubset of Xq for ea
h q 2 Q uniquely de�ne a hybrid 
ontrol system HX . The maps ÆX and FX are 
alledthe dis
rete and 
ontinuous generators of HX , respe
tively.



4. HYBRID CONTROL SYSTEMS 71Proof. We start by showing that ÆX extends uniquely to a partial map ÆX� : X ���X �! X . Thisa
tion is obtained from ÆX by:ÆX�(q; x; ") = (q; x)(4.36) ÆX�(q; x; �1�) = ÆX�(ÆX�(q; x; �1); �) �1� 2 ��X ; �1 2 �X(4.37)de�ning ÆX� uniquely sin
e ��X is the monoid freely generated by �X .A similar 
onstru
tion is possible for FX . Denote by Cq the proje
tion under �qX : U qX �! Xq of the opensubset of Xq where ea
h F qX is de�ned. A unique a
tion F qX� : 
l(Cq) � U qX� �! 
l(Cq) 
an be obtainedfrom F qX , where we denote by 
l(Cq) the 
losure of Cq in the topology of Xq. This is a

omplished byde�ning F qX� as: F qX�(x; ut0) = 
x(t0)(4.38)where 
x(t) is the integral 
urve of the ve
tor �eld F qX(
x(t); ut) satisfying 
x(0) = x. By existen
e anduniqueness of integral 
urves of ve
tor �elds follows existen
e and uniqueness of the a
tion F qX� : Cq�U�q�! Cq sin
e F qX is smooth. Moreover, we 
an extend F qX� : Cq � U�q �! Cq to F qX� : 
l(Cq) � U qX��! 
l(Cq) in a unique way by 
ontinuity sin
e Cq is dense on 
l(Cq) and Xq is an Hausdor�, se
ond
ountable topologi
al spa
e.We 
an now 
ombine ÆX� and F qX� to get an hybrid 
ontrol system HX = (X0; X;AX ;�X) with AX �X �M and M =`t2N0(U�X [ ��X)t. Let a 2 U�X [ ��X and de�ne:�X(q; x; a) = 8>>><>>>: (q; x) if a = "ÆX�(q; x; a) if a 2 ��XF qX�(x; a) if a 2 U�X(4.39)For a general a 2 M, split a into a = a1a2 with a1 2 U�X [ ��X , then �X is given by:�X (q; x; a) = �X(q; x; a1a2) = �X(�X(q; x; a1); a2)(4.40)and �X(q; x; ") = (q; x). This 
onstru
tion always provides a unique abstra
t 
ontrol system �X sin
ewe are using as monoid, the monoid freely generated by U�X [��X as asserted in Proposition 4.3.This result tells us that it is enough to work with ve
tor �elds and single event jumps, whi
h is howhybrid automata are usually de�ned in the literature [27℄. In the light of this result we will also denote anhybrid 
ontrol system by the tuple HX = (X;X0;�X ; UX ; ÆX ; FX). This representation of hybrid 
ontrolsystems will allow 
onstru
tive methods to generate abstra
tions by 
ombining dis
rete and 
ontinuousabstra
tion methodologies.In order to bene�t from the 
ontinuous abstra
tion methodology developed in [60, 63, 64℄ we will 
onsiderabstra
tions of hybrid 
ontrol systems de�ned by equivalen
e relations on the state spa
e. Other possible



72 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMSalternatives would 
onsider equivalen
e relations on the inputs or on states and inputs. However, froma systems engineering point of view, it seems more natural to spe
ify whi
h state information should beignored sin
e the inputs are regarded as a means of obtaining the desired state behavior. This 
ontrastswith the 
omputer s
ien
e approa
hes where the emphasis is put on the inputs whi
h des
ribe the behaviorof the systems being analyzed through the language a

epted by some automaton [29℄.In this spirit, we start with a surje
tive map � : X �! Y whi
h spe
i�es the state aggregation. It will beuseful to de
ompose � into its dis
rete and 
ontinuous 
omponents. We shall denote by �D : X �! P thedis
rete 
omponent of �. Note that sin
e we allow 
ontinuous to dis
rete aggregation the map �D doesdepend onXq as well as onQ. Spe
i�
ally, we assume that there is a �nite 
overing of �qX (dom(F qX )) � Xqfor every q 2 Q denoted by �q = f�iqgi2I su
h that �iq \ �jq = ? for i 6= j. We denote the set 
overingthe point (q; x) by �q(x) and we 
all �q(x) adja
ent to �q(x0) i� 
l(�q(x)) \ 
l(�q(x0)) 6= ?, where 
ldenotes the 
losure in the topology of Xq . Note that �D when restri
ted to the sets �q(x) simply givesthe dis
rete state asso
iated with the 
overing sets �q(x). We also introdu
e the set � � Q� P for lateruse. It 
ontains all the pairs of points (q; p) for whi
h there exists a x 2 Xq su
h that �D(q; x) = p. The
ontinuous 
omponent of � will be denoted by �C and 
onsists of a family of smooth surje
tive submersions�C = f�qpg(q;p)2� with �qp : Xq �! Yp. Having de�ned the state aggregation to be performed in theabstra
tion pro
ess we have also impli
itly de�ned the surje
tive map ' : AX �! AY relating the �beringmonoids of the original system and its abstra
tion. This map is determined by the methods des
ribed inSubse
tion 3.6 and on
e again it is useful to have notation for its 
ontinuous and dis
rete 
omponents.The 
ontinuous part of ', will be a family of smooth surje
tive �ber respe
ting maps 'C = f'qpg(q;p)2�,'qp : U qX �! UpY whi
h 
an be 
omputed by the methods des
ribed in [78℄ and Chapter 3. The dis
rete
omponent of ', will be denoted by 'D = (�D ; '�).Another important point to mention, and whi
h is a 
onsequen
e of the di�eren
e between 
ontinuousand dis
rete systems, is that although we have partitioned the sets �qX(dom(F qX )) into a �nite number ofsubsets, the 
ontinuous 
ows generated by F qX 
an 
ross an in�nite number of adja
ent 
overings sets in�nite time. This will 
ause diÆ
ulties in the 
urrent framework sin
e we are using as monoid the monoidfree on the set ��X [ U�X whi
h 
onsists of �nite length strings. We will, therefore, assume that the
overing of �qX(dom(F qX )) is su
h that the 
ows generated by F qX only 
ross adja
ent 
overing sets a �nitenumber of times in any �nite time interval. Any 
overing satisfying this assumption will be 
alled �nitely
ompatible with F qX . SuÆ
ient 
onditions for �nite 
ompatibility, involving subanalyti
 strati�
ationsfor example, are given in [41℄. This assumption 
an be dropped in two di�erent s
enarios:
� If there is no 
ontinuous to dis
rete aggregation,� or if one extends the monoidM to a !-monoid whi
h 
an a

ommodate non �nite length strings.



4. HYBRID CONTROL SYSTEMS 73We now show how it is possible to spe
ify a �bering monoid respe
ting relation based on the above maps.We start by de�ning several relations that will indu
e a unique �bering monoid respe
ting relation.Definition 4.33. Given a hybrid 
ontrol system HX and:� A �nite 
overing �q = f�iqgi2I by pairwise disjoint sets of �qX (dom(F qX )) �nitely 
ompatible withF qX for every q 2 Q.� A family of smooth surje
tive �ber preserving submersions 'C = f'qpg(q;p)2�, 'qp : U qX �! UpYindu
ed by a family of smooth surje
tive submersions �C = f�qpg(q;p)2�, �qp : Xq �! Yp.� A partial map '� : X � ��X �! ��Y , indu
ed by a surje
tive map � : X �! Y .we de�ne the following relations:� Rj
 � AX �AY for j 2 �, 
apturing 
ontinuous 
ows remaining inside a single 
overing set:�(q; x; utx); (�D(q; x); 'q�D(q;x)(x; utx)� 2 Rj
 i� 9i2I 80<t0<t �X(q; x; ut0x ) 2 �iq ^ (q; x; utx) 2 AX(4.41)� R" � AX �AY , 
apturing the dis
rete jumps indu
ed by the 
rossing of adja
ent 
overing sets:�(q; x; "); (pj ; yj ; ")� 2 R" 8j2J(4.42)�(q; x; "); (pj ; yj ; �pjpk )� 2 R" 8j2J;j 6=k where �pjpk 2 �Y and �Y (pj ; qj ; �pjpk ) = (pk; yk)(4.43)i� the following holds:9J�I (q; x) 2 \j2J 
l(�jq) ^ 9k2J; t>0; utx2U�X �X(q; x; ut0x ) 2 �kq for all t0 2℄0; t℄(4.44) ^ �D j�jq = pj ^ �qpj (x) = yj 8j2J(4.45)� R� � AX �AY , 
apturing all dis
rete jumps of HX :�(q; x; �); (�D(q; x); �q�D(q;x)(x); '�(q; x; �))� 2 R� i� � 2 ��X ^ (q; x; �) 2 AX(4.46)These relations 
apture di�erent aspe
ts of an hybrid 
ontrol system dynami
s. We now show that thereis a unique way of 
ombining these di�erent relations to determine a unique �bering monoid respe
tingrelation with domain AX .Proposition 4.34. Under the assumptions of De�nition 4.33 we have that Aj
 = dom(Rj
), A" =dom(R") and A� = dom(R�) are �bering submonoids of AX . Furthermore, given �bering monoid pre-serving relations f j
 � Aj
 � AY , f" � A" � AY and f� � A� � AY with domains Aj
, A" and A�,



74 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMSrespe
tively, there is one and only one �bering monoid preserving relation � � AX �AY with domain AXsu
h that the following diagrams 
ommute:Aj
 AX-ij
f j
����RAY?� A" AX-i"f"����RAY?� A� AX-i�f�����RAY?�(4.47)for ij
 � Aj
 �AX , i" � A" �AX and i� � A� �AX the in
lusion relations and any �bering monoid AY .
Proof. We start by showing that Aj
, A" and A� are �bering submonoids of AX . Consider Aj
 �rst.If (q; x) 2 \j2J
l(�jq) then �X (q; x; u0x) satis�es (4.41) and 
onsequently (q; x; ") 2 Aj
. Consider now any(x; utx) 2 Aj
. By de�nition of Rj
, utx satis�es:�X(q; x; ut0x ) 2 �jq for all t0 2℄0; t℄(4.48)but this implies that (x; ut0x ) also belongs to Aj
 for any t0 2℄0; t℄, that is any pre�x of utx also belongs to Aj
sin
e for t0 = 0 we have u0x = ". Aj
 is therefore a �bering monoid sin
e its �bers 
ontain the identity andare pre�x 
losed. The in
lusion relation ij
 � Aj
 �AX taking (q; x; a) 2 Aj
 to ij
(q; x; a) = (q; x; a) 2 AXrenders Aj
 a �bering submonoid of AX .Consider now A" by de�nition of R" we have that for any (q; x) 2 dom(R"B), the triple (q; x; ") belongsto dom(R") = A". Consider now any (q; x; a) 2 A". Then a 2 �X and any pre�x of a is a it self or "whi
h both belong to A" making A" a �bering monoid and a �bering submonoid of AX by the in
lusionrelation i" � A" �AX .Finally (q; x; ") 2 A� by (4.46) and the fa
t that " 2 ��X . If (q; x; �) belongs to A� then any pre�x �0 of� also satis�es (q; x; �0) 2 A� sin
e �0 2 ��X and AX has pre�x 
losed �bers. On
e again the in
lusionrelation makes A� a �bering submonoid of AX .We now show the existen
e of the relation � � AX�AY with domain AX by de�ning it. Let (q; x; a) 2 AX ,then a = a1a2 : : : an where the elements ai belong to U�X and ��X in a alternate fashion. Without loss ofgenerality we 
an assume that a1 2 U�X and therefore every a2i�1 for i = 1; 2; : : : ; n 
an be de
omposedas a �nite 
on
atenation of elements of the form:(q; x; a2i�1) = (q; x; a2i�11 )(q2; x2; ")(q2; x2; a2i�12 )(q3; x3; ") : : : (qm; xm; a2i�1m )(4.49)where ea
h (qj ; xj ; a2i�1j ) 2 Aj
 and (qj+1; xj+1) = �X(qj ; xj ; a2i�1j ). Repla
ing ea
h element a2i�1 ina1a2 : : : an by its string (4.49) still results in a �nite string whi
h we denote by:(q1; x1; �1)(q2; x2; �2) : : : (qk; xk; �k)(4.50)



4. HYBRID CONTROL SYSTEMS 75Note that this de
omposition is unique and will allow to de�ne � as follows:((q; x; a); (p; y; a0)) 2 � i� ((q; x; a); (p; y; a0)) 2 Aj
_ ((q; x; a); (p; y; a0)) 2 A"_ ((q; x; a); (p; y; a0)) 2 A�_ (q; x; a) 2 AX ^ a = (q1; x1; �1)(q2; x2; �2) : : : (qk; xk; �k)^ a0 = (p1; y1; �1)(p2; y2; �2) : : : (pk; yk; �k)^ h((qr ; xr; �r); (pr; yr; �r)) 2 Rj
 _ ((qr ; xr; �r); (pr; yr; �r)) 2 R"_ ((qr; xr; �r); (pr; yr; �r)) 2 R� for r = 1; : : : ; ki(4.51)We now show that � is �bering monoid preserving. Let ((q; x); (p; y)) 2 �B then ((q; x; "); (p; y; ")) 2 A� sothat ((q; x; "); (p; y; ")) 2 �. Consider now the triples (q; x; a); (q0; x0; a0) 2 AX su
h that (q; x; aa0) 2 AXand let ((q; x; a); (p; y; b)); ((q0; x0; a0); (p0; y0; b0)) 2 �. Sin
e (q; x; aa0) 2 AX and � is de�ned for everyelement in AX we know that (q; x; aa0) 2 dom(�). De
omposing aa0 in its unique string des
ribed in (4.50)we get: ((q; x; �1�2 : : : �n�01�02 : : : �0n0); (p; y; �1�2 : : : �n�01�02 : : : �0n0)) 2 �(4.52)However, by de�nition of � we 
on
lude:((q; x; �1�2 : : : �n�01�02 : : : �0n0); (p; y; �1�2 : : : �n�01�02 : : : �0n0)) = ((q; x; aa0); (p; y; bb0))(4.53)whi
h shows that � is �bering monoid preserving.To show uniqueness assume the existen
e of another relation �0 satisfying all the proposition 
onditions.Then for any (q; x; a) 2 AX we have ((q; x; a); (p; y; b)) 2 �0. If (q; x; a) 2 dom(Aj
 [ A" [ A�) then�0(q; x; a) = �(q; x; a) by 
ommutativity of diagrams (4.47). If (q; x; a) =2 dom(Aj
 [ A" [ A�) then we
an write a and b in its unique de
ompositions and sin
e �0 is �bering monoid respe
ting we have that�0(q; x; a) = �0(q; x; �1)�0(q2; x2; �2) : : : �0(qk; xk; �k) where ea
h (qi; xi; �i) 2 dom(Aj
 [ A" [ A�) and
onsequently �0(qi; xi; �i) = �(qi; xi; �i) so that we 
on
lude equality between �0 and � and the proof is�nished.The unique relation indu
ed by the relations Rj
, R" and R� will be denoted by R and 
alled an admissiblerelation for the remaining of this paper.The reason why relations are ne
essary, and in parti
ular the relation R", 
an now be explained throughan example.Example 4.35. Consider a smooth 
ontrol system (an hybrid 
ontrol system with a single dis
rete stateq) with state spa
e 
overed by �1q and �2q and assume that the abstra
ting maps are given by �D j�1q = p1,�D j�2q = p2, �qp1 = id�1q and �qp2 = id�2q . Suppose now that �1q is open. Then a 
ontinuous 
ow
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ontrolled by utx = ut1x ut2x leaving �1q and entering �2q should be simulated by the abstra
tion as displayedin Figure 6, where 
ontinuous 
ows are represented by straight arrows and dis
rete jumps by an ar
 of
ir
le arrows. The evolution on the abstra
tion is 
ontrolled by 
ontinuous 
ow ut1y on p1 followed by adis
rete jump from p1 to p2 and followed by another 
ontinuous 
ow ut2y on p2. But sin
e �1q is open we
annot spe
ify the point in Yp1 = �1q where the jump will take pla
e. If one would attempt to de�ne �Cso as to send 
l(�1q) \ 
l(�2q) to Yp1 and not to Yp2 then the same problem would o

ur to a 
ow leaving�2q and entering �1q . The natural way of over
oming these diÆ
ulties is by using a relation whi
h sends
l(�1q) \ 
l(�2q) to both Yp1 and Yp2 . Asso
iated with this \nondeterminism" on the boundary points wealso introdu
e \nondeterminism" at the level of 
ontrol inputs. The relation R" sends " at the boundarypoints to ", but also sends " to the dis
rete input �p1p2 
ontrolling a jump from p1 to p2. This allows tosimulate the 
ontinuous 
ow on X 
ontrolled by utx by the evolution on Y 
ontrolled by ut1y �p1p2ut2y .
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Figure 6. A 
ontinuous 
ow simulated by an hybrid abstra
tion.



4. HYBRID CONTROL SYSTEMS 77Admissible relations allow us to e�e
tively 
ompute abstra
tions of hybrid 
ontrol systems. A 
on
eptualalgorithm may be formulated as follows:Algorithm 4.36 (Abstra
ting Algorithm).Input data: HX = (X0; X;�X ; UX ; ÆX ; FX), R � AX �AYBody:1. Y := RB(X)2. Y0 := RB(X0)3. �Y := '�(X ��X) [ f� : 9 ((q; x; "); (p; y; �)) 2 Rg4. UY := fUpY gp2P , UpY = 'pq(UqX)5. J = f(p; y; �pp0 ; p0; y0) : 9(q; x) 2 \k2K
l(�kq ) 9u 2 U qX(x) su
h that F qX (u) is transversal tothe boundary of �iq , points to �iq, �(q; x); (p; y)� 2 RB , p 6= �Dj�iq and �(q; x); (p0; y0)� 2 RB ,p0 = �D j�iqg6. ÆY := (�D ; �q�D ; '�; �D ; �q�D )(ÆX ) [ J where ÆX is regarded as the set ÆX � X ��X �X .7. F pY := is the 'qp-abstra
tion of F qX for every (q; p) 2 �.Output data: HY = (Y0; Y;�Y ; UY ; ÆY ; FY )Intuitively the above algorithm 
an be des
ribed as follows. Steps 1 and 2 simply de�ne Y and Y0 asthe image under RB of X and X0, respe
tively. In step 3 the set of labels �Y is 
omputed as theimage under '� of X � �X and all the symbols �pp0 
reated when the 
ontinuous 
ows 
rosses theboundary between adja
ent 
overing sets. In step 4 the 
ontinuous 
ontrol bundle is 
omputed as theimage of U qX under ea
h map 'qp. In step 5 the set J is 
omputed to be used on the next step. Step 6determines ÆY in a way that 
an be des
ribed as follows: for every transition (q; x) ��! (q0; x0) de�nedby ÆX there will be a transition (�D(q; x); �q�D(q;x)(x)) '�(q;x;�)�! (�D(q0; x0); �q0�D(q0;x0)(x0)) expressed bythe set (�D ; �q�D ; '�; �D; �q�D )(ÆX), where ÆX is regarded as a subset of X � �X � X . Furthermore,every time a 
ontinuous 
ow 
rosses the boundary between adja
ent 
overing sets, the required dis
retetransitions are 
aptured by the set J . Finally in the last step the 
ontinuous generator of HY is obtainedfrom the 
ontinuous generator of HX by the methods des
ribed in [60, 64℄ and reviewed in Chapter 3.The above algorithm does 
ompute a simulation of HX as asserted in the next theorem:Theorem 4.37. Let HX be an hybrid 
ontrol system over X and R � AX � AY an admissible relation.Then hybrid 
ontrol system HY obtained through Algorithm 4.36 is a R-abstra
tion of HX .Proof. We will split the proof into four distin
t parts. We start by showing that HY simulatesevery dis
rete jump of HX , next we show that HY also simulates every 
ontinuous 
ow of HX thatremains inside a single 
overing set. On the third part we show that 
ontinuous 
ows 
rossing adja
ent
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overing sets are also simulated by HY and �nally we will use the pre
eding results to show that any�nite sequen
e of 
ontinuous 
ows and dis
rete jumps is also simulated by HY .Dis
rete JumpsBy 
onstru
tion, ÆY simulates ÆX so that every dis
rete jump of HX is simulated by HY .Continuous 
ows inside a single 
overing set and starting on a interior pointIf the 
ow of F qX remains inside a single 
overing set and starts on a interior point, then the smoothabstra
tion results in [60, 64℄ show that F pY generates a 
ontinuous 
ow that simulates the 
ow generatedby F qX .Continuous 
ows inside a single 
overing set and starting on a boundary pointLet (q; x) 2 \k2K
l(�kq ) and assume that �X((q; x); ut0x ) 2 �iq for all 0 < t0 < t. This implies thatthere exists a u 2 U qX(x) su
h that F qX(u) is transversal to the boundary of �iq and points to �iq .Consequently, steps 5 and 6 of Algorithm 4.36 ensure that for any point (p; y) RB-related to (q; x), thereis a a(p;y) 2 A(p;y) su
h that (p; y) a(p;y)�! (pi; yi), where ((q; x); (pi; yi)) 2 RB and pi = �Dj�iq . If x 2 �iq ,then by the previous paragraph �X(q; x; utx) is simulated by �Y (pi; yi; uty) with uty = 'qpi(utx). If x =2 �iq ,then x 2 �jq for some j 6= i and j 2 K. Also by the previous paragraph we have that �X(q; x; utx) issimulated by �Y (pj ; yj ; a(pj ;yj)uty).Continuous 
ows 
rossing adja
ent 
overing setsLet utx be a 
ontinuous input su
h that �X(q; x; utx) 
rosses the boundary between adja
ent 
overing setson
e at t = t1. We de
ompose utx into utx = ut1x ut2x with t2 = t� t1. Sin
e �X(q; x; ut1x ) remains on the in-terior of a single 
overing set we have (�X(q; x; ut1x );�Y (p; y; ut1y )) 2 RB . Now let (q0; x0) = �X(q; x; ut1x ).It is not diÆ
ult to see that (q0; x0) belongs to the boundary between adja
ent 
overing sets. By theprevious paragraph �X(q0; x0; ut2x ) is simulated by �Y (�D(q0; x0); �q0�D(q0;x0); a(�D(q0;x0);�q0�D(q0 ;x0))ut2y ) sothat �X(q; x; utx) = �X(q; x; ut1x ut2x ) is simulated by �Y (�D(q; x); �q�D (q;x); ut1y a(�D(q0;x0);�q0�D(q0 ;x0))ut2y ).Sin
e a 
ontinuous input making �X 
ross adja
ent 
overing sets several times 
an be de
omposed into a�nite produ
t of several 
ontinuous inputs making �X 
ross adja
ent 
overing sets only on
e, the previousargument extends to all 
ontinuous inputs by indu
tion.Any �nite sequen
e of dis
rete jumps and 
ontinuous 
owsConsider a a 2 AX . This element 
an be de
omposed into a �nite 
on
atenation of elements belongingto ��X and U�X . Sin
e every su
h element 
an be simulated by HY we 
an extend in a unique way �Yde�ned for U�X [ ��X to �nite length sequen
es, sin
e M is the monoid freely generated by U�X [ ��X asasserted in Proposition 4.3.



4. HYBRID CONTROL SYSTEMS 79Example 4.38. As an illustration of the 
onstru
tion given by Algorithm 4.36 we present a simpleexample adapted from [37, 23℄. Consider a simple model of a six legged me
hani
al inse
t as displayedin Figure 7.
�� ��

�� ��

�� ��

Figure 7. Six legged me
hani
al inse
t.The 
ontrol system asso
iated with this me
hani
al system 
an be des
ribed by:_x1 = 
os �(�(h1)u1 + �(h2)u2)_x2 = sin �(�(h1)u1 + �(h2)u2)_� = l�(h1)u1 � l�(h2)u2_�1 = u1_�2 = u2_h1 = u3_h2 = u4where the fun
tions � and � are de�ned as:�(h1) = 8<: 1 ( h1 = 00 ( h1 > 0 �(h2) =8<: 1 ( h2 = 00 ( h2 > 0(4.54)The variables in the above 
ontrol system have the following interpretation:x1 and x2 position of the inse
t 
enter of mass.� inse
t orientation with respe
t to some �xed referen
e frame.�1 angle of the legs 1, 4 and 5 with respe
t to the inse
t 
entral body.�1 angle of the legs 2, 3 and 6 with respe
t to the inse
t 
entral body.h1 height of the legs 1, 4 and 5 with respe
t to the 
oor.h2 height of the legs 2, 3 and 6 with respe
t to the 
oor.u1; u2; u3 and u4 
ontrol inputs.



80 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMSIt is assumed that the robot moves the legs in a alternate fashion, that is legs 1,4 and 5 move together andthen legs 2,3 and 6 move together and this pattern is repeated to a
hieve inse
t motion. It is furthermoreassumed that the legs exe
ute syn
hronous motions so that they 
an be des
ribed by their equal heighthi and angle �i. When all legs are in 
onta
t with the 
oor, that is h1 = 0 = h2, all 
ontribute to themotion of the inse
t through inputs u1 and u2. If h1 > 0 and h2 = 0 only the legs 2,3 and 6 are on the
oor in
uen
ing the inse
t motion. On the other hand, when only legs 1,4 and 5 are on the 
oor onlyinput u2 in
uen
es the inse
t motion. Finally there is still an uninteresting 
ase whi
h 
orresponds toall the legs being on the air whi
h we shall not 
onsider. If we denote by q1 the state where all legs areon the 
oor and by f q1X the 
orresponding 
ontrol system in lo
al 
oordinates, q2 the state where onlylegs 1,4 and 5 are in 
onta
t with the 
oor and f q2X the 
orresponding 
ontrol system and q3 the statewhere legs 2,3 and 6 are on the 
oor and by f q3X the asso
iated 
ontrol system we 
an model the inse
t
ontrolled kinemati
s by the hybrid 
ontrol system displayed in Figure 8.
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Figure 8. Hybrid 
ontrol system model of the me
hani
al inse
t displayed in Figure 7.Suppose now that there is a team of several me
hani
al inse
ts that needs to be 
olle
tively 
ontrolled toperform some task. If the number of inse
ts is large it be
omes unfeasible to 
oordinate the motion of allthe legs among the whole team. The advo
ated solution to over
ome the 
omplexity of su
h a problemis to perform an abstra
tion of the inse
t model so as to design the 
oordination in a more eÆ
ient way.A natural 
hoi
e is to retain on the abstra
ted model only information about the inse
t position and toabstra
t away the swit
hing poli
y ne
essary for the inse
t motion. This leads to the following 
hoi
e forthe state aggregation maps where by x we denote a point in Xq :�D(q1; x) = p �D(q2; x) = p �D(q3; x) = p(4.55)



4. HYBRID CONTROL SYSTEMS 81and �q1p(x) = 24x1x235 �q2p(x) = 24x1x235 �q3p(x) = 24x1x235(4.56)This 
hoi
e implies that the abstra
tion will be a hybrid 
ontrol system with a single dis
rete state p andonly two 
ontinuous variables x1 and x2 modeling the inse
t position. Assuming that the initial stateof the hybrid 
ontrol system is X sin
e the inse
t 
an start in any dis
rete and 
ontinuous lo
ation, wefollow the steps of Algorithm 4.36 to obtain:Y := fpg � R2 = RB(X)Y0 := Y = RB(X) = RB(X0)�Y := f"g = '�(X � f"; �q1q2 ; �q2q1 ; �q1q3 ; �q3q1g) = '�(X ��X) [?The 
ontrol bundle UpY is 
omputed by the methods in [78℄ and Chapter 3 and equals Y �R2 . On step 5J is 
omputed to be the empty set sin
e there is only one 
overing set for ea
h set �qX(dom(F qX )). Step6 determines the map ÆY whi
h is simply given by:ÆY (y; ") = y(4.57)sin
e �Y = f"g. Finally the 
ontinuous abstra
tion of ea
h F qX is 
omputed by the methods des
ribedin [64℄ and is given by: _y1 = v1_y2 = v2(4.58)where v1 and v2 are 
ontrol inputs. This simple example shows the power of the abstra
tion methodologyby redu
ing the hybrid automaton in Figure 8 to two integrators. The abstra
tion is 
learly a mu
h simplerand useful model to design the 
oordinated motion of a team of su
h roboti
 inse
ts.4.3. From hybrid abstra
tions to hybrid bisimulations. In this se
tion we try to determinewhen 
an we use Algorithm 4.36 to 
ompute a bisimulation. By taking advantage of the spe
ial stru
tureof admissible relations we will be able to provide 
he
kable suÆ
ient 
onditions for bisimilarity. We startby relating simulation with respe
t to relations de�ned only for Aj
, A" and A� with relations de�ned forAX .Proposition 4.39. Let HX and HY be hybrid 
ontrol systems and assume that HY is a Rj
-simulation,a R"-simulation and a R�-simulation of HX . Then HY is also a R-simulation of HX , where R is theunique relation with domain AX de�ned by Rj
, R" and R�. Furthermore, if one repla
es ea
h relationwith its inverse relation the result still holds.



82 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMSProof. We only need to show that for any (q; x; a) 2 AX su
h that (q; x; a) =2 dom(Rj
 [ R" [ R�)there is a pair ((q; x; a); (p; y; b)) 2 R su
h that ((q; x); (p; y)) 2 RB and (�X(q; x; a);�Y (p; y; b)) 2 RB .De
ompose a in the unique sequen
e (q; x; a) = (q1; x1; �1)(q2; x2; �2) : : : (qn; xn; �n) with (qi+1; pi+1) =�X(qi; pi; �i) and �i 2 dom(Rj
 [R" [R�) for i = 1; : : : ; n as des
ribed in the proof of Proposition 4.34.Sin
e ea
h (qi; pi; �i) belongs to dom(Rj
 [ R" [ R�) we have that (�X(q1; x1; �1);�Y (p1; y1; �1)) 2 R,(�X(q2; x2; �2);�Y (p2; y2; �2)) 2 R but �X (q1; pi; �1) = (q2; x2) so that by the semi group property ofabstra
t 
ontrol systems we have:(�X(q1; x1; �1�2);�Y (p1; y1; �1�2)) 2 RB(4.59)By indu
tion we 
on
lude that (�X(q1; x1; �1�2 : : : �n);�Y (p1; y1; �1�2 : : : �n)) 2 RB showing that forany (q; x; a) 2 AX there is a ((q; x; a); (p; y; b)) 2 R su
h that ((�X (q; x; a);�Y (p; y; b)) 2 RB and
on
luding that HY is a R-simulation of HX .The same argument also shows that the result still holds if the relations are repla
ed by the 
orrespondinginverse relations.The previous result allows to give a suÆ
ient 
ondition for bisimilarity whi
h is based on the 
onditionsgiven for abstra
t 
ontrol systems:Proposition 4.40. LetHX be an hybrid 
ontrol system, R an admissible relation and HY a R-abstra
tionobtained through Algorithm 4.36. If the equality:RB(R(q;x)HX) = RB(RR�1B ÆRB(q;x)HX)(4.60)holds then HY is R-bisimilar to HX .Proof. We re
all that HY is a R-simulation of HX by Theorem 4.37 so that we need only to showthat HX R�1-simulates HY . The proof will be done by showing that under the proposition hypothesesHX is a Rj
�1-simulation and a R�1" -simulation and a R�1� - simulation of HY so that by Proposition 4.39HX will also be a R�1-simulation of HY .We start by analyzing Rj
 using Proposition 4.16 with the restri
tion of HX to Aj
 denoted by HX jAj
 .This is a

omplished by noting that HX is a ij
-simulation of HX jAj
 where ij
 is the in
lusion morphismfrom HX jAj
 to HX . The set Rj
(s) is a singleton for every s 2 dom(Rj
) so that the relation Rj
 indu
esthe �bering monoid preserving map fRj
 : Aj
 �! AY . This map is in fa
t indu
ed by the base mapf j
B (de�ned by the base relation Rj
B) through the methods des
ribed in Se
tion 3.6 and we 
an applyProposition 4.16 to HX jAj
 to 
on
lude that if:f j
 (R(q;x)HX jAj
) = f j
 (Rf
Bj Æfj
B�1(q;x)HX jAj
)(4.61)



4. HYBRID CONTROL SYSTEMS 83holds then HX jAj
 is a f j
�1-simulation of HY . However, the assumptions of the theorem imply (4.61)therefore HX jAj
 is in fa
t a f j
�1-simulation of HY . By 
omposing f j
�1 with the in
lusion morphism ij
,we 
on
lude that ij
 Æ f�1sj = Rj
�1 is a morphism from HX to HY showing that HX is a Rj
�1-simulationof HY .The argument for the relation R� is similar to the one for the relations Rj
.Finally we need to show that HX is a R�1" -simulation of HY . We re
all that the relation R" 
apturesthe dis
rete jumps on HY introdu
ed to model the swit
hing between dis
rete states 
aused by the
rossing of adja
ent 
overing sets on �qX(dom(F qX )) by 
ontinuous 
ows. Let ((q; x); (p; y)) 2 R"B and let(p; y; a) 2 Range(R"). Then a = �pp0 , ((q; x); (�Y (p; y; a)) 2 R"B by 
onstru
tion of R and de�nition ofR". Furthermore ((q; x; "); (p; y; �pp0 )) 2 R" also by 
onstru
tion of R", but then for every ((q; x); (p; y)) 2R"B we have �X(q; x; ") = (q; x) showing (�X(q; x; ");�Y (p; y; �pp0)) 2 R"B and implying that HX is aR�1" -simulation of HY . The proof is now �nished.We now repla
e the 
ondition of the previous result by 
onditions that are 
he
kable in 
on
rete examples.Theorem 4.41. Let HX be an hybrid 
ontrol system, R an admissible relation and HY a R-abstra
tionobtained through Algorithm 4.36. If:� the guards interse
ting �qX (dom(F qX )) are invariant for Ker(T�qp);� the reset maps satisfy �q0p0(Resetqq0(��1qp Æ �qp(x))) = �q0p0(Resetqq0(x)) for all q; q0 2 Q and(q; p); (q0; p0) 2 �.� F qX is 
ontrolled invariant for Ker(T�qp)� There is only one 
overing set for ea
h set �qX(dom(F qX )).then HY is a R-bisimulation of HXProof. The �rst 
ondition ensures that every point belonging to preimage of y 2 Yp by �qp has thesame jumping 
apabilities sin
e the guards are enabled or disabled for all those points. This ensures thatthe dis
rete part of the states rea
hable by the system HX , when 
ontrolled by an element in �X , is thesame for every point in R�1B Æ RB(q; x). To ensure that the 
ontinuous part is also the same, we invokethe se
ond 
ondition that ensures RB(Resetqq0(x)) = RB(Resetqq0(R�1B ÆRB(x))). We have thus shownthat we have: RB(HX (q; x; �)) = RB(HX(R�1B ÆRB(q; x); �)) 8�2�Y(4.62)Sin
e ��X is freely generated by �X we only need to show that for every ut 2 U�X we also haveRB(HX(q; x; ut)) = RB(HX (R�1B Æ RB(q; x); ut)). From Theorem 3.16 in Chapter 3 we know that 
on-trolled invarian
e is equivalent to proje
tabilty of the 
ontrol se
tion and this implies that for every



84 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMS(q; x) 2 R�1B ÆRB(q; x) the 
ontrol se
tion is the same modulo Ker(T�qp). This is simply the in�nitesi-mal statement of:�qp Æ �Xq (HX (q; x; ut)) = �qp Æ �Xq (HX(R�1B ÆRB(q; x); ut)) 8ut2Uq�X(4.63)where we have denoted by �Xq the natural proje
tion from X to Xq taking (q; x) 2 X to x 2 Xq. By anargument similar to Theorem 3.7 in [60℄ it 
an be shown that 
ontrolled invarian
e implies (4.63).We now use the last assumption of the theorem to ensure that:�D(HX (q; x; ut)) = �D(HX(R�1B ÆRB(q; x); ut)) 8ut2Uq�X(4.64)whi
h follows from the fa
t that all the states (q; x) 2 R�1B Æ RB(q; x) are mapped to the same dis
retestate sin
e there is only one 
overing set for ea
h set �qX(dom(F qX )). Equation (4.63) together with (4.64)in turn imply that: RB(HX (q; x; ut)) = RB(HX(R�1B ÆRB(q; x); ut)) 8ut2Uq�X(4.65)The desired equality: RB(R(q;x)HX) = RB(RR�1B ÆRB(q;x)HX)(4.66)now follows from the fa
t that M is freely generated by �X and U�X and the result is a 
onsequen
e ofProposition 4.40.This result provides easily 
he
kable 
onditions for bisimilarity, however 
ontrolled invarian
e is a strongrequirement. Weaker 
onditions for bisimilarity between hybrid 
ontrol systems 
an be a
hieved if oneuses weaker notions of bisimulation su
h as weak bisimulation [52℄, however those results rely on a
omplete and thorough understanding of bisimilarity for 
ontinuous 
ontrol systems whi
h is still an areaof 
urrent resear
h.4.4. Preservation and Re
e
tion of Properties. In this se
tion we will spe
ialize the results ofSubse
tion 3.5 to hybrid 
ontrol systems and 
onsider properties that are spe
i�
 of hybrid systems su
has the Zeno phenomena.4.4.1. Blo
king. Blo
king was already dis
ussed in Subse
tion 3.5 where a ne
essary and suÆ
ientresult for preservation of non-blo
king was given. We now provide a suÆ
ient 
ondition that is easier to
he
k:Proposition 4.42. LetHX be an hybrid 
ontrol system, R an admissible relation and HY a R-abstra
tionof HX . If HX is non-blo
king and� For all p 2 P , Np satis�es dim(Np) > 0.� Proposition 4.14 holds for the �nite automaton underlying HX



4. HYBRID CONTROL SYSTEMS 85then HY is non-blo
king.Proof. The �rst 
ondition ensures that for any y 2 �pY (dom(F pY )), Ay 6= f"g by de�nition of hybrid
ontrol system and the 
ontinuous abstra
ting methodology [60, 64℄. This means that blo
king 
an onlyo

ur by removing dis
rete transitions. However the se
ond assumption implies that blo
king is not
reated on the abstra
ting pro
ess by removing dis
rete transitions.This result reveals that while we have 
ontinuous dynami
s we only need to 
he
k what happens to the�nite automaton underlying the hybrid 
ontrol system to infer non-blo
king. This is in prin
iple a simpletask sin
e the number of dis
rete states is �nite and Proposition 4.42 
an be 
he
ked algorithmi
allyOne 
ould also attempt to determine when non-blo
king is re
e
ted by R. However 
he
king the 
ondi-tions to determine if the re
e
tion holds would be as expensive as determining if the original system isnon-blo
king.4.4.2. Zeno. Next we examine a phenomena that has no 
ounterpart in the dis
rete neither in the
ontinuous world, the Zeno phenomena. Intuitively we say that a traje
tory of an hybrid system isZeno if there is an in�nite number of jumps in �nite time. This is in fa
t a modeling problem sin
e nophysi
al system is able of generating su
h a traje
tory. On a more mathemati
al level existen
e of Zenotraje
tories is equally a problem. First, one needs to deal with 
ardinals greater than the 
ardinal of thenatural numbers if one attempts to de�ne or even to refer to the states visited by the traje
tory after theo

urren
e of in�nitely many jumps in �nite time. Se
ond, Zeno traje
tories make impossible to proveresults using �nite indu
tion. We will have to slightly extend our setting to be able to talk about Zenosin
e the elements of M are �nite length strings, therefore not 
apturing an in�nite number of jumps.We thus need to move from �nite monoids to !-monoids. We will just brie
y explain how one 
an extendM = at2N0(U� [ ��)t(4.67)to a

ommodate in�nite strings without entering the te
hni
al de�nitions. The interested reader isdeferred to [65℄ for more details regarding automata, in�nite strings and semigroups. First we add toMthe set of in�nite strings of elements in U� [ �� de�ned as:M! = (U� [ ��)N(4.68)to get M1 = M [M!. Then we extend the produ
t operation (
on
atenation in this 
ase) to thefollowing situations: (a; b) 7! ab for (a; b) 2M�M! and ab 2M!(4.69) (a1; a2; : : : ; an; : : :)n2N 7! (a1a2 : : : an : : :)n2N for an 2 M and (a1a2 : : : an : : :)n2N 2M!(4.70)



86 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMSIn this setting we 
an talk about Zeno sequen
es. Let us denote by jmjt the time duration of an element ofM1. This duration is de�ned as the sum of the durations of all the elements of U� that were 
on
atenatedto obtain m. A Zeno sequen
e is therefore de�ned as follows:Definition 4.43 (Zeno Sequen
e). Letm 2M! be an input sequen
e. We say thatm is a Zeno sequen
ei� we have jmjt <1.A Zeno hybrid 
ontrol system is an hybrid 
ontrol system su
h that its a
tion is de�ned for Zeno inputsequen
es:Definition 4.44 (Zeno Hybrid Control Systems). Let HX be an hybrid 
ontrol system. HX is a Zenohybrid 
ontrol system i� �X is de�ned for Zeno input sequen
es.First we will show how one 
an ensure that non-Zeno traje
tories are abstra
ted to non-Zeno traje
tories.This will ensure that these non-physi
ally meaningful sequen
es are not 
reated by the abstra
tion pro
ess.Proposition 4.45 (Preservation of Non-Zeno). Let HX be an hybrid 
ontrol system over X, R an admis-sible relation and HY a R-abstra
tion of HX . If there is only one 
overing set for ea
h set �qX(dom(F qX ))or if the 
overing �q is �nitely 
ompatible with F qX for every q 2 Q then non-Zeno input sequen
es areabstra
ted to non-Zeno input sequen
es.Proof. Let a(q;x) be an input sequen
e of HX and a(p;y) the 
orresponding abstra
ted input se-quen
e. If a(q;x) is non-Zeno then the abstra
ted input sequen
e �Y will be Zeno only if additional jumpsare introdu
ed by the abstra
ting pro
ess, that is, only if the 
ontinuous state spa
e is abstra
ted intodis
rete 
omponents. We have therefore that if ea
h set �qX (dom(F qX )) is 
overed by a single set nojumps are 
reated and the input sequen
e remains non-Zeno. When there are several 
overing sets, thejumps 
reated by 
rossing these sets will not indu
e Zeno sequen
es sin
e the 
overing and the 
ow ofF qX de�ne a Zeno-free transition system. In details, we have that the number of elements from �Y ina(p;y) is given by the sum of number of elements of �X in a(q;x) not abstra
ted to " plus the number ofjumps indu
e by the 
rossing of adja
ent 
overing set by the traje
tories of F qX . Sin
e a(q;x) is non-Zenoand the traje
tories of F qX 
ross the boundaries of adja
ent 
overing sets a �nite number of times in �nitetime we have that the total number of elements of �Y in a(p;y) is �nite for �nite time. This implies thatevery input sequen
e of HY is non-Zeno by surje
tivity of R.Note that a suÆ
ient 
ondition to ensure that the partition de�nes a Zeno-free transition system is givenby the use of sub-analyti
 strati�
ations as des
ribed in [41℄.The previous result formally shows that Zeno phenomena is introdu
ed in hybrid models of physi
alsystems by in
orre
t abstra
tions. When one models by dis
rete jumps, 
ontinuous evolutions that o

ur
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ale mu
h faster then the remaining pro
ess one may introdu
e non-physi
ally meaningfultraje
tories su
h as Zeno sequen
es. This 
alls for the need to understand approximate abstra
tionswhere the abstra
ting systems need only to simulate the original systems approximately.Having shown that it is not diÆ
ult to guarantee that non-Zeno traje
tories propagate up in the hierar
hywe 
ame to a more interesting question. When 
an we ensure that a non-Zeno traje
tory has non-Zenore�nements? We will only partially answer this question by determining when every re�nement of anon-Zeno traje
tory is non-Zeno. This amounts to ensuring that Zeno traje
tories are abstra
ted to Zenotraje
tories so that the traje
tories are always divided into disjoint 
lasses and the abstra
tion does notmix these 
lasses.Proposition 4.46 (Preservation of Zeno). Let HX be an hybrid 
ontrol system over X, R an admissiblerelation and HY a R-abstra
tion of HX . Every re�nement in HX of a non-Zeno input sequen
e of HYis non-Zeno if R preserves non-Zeno and for any state (q; x) 2 X and any dis
rete input � 2 A(q;x) su
hthat RB(q; x) \ RB(�X((q; x); �)) 6= ? we have �X (R(q; x; a)) = f(p; y)g and R(q; x; a) 6= f(p; y; ")g.Proof. We want to that non-Zeno sequen
es are abstra
ted to non-Zeno sequen
es and that Zenosequen
es are abstra
ted to Zeno sequen
es. The �rst part is ensured if R propagates non-Zeno while these
ond part will now be proved. If a(q;x) is a Zeno input sequen
e of HX and a(p;y) (the 
orrespondingabstra
ted input sequen
e of HY ) is non-Zeno, then an in�nite number of jumps has been removed froma(q;x). This 
an only be a

omplished if the dis
rete inputs asso
iated with these jumps are abstra
tedto ". However (4.8) implies that if � 2 A(q;x) is abstra
ted to " then RB(q; x) \ RB(�X ((q; x); �)) 6= ?but by assumption all su
h events � are not abstra
ted to ".We have only provided a super�
ial treatment of the Zeno phenomena whi
h is however enough to providesome guarantees in real appli
ations. We believe that a full understanding of this kind of behavior 
anonly be a
hieved through the mathemati
al formalization of the operation that takes a dis
rete and a
ontinuous 
ontrol system and 
ombines them into an hybrid system. We are, in fa
t, 
onvin
ed thatZeno phenomena will be the result of that operation on singular (in some sense) 
ases.4.5. Compositional Hybrid Abstra
tions. The results presented for 
ompositionality of abstra
t
ontrol systems in Subse
tion 3.7 also 
arry over to hybrid 
ontrol systems. In this subse
tion we presenttwo examples of how modularity 
an be exploited to simplify abstra
tion tasks.Example 4.47. Consider a rubber ball boun
ing on the 
oor under the a
tion of gravity. Its dynami
s
an be des
ribed by the automaton displayed on the left of Figure 9. The state of the ball is des
ribedby the variables x and y modeling the ball position and vx and vy the velo
ity. The ball hits the 
oorat y = 0 triggering a jump whi
h resets the velo
ity on y with the new value �e vy, where e 2℄0; 1[ is aparameter modeling the elasti
ity of the ball. To model two balls syn
hronized on the x position we start
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Xw � VX

Yw � VY

VXw � �
VYw � Z G

Y � �

�Q�� Q�	Q�

Y m �

VY �� Z E VY

Xw � VX

Yw � VY

VXw � �
VYw � Z G

Ww � VW

VWw � Z G

Y � � 8 W � �

Y m �

VY �� Z E VY

W m �

VW �� Z E VW

Figure 9. Hybrid automaton modeling a boun
ing ball on the left and the 
ompositionwith syn
hronization of two automata modeling a boun
ing ball.
�Q�� Q�	

Hw � � VH�

Hw � � VH�

VwH� � Z G

VwH� � Z G

H� � � 8 H� � �

H� m �

VH� �� Z E VH�

H� m �

VH� �� Z E VH�

Hw � � VH�

VwH� � Z G

H� � �

Q�

H� m �

VH� �� Z E VH�

Figure 10. Left: abstra
tion of the hybrid automaton displayed on the right of Figure 9;Right: abstra
tion of the hybrid automaton on the left of Figure 9.by 
omputing the produ
t automaton whi
h is restri
ted to the set L = f((x; y; vx; vy); (z; w; vz; vw)) 2R4 � R4 : x = z ^ vx = vzg resulting in the automaton displayed on the right of Figure 9. Anabstra
tion 
an now be performed to retain only height information. The new state 
oordinates arenaturally given by h1 = y; h2 = w; vh1 = vy and vh2 = vw and the abstra
tion 
omputed by Algorithm 4.36is displayed on the left of Figure 10. However, the abstra
tion pro
ess 
an be simpli�ed by making useof Theorem 4.24. This is a
hieved by �rst abstra
ting the hybrid automaton modeling ea
h individualball whi
h results in the hybrid automaton displayed on the right of Figure 10. The next step is toperform the parallel 
omposition with syn
hronization of these hybrid automata. Note that this produ
t isalready simpler to perform than the produ
t of the unabstra
ted systems. Furthermore the syn
hronizingset given by (�1; �2)(L) equals the state spa
e of the produ
t system sin
e �1(x; y; vx; vy) = (h1; vh1),�1(z; w; vz; vw) = (h2; vh2) and L = f((x; y; vx; vy); (z; w; vz; vw)) : y = w ^ vy = vwg. We thensee that no syn
hronization step needs to be performed and the resulting hybrid automaton is simplythe produ
t of two 
opies of the automaton displayed on the right of Figure 10. As expe
ted the �nalhybrid automaton is the same as in the previous 
ase, but the 
omplexity of the pro
ess was 
onsiderablyredu
ed by taking advantage to 
ompositionality.



4. HYBRID CONTROL SYSTEMS 89Example 4.48. In this example we illustrate the use of Theorem 4.24 with the 
elebrated water tanksystem from [2℄. Consider two water tanks that 
an be �lled by water 
oming from a pipe as displayedon the left of Figure 11. The water level at tank A is measured by x1 while the water level at tank B is
Ww � Z KW

Xw � � W Z V�
Xw � � W Z W Z V�

Ww � Z K �W Z W	
Xw � � W Z V�
Xw � � W Z W Z V�

Q� Q�

z�

z�

W

W W ZW

X�

X�

V�V�Figure 11. Water tank system: Physi
al setup on the left and hybrid model on the right.measured by x2. Ea
h tank has also an out
ow that 
auses a de
rease in the water level. The out
ow rateat tank A is v1 while at tank B is v2. This out
ow 
an be 
ompensated by a water in
ow 
oming fromthe pipe on top of the tanks. This pipe has an in
ow rate of w whi
h 
an be dire
ted to tank A or to tankB by means of a valve lo
ated in the pipe. Contrary to [2℄ we expli
itly in
orporate a �rst order modelof the pump in the hybrid automaton des
ribing this hybrid 
ontrol system, displayed on the right ofFigure 11. We now seek to abstra
t away the pump dynami
s to obtain the usual model that 
onsiders the
ommutation of the in
ow from one tank to the other instantaneous4. Instead of 
omputing an abstra
tiondire
tly from this hybrid automaton we start by realizing that this automaton 
an be obtained by parallel
omposition of hybrid 
ontrol systemsHX andHY modeling the pipe and the tanks, respe
tively, as shownin Figure 12. This 
omposition is syn
hronized on the �bering submonoid AL � AX �AY de�ned by the
Ww � Z KW Ww � Z K �W Z W	

Q� Q�

z�

z�

Xw � � U� Z V�
Xw � � U� Z V�

Q

Figure 12. Hybrid model of the pipe and water tanks on the left and right, respe
tively.points of the form �((q1; w); (x1; x2)); ("; ut)�, �((q1; w); (x1; x2)); (�1; ")�, �((q2; w); (x1; x2)); ("; ut)� and�((q2; w); (x1; x2)); (�2; ")�, where the 
ontinuous inputs satisfy ut = (w(t); w�w(t)). We now abstra
t the4We remark that 
onsidering the water 
ommutation instantaneous leads to Zeno traje
tories [35℄. However, in our per-spe
tive, the hybrid model of the water tank system already allows in�nite swit
hes between dis
rete states q1 and q2 in�nite time.



90 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMSpipe model by aggregating all the 
ontinuous states in dis
rete state q1 to 0 and all the 
ontinuous statesin dis
rete state q2 to w. Theorem 4.24 ensures that 
omposing HY with this abstra
tion will result inan abstra
tion of hybrid 
ontrol system HX kAL HY . The new syn
hronizing �bering monoid is obtainedfrom AL by repla
ing w by 0 on the 
ontinuous inputs in state q1, repla
ing w by w in the 
ontinuousinputs at dis
rete state q2 and identifying (q1; w) and (q2; w) with q1 and q2, respe
tively. The resultinghybrid 
ontrol system is displayed in Figure 13. This example illustrates the 
lear advantage of exploring
Xw � � Z V�

Xw � � W Z V�

Xw � � W Z V�

Xw � � Z V�

Q� Q�

z�

z�Figure 13. Abstra
ted hybrid model of the water tank system.
ompositionality in 
omputing hybrid abstra
tions. We have only 
omputed 
ontinuous abstra
tions ofone-dimensional 
ontrol systems (for the pipe automaton), whereas if one would have pro
eeded dire
tlyfrom hybrid 
ontrol system HX kAL HY without exploring the 
ompositional stru
ture, one would have
omputed 
ontinuous abstra
tions of the three-dimensional 
ontinuous 
ontrol systems at ea
h dis
retelo
ation.



CHAPTER 5Formations and Abstra
tions of Multi-Agent Systems1. Introdu
tionAdvan
es in 
ommuni
ation and 
omputation have enabled the distributed 
ontrol of multi-agent systems.This philosophy has resulted in next generation automated highway systems [86℄, 
oordination of air
raftin future air traÆ
 management systems [82℄, as well as formation 
ying air
raft, satellites, and multiplemobile robots [7, 10, 80, 19℄. The 
ontrol of multi-agent systems is greatly simpli�ed when the agent'smission 
an be exe
uted by means of a formation. In several appli
ations, maintaining a formation is evenfundamental as in multiple air
raft where the formation is used to explore aerodynami
 e�e
ts [51, 11℄or in roboti
 exploration of large areas with restri
ted sensor 
apabilities [17℄.The several approa
hes to formation 
ontrol of a group of agents 
an roughly be divided into three 
ate-gories: Behavior-based, Leader-Follower and Virtual Stru
tures or Rigid-Body type formations. Behaviorbased approa
hes [7, 42, 90, 47℄ start by designing simple and intuitive behaviors or motion primitives forea
h individual agent. Then, by a weighted sum of these simple primitives more 
omplex motion patternsare generated through the intera
tion of several agents. These motion patterns are usually 
alled thegroup behavior that is said to emerge from the individual ones. Although this approa
h is 
hara
terizedby being diÆ
ult to analyze in a rigorous and formal way, there have been some attempts to formallyde�ne and model behavior-based 
ontrol s
hemes [20℄. In leader-follower approa
hes [87, 19℄ one agent isdesignated the leader and is responsible for guiding the formation. The remaining agents are required tofollow the leader with a prede�ned o�set. This approa
h 
ontrasts with rigid-body type formations [80℄where rigidity allows to spe
ify a traje
tory for ea
h agent requiring a 
entralized 
ontrol ar
hite
ture.See also [75℄ for a di�erent 
entralized approa
h.Despite the large a
tivity in the area of formation 
ontrol there are still fundamental questions unan-swered. The 
ontrol of a formation requires individual agents to satisfy their kinemati
s while 
onstantlysatisfying inter-agent 
onstraints. In typi
al leader-follower formations, the leader has the responsibilityof guiding the group, while the followers have the responsibility of maintaining the inter-agent formation.Distributing the group 
ontrol tasks to individual agents must be 
ompatible with the 
ontrol and sensing
apabilities of the individual agents. As the inter-agent dependen
ies get more 
ompli
ated, a systemati
framework for 
ontrolling formations is vital. 91



92 5. FORMATIONS AND ABSTRACTIONS OF MULTI-AGENT SYSTEMSIn this 
hapter, we propose a framework to study formation feasibility of multi-agent systems. Forma-tions are modeled using formation graphs whi
h are graphs whose nodes 
apture the individual agentkinemati
s, and whose edges represent inter-agent 
onstraints that must be satis�ed. A similar approa
hhas been proposed in [19℄. In [21℄ graphs are also used in the 
ontext of formation 
ontrol, but theemphasis in on the 
ommuni
ation 
ow and not on formation 
onstraints. We assume kinemati
 modelsfor ea
h agent des
ribed by drift free 
ontrol systems. This 
lass of systems is ri
h enough to 
aptureholonomi
, nonholonomi
, or undera
tuated agents. Two distin
t types of formations are 
onsidered :undire
ted formations and dire
ted formations.In undire
ted formations ea
h agent is equally responsible for maintaining the formation. For ea
h edge
onstraining two agents of the formation graph, both agents 
ooperate in order to satisfy the 
onstraint.Undire
ted formations therefore present a more 
entralized approa
h to the formation 
ontrol problem as
ommuni
ation between agents is, in general, ne
essary. In dire
ted formations, for ea
h edge 
onstrainingtwo agents, only one of the agents (the follower) is responsible for maintaining the 
onstraint. Dire
tedformations, therefore, represent a more de
entralized solution to the formation 
ontrol problem.In this 
hapter, we fo
us on the feasibility problem: Given the kinemati
s of several agents along with theinter-agent 
onstraints, determine whether there exist agent traje
tories that maintain the 
onstraints.For both dire
ted and undire
ted formations we obtain di�erential-geometri
 
onditions that determineformation feasibility. When su
h 
onditions are veri�ed, the group abstra
tion problem is then 
onsid-ered: Given a feasible formation, extra
t a smaller 
ontrol system that maintains formations along itstraje
tories. The extra
ted 
ontrol system allows to 
ontrol the formation as a single entity, thereforebeing well suited for higher levels of 
ontrol. In the 
ase of undire
ted formations, the 
entralized natureof the problem allows us to determine feasibility using a single mathemati
al obje
t. An uni�ed approa
hthat 
aptures both the agent kinemati
s as well as the formation 
onstraints is o�ered by di�erentialforms and exterior di�erential systems [61℄. In both the undire
ted and the dire
ted 
ases the proposedframework allows for the extra
tion of a formation 
ontrol abstra
tion. Sin
e the abstra
tion 
an alsobe represented by di�erential forms, non-holonomi
 motion generation te
hniques based on exterior dif-ferential systems [81, 46℄ 
an readily be used to plan paths for the abstra
tion. The 
onstru
tion ofthese abstra
tions 
an be seen as a purely 
ontinuous example of the notion of parallel 
omposition withsyn
hronization introdu
ed in Chapter 4. A preliminary version of the results presented in this 
hapterappeared in [79℄.



2. FORMATION GRAPHS 932. Formation GraphsConsider n heterogeneous agents with states xi(t) 2 Mi, i = 1; : : : ; n whose kinemati
s are de�ned bydrift free 
ontrolled distributions on manifolds Mi as:�i : Mi � Ui �! TMi�i = Xj Xjuj(5.1)where Ui is the 
ontrol spa
e, and the ve
tor �elds Xj form a basis for the distribution. The 
ontrolleddistributions are general enough to model nonholonomy and undera
tuation.The formation of a set of agents is de�ned by the formation graph whi
h 
ompletely des
ribes individualagent kinemati
s and global inter-agent 
onstrains.Definition 5.1 (Formation Graph). A formation graph F = (V;E;C) 
onsists of:� A �nite set V of verti
es whose 
ardinality is equal to the number of agents. Ea
h vertex vi :Mi�Ui�! TMi is a distribution �i modeling the kinemati
s of ea
h individual agent as des
ribed in (5.1).� A binary relation E � V � V representing a link between agents.� A family of 
onstraints C indexed by the set E, C = f
ege2E . For ea
h edge e = (vi; vj), 
e is apossibly time varying fun
tion 
e(xi; xj ; t) = 0 des
ribing the �(e) independent 
onstraints betweenverti
es vi and vj . For a generi
 edge e = (vi; vj), 
e is mathemati
ally de�ned as 
e :Mi�Mj�R�! R�(e) , �(e) 2 N 8e2E.Two di�erent types of formation graphs will be 
onsidered: undire
ted formations where (V;E) will be anundire
ted graph and dire
ted formations where (V;E) will be a dire
ted graph. In undire
ted formations,for ea
h edge e = (vi; vj) both agents are equally responsible for maintaining the asso
iated 
onstraint 
e.Undire
ted formations are represented by the underlying undire
ted graph (V;E) as displayed in Figure 1for a formation with two agents and an edge between them. In dire
ted formations the 
onstraint 
e
Figure 1. Undire
ted graph representing an undire
ted formation 
onsisting of 2 agentsand a 
onstraint between them.asso
iated with the edge e must only be guaranteed by agent i. Dire
ted formations are represented bythe underlying dire
ted graph as in Figure 2. At this point no further stru
ture is assumed on the set E.Additional stru
ture will be expli
itly mentioned when needed.We fo
us on the formation feasibility problem, more pre
isely:
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Figure 2. Dire
ted graph representing a dire
ted formation 
onsisting of 2 agents anda 
onstraint between themProblem 5.2. Feasibility Given a formation graph F = (V;E;C) determine whether there are solutionsxi(t) of all agent kinemati
s (5.1) that maintain the 
onstraints 
e for all e 2 E and for all t 2 R.We will solve Problem 5.2 for both undire
ted and dire
ted formations. In 
ase the formation is feasible, anew problem immediately emerges, the extra
tion of a formation 
ontrol abstra
tion whi
h 
hara
terizesthe solution spa
e of Problem 5.2 :Problem 5.3 (Group Abstra
tion). Given a feasible formation graph F = (V;E;C), extra
t a smaller
ontrol system that maintains formation for all values of its 
ontrol inputs.Problem 5.3 will also be solved for both the undire
ted and the dire
ted 
ases.3. Undire
ted Formations3.1. Feasibility. In undire
ted formations ea
h agent is equally responsible for maintaining 
on-straints. Be
ause of this property it will be useful to 
olle
t all agent kinemati
s and 
onstraints on asingle manifold: M = nYi=1Mi(5.2). Given an element x of M the 
anoni
al proje
tion on the ith agent,�i :M �!Mi(5.3)allows us to denote the state of the individual agents by xi = �i(x). The formation kinemati
s is obtainedby appending individual kinemati
s through dire
t sum, that is:� :M � U �! TM� = �ni=1�i(5.4)where U is taken to be U = Qni=1 Ui. This new 
ontrol system � on M des
ribes the kinemati
s ofall formation agents, however it does not model any intera
tion between them. This intera
tion will beindu
ed by the formation 
onstraints that we now lift to the group manifold M . Ea
h 
onstraint 
e



3. UNDIRECTED FORMATIONS 95linking agent i to agent j indu
es a 
onstraint Ce on M � R de�ned by:Ce : M � R �! R�(e)Ce(x; t) = 
e(�i(x); �j(x); t)(5.5)All of these 
onstraints 
an now be grouped in a single map from M � R to Rd with d = Pe2E �(e).This 
onstraint map C is obtained by sta
king all individual 
onstraints as follows:C = 26666664C1C2...Cm
37777775(5.6)where we have 
onsidered an enumeration f1; 2; : : : ;mg of the edges set E. Sin
e the 
onstraints areindependent the set C�1(0) = f(x; t) 2M �R j C(x; t) = 0g de�nes a submanifold1 P of M �R. Theproje
tion of P on M (whi
h is also a submanifold of M), denoted by N , 
hara
terizes the intera
tionbetween the agents sin
e the state variables of ea
h agent are restri
ted to live on this submanifold.Formation feasibility requires that the 
onstraints are satis�ed along the formation traje
tories, that is,that the submanifold N is invariant under � traje
tories:ddtC = LXC + �C�t = 0 8X 2 �(5.7)Note that sin
e C is ve
tor valued we 
onsider that the Lie derivate of C along X is given by:LXC = 26666664LXC1LXC2...LXCm
37777775(5.8)To develop a single mathemati
al obje
t that will allow us to 
he
k for feasibility we will adopt a di�eren-tial forms approa
h instead of working dire
tly with the ve
tor �elds. By de�ning the exterior derivativeof C as: dC = 26666664dC1dC2...dCm

37777775(5.9)
1Although the map C depends on the 
hosen enumeration, the submanifold it de�nes does not.



96 5. FORMATIONS AND ABSTRACTIONS OF MULTI-AGENT SYSTEMSequation (5.7) 
an be written as dCjt(X) = � ��tC, where we have denoted by dCjt the exterior derivativeof C for �xed t. If we now de�ne the following ve
tor valued forms:!F = 26666664dC1jtdC2jt...dCmjt
37777775 TF = �26666664 �C1�t�C2�t...�Cm�t

37777775(5.10)we 
an express equation (5.7) as: !F (X) = TF(5.11)The kinemati
s 
an also be modeled as di�erential forms by using the annihilating 
odistributions. Thislead us to de�ne a single 
odistribution !K modeling the kinemati
s of all formation agents as:!K(X) = 26666664!K1(X1)!K2(X2)...!Kn(Xn)
37777775 = 0(5.12)Solutions of equation (5.11) represent ve
tor �elds that maintain formation while solutions of equation(5.12) satisfy the kinemati
s. Therefore by merging both obje
ts into:
 = 24!F!K35 T = 24TF0 35(5.13)we 
an 
he
k for formation feasibility in a single equation:
x(X) = T 8x 2 N(5.14)Note that this equation only needs to hold for points belonging to N , sin
e outside N the agents are nolonger in formation. The previous dis
ussion leads to the following solution of Problem 5.2:Proposition 5.4. An undire
ted formation is feasible i� equation (5.14) has solutions, equivalently i�T belongs to the range of 
 for all x 2 N .Corollary 5.5 (Time-Invariant Case). If the formation 
onstraints C are time-invariant then the undi-re
ted formation is feasible i� 
x is not of full rank at every x 2 NA solution of equation 
x(X) = T spe
i�es the in�nitesimal motion of ea
h individual agent. Whenmore than one independent solution exists, a 
hange in the dire
tion of a single agent may require thatall other agents also 
hange their a
tions to maintain formation. This shows that, in general, solutions forundire
ted formations are 
entralized and require inter-agent 
ommuni
ation for their implementation.



3. UNDIRECTED FORMATIONS 97Example 5.6. As an example of the methodology developed so far we 
onsider an undire
ted formation
onsisting of three mobile robots of the uni
y
le type as displayed in Figure 3. The kinemati
s of ea
h
Figure 3. Undire
ted 3 agents formation.

agent is given by 
odistributions of the form (2.22). To 
ompletely spe
ify the formation graph we needto de�ne the 
onstraints between the agents. Denoting by e1 the edge between agent 1 and 2 we de�nethe asso
iated 
onstraint as: 
e1 = 26664x1 � x2 � Æxy1 � y2 � Æy�1 � �2 37775(5.15)where Æx and Æy are positive 
onstants. The edge between agents 1 and 3 is denoted by e2 and theasso
iated 
onstraint is given by:
e2 = h 12 (x1 � x3)2 + 12 (y1 � y3)2 � 12 (�1 � �3)2 � Æi(5.16)where Æ is a positive 
onstant. The 
onstraint between agents 1 and 2 requires them to perform the sametraje
tories with an o�set between their position 
oordinates given by Æx and Æy. It is intuitive that it isalways possible to do so. However the 
onstraint between agents 1 and 3 states that the distan
e betweentheir positions should always equal Æ + 12 (�1 � �3)2. This is 
learly a non-intuitive 
onstraint and no apriori answer 
an be given regarding feasibility. We will now study feasibility of this formation a

ordingto the methods developed so far. First we 
ompute !K whi
h is given by:!K = 26664� sin �1dx1 + 
os �1dy1� sin �2dx2 + 
os �2dy2� sin �3dx3 + 
os �3dy337775(5.17)Sin
e C is given by: C = 26666664 x1 � x2 � Æxy1 � y2 � Æy�1 � �212 (x1 � x3)2 + 12 (y1 � y3)2 � 12 (�1 � �3)2 � Æ
37777775(5.18)



98 5. FORMATIONS AND ABSTRACTIONS OF MULTI-AGENT SYSTEMSthe form !F will be given by:
!F = 26666664 dx1 � dx2dy1 � dy2d�1 � d�2(x1 � x3)dx1 + (y1 � y3)dy1 + (�3 � �1)d�1 + (x3 � x1)dx3 + (y3 � y1)dy3 + (�1 � �3)d�3

37777775
(5.19)
Combining !F and !K into 
 one easily veri�es that 
 is not of full rank for every x 2 N . This meansthat the formation is indeed feasible, that is, there are traje
tories for ea
h agent satisfying the formation
onstraints as well as its kinemati
s.In the next se
tion we will see how one 
an 
ontrol the individual agents while maintaining the formationand gain some insight into the group traje
tories.

3.2. Group Abstra
tion. Whenever more than one independent solution exists, the solution spa
eof equation 
(X) = T 
an be used to extra
t a smaller 
ontrol system that will preserve the formationalong its traje
tories. This new 
ontrol system is an abstra
tion that hides away low-level 
ontrol ne
-essary to maintain the formation and 
an be used in higher levels of 
ontrol. Sin
e the solution spa
e isin general an aÆne spa
e the new 
ontrol system will also be aÆne in the 
ontrol. If KP is a parti
ularsolution of equation (5.14), we 
an solve Problem 5.3 with the new 
ontrol system:�G = KP +Ker(
)(5.20)By making use of a basis fK1;K2; : : : ;Kkg for the kernel of 
, we 
an rewrite (5.20) in a more usualform as: �G = KP + kXj=1Kjuj(5.21)In the time-independent 
ase we re
over linearity of the abstra
ted 
ontrol system sin
e we 
an 
hoseKP = 0. The 
entralized nature of the problem is also re
e
ted on the 
ontrol abstra
tion. When oneor more of the 
ontrol inputs ui are used, inter-agent 
ooperation is ne
essary to implement the newdire
tion of motion sin
e ea
h ve
tor Kj spe
i�es the motion for all formation agents.Example 5.7. Continuing with the previous example we will extra
t an abstra
tion representing theformation as a whole. Straightforward 
omputations provide the following basis for the kernel of 
:
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K1 = (�3 � �1) 
os �1 ��x1 + (�3 � �1) sin �1 ��y1 + (�3 � �1) 
os �1 ��x2 + (�3 � �1) 
os �1 ��y2+ �(x1 � x3) 
os �1 + (y1 � y3) sin �1� ���3K2 = �(x1 � x3) 
os �3 + (y1 � y3) sin �3� 
os �1 ��x1 + �(x1 � x3) 
os �3 + (y1 � y3) sin �3� sin �1 ��y1+ �(x1 � x3) 
os �3 + (y1 � y3) sin �3� 
os �1 ��x2 + �(x1 � x3) 
os �3 + (y1 � y3) sin �3� sin �1 ��y2+ �(x1 � x3) 
os �1 + (y1 � y3) sin �1� 
os �3 ��x3 + �(x1 � x3) 
os �1 + (y1 � y3) sin �1� sin �3 ��y3K3 = (�1 � �3) 
os �1 ��x1 + (�1 � �3) sin �1 ��y1 + �(x1 � x3) 
os �1 + (y1 � y3) sin �1� ���1+ (�1 � �3) 
os �1 ��x2 + (�1 � �3) sin �1 ��y2 + �(x1 � x3) 
os �1 + (y1 � y3) sin �1� ���2These ve
tor �elds de�ne the abstra
tion through the 
ontrol system:�G = K1u1 +K2u2 +K3u3(5.22)To gain some insight on the abstra
tion 
ontrol system and the formation traje
tories we display inFigure 4 the formation evolution when the open loop 
ontrol u1 = 1, u2 = 0 and u3 = 0 is used. Agent
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Figure 4. Formation 
ow along ve
tor �eld K1 
orresponding to u1 = 1, u2 = 0 andu3 = 0.1 is represented by a trapezoid, agent 2 by a square and agent 3 by re
tangle. The formation evolutionis 
hara
terized by agent 3 rotating around the same point while agent 1 and 2 perform straight linemotions. When the formation 
ows along ve
tor �eld K2 
orresponding to the open loop 
ontrol u1 = 0,u2 = 1 and u3 = 0 all the agents in the formation move along parallel traje
tories as displayed in Figure 5.This was a
hieved sin
e their initial orientations where identi
al. When this is not the 
ase, more 
omplexmotions 
hara
terize the 
ow along K2. However it is always possible to a
hieve identi
al orientationsby 
owing along K1 or K3. The formation 
ow along basis ve
tor K3 is somewhat dual to K1. Insteadof agent 1 rotating around itself to a
hieve di�erent 
on�guration errors regarding agent 1, agent 3 is
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Figure 5. Formation 
ow along ve
tor �eld K2 
orresponding to u1 = 0, u2 = 1 andu3 = 0.
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Figure 6. Formation 
ow along ve
tor �eld K3 
orresponding to u1 = 0, u2 = 0 andu3 = 1.now stopped and the remaining agents revolve around it as suggested in Figure 6. To generate more
omplex motions for the formation other open or 
losed loops 
ontrol laws 
an be used with the groupabstra
tion (5.22).3.3. Formation Guidan
e. In addition to using the above abstra
ted system to 
ontrol the forma-tion, one 
an also guide the formation by appending a virtual vertex v0 de�ning the referen
e traje
toryand several edges spe
ifying how the referen
e should be followed by the formation. In parti
ular 
on-sider a feasible formation graph F = (V;E;C) and let V 0 be a singleton 
ontaining the vertex v0 : R�! TM0, v0 = ddtx0(t). This vertex is 
onne
ted to the remaining formation by the additional edgeset E0 = [i2If(v0; vi)g, where I � V is a subset of all the verti
es indi
es. Asso
iated with ea
hvertex we have the 
onstraints C 0 = f
0ege02E0 and we 
an de�ne a new formation graph given by



4. DIRECTED FORMATIONS 101F 0 = (V 0 [ V;E0 [E;C 0 [C). On
e again it is ne
essary to ensure that the feasible formation is 
apableof maintaining the referen
e 
onstraints by applying Proposition 5.4 to formation graph F 0.Note that this 
onstru
tion is general enough to en
ompass traditional formations su
h as: leader-followerby superimposing the virtual vertex onto an existing vertex or pla
ing referen
es on the formation 
entroid.It also allows some other interesting possibilities su
h as 
onne
ting a dis
onne
ted feasible formationgraph by the referen
e 
onstraints, i.e. , several independent formations following a single referen
e.
4. Dire
ted FormationsAnother important 
lass of formations 
an be modeled by dire
ted graphs. A dire
ted graph assignsresponsibilities to the formation members in an asymmetri
 way. For ea
h edge e = (vi; vj) agent i isresponsible for maintaining the 
onstraints 
e, while agent j is not a�e
ted by the 
onstraint of the edge.On
e agent j determines its motion, agent i is always 
apable of lo
ally 
omputing a 
ontrol strategyenfor
ing the formation 
onstraint. From an implementation point of view dire
ted formations simplifythe synthesis of the low level 
ontrol laws responsible for maintaining the agents in formation. These
ontrol laws require only lo
al information and are therefore easier to synthesize. The information 
owis also simpli�ed sin
e ea
h agent determines its motion without the need of 
oordination/
ooperationwith other agents.We will assume through the remaining se
tion that a dire
ted formation graph is a dire
ted a
y
li
graph. As a 
onsequen
e all dire
ted formations will have at least one leader. This assumption will allowre
ursive pro
edures to start on the leaders and to terminate sin
e there are no 
y
les. Cy
li
 formationgraphs, although important, will not be 
onsidered in this thesis. We will also 
onsider that the formation
onstraints are time independent for simpli
ity of presentation although the results 
an easily be extendedto time-varying 
onstraints.4.1. Feasibility. Although in the undire
ted 
ase we were able to lift the 
onstraints and individualagents kinemati
s to a larger manifold M , we will adopt a di�erent approa
h for the dire
ted 
ase. Givenan edge e = (vi; vj) the time derivative of its asso
iated 
onstraints 
e 
an be de
omposed as:d
edt = LXi
e + LXj 
e(5.23)Feasibility requires that d
edt = 0, however only Xi 
an be 
hosen to ensure feasibility. In view of this wewill follow a similar approa
h to the undire
ted 
ase, but in a re
ursive formulation. This requires thefollowing operators:



102 5. FORMATIONS AND ABSTRACTIONS OF MULTI-AGENT SYSTEMSDefinition 5.8 (Post and Pre). Let F = (V;E;C) be a dire
ted formation graph. The Post operator isde�ned by: Post : V �! 2Vvi 7! fvj 2 V : (vi; vj) 2 Eg(5.24)Similarly, the Pre operator is de�ned as:Pre : V �! 2Vvi 7! fvj 2 V : (vj ; vi) 2 Eg(5.25)Intuitively, Post(vi) will return the agents that are leading agent i, while Pre(vi) will return all theagents that are following agent i. Post and Pre extend to sets of verti
es in the natural way, Post(P ) =[p2P Post(p) and Pre(P ) = [p2P Pre(p). A vertex vi is 
alled a leader i� Post(vi) = ?. By assumptionthe graph underlying the formation is a
y
li
 implying that there will be at least a leader in the formationgraph.We shall abuse notation by representing the distribution �i de�ning the kinemati
s of agent vi as �(vi)and for the set of agents Post(vi), �(Post(vi)) = �v2Post(vi)�(v) de�ned over �v2Post(vi)Mv. Similarlyto the undire
ted 
ase we de�ne the following obje
ts for ea
h agent i:!iF = 26666664 d
1jxjd
2jxj...d
mjxj
37777775 !jF = �26666664d
1jxid
2jxi...d
mjxi

37777775 i 6= j(5.26)where f1; 2; : : :mg is an enumeration of the edges set between agent i and its leaders (Post(vi)). Theseve
tor valued di�erential forms allow us to write equation (5.23) as:!iF (Xi) = !jF (XJ)(5.27)whi
h is to be 
onsidered only for Xi 2 �(vi) and XJ 2 �(Post(vi)). Instead of restri
ting the Xi's to�(vi) we 
an in
orporate the kinemati
 restri
tions dire
tly into equation (5.27) by de�ning:
i = 24!iF!iK35 
j = 24!jF0 35(5.28)where !iK is the ve
tor valued form annihilating agent i kinemati
 distribution �(vi). The equalityddt
e = 0 
an now be further modi�ed to the following form:
i(Xi) = 
j(XJ) 8XJ 2 �(Post(vi))(5.29)This motivates the following result analogous to the undire
ted 
ase:
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ted formation is feasible i� equation (5.29) has solutions for ea
h agent i inthe formation. Equivalently i� the range of 
j j�(Post(vi)) is 
ontained in the range of 
i for ea
h agenti.Sin
e Proposition 5.9 must be true for ea
h agent, an algorithm 
an be 
onstru
ted to determine feasibility.Let L � V be a set of leaders and denote by F the operator returning the feasible dire
tions of an agent iand de�ned by F (vi) = (
i)�1(R(
j j�(Post(vi)))), where (
i)�1(S) denotes the set of preimages of ea
hs 2 S under 
i.Algorithm 1 (Dire
ted Feasibility)initialization: V := Lwhile Pre(V ) 6= ? doV := Pre(V )for all vi 2 V do�(vi) := 0if R(
j j�(Post(vi)) * R(
i)return UNFEASIBLESTOPelse �(vi) := �(vi) + F (vi)end ifendendAll the 
omputations in the algorithm 
an be performed using basis ve
tor �elds for the distributions, inparti
ular the in
lusion R(
j j�(Post(vi))) � R(
i) needs to be tested only for the basis ve
tors and theinverse (
i)�1 
an be 
omputed using pseudo-inverse te
hniques. The a
y
li
 nature of the graph ensureus that the algorithm will terminate so that the following result naturally follows:Theorem 5.10 (Dire
ted Formation Feasibility). Let F = (V;E;C) be an a
y
li
, dire
ted formationgraph. Algorithm 1 terminates in a �nite number of steps and returns:� Unfeasible if the formation is not feasible.� A distribution per agent spe
ifying the available dire
tions to maintain formation if the formationis feasible.Example 5.11. An example of dire
ted feasibility motivated by the transportation of an hazardous loadby a group of robots, es
orted by another group of robots 
an be given by a 6 agent formation as depi
ted



104 5. FORMATIONS AND ABSTRACTIONS OF MULTI-AGENT SYSTEMSin Figure 7. Agents 1,2 and 3 move as a rigid body to 
olle
tive transport the load. The remaining
�

� �

�

� �

E�

E�

E�

E�

E�

Figure 7. Dire
ted graph representing a 6 agents formation.agents serve as an es
ort to avoid attempts from external agents to approa
h the load, simultaneouslyprote
ting them from the possible hazards indu
ed by the load. We will 
onsider that agent 2 is ofuni
y
le type being modeled by a distribution of the form (2.22) and all the remaining agents have nokinemati
 
onstraints, being therefore modeled by:�i = X i1ui1 +X i2ui2 +X i3ui3 i = 1; 3; 4; 5; 6(5.30)The 
onstraints asso
iated with edges e4, e5 and e6 are simply given by:
ei = (xi�3 � xi)2 + (yi�3 � yi)2 � Æ2 i = 4; 5; 6(5.31)Intuitively the 
onstraints model the fa
t that ea
h agent belonging to the es
ort should keep a �xeddistan
e of Æ to a given robot transporting the load. The remaining 
onstraints model in a dire
ted waya rigid-body type formation with respe
t to the agents positions and are given by:
e1 = 26664x1 � x2 � Æxy1 � y2 � Æy�1 � �2 37775 
e2 = 26664x2 � x3 + Æxy2 � y3�2 � �3 37775(5.32)Following the steps of feasibility algorithm we start by analyzing the edge between agent 1 and 2. Thisrequires the 
omputation of: !1F = 26664dx1dy1d�137775 !2F = 26664dx2dy2d�237775(5.33)



4. DIRECTED FORMATIONS 105and: 
1 = 26666664dx1dy1d�10
37777775 
2 = 26666664 dx2dy2d�2sin �2dx2 � 
os �2dy2

37777775(5.34)From these expressions we immediately see that R(
1) * R(
2) sin
e [sin � � 
os � 0 0℄T belongs toR(
1) but it does not belong to R(
2). The formation is therefore not feasible. However if the edge e1is repla
ed by a new edge with the same asso
iated 
onstraint but with a reversed dire
tion as displayedin Figure 8 feasibility is ensured. In this 
ase we have that:
�

� �
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Figure 8. Dire
ted graph representing a 6 agents formation with a new edge e1.
1 = 26664dx1dy1d�137775 
2 = 26664dx2dy2d�237775(5.35)and in
lusion R(
1) � R(
2) is true. The next vertex to analyze is v3, but R(
2) � R(
3) sin
e thekinemati
s of agents 1 and 3 are equal as well as the exterior derivative of the 
onstraints linking themto agent 2. To analyze edge e4 one 
omputes:
1 = [2(x1 � x4)dx1 + 2(y1 � y4)dy1℄
4 = [2(x1 � x4)dx4 + 2(y1 � y4)dy4℄(5.36)and sin
e agent 4 has no kinemati
 
onstraints the in
lusion R(
1j�(Post(v4))) � R(
4) holds indepen-dently of �(Post(v4)). A similar reasoning shows that the 
orresponding in
lusions also hold for agents5 and 6. We 
on
lude that the formations is feasible meaning that independently of agent 2 motion the
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apable of lo
ally determine a 
ontrol strategy that will enfor
e the formation
onstraints.4.2. Group Abstra
tion. When a dire
ted formation is feasible the formation 
ontrol abstra
tionis trivially taken as the 
ontrol systems of the leaders. In the previous example the abstra
tion is simplygiven by the 
ontrol system of agent 2. Contrary to the undire
ted 
ase this abstra
tion does not allowdire
t 
ontrol over ea
h individual agent. Control is exerted on the leaders that indire
tly 
ontrol theformation through inter-agents links. Note that any attempt to 
ontrol a non-leader agent in a abstra
tionwould violate the semanti
s of a dire
ted edge. On the other hand regarding the leaders as an abstra
tionof the formation is already impli
it when the formation is spe
i�ed by pla
ing only ingoing arrows inthese agents.



CHAPTER 6Con
lusionsHybrid systems have been used to model multi-agent, networked and embedded systems among otherkinds of 
omplex large-s
ale systems. The in
reasing 
omplexity of nowadays appli
ations ask for anal-ysis and synthesis methods that s
ale well with dimension and 
omplexity. One approa
h is to adopt ahierar
hi
al perspe
tive by modeling hybrid systems through a hierar
hy of di�erent layers of abstra
tionrepresenting di�erent aspe
ts of the same system. Analysis tasks are then performed on simpler, ab-stra
ted models that are equivalent with respe
t to the relevant properties. Synthesis tasks also bene�tfrom this approa
h sin
e the design starts as the top of the hierar
hy on a simple model and is thensu

essively re�ned by in
orporating the modeling details of ea
h layer of abstra
tion. A 
omplementaryapproa
h to hierar
hies of abstra
tions is to take advantage of the 
ompositional stru
ture of embeddedsystems. These systems are usually 
onstru
ted through the inter
onne
tion of smaller 
omponents orsubsystems. This should be regarded as stru
ture that must be exploited to deal with the inherent 
om-plexity of these systems. One possible approa
h is to take advantage of this 
ompositional stru
ture ofhybrid systems to simplify the 
omputation of abstra
tions. This simpli�
ation 
omes from the fa
t thatit is, usually, mu
h simpler to abstra
t subsystems individually and then inter
onne
t them to obtainan abstra
tion, than to extra
t the abstra
tion of the system as a whole. In order to a

omplish this,
ompositional operators need to be 
ompatible with abstra
tion operators.In this thesis we introdu
ed a general methodology for 
ompositional abstra
tions of hybrid 
ontrol sys-tems. To a

omplish this goal we also made several 
ontributions to related areas su
h as abstra
tionsof smooth 
ontrol systems and formation 
ontrol of multi-agent systems. In Chapter 3 we extended the
ontinuous abstra
tion methodology proposed in [60, 63, 64℄ to model expli
itly 
ontrol inputs. We have
hara
terized the stru
ture of the abstra
ted 
ontrol bundles in a hierar
hy of abstra
tions indu
ed byequivalen
e relations on the state spa
e. These results were obtained by resorting to simple ideas from
ategory theory that allowed to expose and understand the stru
ture of smooth 
ontrol systems. In Chap-ter 4 we proposed a methodology for 
ompositional abstra
tions of hybrid 
ontrol systems. An abstra
tframework 
apturing dis
rete, 
ontinuous and hybrid 
ontrol systems was proposed as a 
ategory. Inthis 
ategory we introdu
ed a notion of abstra
tion based on simulations and also the notion of bisimu-lation. We also introdu
ed a 
omposition operator modeling the inter
onne
tion and syn
hronization ofsubsystems. This operator was shown to be 
ompatible with simulations and, under 
ertain 
onditionson the syn
hronization, with bisimulations. All of these results were then spe
ialized for hybrid 
ontrol107



108 6. CONCLUSIONSsystems where an algorithm was proposed for the 
omputations of abstra
tions. It was also shown thatthis algorithm also 
omputes bisimulations under 
ertain assumptions. All of these results 
onstitute im-portant tools to e�e
tively deal with the 
omplexity or large-s
ale, 
omplex, embedded systems. Finally,in Chapter 5 we addressed and solved the formation feasibility problem for both dire
ted and undire
tedformations. Furthermore we also provided a way of obtaining a group abstra
tion that maintains theformation along its traje
tories. This abstra
tion 
an be regarded as a purely 
ontinuous example of the
ompositional abstra
tion methodology introdu
ed in Chapter 4.The resear
h 
arried out under this Ph.D. program also lead to many interesting open questions that wemention only a few:� In the 
ase of purely 
ontinuous 
ontrol systems it is not yet well understood when an abstra
tionis in fa
t a bisimulation. Determining 
he
kable 
onditions for bisimilarity of smooth 
ontrolsystems is an extremely important problem not only from the appli
ations perspe
tive as well asfrom a theoreti
al point of view. Bisimilar 
ontrol systems allow to design 
ontrollers hierar
hi
allysin
e we are assured that any spe
i�
ation for an abstra
t model has a feasible implementationor re�nement in a more detailed level. Besides this perspe
tive of a hierar
hi
al 
ontrol theorybisimilarity is also provides a major 
ontribution to the 
lassi�
ation of 
ontrol systems. In thisrespe
t it would also be very rewarding to understand the relation between the symmetries of
ontrol systems and its bisimulations. It is 
lear that partial-symmetries as des
ribed in [57℄ leadto bisimilar quotient systems but is this always the 
ase?� With respe
t to hybrid 
ontrol systems, it is fundamental to render the results developed in thiswork 
omputational. In this respe
t it matters to identify spe
ial 
lasses of hybrid 
ontrol systemsfor whi
h the proposed abstra
ting algorithm 
an be fully automated. Also some of the givenresults may be diÆ
ult to 
he
k in real examples, and again the identi�
ation of spe
ial 
lassesof hybrid systems 
ould be extremely helpful to over
ome these diÆ
ulties. It is also importantto stress that sin
e large-s
ale, embedded systems are be
oming in
reasingly distributed and net-worked an extension of the proposed methodology toward the expli
it modeling of 
ommuni
ation
hannels would be another valuable tool for the analysis and synthesis or real world appli
ations.� Finally, although we are able of determining if a given dire
ted formation is feasible or not, itis important to 
onsider the problem of determining if there are other inter-agents 
onstraintsde�ning a formation with the same traje
tories as an unfeasible dire
ted formation. A relatedproblem is to extra
t the largest feasible dire
ted formation from an unfeasible dire
ted formation,sin
e this would have dire
t impa
t in 
ontrol and 
ommuni
ation design.
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