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Resumo

Na tltima década a modelacao, analise e controlo de sistemas complexos, embebidos e de larga escala,
tem vindo a ser alvo de atenc¢do crescente. Os avancos e o reduzido custo de novos e mais performantes
dispositivos de comunicacao, calculo e sensoreamento alargam consideravelmente os limites do que é
hoje exequivel. As aplicagbes actuais ultrapassam ja o conhecimento formal e tedrico que existe sobre
estes sistemas pelo que uma abordagem formal reveste-se de particular importancia. Neste sentido,
propoe-se algumas solucoes nesta tese ao considerar Sistemas Hibridos como modelo formal para sistemas

embebidos.

Neste trabalho introduz-se um enquadramento tedrico e abstracto para o estudo de sistemas de controlo
incluindo sistemas de controlo discretos, continuos e hibridos. Uma noc¢ao de abstracao é apresentada
para sistemas de controlo hibridos que pode ser encarada como um sistema quociente que preserva
as propriedades de interesse enquanto ignora detalhes de modelacao. E dedicada especial atencdo a
sistemas de larga-escala que sdo usualmente construidos através da interligacdo de subsistemas. Uma
nocao formal de composi¢io é também introduzida por forma a modelar a interligacdo e sincronizacao
de subsistemas. Mostra-se que a nocao de abstracio é composicional no sentido em que a composi¢ao de
abstracoes de subsistemas é uma abstracao do sistema global. E também proposto um algoritmo para
calcular abstracoes de sistemas hibridos. Estes resultados perspectivam uma metodologia hierarquica

para efectuar tarefas de anélise e sintese em sistemas de control hibridos.

Palavras Chave: Sistemas Hibridos, Sistemas de Controlo, Abstraccoes, Composicionalidade, Hierar-

quias.
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Abstract

In the last decade an increasing attention has been paid to the modelling, analysis and control of large-
scale, embedded, complex systems. The advances and the low cost of new and more powerful computing,
sensing and communicating devices push further the limits of what is now possible to accomplish. Todays
applications have gone way beyond the formal and theoretical understanding we have about those systems.
This fact suggests a formal approach and this thesis provides some answers by regarding Hybrid Systems

as a formal model for embedded systems.

In this work we introduce an abstract framework for the study of control systems capturing continuous,
discrete and hybrid control systems. A notion of abstraction is defined for hybrid control systems which
can be regarded as a quotient system that preserves properties of interest while ignoring modelling
details. Special attention is devoted to large scale systems which are usually built by interconnecting
smaller subsystems. A formal notion of composition is also introduced to model the interconnection
and synchronization of subsystems. It is shown that the notion of abstraction is compositional in the
sense that by composing abstractions of subsystems one obtains an abstraction of the overall system.
An algorithm is proposed to compute abstractions of hybrid control systems providing a useful tool
to deal with the inherent complexity of embedded systems. These results perspectivate a hierarchical

methodology to perform analysis and design tasks for hybrid control systems.

Keywords: Hybrid Systems, Control Systems, Abstractions, Compositionality, Hierarchies.
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CHAPTER 1

Introduction

In the last decade an increasing attention has been paid to the modeling, analysis and control of large-
scale, embedded, complex systems. The thrust from the application side has been tremendous and

includes, among others:

e Automotive engines, where discrete phenomena such as torque generation and spark ignition
interacts with the continuous evolution of the power train and air dynamics [9], see also [8].

e Air-Traffic management where discrete decisions about the continuous evolution of several aircrafts
are addressed [82].

e Chemical batch plants operating in multi-batch mode where a discrete sequence of continuous
actions such as mixing, heating or cooling products needs to be determined in order to produce
the desired product [54].

e Manufacturing industry where some processes are modeled by a continuous and a discrete layer.
In the continuous, time driven layer, the manufacturing of products is described by continuous
dynamics whereas on the discrete layer, a discrete event system models the manufacturing system
based on events generated by the continuous processes [22].

e Process control [68].

e TCP congestion control [28].

e Biomolecular networks [3].

e etc.

It is fair to say that embedded systems are now everywhere where we mean by embedded systems all those
applications where computing systems interface the continuous world through sensors and actuators. The
advances and the low cost of new and more powerful computing, sensing and communicating devices push
further the limits of what is now possible to accomplish. Todays applications have gone way beyond the
formal and theoretical understanding we have about those systems. In fact, designing embedded systems
is a very difficult task since several different domain specific techniques must be combined together.
Software engineering and concurrency theory techniques as well as real-time scheduling need to meet
signal processing and control theory to accommodate the needs of embedded systems. The increasingly
sophistication of the products, the large number of modes of operation as well as interactivity and dynamic
reconfigurability render impossible for single engineer to completely design an embedded system. These

1



2 1. INTRODUCTION

difficulties call for a formal approach. In this spirit we regard Hybrid Systems as a formal model for
embedded systems since it allows to specify both the continuous (world) dynamics as well as the discrete

(computational) dynamics.

The emerging complexity of embedded systems also raises a fundamental question that we partially ad-
dress in this work: how to ensure that embedded systems satisfy their specifications? The high complexity
of these systems as well as the different scientific techniques used in their design makes almost impossible
to formally prove that the system satisfies desired properties. Two approaches to this question seem spe-
cially promising: one is to satisfy the specifications by construction so that it is not required to prove that
the final system meets its requirements. The other is to prove the desired properties by taking advantage
of the structure of large-scale complex embedded systems. In any case, formal methods are necessary
to understand how the properties of subsystems are propagated or preserved by the interconnection and
synchronization of these subsystems. This clearly demands for formal notions of compositionality between
subsystems or submodules. It is also necessary to have formal notions of abstraction for complexity re-
duction of these systems. Abstractions allows macro modeling by ignoring modeling details that are
unimportant at a desired level of abstraction. When an engineer is developing a particular module he
only needs to take into consideration the behavior of the general system that influences or is influenced
by the specific module under development. He would therefore consider only two systems: the module
to be designed and an abstraction of the remaining system that hides irrelevant details. The concepts of

abstraction and compositionality will be recurrent themes through this thesis.

1. Hierarchies of Compositional Abstractions

It has been recognized and widely accepted that hierarchies are a very useful way of dealing with the
complexity of large scale systems. Examples of the use of hierarchies are commonly spread throughout
systems engineering. However, its use in real applications, and sometimes even in the academic world
has not been followed by an effort to formalize and to understand the modeling power and expressiveness
or the analysis and synthesis advantages/drawbacks when compared with single-layered models. Except
for the theoretical computer science community which has already developed very mature notions of
abstraction and composition, in particular, in the areas of concurrency theory [52] [89], and computer
aided verification [48], no such effort was ever made in the control community. This effort, by the
computer scientists, has resulted in formal and very meaningful notions of abstraction which are used
to tackle exponential explosion of purely discrete systems. Given a discrete system, an abstraction can
be seen as a quotient system that preserves some properties of interest while ignoring modeling details.
Language equivalence, simulation, and bisimulation are established notions of abstraction for discrete

systems that preserve properties expressed in various temporal logics.
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We believe, however, that these ideas, notions and concepts are so general and useful that it is very
worth it to transpose them to the continuous as well to the hybrid world. From the continuous side this
line of research initiated in [62] and has resulted in automatic constructions of abstractions for linear
control systems, nonlinear control systems [63, 64] and Hamiltonian control systems [77] while preserving
control theoretic properties. Preliminary investigations trying to combine the continuous with the discrete
results were presented in [77], however, we take a different and more general approach in this thesis that
comprise those results as a special case. Other approaches to this problem in the hybrid case are described

in [4, 15, 18, 69).

The approach taken in this work regards discrete, continuous and hybrid systems as particular examples
of a more general notion of abstract control systems. It is within this class of systems that the notions of
simulation, bisimulation and abstraction will be formulated. We identify the structure of abstract control
systems and restrict the class of maps between them to those that respect that structure. This is elegantly
presented by making use of some elementary notions of category theory. We therefore define the category
of abstract control systems which will serve as the domain of mathematical discourse for our study. An
abstraction of a given abstract control system will simply be another abstract control system such that
there is a structure preserving (morphism) surjective map from the original system to the abstraction.
This quotienting or aggregation map defines what is ignored and what remains from the original model.
All the properties that will be preserved from the original system to the abstraction or reflected from the
abstraction to the original system will depend critically on the structure that is preserved by the map
relating both systems. We determine which further assumptions on the abstracting maps are required to

preserve hybrid systems relevant properties.

Structure preserving maps are closed under composition and this property allows to build an hierarchy
of different levels of abstraction. If one starts with system A, one can extract an abstraction B and then
further abstract C' from B. By composing the aggregation maps we ensure that C' is still an abstraction
from the original system, as displayed in Figure 1. By this process we can formalize an hierarchy with any
finite number of levels and provide a conceptual basis for a hierarchical approach to proof, verification
or design methodologies for large-scale systems. Suppose we want to prove that property P is true for
system A. If the maps between system A and its abstractions are such that all the models are equivalent
with respect to that property, then determining if the property holds for A is equivalent to determining
if the property holds for C', which has lower complexity.

Another related concept that is extremely useful in dealing with the complexity of large scale systems
is compositionality. Common large-scale systems are built by interconnecting smaller subsystems. This
should be considered as structure for those particular systems that should be exploited to further reduce
the complexity of analysis and/or design tasks. We introduce a formal notion of parallel composition

with synchronization, modeling this aspect of large-scale systems, and show how we can use it to simplify
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System C System C
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System B nog¢
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System A System A

FIGURE 1. A hierarchy of abstractions of system A.

the task of computing abstractions. Indeed, we show that abstractions are compatible with parallel
composition in the sense that if system A is in fact built by interconnecting subsystems Ay, As and As,
then we can abstract each A; to B;, individually. Compatibility now means that the system obtained by
interconnecting the subsystems B;, By and Bj is an abstraction of system A as displayed in Figure 2.
Clearly the task of abstracting each subsystem will be easier to accomplish then abstracting the whole

system A, specially for large-scale systems.

—> —>
System B = Ble B26 B,
n neo|n2 |13
—> —>
System A = A16 A26 A,

F1GURE 2. Abstraction of system A as a whole and subsystem by subsystem.

These ideas will be discussed in grater detail in the next section where we summarize the thesis chapters.
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2. Thesis outline

This thesis is divided into 6 chapters covering some aspects of continuous abstractions, hybrid abstractions

and multi-agent systems.

2.1. Mathematical Background. In this chapter we review some miscellaneous mathematical
facts required through the thesis. We introduce some elementary notions of category theory which
will provide the formal setup for our study of compositional abstractions. Some ideas from theoretical
computer science provide the necessary background for the discrete part of hybrid systems while the
continuous part requires some notions of differential geometry and differential geometric control theory

which are also presented in this section.

2.2. A Walk Through the Continuous World. With the goal of developing a general theory of
abstractions for hybrid control systems comprising the already existing theory for discrete systems and
the recent developed theory for continuous system, we faced the need to extend the existing continuous
results. Actually, we wanted to define a parallel composition operator with synchronization for hybrid
systems that would have as a special case the existing results for composition of transition systems with
event synchronization. It so happens that, in our interpretation, the events correspond to the inputs of
a control system and the existing results for continuous abstractions did explicitly model the inputs. We
have thus extended the continuous abstraction theory from the state space manifold to the corresponding
control bundle. In this chapter we present a notion of simulation explicitly modeling the inputs that
is equivalent to the existing one, and characterize the geometry of the control bundle of a simulation
induced by an equivalence relation on the base space of the original control system. We were strongly
influenced by some ideas of category theory and handled the problem in a categorical way. This turned
out to be useful in various ways since we gained a much deeper insight into the structure of continuous
control systems. But, perhaps even more important, is the fact that we were able to distinguish which
properties of continuous control systems where intrinsic and which depended on the additional structure
we assumed (smoothness). With these insights, provided by the categorical approach, we developed a
similar theory for hybrid control systems in the next chapter. It was also extremely rewarding the fact
that a large number on interesting problems and research directions were also unveiled in this walk trough

the continuous world.

This chapter aimed at a conceptual and formal understanding of the structure of a hierarchy of control
bundles induced by an hierarchy of abstractions. We have also exposed the structure of the maps relating
the inputs of a control system to the inputs of its abstraction. Although the results enable the development
of a hierarchical control theory for continuous systems it was never the purpose to proceed towards results

directly useful to the practitioner. In fact, the scarce examples and the language of category theory may
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repeal some readers although we have only used some elementary facts from control theory and differential
geometry in our approach. To overcome these difficulties we made Chapter 4 independent of Chapter 3,

except for some references that can safely be ignored without risking the comprehension of that chapter.

2.3. Hybrid Control Systems. This chapter of the thesis contains the major contributions. A
completely abstract and general theory of control systems is presented. In this general framework,
strongly influenced by simple categorical ideas, we defined and proved all the relevant concepts and
results that we later specified to hybrid control systems. On the first part of this chapter we provide
a general notion of control system encompassing discrete, continuous and hybrid control systems. We
introduce a notion of abstraction and determine some preserved properties. This notion of abstraction
also defines an equivalence relation on the class of control systems if we render it symmetric since it was
already transitive and reflexive. We give conditions for equivalence which are, in principle, easier to check
than the definition and move towards compositionality. We define a composition operator that models a
system built by the interconnection and synchronization of two (or any finite number of) subsystems. We
also show that our operator is compatible with the introduced notion of abstraction. On the second part
of the chapter all of these results are instantiated for the hybrid case and some sufficient results (which
are easier to check then the sufficient and necessary ones) are also given. We also provide a very brief
treatment of the additional assumptions required for abstractions to preserve a purely hybrid phenomena:
Zeno sequences. It is fair to say that most of the work in this chapter was strongly influenced by computer
science ideas specially in the fields of concurrency and computer aided verification and that we followed
closely [89] in our developments. We have, however, taken a control theory twist in the interpretation of

some of the concepts and results.

Although we provide the standard definition of hybrid control systems, the hybrid automaton, we pre-
ferred to work in the abstract setting introduced in the first part of the chapter. However, when spe-
cializing the developed results for hybrid control systems, we returned to the notation and concepts of
the hybrid automaton to make the developed results accessible to a wider audience. As in the second
chapter, the abstract formulation of the addressed problems and the language of category theory may not
please all of the readers, specially those from the control community where computer science ideas and
categorical language are rather new. We feel, however, that it is a risk worth taking as the technologi-
cal advances are pushing the limits of our knowledge further and further with increasingly complicated
problems. This can only be matched by an effort from the control community to use more sophisticated
and diverse mathematical tools to address these new problems. In this sense, this work represents a step

towards this new interdisciplinary vision of the new systems and control theory.

2.4. Formations and Abstractions of Multi-Agent Systems. This chapter collects some re-

sults on formations of multi-agent systems as an illustrative example of some of the concepts introduced
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in Chapter 4. Since the word agent may have different meaning according to the scientific community
where it is employed it matters to stress that we mean by multi-agent systems, systems composed by
several control systems that usually require some form of communication, coordination or cooperation to
achieve the desired specifications. In this regard we introduce a formal model for formations allowing the
study of the feasibility problem: Given a set of agents, their kinematics, a set of inter-agent constraints
defining the formation, determine if there are trajectories for the individual agents satisfying all the con-
straints. This problem is solved and the computations necessary to determine the answer to this question
lead also to the solution of the group abstraction problem: Given a feasible formation, extract a smaller
control system, the group abstraction, representing the formation as a whole. This new control system
that we call the formation or group abstraction has smaller complexity than the original control systems

and also ensures that all its trajectories satisfy the formation constraints.

The group abstraction introduced in this chapter is in fact an instantiation of the notion of parallel
composition with synchronization that was introduced for abstract control systems in Chapter 4. In
particular, the group abstraction is no more then the parallel composition of the individual agents with

synchronization over the formation constraints.

This work on formation was conceived in order to be accessible to wide audience comprising the robotics,
control and aerospace communities. In this sense we have deliberately emphasized the readability over
the mathematical sophistication. We have, therefore, preferred to talk about pointwise solving equations
of the form Ax = b on manifolds than to talk about exterior differential systems with independence

conditions.

2.5. Conclusions. In the last chapter we review the contributions of this thesis, present the overall

conclusions as well as several important topics for further research.



1. INTRODUCTION



CHAPTER 2

Mathematical Background

In this section we review the basic mathematical concepts required for the presentation of the ideas in

this work.

1. Miscellaneous

We start by reviewing some miscellaneous mathematical facts to set notation. If A is a set, we denote
the set of all subsets of A, also called the power set of A, by P(A). Let f : A — B be a map, if S is a
subset of A we denote by f(S) the subset of B defined by:

(2.1) )= £

seS
When f is a linear map between modules or vector spaces we denote the range of f by R(f) = f(A). We
also use the set notation f~1(b) to refer to all the points a € A such that f(a) = b and if S is a subset of
B we denote by f~1(S) the set:

(2.2) &= r'e

seS

1.1. Relations. A relation is a generalization of a function in the sense that it assigns to each
element in its domain a set of elements in its codomain. Mathematically a relation R between the sets

S1 and Sy is simply a subset of their Cartesian product, that is:

(23) R g Sl X SQ

The domain of a relation is the set:
(2.4) dom(R) ={s;1 € S1 : Js2 €Sy (s1,82) € R}
and the range of a relation is defined by:

(2.5) range(R) = {sy € Sy : Js1 € S1 (s1,82) € R}

A relation is said surjective if range(R) = Ss. Given two relations R C Sy X Ss and R’ C Sy X S3 we can

define their composition to be the relation R’ o R C S; X S3 defined by:

(26) RIOR:{(Sl,Sg) €S, x8S3 : dsy €8, (81,82) ER/\(SQ,Sg) ER/}
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Given a relation R C S; x Sy we denote its inverse relation as R~! C Sy x S1, given by:
(27) R_l = {(82,81) €Sy xSy : (81,82) S R}

An object that we will use frequently is the set valued map R : S; — P(S2) induced by a relation R and
defined by:

(28) R(Sl) = {82 €Sy : (81,82) S R}

Given a map f : S; — Ss it induces the relation R = {(s1,$2) € S1 X Sa : s2 = f(s1)}. Conversely,
every relation R C Sy x Sy with domain dom(R) = S; and such that R(s;) is a singleton for every s; € Sy
defines a map f: S1 — Sa, by f(s1) = R(s1).

We also introduce some notation for later use. Given relations R C S; X Sy, Ry C S3 x S; and a subset

L C Sy x S3 we define the new relations Rjx2 and Ryxo|r, as:

(29) Riyxs = {((81,83), (82,84)) S (Sl X 53) X (SQ X 54) : (81,82) €ER A (83,84) € RQ}

(210) R1><2|L = {((81,83),(82,84)) € Riyxo (81,83) € L}

The Cartesian product S; x Sy comes equipped with two projection maps wg, : S; x So — S1 and
s, o S1 X S9 — So. If we now choose a subset R of the product such that g, (R) = S; we can regard
this subset R as a (set theoretic) fiber bundle over the base space S; and we call R a fibering relation.
The fiber over s € Si, denoted by Rs = 7r§11(s) is given by all the elements r € R such that g, (r) = s.

We also denote an element r = (a,b) € R by b, when we whish to emphasize the fiber part of r.

1.2. Monoids. A monoid is a triple (M, -, ) where M is a set closed under the associative operation
M x M — M and ¢ is a special element of M called identity. This element satisfiese-m =m-e =m
for any m € M. We will usually denote my - msy simply by mim- and refer to the monoid simply as M.
Given two elements m; and ms from M we say that m; is a prefix of ms iff there exists another m € M
such that mym = my. Suppose now that we have a fibering relation R C S x M with base space S. If

75" (s) contains (s,e) and is prefix closed for every s € S then we call R a fibering monoid.

We now relate relations with fiber bundles and monoids. Suppose that the sets S; and Sy are in fact
fiber bundles. Then a relation R C S; x Sy induces a relation Rg C B; X By on the base spaces By and
B, of S1 and S, respectively, defined by:

(211) (bl,bg) € Rp iff (bl,bg) = (71'51 (81),71'52 (82)) and (81,82) €ER

If the fiber bundles have a richer structure such as fibering monoids we need the relation to respect that
structure. We then say that a relation R C S; x Sy between two fibering monoids is fibering monoid

respecting iff satisfies:

e Identity: (b1,bs) € Rp = ((b1,¢),(b2,€)) € R
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e Semi-group: ((bhml)a (b2am2))7 (( Ilamll)/( l27ml2)) € R and (bl,m1mll) €S

= ((blamlmll)v (anQOé)) € R.

2. Category Theory

In this work we will not have the opportunity to fully take advantage of the doors opened by category
theory, but we will rather make an elementary use of it. We point the reader to [43] for further details
as well to [44] and [5] (by this order) for a sequence of books that provide the necessary “maturity”
for [43]. Informally speaking, a category is a universe of mathematical discourse and is perhaps better
described by examples. If one is interested in group theory one would certainly work in the universe of
groups and group homomorphism, whereas if one is learning elementary topology the natural universe
are topological spaces and continuous maps between then. In linear algebra one deals with vector spaces
and linear maps, in differential geometry with smooth manifolds and smooth maps between then, etc.

This idea of universe of mathematical discourse can be formally defined as follows:

DEFINITION 2.1 (Category). A category is a tuple (O, hom,id, o) consisting of:

A class of objects O.

For each pair of objects (A, B) belonging to O, a set hom(A, B). The elements of hom(A, B)
are called morphisms from A to B. An element of this set f € hom(A, B) is usually denoted
graphically as A 7 B.

For each object A € O a special morphism A s A, called the identity on A.

A binary operation which maps a pair of morphisms (A4 N B,B % C) to the composite!
A2 0 while satisfying:

— Associativity: ho(go f) = (hog) o f whenever the composition is defined.

— Identity: for a morphism A 1, B we have idpof=f=foida.

— The sets hom(A, B) are pairwise disjoint.

In the above examples the objects are the groups, topological spaces, etc, while the arrows are the group
homomorphisms, continuous maps, etc, between them. As morphisms are displayed graphically, more
elaborate relations between morphisms are usually displayed in commutative diagrams. We shall say that

a diagram commutes iff the composition of morphisms in any path from one object to another object is

INote that composition of f and g is only defined if the target of f equals the source of g.
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the same. Consider for example the following diagram

a1

B

(2.12) o D

where commutativity simply means that the two existing paths from A to D are equal, that is go f = joh.

We will almost only use concrete categories where all the objects can be seen as sets with added struc-
ture and the morphisms are maps between the sets that preserve the structure. This is easily seen for
topological spaces which are sets with the added collection of open sets as structure or manifolds which

are sets equipped with a maximal atlas.

We shall make some use of the following objects:

DEFINITION 2.2 (Product). Let A and B be objects in a category. The product of A and B is the triple
(C,ma,mg) such that for any other triple (C', 7'y, 7%;) there exists one and only one morphism 1 making

the following diagram commutative:

(2.13)

Note that the product captures the relevant notion of product with respect to the corresponding category.
The product on the category of sets and maps between them is the usual Cartesian product, while in the
category of groups is the direct product, in the category of topological spaces is the Cartesian product

of the supports equipped with the product topology, etc.

Another object that we will use to capture the notion of embedding a system into a larger system is the

equalizer:

DEFINITION 2.3 (Equalizer). Let g and h be morphisms in a category. The equalizer of g and h is the
morphism f satisfying g o f = h o f and such that for any other morphism f’ satisfying go f' = ho f’

there is one and only one morphism f such that the following diagram commutes:

f 59

A c
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The notion of co-equalizer, dual to the notion of equalizer, will also play an important role since co-
equalizers can be regarded as the categorical formalization of the continuous abstraction process described

in Chapter 3:

DEFINITION 2.4 (co-Equalizer). Let g and h be morphisms in a category. The co-equalizer of g and h is
the morphism f satisfying fog = f oh and such that for any other morphism f’ satisfying f'og = f'oh
there is one and only one morphism f such that the following diagram commutes:

9 B?f>

A c

f! f
C/

Another relevant concept is that of free object, we now provide a particular version of the concept that

is enough for our needs:

DEFINITION 2.5 (Free Object). Let A be an object in a category, S a set and i : S — A the inclusion
map taking s € S to i(s) = s € A. We say that A is free on the set S or that A is freely generated by
S iff for every map i’ from S to A’ there exists one and only one morphism 7 such that the following

diagram commutes:

The elements of S are also usually called the generators of A. We then see that in order to specify a
morphism from a freely generated object to another object it suffices to define the morphism on the
generators since it extends in a unique way to a morphism defined on its domain. This is something well
known, for example, in the category of vector spaces. To define a linear map between vector spaces it
suffices to define it on the basis of that space since it extends in a unique way to all the elements of the

vector space by linearity.

3. Labeled Transition Systems

As already stated in the introduction several ideas from theoretical computer science play a crucial role

in hybrid systems theory and also on this thesis. We now recall the concept of labeled transition systems:

DEFINITION 2.6 (Labeled Transition Systems). A labeled transition system is a triple (@, X, —) where
Q is a set of states, ¥ is a set of labels or events and —C @ X ¥ x @ is a (transition) relation. If

furthermore () and X are finite we have a discrete labeled transition system.
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Although this notion has its roots in theoretical computer science and digital systems [29] we shall
interpret it in a control theoretic way which even differs from the discrete event systems community [70,

71, 16]:

The set () is our model for the “state-space”, X is a set of labels associated with the choices and the relation
— determines how the choices govern the evolution. An element (g1,0,q2) €— is usually represented
graphically as ¢, — ¢» and is interpreted as the choice o effectuated at state ¢, has the effect of making
the system evolve to the new state ¢». Note that by using a relation to model the evolutions we allow
nondeterminism in the sense that both triples (g1, 0,q2) and (g1, 0, g3) may belong to —, for example.
However in this work we will make the assumption that all the systems are deterministic so that we can

replace the relation — with the partially defined next-state map 6 : Q x ¥ — Q.

DEFINITION 2.7 (Input Trajectories). Given a discrete transition system (@, X, —) and a state go € @,
an input trajectory (also called a sequence, string or trace) starting at go is a finite sequence of labels

0105 ...0;...0, such that go =5 q1, @1 —> q3, ... and gn_1 — ¢y, for some ¢; € Q,i=1,...,n.

Although the emphasis on discrete control systems in on the input trajectories that can be feed (or that
are accepted by) to the transition system, for continuous control systems the emphasis is on the sequence
of states that are visited by some choice of inputs. In fact, we regard the labels ¢ € ¥ as inputs that we
can control to influence the evolution described by ¢, where as in the computer science community events

are triggered by some external element that is beyond our control.

4. Differential Geometry

We now review the necessary concepts from differential geometry following more or less closely [1] and [12].

In this work we understand by a smooth manifold an Hausdorff, second countable differentiable manifold.
Let M be a smooth manifold and T, M its tangent space at x € M. The tangent bundle of M is denoted
by TM = UyepT, M and mps is the canonical projection map wy : TM — M taking a tangent vector
X(z) € T,M C TM to the base point z € M. We recall that T, M has a vector space structure over
the real field. Dually we define the cotangent bundle to be T*M = UyenT; M, where T M is the linear
space of all linear maps from 7, M to the real field. The cotangent bundle also comes equipped with a
natural projection map from T*M to M. Both TM and T*M can be endowed with the structure of a
module over the ring of smooth real functions on M. Now let M and N be smooth manifolds and ¢ : M
— N a smooth map, we denote by Ty ¢ : Tu M — Ty(,)N the induced tangent map which maps tangent
vectors from T, M to tangent vectors at Ty(,) V. If ¢ is such that T, ¢ is surjective at * € M we say that
¢ is a submersion at z. When ¢ is a submersion at every z € M we simply say that it is a submersion.
When ¢ has an inverse which is also smooth we call ¢ a diffeomorphism. We say that a manifold M is

diffeomorphic to a manifold N, denoted by M = N, when there is a diffeomorphism between M and N.
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When this is the case we can define the pullback of a vector field Y € TN, denoted by ¢*Y’, as the vector
field X € TM given by X (2) = Ty(,)¢~ 'Y (¢(x)).

To later describe control systems we will need the concept of fiber bundle:

DEFINITION 2.8 (Fiber Bundle). A fiber bundle is a tuple (B, M, np,F,{O;}ic1), where B, M and F
are smooth manifolds called the total space, the base space and standard fiber respectively. The map
mp : B — M is a surjective submersion and {O;};er is an open cover of M such that for every i € I there

exists a diffeomorphism ¥; : 7r1§1(0i) — O; x F making the following diagram commutative:

75 (0:) ¥ O; x F

T™B To,

i

(2.14) 0;

that is, satisfying m,, o ¥; = mp, where 7,, is the projection from O; x F to O;. The submanifold wgl(:c)

is called the fiber at z € M and is diffeomorphic to F.

We will usually denote a fiber bundle simply by 7 : B — M. The morphisms in the category that has as

objects fiber bundles are called fiber preserving maps:

DEFINITION 2.9 (Fiber Preserving Maps). Given a smooth map ¢ : By — By between two fiber bundles

we say that ¢ is a fiber preserving map iff for any a,b € By:

(215) TB; (a) =TB (b) = TR, © @(a) = TBy © @(b)

Note that a map ¢ : By — Bs being fiber preserving implies and is implied by the existence of a map

¢ : My — M, making the following diagram commutative:

B —%—+ B,
7'('B1 7'('B2
(2.16) M, 3 M,

Given fiber bundles B; and By we will say that By is a subbundle of Bs if the inclusion map ¢ : By < B»

is fiber preserving.
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Given a map h : M — N defined on the base space of a fiber bundle we denote its extension to all of the

bundle B by h€, defined by the following commutative diagram:
B

T™B he

(2.17) o

5 N

that is h® = h o mg. We now consider the extension of a map H : B — T'M to a vector field in B. We

will define local and global extensions of H. Globally, we define H® as the set of all vector fields X € TB

such that:
TB
X Trg
(2.18) B TM

H

commutes, that is Trg(X) = H. When working locally, one can be more specific and select a distin-
guished element of H¢, denoted by H', which satisfies in trivializing coordinates Trx(H') = 0, where
wx is the projection from O; x F to F. Using trivializing coordinates (z,b) this simply means that
H!' = Ha% + 0%. A vector field Y : M — TM on the base space M of a fiber bundle can also be
extended to a vector field on the whole bundle. It suffices to compose Y with the projection 7 : B
— M and recover the previous situation since Y o 7p is a map from B to T M. Given a distribution D
on M we denote by D¢ the extension of D defined as:
(2.19) p= [ Xx°

XeD
Note that the previous definitions imply the equality Ker(Tht) = (Ker(Th))¢ since Ker(Th¢) =
Ker(T'(horp)) = Ker(ThoTng)={Y € TB : Tnp(Y) € Ker(Th)} = (Ker(Th))®.

We recall that a distribution is a smooth assignment of a subbundle of the tangent bundle, that is, at
each point © € M a distribution A assigns a linear subspace of T, M. Given vector fields X, Xs,..., X,
such that Span{Xi(z), Xa(z),...,Xn(z)} = A(z) for every & € M we abuse notation and identify A
with the set of vector fields {X;, Xs,...,X,}. On the cotangent bundle we have similar objects, namely
codistributions. A codistribution assigns in a smooth way a subspace of T>M at each z € M. Also in
this case we identify a distribution w with the set of covector fields or one-forms {a!,a?,...,a"} when
Span{al,a?,...,a"} = w, for every z € M. Given a distribution A there is a unique annihilating

codistribution w defining A. This codistribution is defined as:

(2.20) w={aeTM | a(X)=0 VXe€A}
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Conversely, a codistribution w defines a unique distribution Ker(w) given by the set of all vector fields
X € TM such that w(X) = 0. If a codistribution w defines a distribution A by annihilation we have that
A = Ker(w).

Consider for example a unicycle type robot. If we model its state space by the manifold M = R? x S,
denoting a point in M by (z,y,6) where z and y represent the position of the robot and 6 its orientation

we can define its kinematics by a distribution. Consider the following basis for TM:

0 cos 6 —sinf
(2.21) Xi=|0| Xo=|sinf| Xz=| cosf
1 0 0

With respect to this basis the kinematics is described by the distribution:

(2.22) A = Xjup + Xous

where u; € R and us € R are control inputs. Equivalently the kinematics is given by the codistribution:
(2.23) w = —sinfdx + cosfdy

since any vector field X € TM such that w(X) = 0 is of the form (2.22).

Given distributions Ay on M; and As on Ms we denote their direct sum A; & A, as the fiber bundle

defined pointwise by:
(224) (A1 &) A2)($1,$2) = Tll(A1($1)) &) TZQ(A2($2))

where i1 : My — M; x Ms and iy : My — M; x M, are the canonical injections. Note that the direct

sum on the right side of (2.24) is performed on the vector space T(,, 4,) (M1 x Ma).

5. Control Theory

We regard control systems as dynamical systems where choices influencing the evolution can be made
during the evolution. Another interesting and useful interpretation of control systems are families of
dynamical systems (or their trajectories if one adopts a behavioral point of view [66]) parameterized by
one or more controls. By changing the controls we are changing the dynamical system, and therefore the

trajectories or solutions.

Continuous control systems are usually described by differential equations on some manifold M with
the choices parameterized by one or more control inputs influencing directly the differential equations.

Consider, for example, the simplest mechanical system: a point mass on a line without any potential. If
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we denote by x the position and by v the velocity we can describe the equations of motion as:

(2.25) i = v

However if we have a mean of exerting a force F' on that point mass the equations of motion would change

to:

(2.26) i = v

which can be regarded as a family of differential equations parameterized by F. Changing the value of

F will change the solutions of the differential equation.

Resorting to the concepts introduced in Subsection 4 we introduce the notion of control section that is

closely related with control systems and which will be fundamental in our study of continuous abstractions:

DEFINITION 2.10 (Control Section). Given a smooth manifold M, a control section on M is a subbundle

TSy S — M of TM.

We denote by Sps(z) the set of vectors X € T, M such that X € 71'51‘14 (). When we impose more structure
on Spr we recover more familiar objects, such as if to each x € M we assign a linear subspace of T, M,
then Sy will be a distribution on M, if on the other hand, we assign an affine subspace then Sy; will
be an affine distribution. When Sj; is an affine distribution we may need to refer to the associated

distribution denoted by A and defined pointwise by:

(2.27) Alz)=8(x)-Sx)={XeT,M : X=Y —ZforsomeY,Z € S(x)}

Since the early days of control theory it was clear that in order to give a global definition of control systems
the notion of input could not be decoupled from the notion of state [13, 88]. The natural mathematical

object to consider are fiber bundles:

DEFINITION 2.11 (Control System). A control system Xas = (Uar, Far) consists of a fiber bundle 7y, : Upy — M

called the control bundle and a smooth map Fis : Upr — T M making the following diagram commutative:

Fy

Unm TM™

TUM M

(2.28) M
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that is, mps 0 Fiar = 7y, , where mpy : TM — M is the tangent bundle projection. Given a control system

Yy = (Um, Far), the control section Spy € T'M of control system X7, is naturally defined pointwise by:
(2.29) Su(x) = Fu(my,, (x))

for all z € M.

The control space Uys is modeled as a fiber bundle since in general the control inputs available may
depend on the current state of the system. In local coordinates, Definition 2.11 reduces to the familiar
expression & = f(z,u) with u € 71'{]]\1/1 (z). The notion of control section allows us to refer in a concise way
to the set of all vectors that belong to the image of Fi; by saying that X € T, M belongs to Sy (z) iff

there exists a u € Uy such that mp(u) = ¢ and F(u) = X.

We shall call a control system, control affine iff there exists coordinates around each x € M such that

Fy can be written as:

n
(2.30) Fuy = f(z) + ) gi(z)vs
i=1
where f(z), g1(x), g2(x), ..., gn(z) are (locally defined) vector fields and vy, vs, ..., v, are control inputs,

that is, coordinates for the fiber above z. We also call vector field f(z) the drift and call an affine control
system drift-free when f(z) = 0. We shall use the expression full nonlinear control system to refer to a

nonlinear control system that is not control affine.

Note that the structure of the control section depends on the structure of the control system. For control
affine systems we have affine distributions as control sections, if there is no drift we recover distributions

as control sections, however, in general, we will have to consider arbitrary control sections on M.

Returning to the example of the point mass moving on the line we see that the state space manifold M is
R? and the fiber bundle Uy, is in fact the trivial bundle Uy; = R? x R. This control system is an example

of a control affine system as can be seen by the expression of Fs in coordinates:
o,

(231) FM = f(I,U) + 91($,U)’U1 = [ J + [ V1
v OJ

where v1 = F' € R is the control input.

A control system can alternatively be defined by a control section Sy on M in the sense that at each point
x € M, Sy () defines all the possible directions along which we can flow or steer our system. Since we will
need to work with such control systems in Chapter 3 in a categorical framework we introduce them already
using categorical language. Given a control section Sys there can be several control parameterizations for
Sy and it matters to understand in what sense all those parameterizations represent the same control

system. This will be accomplished by giving a categorical definition of control parameterization.
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DEFINITION 2.12 (Control Parameterization). Let Sps be control section on M, g : TM — N and
h:TM — N two smooth maps such that Syy = {X € TM : g(X) = h(X)}. A control parameterization
for Spr is a control system (Uas, Fir) such that g o Fjy = h o Fpy and for any other control system
(Uls, Fhy) such that go F}, = ho F}, there exists one and only one fiber-preserving map Fi; making the

following diagram commutative:

Uy =M TM N
Fu Fy
(2.32) Ul

Since the control parameterization was defined through an universal property, any two control parame-
terizations are isomorphic. It is in this sense that we do not need to distinguish between control systems
with the same control section. They are the same control system, up to a change of control coordinates.
This will be important when considering the effect of feedback since this change of control coordinates can
be regarded as feedback. It is also important to mention that a control parameterization is an equalizer

in the category of smooth manifolds.

Having defined control systems the concept of trajectories or solutions of a control system is naturally

expressed as:

DEFINITION 2.13 (Trajectories of Control Systems). A curve ¢ : I — M, I C R is called a trajectory

of control system X = (Unr, Fiar), if there exists a curve ¢V : I — Uy making the following diagrams

commutative:
UM UM
U MUy U Fu
2.33
(2.33) I——M I——~TM

where we have identified I with T'1.

The above commutative diagrams are equivalent to the following equalities:

iy oc! = ¢

Te = FM(CU)

which mean in local coordinates that z(t) is a trajectory of a control system if there exists an input u(t)

such that z(t) satisfies #(t) = f(x(¢),u(t)) and u(t) € 77{];4 (z(t)) for all t € I.



CHAPTER 3

A Walk Through the Continuous World

1. Introduction

In the abstracting methodology proposed in [63, 64] it was implicit that certain states might become
inputs on the abstracted model. It is perhaps surprising that this abstracting methodology interchanges
the role of state and input. However, this fact is the crucial factor that perspectivates a hierarchical
control theory. A control design performed on a abstracted model is a control law associated with certain
inputs, but these are in fact states of a more detailed model. We can therefore regard a control design as a
specification for the evolution certain state variables on the more detailed model. In a hierarchical design
paradigm those specifications would then be refined to obtain a control law that could again be regarded
as a specification for a even more detailed model. A complete and thorough understanding of how the
states and inputs propagate from models to their abstractions will enable such a hierarchical design
scheme. The purpose of this chapter is to give the first steps in this direction. We address the problem
of describing the relation between states and inputs of different levels of abstraction. To accomplish this
goal we will study quotients of control systems since they capture the notion of abstraction introduced

in [63, 64].

We will build on several accumulated results of different authors that in one way or another have made
contributions to this problem. One of the first approaches was given in [40] where the analysis of the Lie
algebra of a control system lead to a decomposition into smaller systems. In [72], Lie algebraic conditions
are formulated for the parallel and cascade decomposition of nonlinear control systems while the feedback
version of the same problem was addressed in [56]. A different approach was based on reduction of
mechanical systems by symmetries. In [83], symmetries were introduced for mechanical control systems,
and further developed in [25] for general control systems. The existence of such symmetries was then used
to decompose control systems as the interconnection of lower dimensionality subsystems. The notion of
symmetry was further generalized in [57], where it was shown that the existence of symmetries implies that
a certain distribution associated with the symmetries was controlled invariant. This related the notion of
symmetry with the notion of controlled invariance for nonlinear systems. Controlled invariance [55, 32]
was also used to decompose systems into smaller components. A different approach was taken in [50]
where it was shown how to study controllability of systems evolving on principle fiber bundles through

their projection on the base space. More recently, a modular approach to the modeling of mechanical

21
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systems has been proposed in [84], by studying how the interconnection of Hamiltonian control systems

Y

can still be regarded as a Hamiltonian control system.

In several of the above approaches, some notion of quotienting is involved. When symmetries exist, one
of the blocks of the decompositions introduced in [25] is simply the original control system factored by
the action of a Lie group representing the symmetry. If a control system admits a controlled invariant
distribution, it is shown in [55, 32] that it has a simpler local representation. This simpler representation
can be obtained by factoring the original control system by the equivalence relation defined by considering
the leaves of the foliation induced by the controlled invariant distribution, equivalence classes. The notion
of abstraction introduced in [64] can also be seen as a quotient since the abstraction is a control system
on a smaller dimensional state space defined by an equivalence relation on the state space of the original
control system. These facts motivate fundamental questions such as existence and characterization of

quotient systems.

In this chapter, we take a new approach to the study of quotients by introducing the category of control
systems as the natural setting for such problems in systems theory. The use of category theory for
the study of problems in system theory also has a long history which can be traced back to the works
of Arbib (see [6] for an introduction). More recently several authors have also adopted a categorical
approach as in [45] where the category of affine control system is investigated. We mention also [74],

where a categorical approach has been used to provide a general theory of systems.

We define the category of control systems whose objects are fully (non-affine) nonlinear control systems,
and morphisms map trajectories between objects. The morphisms in this category extend the notion of
¢-related systems in [60]. In this categorical setting we formulate the notion of quotient control systems,
and show that under mild regularity assumptions on the state and control spaces, quotients always exist.
This should be contrasted with several other approaches which rely on the existence of symmetries or
controlled invariance to assert the existence of quotients. We also show that the construction proposed
in [64] computes quotients up to isomorphism. We introduce the notion of projectable control sections,
which will be a fundamental ingredient to characterize the structure of quotients. This notion is in fact
equivalent to controlled invariance, and this allows to regard quotients based on symmetries or controlled
invariance as a special type of quotients. General quotients, however, are not necessarily induced by
symmetries or controlled invariance and have the property that some of their inputs are related to states
of the original model. This fact, implicit in [64], is explicitly characterized in this paper by understanding,
how the state and input space of the quotient is related to the state and input space of the original control

system.
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2. Abstractions of Control Bundles

We start by reviewing the abstraction framework developed in [60, 64] and single out the fundamental
concepts that will support the desired extension towards control inputs. Then we present a categorical
formalization of abstractions based on the notion of simulation and show that abstractions at the level

of control bundles are equivalent to the abstraction theory in [63, 64].

2.1. ¢-related Control Systems. We recall the notion of ¢-related control systems which is the

main pillar of the abstraction theory:

DEFINITION 3.1 (¢-related Control Systems). Let X, and ¥ be two control systems defined on smooth
manifolds M and N, respectively. Given a smooth map ¢ : M — N we say that Xy is ¢-related to Xy
iff:

(3.1) T:¢(Sm(x)) C SN o ¢(z)

for every z € M.

In [60] it is shown that this notion, local in nature, is equivalent to a more intuitive and global relation

between Y, and Y.

PROPOSITION 3.2 ([63]). Let s and n be two control systems defined on smooth manifolds M and N,
respectively and let ¢ : M — N be a smooth map. Control system Xn is ¢-related to Xy iff for every
trajectory c(t) of Xar, ¢(c(t)) is a trajectory of L n.

Propagating trajectories from a system to another is clearly a desired property. If, in fact, system Xy
is lower dimensional than system Xjs, then we are clearly reducing the complexity (dimension) of X,;.
We can therefore regard ¥ as an abstraction on ¥, in the sense that some aspects of ¥, have been
collapsed or abstracted away, while others remain in ¥. This motivated a notion of abstraction [60]
based on trajectory propagation which defined an abstraction of a control system X,; as a ¢-related
control system Y.n by a surjective submersion ¢. However this process is described in terms of control
sections and the control inputs are not explicitly modeled although they can be implicitly recovered by

the algorithms proposed in [60, 64] to compute abstractions.

The idea of sending trajectories from one system to trajectories of another system has been used many
times in control theory to study equivalence of control systems. We mention for example linearization
by diffeomorphisms [39] or feedback linearization [14, 31, 34]. In these examples the maps ¢ relating the
control systems were in fact diffeomorphisms so that no aggregation or abstraction was involved. However
the concept of using other maps besides diffeomorphisms for control systems can be traced back to the
works of Arbib (see [6] for an introduction) where it is shown that (discrete time) control systems and

finite state automata are just different manifestations of the same phenomena.
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2.2. Constructing ¢-related Control Systems. We now recall the construction of ¢-related
control systems given in [64]. We shall restrict ourselves to a purely local treatment without explicit

further mention of this fact.

Given an affine control system Y5 = (Unr, Far) over a smooth manifold M and a smooth surjective
submersion ¢ : M — N, we want to build a new affine control system ¥ = (Un, Fy) over N that is
¢-related to Xp,. We start by realizing that if ¥, is an affine control system then the control section Sy
is an affine subspace of T'M so that it can be written as Sy; = X + Aps, where Xy is a vector field and
A a linear subspace of TM. We will denote by K the subbundle of TM given by K = Ker(T¢) and
note that it is an integrable subbundle in the Frobenius sense whose leaves correspond to points where
¢ is constant. We start by giving a characterization of affine subbundles invariant under a given vector

field.

PROPOSITION 3.3 (Invariance of Affine Subbundles [64]). Let A = X + A be an affine subbundle of TM
andY € TM a vector field. A is invariant under Y iff:

(3.2) [V, A C A

Based on the above proposition we can give a constructive procedure to compute invariant affine sub-

bundles:

DEFINITION 3.4. Let Syy = Xar + Ay be an affine control section on M. The K-invariant affine control

section canonically associated with Sy is given by:
(3.3) EM:XM-I-LMU[’C,LM]-I-[/C[’C,LM]]-I-...

with Lyy = KUApM U [’C,XM]

The control section Sy is canonical in the following sense:

PROPOSITION 3.5 ( [64]). The canonical K-invariant affine control section Sy canonically associated

with Sy is the smallest K-invariant affine control section that contains Syy.

Invariance under K allows to compute a control section on N as follows:

DEFINITION 3.6 (Canonical construction). Let X = (Unr, Fiar) be an affine control system on M with

control section:
(3.4) Su=Xu+An
and let ¢ : M — N be a surjective submersion. The affine control section on N defined by:

(3.5) Sn(y) = Top(Sm(z))
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for any = € ¢~ !(y) is said to be canonically ¢-related to Sy;. Any affine control system Yn = (Uy, Fy)

with control section Sy is said canonically ¢-related to ¥ .

Note that Sy is well defined since by K-invariance T, ¢(Sar(z1)) = Tod(Sar(z2)) for any z;, 25 € M such
that ¢(x1) = ¢(z2). The control section Sy on N defines therefore an abstraction of Sy so that any
control system ¥ with control section Sy is the desired abstraction. It is also important to mention that
in this process there is no explicit construction that allows to compute X from Sy. The characterization

of ¥, specially of Uy will be the topic of the remaining chapter.

2.3. From ¢-related Control Systems to Abstractions of Control Bundles. There are two
main motivations to work at the level of control bundles. The first one comes from concrete real problems
where often it is necessary to build a hierarchy of different models (abstractions) that would allow to
control the system with different levels of detail. A better understanding of how to transform control
inputs between different levels of abstraction would allow the design of control laws for the coarser
(abstracted) models and then refine then until obtaining control laws for the more detailed control

systems. The second reason comes from the following proposition whose proof we delay for now.

PROPOSITION 3.7. Let ¥y and XN be two control systems defined on smooth manifolds M and N,
respectively and let ¢ : M — N be a smooth map. Control system Xy is ¢-related to X iff there is a
fiber-preserving lift of ¢, denoted by ¢ : Upy — Un such that:

(3.6) Tup(Sm(z)°) C (SN o ¢(x))°

for every x € M and u € 7, (z).

The above proposition suggests that one should study control systems as dynamical or control systems
evolving on the control bundle rather on the base state space. To proceed towards this direction we
first introduce the category of control system, denoted by Con, which has as objects control systems
as described in Definition 2.11. The morphisms in this category extend the concept of ¢-related control
systems described by Definition 3.1. Since the notion of ¢-related control systems relates control sections
and these can be parameterized by controls, the lifted notion should relate sections as well as control

bundles.

DEFINITION 3.8 (Morphisms of Control Systems). Let X3 and X¥n be two control systems defined on

smooth manifolds M and N, respectively. A morphism f from s to X is a pair of maps f = (¢, @),
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¢ :Upy — Uy and ¢ : M — N such that both diagrams:

¥$ Y

Uy ——— Uy Uy ——Un
U TUx Fyr Fyn
(3.7) M N TM ————TN
¢ T
commute.

It will be important for later use to also define isomorphisms:

DEFINITION 3.9 (Isomorphisms of Control Systems). Let X3, and ¥y be two control systems defined
on smooth manifolds M and N, respectively. System X is isomorphic to system Xy iff there exist

morphisms f; from X to ¥n and fo from X x to X such that fi o fo = idy,, and fa o fi =idy, .

In this setting, feedback transformations can be seen as special isomorphisms. Consider an isomorphism
f = (p,¢) with ¢ : Uyy — Ups such that ¢ = idy. In local coordinates (z,u) adapted to the fibers,
where z represents the base coordinates (the state) and u the coordinates on the fibers (the inputs),
the isomorphism has a coordinate expression for ¢ of the form ¢ = (x, 8(z,u)). The fiber term S(z,u)
representing the new control inputs is interpreted as a feedback transformation since it depends on
the state at the current location as well as the former inputs u. We shall therefore refer to feedback

transformations as isomorphisms over the identity map since we have ¢ = id;.

The relation between the notions of ¢-related control systems (3.1) and Con morphisms (3.8) is of

equivalence as stated in the next proposition:

PROPOSITION 3.10. Let ¥ps and Xy be two control systems defined on M and N, respectively. Control

system X is ¢-related to Xps iff f = (p, ¢) is a Con morphism from Xy to Ly for a fiber preserving
lift ¢ of ¢.

PROOF. Definition 3.8 trivially implies Definition 3.1 so let us prove that Definition 3.1 implies
Definition 3.8. If Xy is ¢-related to Xps then by Definition 3.1, T,¢(Sa(z)) € Sy o ¢(z). But Sy is
parameterized by Uy, so we can regard the map T'¢po Fyy : Upy — Sy C T'N (see the diagram below) as
a parameterization of Sy and by definition of control parameterization there is a fiber preserving map u

such that the following diagram
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Um Un
Fy Fyn
T¢
TM ——TN
M TN
M N
¢

commutes. By taking ¢ = u, 77, = mar 0o Fyy and 7y, = iy o Fiv one recovers Definition 3.8 and the

equivalence is proved. O

We now see that if there is a morphism f = (i, ¢) from X s to X, then this morphism carries trajectories
of ¥/ to trajectories of X in virtue of Proposition 3.2. In this sense X is also called in the literature
a simulation of ¥, since any trajectory cps(t) of ¥ s can be simulated by a trajectory ey (t) = ¢ o cpr(t)

of ZN.

We are now in conditions of proving Proposition 3.7 which shows that Con morphisms also admit a

geometrical characterization at the level of control bundles:

PROPOSITION 3.7. Let Yp; and Xy be two control systems defined on smooth manifolds M and N,

respectively. There exist a Con morphism f = (¢, ) from Xy to Zn iff
(3.8) Tup(Sm(@)°) C (Sn o ¢(x))°

for every x € M and u € 7y, (x).

PROOF. Assume that Xj; is ¢-related to Xy and let cps () be a smooth trajectory of ¥, such that

ey (0) = z. By definition of trajectory there is a curve c4;(t) on Uy such that mps,, o ¢, = ey and

c%;(0) = u. By ¢-relatedness the curve cy = ¢(cpr) is a trajectory of Xy implying the existence of a
curve c§, in Uy such that 7y, o ¢}, = ecy. However ¥y being ¢-related to Xy implies that there is a
Con morphism f = (¢, ) from ¥ to Xy and we have p(c¥;) = c§. By time differentiation at ¢ = 0
we get T,p(X) =Y with X = £c§,(#)1=0 and Y = L ()|;=0 showing that for any X € Sp(z)® we

have Tyo(X) =Y € (Sy o ¢(x))¢ as desired.

Assume now that (3.6) holds. Then, control system defined by control section S§; is @-related to control
system defined by control section (Sy 0 $)¢ so that Proposition 3.2 ensures that for every trajectory ¥ (¢)

of 8§;, (e, (1)) = % (t) is a trajectory of (Sx o ¢)¢. Projecting the equality

(3.9) p(chi () = ek (1)
on the base space we get

(3.10) P(em(t)) = en(t)
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Time differentiation of (3.10) now gives:

T - Far(chy(t)) Fn (e (1)
(3.11) = Fnop(ch(t))

where the last equality holds by 3.9. We have thus shown that T'¢ - Fy = Fn o ¢ since the trajectories

¥, cover all of Uy,. m

The previous proposition tell us that by working at the level of control bundles we can recover more
familiar notions such as @-relatedness of vectors. Besides the clarification that can be gained at the
bundle level we will see at next section that we actually need to work at the bundle level when the
control sections do not posses enough structure. The previous result can also be related with the notion
of extended system described for example in [58]. Instead of considering all possible lifts of Sy to TU
as isolated vector fields one can regard that collection of lifts as a control system on Ujys. That control
system turns out to be the extended control system of ¥j,;. We will, however, not explore further this

link on this chapter.

3. Quotients of Control Systems

Given a control system Y, and an equivalence relation on the manifold M we can regard the quotient
control system as an abstraction since some modeling details propagate from X3, to the quotient while
other modeling details disappear in the factorization process. This fact motivates the study of quotient
control systems as they represent lower complexity (dimension) objects that can be used to verify proper-
ties of the original control system. Quotients are also important from a design perspective since a control
law for the quotient object can be regarded as a specification for the desired behavior of the original

control system. In this spirit we will address the following questions:

1. Existence: Given a control system X ,; defined on a manifold M and an equivalence relation
~nr on M when does there exist a control system on M/ ~ s, the quotient manifold, and a fiber
preserving lift py of the projection pys : M — M/ ~py such that (par, py) is a Con morphism?

2. Uniqueness: Is the lift py of pas, when it exists, unique?

3. Structure of the quotient control bundle: What is the structure of the quotient control

system control bundle?

We remark that the characterization of the quotient control system system map F : U — T(M/ ~p)
was already solved for the case of control affine systems in [64] where a constructive algorithm for its

computation was proposed.

To clarify our discussion we formalize the notion of quotient control systems:
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DEFINITION 3.8 (Quotient Control System). Let X1, X5, ¥n be control systems defined on manifolds
L, M and N, respectively and g, h two morphisms from X7, to X 5. The pair (f, X ) is a quotient control
system of X, if f o g = f o h and for any other pair (f’,X') such that f' o g = f' o h there exists one

and only one morphism f from ¥y to ¥’y such that the following diagram commutes:
g

Y :h:EM — 3N
f! f
(3.12) sy

that is, f' = fo f.

Intuitively, we can read diagram (3.12) as follows. Assume that the set ~= {(u,v) € Upy xUps @ (u,v) =
(9(1), (1)) for some I € Ur} is a regular equivalence relation [1]. Then, the condition fog = foh simply
means that f respects the equivalence relation, that is, u ~v =  f(u) = f(v). Furthermore it asks
that for any other map f' respecting relation ~, there exists a unique map f such that f' = f o f. This
is a usual characterization of quotient manifolds [1] that we here use as a definition. The same chain of
reasoning shows that if we replace control systems by the corresponding state space and the morphisms by
the maps between the state spaces, then diagram (3.12) asks for N to be also quotient manifold obtained
by factoring M by a regular equivalence relation ~j; on M defined by g and h. The same idea must,

therefore, hold for control systems and this means that control system Xy must also satisfy a unique

factorization property in order to be a quotient control system.

From the above discussion it is clear that a necessary condition for the existence of the quotient control
system is the existence of the quotient manifold M/ ~»;. When ~ ), is a regular equivalence relation the
quotient space M/ ~ps will be a manifold [1] and the equivalence relation can be equivalently described
by a surjective submersion. We will, therefore, assume that the regular equivalence relation ~; is given
by a surjective submersion ¢ : M — N. Similarly, the fiber preserving lift ¢ of ¢ will also have to be a

surjective submersion.

The first two questions of the previous list are answered in the next theorem which asserts that quotients

exist under very moderate conditions:

THEOREM 3.9. Let Xp; be a control system on a manifold M and ¢ : M — N a surjective submersion.

If the distribution (T'Sy + Ker(TT¢))/Ker(TT¢) has constant rank, then there exists:

1. a control system ¥ n on N,
2. a unique fiber preserving lift ¢ : Uyy — Un of ¢ such that the pair ((¢,¢),XN) is a quotient

control system of X pr.
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PRrROOF. We start by defining control system ¥ up to an isomorphism over the identity, that is,

we define the control section of ¥ to be Sy = T¢(Sar). As Sy is a subbundle of TM we can expand
Té(Swm) as:

(3.13) Sy S TM L% To(Sh) = Sy & TN

It then follows that TT'¢ o T'i; has constant rank since rank(TT¢ o Tiy) = dim(TSy) — dim(T'Sp N
Ker(TT¢)) = dim((TSy + Ker(TT¢))/Ker(TT ¢)) which is constant by assumption. Consequently Sy
is a manifold and a fiber bundle over N as Sy is a fiber bundle over M and T'¢ o4, is a fiber preserving

map. Finally, it is not difficult to see that i is also fiber preserving therefore making Sy a subbundle of

TN.

We now show that there is a unique fiber preserving lift ¢ of ¢ such that f = (¢, ) is a morphism from
Yp to ¥n. By definition of Sy we have T'¢(Sy(z)) C Sy o ¢(z) for every z € M. Consequently, the
map T¢ - Fpy : Upyy — TN satisfies goT¢p - Fpy = hoT¢ - Fpy for maps g : TN — P and h : TN
— P satisfying Sy = {Y € TN : ¢(Y) = h(Y)}. If we now consider any control parameterization
(Un, Fn) for Sy it follows, by definition of control parameterization, that there exists one and only one
fiber preserving map Fy : Uy — Uy making diagram 2.32 commutative. It is not difficult to see that

this map is the desired ¢ : Upy — Un.

We have thus shown that ¢ defines ¢ uniquely and that f = (¢4, ) is a morphism. It remains to show
that any other morphism f' = (¢, ') such that ¢' is compatible with the equivalence relation defined
by ¢ factors uniquely through f. We start by recalling that since ¢ is a surjective submersion, ¢' factors

uniquely through ¢ in Man [1], that is, there exists one and only one map ¢ : N — N’ such that

¢' = ¢ o ¢. From the equality ¢' = ¢ o ¢ we conclude:
(3.14) Tp¢' =Ty o T
and it follows that:
(3.15) Ty¢(Sn(y)) C Sy ¢(y)
since, by definition of Sy, for any Y € Sy (y) there is a X € Syr(z) such that ¢(z) =y and T,¢p- X =Y,
therefore:
T,0-Y = T,00T.¢(X)
(3.16) = T¢'(X) € Syod'(z) =Syod(y)
By the same argument that was used to show that there is a unique fiber preserving lift of ¢ it follows

that there is also a unique fiber preserving lift % of ¢ such that f = (4,%) is a morphism from ¥y to ¥,
and f' = fo f. As both ¢ and % are unique so is f. It remains yet to show that ¢ is compatible with
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the equivalence relation defined by ¢, but this is now trivial since the equality f' = f o f implies:

pu) = @)
=Pop(u) = Pop(v)
(3.17) =¢'(u) = ¢'(v)

O

This result provides the first characterization of quotient objects in Con. It shows that given a regular
equivalence relation on the base (state) space of a control system and a mild regularity condition®, there
always exists a quotient control system on the quotient manifold?. Furthermore it also shows that the
regular equivalence relation on M or the map ¢ uniquely determines a fiber preserving lift ¢ which
describes how pairs state/input of the control system on M relate to the pairs state/input of the quotient

control system.

The factorization property expressed in diagram 3.12 allows to show that the constructive algorithm

presented in [64] computes quotients of affine control systems up to isomorphism:

COROLLARY 3.10. Let Xp be an affine control system on a manifold M and ¢ : M — N a surjective
submersion. The quotient control system computed by the construction presented in [64] based on Xy

and ¢ is unique up to isomorphism.

PRrOOF. Let Sy be the control section obtained by the construction proposed in [64] and let E be
the control section defined in the proof of Theorem 3.9, that is ﬁo ¢ =T¢(Snm). In [64] it is shown that

Sn is the smallest control section satisfying:
(3.18) T$p(Sm) CSnod

As ﬁ also satisfies T'¢p(Syr) C ﬁoqﬁ we have Sy C ﬁ However, by (3.18) we have T'¢p(Sys) = ﬁoq& C
Syog = E C Sy by surjectivity of ¢ and consequently Sy = E Theorem 3.9 and in particular

commutativity of diagram 3.12 now imply that Sy is unique up to isomorphism. O

Having answered the first two questions from the previous list, we concentrate on the characterization of
the quotient control bundle. This problem requires a deeper understanding of how ¢ determines ¢ and
will be the goal of the remaining paper. Since Con was defined over Man, that is morphisms in Con
are smooth maps and control systems are defined on manifolds and fiber bundles, the characterization of

¢ will require an interplay of tools from differential geometry and category theory.

I The constant rank condition on (Ker(TT¢) + TSy)/Ker(TT¢) is only required to ensure that Sy is a manifold. If one
does not require a control section to be a manifold, then this condition can be weakened.

2This fact can be put in a more general context by introducing a forgetful functor from Con to Man that associates with
each control system s defined over M the manifold M and to each morphism from ¥; to ¥ the map ¢. In this context
the previous result assumes the form of a universal arrow for this functor.
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4. Projectable Control Sections

We now extend the notion of projectable vector fields from [49] and of projectable families of vector
fields from [50] to control sections. The notion of projectable control sections is weaker then projectable
vector field or families of vector fields but nonetheless stronger than Con morphisms. The motivation for
introducing this notion comes from the fact that projectability of control sections will be a fundamental
ingredient in characterizing the structure of the quotient control bundle. Furthermore, we will also see
that projectability, as defined in this categorical setting, will correspond to the well known notion of

controlled invariance.

Given a vector field X on M and a surjective submersion ¢ : M — N we say that X is projectable with
respect to ¢ when Y = T'¢ - X, the projection of X, is a well defined vector field on N that satisfies
T¢-X =Y o¢ [49]. The vector field Y is also called ¢-related to X [1]. This notion was extended to
families of vector fields in [50] by requiring that the projection of each vector field in the family is a well
defined vector field on N. However, when working with control sections, which can be regarded as sets
of vectors at each base point z € M, one should only require that the projection of these sets of vectors
is the same set when the base points on M project on the same base point on N. This is formalized as

follows:

DEFINITION 3.11. Let M be a manifold, Sy a control section on M and ¢ : M — N a surjective
submersion. We say that Sps is projectable with respect to ¢ iff Sys induces a control section Sy on N

such that the following diagram commutes:
T¢

P(TM) P(TN)
SM SN

(3.19) Y,

N

We see that if Sy is in fact a vector field we recover the notion of projectable vector fields. The notion of
projectable control sections is stronger then the notion of Con morphism since for any z1, 25 € M such
that ¢(z1) = ¢(x2) we necessarily have Tod(Sar(z1)) = Snvod(x1) = TPp(Sm(x2)) if Sar is projectable. On
the other hand, if (¢, ¢) is & Con morphism for a fiber preserving lift ¢ of ¢, we only have the inclusions
To(Sn(z1)) C Sy o d(x1) and Th(Sar(x2)) € Sy o ¢(21). Therefore projectability with respect to ¢
implies that ¢ can be extended to a Con morphism but given a Con morphism f = (¢, ¢) from X to

YN it is not true, in general, that Sys is projectable with respect to ¢.

To determine the relevant conditions on Sy; that ensure projectability we will need an auxiliary result:
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PROPOSITION 3.12. Let f: M — N be a map between manifolds and let X; be the flow of a vector field
X € TM such that f o Xy = f. Then the following equality holds for every x € M :

(3.20) Tof Ty (o)X=t = Tx, () f

PROOF. The equality f o X; = f is equivalent to:
foXi(x) = f(x)
& [(Xi(@) = fo (X)) o Xy(2)
(3.21) & f(Xi(z)) = foX_(Xe(2))
and by differentiation of the previous expression we arrive at the desired equality:

(322) TXt(ac)f = TszXt(av)Xft

We can now give sufficient and necessary conditions for projectability of control sections.

PROPOSITION 3.13 (Projectable Control Sections). Let M be a manifold, Spr a control section on M
and ¢ : M — N a surjective submersion. Given any control parameterization (Unr, Far) of Sy and any

Fu € F§y, Sy is projectable with respect to ¢ iff:
(3.23) [Far, Ker(T¢%)] C Ker(T¢%) + [Far, 0°]

where 0¢ = Twaﬂll (0).

PROOF. We show necessity first. Assume that diagram (3.19) commutes. Then we have:
(3.24) T:6(Su(x)) = Tor (Sy (2'))

for all z, 2’ € M such that ¢(z) = ¢(z'), that is, for any x and 2’ on the same leaf of the foliation induced
by Ker(T¢). If we denote by K; the flow of any vector field K € Ker(T¢°), expression (3.24) implies
that:

(3.25) Ty, o, (w)@(Fm 0 Ki(u)) € To¢(Sm ()

for every t € R such that K; is defined and for every u € 71'&1}4 (x). Since the left hand side of (3.25)
belongs to the right hand side we can always find a Y € 0¢ such that its flow Y; will parameterize the
image of the left hand side, that is:

(326) TﬁUMoKt(u)QS(FM o Kt(u)) = TWUMOK(u)¢(FM o Y't(u))

The previous equality implies that for any Fys € F5; we have:

(3.27) Tx,(uy®° (Far 0 Ki(u)) = Ty, ()¢ (Fur 0 Yi(u))
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however, the equalities ¢¢ o Ky = K, ¢° o Y; = ¢° and Proposition 3.12 allow to rewrite (3.27) as:
Tu¢® (Tr, (Kt © Far 0 Ki(u)) = Tug®(Ty,u)Y-1 0 Far 0 Yi(u))
(3.28) & Tud*(Ki(u)'Fu) = Tug®(Yi(w)Fu)
Time differentiation at ¢ = 0 now implies:
Tud® ([K (u), Fyr (u)]) T ([Y (u), Far (w)])

(3.29) = [K,Fy| € [Y,Fy)+ Ker(T¢°)

which trivially implies inclusion 3.23.

To show sufficiency we use a similar argument. Assume that (3.23) holds, then for any K € Ker(T¢°)
there exists a Y € 0° such that:

Tu¢* ([Fu (u), K (w)]) = Tud® ([Far(u), Y (u)])
(3.30) & Tu¢*([Fu(u), K(u) =Y (u)]) =0
Consider now the regular and involutive distribution Ker(T'¢®). Involutivity and regularity imply that
Z;W € Ker(T¢°) for any W € Ker(T¢°) and the flow Z; of any vector field Z € Ker(T¢¢) [76]. Since

K € Ker(T¢¢) and Y € Ker(T¢°) it follows that K —Y € Ker(T¢¢), but from (3.30), [Far, K — Y] also
belongs to Ker(T¢¢) so that we conclude:

(3.31) Tug® (K = Y)e(u)"[Fpr, K = Y]) =0

where (K —Y); denotes the flow of the vector field K —Y. However, the previous expression is equivalent

to:
T,6 (4 (K = Y):(u)*Fr) = 0
(3.32) & GTud (K = Y)i(u)* Fur) =

where the last equality follows from the fact that T'¢ is a linear map. Since the time derivative is zero,

we must have:
(3.33) T (K =Y )i(u)* Fur) = Tu¢® (K = Y)o(u)"Far) = Tud® (Far(u))

From the equality ¢¢ = ¢ o (K —Y); we conclude that T,,¢° T(x vy, (u) (K = Y) -t = T(k—v),(u)¢° by
Proposition 3.12 so that (3.33) can be written as:

(3.34) Tik—v) ()¢ (Frr o (K =Y )i (u)) = Ty (Far(u))

and projecting on T'M we get:

(3.35) Try,, (51w $(Fnr 0 (K')i(u)) = Top(Fur (u))
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with K’ = K — Y. This equality shows that for any X € Sy (), Toop - X € T d(Sp (")), therefore
T.9(Snm(z)) C T d(Sa(z')). However, replacing x by 2’ and K by —K on (3.35) we get Tpr ¢(Samr(z')) C
T.¢(Sm(z)) so that we conclude the equality:

(3.36) To¢(Sm(x)) = Tor p(Sns (2'))

Since any point z' satisfying ¢(z") = ¢(z) can be reached by a concatenation of flows induced by
vector fields in Ker(T'¢), transitivity of equality between sets implies that (3.36) holds for any two points
z,2" € M such that ¢(z) = ¢(z') from which commutativity of diagram (3.19) readily follows. O

It is interesting to note that if we assume some structure on Sy; we can give conditions for projectability
without explicitly mentioning the control parameterization. This is the case for control affine systems

where the affine structure on Sy allows to simplify expression (3.23) as follows:

COROLLARY 3.14. Let M be a manifold, Ay an affine distribution on M and ¢ : M — N a surjective

submersion. A is projectable with respect to ¢ iff:
(3.37) [Anr, Ker(T¢)] C Ker(T¢) + Ay

where A is the distribution associated to Ay .

By now it is already clear that projectability and local controlled invariance are equivalent concepts. We

recall the notion of locally controlled invariant distribution:

DEFINITION 3.15 (Locally Controlled Invariant Distributions [58]). Let X3y = (U, Far) be a control
system over a manifold M and let D be a distribution on M. The distribution D is locally controlled
invariant for Fy; if for every & € M there is an open set O C M, containing z and a local (feedback)
isomorphism over the identity such that in trivializing coordinates (z,v) the new control system F}, =

Fy o o satisfies:

(3.38) [Fy(z,v),D(x)] C D(x)

for every (z,v) in the domain of a.

If a control section is projectable then locally we can always chose Fiy = F!, and therefore recover the

conditions for local controlled invariance from [24]:

THEOREM 3.16 ([24]). Let Xps be a control system over a manifold M and ¢ : M — N a surjective
submersion. The distribution Ker(T¢) is locally controlled invariant for Fir iff Sy is projectable with

respect to ¢.

From the study of symmetries of nonlinear control systems [25, 57] it was already known that the existence

of symmetries or partial symmetries implies controlled invariance of a certain distribution associated with
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the symmetries. This shows that control systems that are projectable comprise quotients by symmetry
and controlled invariance. However there are also quotients for which projectability does not hold as we

describe in the next section.

5. The Structure of Quotient Control Systems

We have already seen that the notion of Con morphisms generalizes the notion of projectable control
sections. This shows that it is possible to quotient control systems whose control sections are not pro-
jectable. In this situation the map ¢ and the control bundle of the quotient control system will be
significantly different from the projectable case. To understand this difference we start characterizing the
fiber preserving lift ¢ of ¢. Recall that if f = (¢, ) is a morphism from ¥, to ¥ x we have the following

commutative diagram:

Unr Un
Fy Fn
(3.39) TM ——TN

T¢
Since ¢ is a surjective submersion we know that Uy is diffeomorphic to Ups/ ~, where ~ is the regular
equivalence relation induced by ¢. This means that to understand the structure of Uy it is enough
to determine the regular and involutive distribution on Ups given by Ker(T'y). However the map ¢ is
completely unknown, so we will resort to the elements that are available, namely F; and ¢ to determine

Ker(Ty). Differentiating® diagram (3.39) we get:

TUy —L Uy
TFM TFN
3.40
(3.40) TTM —p5— TTN
from which we conclude:
(3.41) Ker(TT¢oTFy) = Ker(TFyoTy) = Ker(Ty)

where the last equality holds since Fy is an immersion by definition of control parameterization. We
can now attempt to understand what is factored away and what is propagated from Ujps to Un since

Ker(Tp) is expressible in terms of Fi; and ¢. The first step is to clarify the relation between Ker(Tp)

3The operator sending manifolds to their tangent manifolds and maps to their tangent maps is an endofunctor on Man,
also called the tangent functor [38].
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and Ker(T'¢). Since ¢ is a fiber preserving lift of ¢ the following diagram commutes:

Uy —% Uy
Tﬂ'UM T7TUN
3.42 - .
(3.42) TM T3 TN
which implies that:
(3.43) Try,, (Ker(Ty)) C Ker(T¢)

However this only tell us that the reduction on M due to ¢ cannot be “smaller” than the reduction on

the base space of Ups due to ¢. This leads to the interesting phenomena which occurs when, for e.g. :
(3.44) Ty, (Ker(Tg)) = {0} € Ker(T¢)

The above expression implies that the base space of Uy is not reduced by ¢. However, Uy is a fiber
bundle with base space N and therefore the points reduced by ¢ must necessarily lift to the fibers of
Un. This will not happen if we can ensure the existence of a distribution D C Ker(T¢) such that
Try,, (D) = Ker(T¢). The existence of such a distribution turns out to be related with projectability as

asserted in the next proposition:

PROPOSITION 3.17. Let Xpr = (Unr, Fr) be a control system over a manifold M, ¢ : M — N a surjective
submersion and ¢ : Upyy — Uy a fiber preserving lift of ¢. There exists a reqular distribution D on Uy

satisfying D C Ker(Ty) and Twy,, (D) = Ker(T¢) iff Sy is projectable with respect to ¢.

ProOOF. We start by showing that projectability implies the existence of D. If Sy is projectable with
respect to ¢ then for every z,z' € M such that ¢(z) = ¢(z') we have that T, ¢(Sy(z)) = T d(Sm (2')).
This means that for any z € M, u € 71'{]:4 (z) and X € Ker(T¢°) there exists a ¥ € 0° such that:

(3.45) Ty, 0%, (w)@(Fm © Xt (u) = Top(Fur 0 Yi(u))

for all ¢ € R such that the flows X; and Y; of X and Y are defined. Considering now T'¢ as a map
between the manifolds TM and T'N, the time derivative of T, ¢(5(t)) for (a, 3) : R — T'M provides
Ta(t).8(t) Tay@(TB(t)). The same considerations applied to (3.45) at ¢ = 0 give:

(3.46) T(x7FM(u))Tz¢ o TuFM (X(u)) = T(x,FM(u))Tz¢ (o] TuFM(Y(u))
which we rewrite as:

(3.47) Tie,Fr(u)Ted o TuFp (X (u) =Y (u)) =0
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by linearity of the involved maps. Since (3.47) is true for any X € Ker(T'¢¢) we can define the distribution:

(3.48) D= U {Z=X-Y : X € K® A Y €0°is such that (3.47) holds}
KecKer(Tg)

This distribution clearly satisfies:

(3.49) TTéoTFy(D) ={0} < DeKer(Ty)

is regular since dim(D) = dim(Ker(T¢)) by construction, satisfies Twy,, (D) = Ker(T¢) also by con-
struction and is therefore the desired distribution.

The converse is proved as follows. Assume the existence of the distribution D, then D C Ker(T) is

equivalent to:

(3.50) TT¢ o TFy (D) = {0}

Let Z € D and denote by Z; the flow of Z. Expression (3.50) implies that:

d d
% tZOTnleoZt(u)¢(FM o Zt(u)) =0 = % —o

for any Fis € F§,; and for all ¢t € R such that Z; is defined.

(3.51) Ty, ()@ (Far o Zi(u)) =0

Noticing that Z € D C Ker(Ty) implies ¢ = ¢ o Z; (since p is constant on the leaves of the foliation
induced by Ker(Ty)) and 7y, 0 ¢ = ¢ o myy,, by commutativity of diagram 4.29, we conclude that ¢° is

also Z; invariant:

(3.52) ¢°oZy =(pomy,,)oZi = (Tyy 0op)o Zy =Tyy 0@ = pomy,, = ¢°
Proposition 3.12 now ensures that:

(3.53) T7,()9° = Tud® 0 Tz, (u)Z-1

and expression (3.53) allows to rewrite (3.51) as:

d — d .
Jil_ Tz (Faro Ze(w) =0 & %\t:OTme (Tz,(wyZ—t © Far 0 Zy(u)) =0
d e T\
& | Tt (Zi()Fu) =0
(3.54) & Tue ([Z(u), Far(w)]) =0

or equivalently [Z, Fys] € Ker(T¢%). Since Z is any vector field in Ker(T¢*) it follows that [Fis, Ker(T¢¢)] C
Ker(T¢°) which by Proposition 3.13 implies that Sy is projectable with respect to ¢ as desired. O

From the proof of the previous proposition it is clear that if D is locally of the form D = Ker(T¢)! then

we can replace projectability by the more restrictive notion of invariance:

COROLLARY 3.18. Let YXas be a control system over a manifold M, ¢ : M — N a surjective submersion

and ¢ : Uy — Un a fiber preserving lift of ¢. The locally defined distribution Ker(T¢)! satisfies
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Ker(T¢)! C Ker(Ty) iff Ker(T¢)! is invariant for F.,, that is, iff:

(3.55) [ (), Ker(Te)' (u)] C Ker(T¢)' (u)

for every u such that Ker(T)! is defined.

Proposition 3.17 shows that projectability characterizes the structure of the quotient control system in
the sense that states lift to the fibers when the control section is not projectable. However we can be a
little more detailed in our analysis and try to determine if the fibers of Uy, are reduced or if the fibers of

Uy are in fact diffeomorphic to the fibers of Uy and reduction takes place only on the base space. The

answer is given in the next proposition:

PROPOSITION 3.19. Let Xpr = (Unr, Far) be a control system over a manifold M, ¢ : M — N a surjective
submersion, ¢ : Upr — Un a fiber preserving lift of ¢ and Far any vector field in F§;. A regular and

involutive distribution € on Uy such that Ty, (€) = {0} satisfies £ C Ker(Tp) iff:
(3.56) [Far, €] C Ker(T¢")
PROOF. Assume that the distribution £ belongs to Ker(T¢), then following an argument similar to
the proof of Proposition 3.17 shows that [Fys, £] C Ker(T¢°).
Conversely assume that [Fys,&] C Ker(T¢¢) and let X € £. Then, the equality:
(3.57) T¢*([Fu. X]) =0

holds. However this expression is equivalent to:

Tu¢®((Fu(u), X(u)]) =0 & % o Tu¢® (Xi(u) Far) = 0
(3.58) & % o Tx, ()" (Far o Xi(u))

where the last equality is a consequence of ¢¢ o X; = ¢° and Proposition 3.12. Projection on T'M gives:

d
(3.59) 7t |y Trosoxiw@(Far 0 Xi(u)) =0
which also equals:
(3.60) Tio,Frs(u)Ted © TuFrr (X (u)) =0
therefore implying that X € Ker(Ty) and consequently £ C Ker(Ty). O

Collecting the results given by Propositions 3.17 and 3.19 we can now characterize both ¢ and Uy.
Intuitively, we will use projectability to determine if the standard fiber of the quotient control bundle

will receive states from M and Proposition 3.19 to characterize the amount of reduction induced by .

THEOREM 3.20 (Structure of Control Systems Quotients). Consider a control system Xy = (Unr, Far)

over a manifold M, (f,Xn) = ((¢,¢), (Un, Fn)) a quotient of S, and any vector field Far in Ff,. Let
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& be the involutive distribution defined by € = {X € 0° : [Fu,X] € Ker(T¢%)}, which we assume to be

reqular, and denote by Rg the reqular equivalence relation induced by £. Under these assumptions:

1. Reduction from states to states and no reduction on inputs
Fiber bundle Un has base space diffeomorphic to N, and standard fiber Fn diffeomorphic to Fur
e Sy is projectable with respect to ¢;
e &£ ={0}.
2. Reduction from states to states and from inputs to inputs
Fiber bundle Uy has base space diffeomorphic to N, and standard fiber Fn diffeomorphic to
Fm/Re iff:
e Sy is projectable with respect to ¢;
e £+ {0}.
3. Reduction from states to inputs and no reduction on inputs
Fiber bundle Un has base space diffeomorphic to N, and standard fiber Fn diffeomorphic to Fpr xIKC
o [Far. Ker(T6")] N (Ker(T*) + [Far, 0°]) = {0};
« [For, Ker(Tg?)] # {0};
e &£ ={0}.
4. Reduction from states to inputs and from inputs to inputs
Fiber bundle Un has base space diffeomorphic to N, and standard fiber Fn diffeomorphic to
(Fm/Re) x K iff:
o [Far. Ker(T99)] 0 (Ker(T6) + [Far, 0°]) = {0};
o [Fir, Ker(To%)] # {0};
e £+ {0}.

where K is any leaf of the foliation on M induced by the distribution Ker(T¢).

Proor. We will follow the enumeration of the theorem.

1. By definition of fiber bundle the fibers of Uy are diffeomorphic so that it suffices to show that
the fiber at some point y € N has the desired structure. Let x be a point in M, since Sy
is projectable it follows from Theorem 3.16 the existence of an open set O in M, containing
z and a local isomorphism over the identity a : Of — OF, with Of = W&L(Om), such that
[(Frvoa)t, Ker(T¢)!] C Ker(T¢)!. Invoking Corollary 3.18 we see that Ker(T¢)! C Ker(T(poa))
however, by assumption, & = {0} so that dimension counting implies that Ker(T'¢)! = Ker(T(¢o
a)). We thus have the following local situation, by shrinking O if necessary: OF = 0% x Fyr and

Ker(T(poa)) = Ker(T¢) x {0}. Since g oa is a submersion it follows that o a(0OF) = Of,/ Rk,
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where R is the regular equivalence relation induced by Ker(T'¢) x {0}. However Of; being
diffeomorphic to O x Far implies that OF /Rix = (O* x Fum)/Rr = ¢(O%) x Far, which shows
that the standard fiber over every y € ¢(0O?%) is diffeomorphic to Fay.

Conversely if Fjs is diffeomorphic to Fy there does not exist a distribution & C Ker(Tp)
such that Try,, (£) = 0, which by Proposition 3.19 implies that £ = {0}. Since no states lift into
the fibers of Uy there exists a distribution D C Ker(T'¢) such that Try,, (D) = Ker(T¢) which
by Proposition 3.17 is equivalent to projectability of Sy; with respect to ¢.

2. As in item 1 there exists a local isomorphism « : Of — Of, such that Ker(T¢)! C Ker(T(¢ o
a)). Since « is an isomorphism over the identity all the vector fields X € Ker(Tp) such that
Try,, (X) = 0 will satisfy Try,, (* X)) = 0. This means that the distribution Ker(T (poa)) locally
splits as Ker(T(poa)) = B® £ with B = Ker(T¢)! and £ = {X € Ker(Ty) : Tmy,, (X) = 0}.
By the same arguments as in item 1, this decomposition shows that the standard fiber of Uy
is diffeomorphic to Fys factored by the regular equivalence relation induced by &£ resulting in
Fu/Re.

Conversely, since Fy is diffecomorphic to Fps/Re, there exists a distribution & C Ker(Tp)
such that T'my,, (£) = {0} and this implies the second condition by Proposition 3.19. The proof
of projectability now follows the same arguments as in item 1.

3. The first two conditions combined with Proposition 3.17 and (3.43) show that for every X €
Ker(Ty), Tny,,(X) = 0. However since £ = {0}, by Proposition 3.19 there are no vectors
X € Ker(Ty) such that Try,, (X) = 0. This implies dim(Ker(Ty)) = 0 or equivalently that ¢ is
in fact a local isomorphism between Ups and Un regarded as manifolds without the fiber bundle
structure. Nevertheless Uy possesses also a structure of fiber bundle over N induced by the map
¢pomy, : U — N, see [1] for details. This means that the standard fiber of Uy is diffeomorphic
to (¢ o 7y, ) "' (y) = 7., 0 ¢~ (y) which locally assumes the form Ty x K.

The converse is proved by realizing that Up; and Uy are locally diffeomorphic as manifolds
via . The conditions in item 3 follow directly from this observation.

4. The first two conditions and Proposition 3.17 imply that Try,,(Ker(Ty)) = {0}. Therefore
the reduced states by ¢ on M, modeled by K will lift to the fibers. Since £ # {0} Fn will be
diffeomorphic to Fpr/Re x F.

The fact that M can be seen as a submanifold of Uy and Proposition 3.17 imply the first two
conditions. Since Fys was reduced by Rg we must have £ C Ker(Ty) and Try,, (€) = {0} which
by Proposition 3.19 implies £ # {0}.

O

It is useful to specialize the above results for the case of control affine systems due to their importance

in real applications:
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COROLLARY 3.21 (Structure of Control Affine Quotients). Consider a control system Xy = (Upg, Far)
over a manifold M, (f,%n) = ((¢,¢), (Un,FN)) a quotient of S and any vector field Fys in F§,. Let
& be the involutive distribution defined by € = {X € 0° : [Fa, X] € Ker(T¢¢)}, which we assume to be

reqular and denote by Rg the regular equivalence relation induced by £. Under these assumptions:

1. Reduction from states to states and no reduction on inputs
Fiber bundle Uy has base space diffeomorphic to N, and standard fiber Fn diffeomorphic to Fyy
e Sy is projectable with respect to ¢;
e £={0}.
2. Reduction from states to states and from inputs to inputs
Fiber bundle Un has base space diffeomorphic to N, and standard fiber Fn diffeomorphic to
Fum/Re iff:
e Sy is projectable with respect to ¢;
e & #{0}.
3. Reduction from states to inputs and no reduction on inputs
Fiber bundle Uy has base space diffeomorphic to N, and standard fiber Fn diffeomorphic to Fpy XK
e [Fu,Ker(T¢)|N (Ker(T¢) + A) = {0};
o [Fur, Ker(To)] # {0};
e £={0}.
4. Reduction from states to inputs and from inputs to inputs
Fiber bundle Un has base space diffeomorphic to N, and standard fiber Fn diffeomorphic to
(Fum/Re) x K iff:
o [Fu,Ker(T¢)|N (Ker(T¢) + A) = {0};
« [Far, Ker(T9)] # {0};
e £+ {0}.

where K is any leave of the foliation on M induced by the distribution Ker(T¢).

We see that the notion of projectability is fundamentally related to the structure of the abstracted control
bundles. If the control section Sps is projectable then the control inputs of the abstracted system are
the same or a quotient of the original control inputs. Projectability can therefore be seen as a structural
property of a control system in the sense that it admits special decompositions [33, 58] whenever it is
projectable. However, for general systems not admitting this special structure, that is, for systems that
are not projectable, the process of abstraction is still possible and it consists of lifting the neglected state

information to the fibers. The states of the original system that are abstracted away by ¢ are regarded
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as control inputs in the abstracted system. This shows that from a hierarchical synthesis point of view,
control systems that are not projectable are much more appealing since one can design control laws for
the abstracted system, that when pulled-down to the original one are regarded as specifications for the

dynamics on the neglected states.

Between cases 1 and 2 of projectability and cases 3 and 4 of non projectability there are more intri-
cate descriptions for the structure of the control bundle related with the decompositionality of the Lie

subalgebra defined by Ker(Ty). A detailed account of this situation will be given elsewhere.

It is also important to mention that all the abstracting methodology is strongly rooted on the fiber
bundle model of control systems. If one assumes a Cartesian product between the state space and the
input space, then it is not possible to lift states to inputs since product respecting maps are of the
form ¢(x,u) = (p1(x),p2(u)). We thus see that a hierarchical view of control design simply means
interchanging the role of state and input through the different layers in a hierarchy. This presents a
compelling reason to place the distinction between states and inputs as a modeling question and not as

a characteristic of physical systems.

6. Examples

In this section we will provide simple examples to illustrate the characterization of the abstracted control

bundles.

EXAMPLE 3.22. We start with a very simple but very characteristic example. Consider a simple mechan-
ical system on the real line described as a double integrator. The control bundle is given by Uy, = R x R
and the base space M = R?. Choosing as coordinates for M position z; and velocity v; we have the

following description for F;:

v 0
(3.61) Fy=f4+gu= "t u
0 1

We now introduce the abstracting map ¢ : R2 — R defined by ¢(z1,v;) = #;. Its tangent map is given

0
by T¢ =[1 0] and Ker(T¢) = span{| |}. Computing [Fas, Ker(T¢)] one obtains:
1

1
0

v| |0 o] o
(3.62) [Far, Ker(To) =[] || I+ |-]. ]
0| |1 1 |1

and we see that [Far, Ker(T'¢)] N (Ker(T¢) + span{g}) = {0} and [Far, Ker(T'¢)] # {0} which tell
us that all the neglected states will lift into the fibers of the abstracting system. This means that
the integral manifold of the distribution Ker(T¢) which can be coordinatized by the variable v will

become an input at the abstracted model. Let us see now what will happen to the input u. Computing
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Ker(T¢) N span{g} which equals Ker(T¢) we realize that the control fiber Fj = R will be factored
by £. Theorem 3.20 tells us that the fibers of the control bundle Uxn of the abstracted system will be
diffeomorphic to (R/Rg) o ¢~ (y) = R.

We now compute the abstraction of control system (3.61) by the methods reviewed in Subsection 2.2.

The affine distribution Sy is defined by:

v 0
(3.63) Xm = Ap = span{| |}
0 1
We now compute Lj,; as:
0 1
(3.64) Ly = Ay + [Ker(To), Xp) = span{| |} + span{| |}
1 0

and the abstracting affine bundle Sy is given by:

Sn(y) T2 ¢(Sm ()

= T.o(Xn(z) +Apn(z))

1 o) {”1 + T, M)

0

The last equality holds since Sy (y) is given by T,¢(Sas()) for any x € ¢~ 1(y). From the affine bundle

(3.65) =

Sn we easily obtain the abstraction of (3.61) as:
(3.66) J= i =

where v is now a control input. The fiber respecting map ¢ induced by ¢ will then be defined as
o((z,v),u) = (z,v) which simply abstracts away the input u and lifts v from the base space to the fibers,
“promoting” it to a new control input. This example is characteristic in the sense that it is probably
the simplest example of hierarchical control. On the abstracted system a control law is a specification of
velocity as a function of position and this will correspond on the original model as a specification to be

achieved by properly designing an acceleration control law.

ExAMPLE 3.23. Next we consider a simple example of a full nonlinear control system where no state

information is lifted into the fibers. Consider the nonlinear control system described by:

Ty = ToujUs
iy = 2iul

where u; and us are the control inputs. The state space is given by M = R? and the control bundle by
the trivial bundle Ups = R? x R?. We now consider the abstraction of this control system defined by the

map ¢ : R2 — R, ¢(x1,22) = z2. We take advantage of the fact that the bundle is trivial by choosing
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F = FY; and decomposing Ker(T¢°) as Ker(T¢¢) = Ker(T¢)! + 0¢. Projectability is now determined

by the inclusion:

(3.67) [Fir, Ker(T¢)'| + [Foy, 0°] C Ker(T¢°) + [Fiy, 0°]
Computing:
ToU1U2 1 0
1 1 g 0 2,%1’[1,%
(3.68) [Fly, Ker(T¢)!] = span{] |1 =mant= |7y = spang)
0 0 0
0 0 ToUs2 Ta2Up
. . |0 , |0 0 3z2u3
(369) [FMaoe] = Span{[FMa ]7[FM= ]} = Span{_ y
1 0 0 0
0 1 0 0
and defining;:
ToU2 ToUq
0 3ziu3
(3.70) Y =— 7 = —
0 0
0 0

we see that 3z1us X = —u1Y +usZ so that [F},, Ker(T¢°)] C Ker(T¢°)+[F},,0°] and by Theorem 3.20
no states will be lifted into the fibers. With respect to inputs we have [F},,0°NKer(T$)! # {0} which tell
us that the fibers will be factored by the regular equivalence relation Rg induced by £ = span{[0010]7}.
Theorem 3.20 then asserts that the new control bundle is diffeomorphic to R x R. Although the methods
proposed in [63, 64] to compute abstractions only deal with control affine systems we can compute the
abstraction “manually” for this simple example. Let Sp; be the control section associated with F)s, then

by computing T,¢(X) for every X € Sps(z) we obtain:

(3.71) T;¢({x2zlz2w) = 2}u

| s |
so that the control section Sy is defined by Sy = {zu3 € TR : 21 € R A us € R} and can equivalently
be described by Sy = {u € TR : u € R}. A control parameterization for Sy is then given by Uy = Rx R
and control system Fy defined by:

(3.72) i=u
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which agrees with the results given by Theorem 3.20



CHAPTER 4

Abstractions of Hybrid Control Systems

1. Introduction

In this chapter we develop a formal framework to introduce abstractions for hybrid control systems and
study their properties. Based on the insights obtained in the last chapter we use again simple ideas from
category theory and introduce the category of abstract control systems. The objects will be abstract
control systems capturing discrete, continuous and hybrid control systems. To be able to work at such
a general level we start from the hybrid automaton and extract its mathematical structure by defining
an hybrid control system as a partial monoid action. This characterization of hybrid control systems
emphasizes its similarity with labeled transition systems and smooth control systems thereby suggesting
the general notion of abstract control systems. As morphisms, in the category of abstract control systems,
we will consider relations that preserve the partial monoid action structure. There are two main reasons
to adopt relations instead of functions. The first is that it allows to define the concept of bisimulation
through the use of the inverse relations. While for relations there always exist inverse relations, the same
is no longer true for functions. Although this problem could be solved by adopting other formulations
of bisimulation, of which we mention [36] by its intuitive elegance, there is still a much more compelling
reason to use relations. When aggregating continuous to discrete information we will face the problem
of abstracting continuous evolutions to discrete jumps. This, as we will see, will require to map points
in the state space of the original hybrid system to sets of points in the state space of its abstraction and

relations are flexible enough to accommodate these requirements.

As in the continuous case we propose a notion of abstraction based on simulations which are captured
by the morphisms of the category, that is, system A is a simulation of system B if there is a morphism
from B to A. However we will also provide a stronger notion of abstraction, namely bisimulations. We
define bisimulations as symmetric simulations, that is, system A is a bisimulation of system B if there is
a morphism (which is a relation is this case) from B to A and the inverse relation is also a morphism from
A to B. Bisimulation defines a very special equivalence relation of the class of abstract control systems
since cardinality (or dimension, when we can talk about it) is not constant on the equivalence classes.
This fact is the essence of complexity reduction since analysis or synthesis tasks can be performed much

more efficiently on lower cardinality equivalent systems.

47
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We also introduce a composition operator in the category of abstract control systems modeling the
interconnection and synchronization of subsystems. This operator is based on the categorical view of
concurrency described in [89] and is another powerful tool for complexity reduction. In fact, we show
that simulations are compositional in the sense that composing simulations of subsystems results in a
simulation of the overall system. We also show that bisimulations are compatible with composition under

certain conditions on the synchronization of the subsystems.

All of these results are them specialized to hybrid control systems where simpler versions of some results
are given. We also provide an algorithm to compute abstractions of hybrid control systems and show

that under certain assumptions the algorithm computes bisimulations.

2. Hybrid Automata: An operational perspective

Hybrid systems originally appeared as a model for systems comprising discrete and continuous evolution.
Examples range from man engineered systems such as computer controlled physical processes to several
examples from nature like the motion of a bouncing ball. To capture all of these similarly different
systems in a common model, ideas from computer science and control theory were merged into what is

usually called an hybrid automaton [26]:

DEFINITION 4.1 (Hybrid Automata). An hybrid automaton is a tuple H = (Q, M, Init, Inv, Guard, Reset, F')

consisting of:

e () is a finite set of discrete states.
e M is a smooth manifold.

e Init C () x M is a set of initial states.

Inv: @ — P(M) is a map assigning to each ¢ € ) a subset of M called the invariant.

Guard : Q x Q — P(M) is a map assigning to a pair of discrete states a subset of M called the
guard.

Reset : @ x @ x M — M is a map such that given a pair of discrete states, maps points in M to

a set of points in M.

F:Qx M — TM is a map assigning a vector field F(-,z) € TM for each q € Q.

If F' is not a vector field, but a control system, then we have an hybrid control system as opposed to an
hybrid dynamical system. The state space associated with an hybrid system is given by @ x M and a
point is represented by the pair (g, z). The semantics associated with a trajectory of an hybrid automaton
is the following: a trajectory originates in a state (go, zo) € Init and consists of concatenations of discrete
jumps and continuous flows. A continuous flow keeps the discrete part ¢ of the state (g, z) constant while

the continuous part z evolves according to +x(t) = F(q,z(t)) while z(t) belongs to Inv(g). When the
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continuous part of the state attempts to leave the invariant either z € Guard(q, ¢') for some ¢' € @ and a
discrete jump from g to ¢’ is forced or the trajectory is not defined beyond that point and we say that the
hybrid automaton has blocked or is blocking. If a discrete jump is forced, the state jumps instantaneously
from (q,z) to (¢',z') where z' € Reset(q,q',z). A discrete jump may also happen in a controlled way as
opposed to being forced. Whenever the continuous part of the state belongs to both the invariant and
the guard associated to some discrete transition, the jump can be taken, but is not forced to. A choice is
then made between taking the discrete jump or continuing to flow continuously. After a discrete jump,
if the continuous part of the state belongs to the invariant of the new discrete state another continuous
evolution takes place. The trajectory continues then evolving by continuous flows and discrete evolutions

or blocks at some state.

An hybrid automaton is usually displayed graphically as a directed graph where the vertices are repre-
sented by circles containing the vector field F' and the invariant. The discrete transitions between states
are represented by arrows labeled by the guard and the reset associated with that transition. Consider,
for example, an hybrid automaton modeling a thermostat as displayed in Figure 1. The thermostat has
two modes of operation: OFF and ON. When the OFF mode is active, the temperature decreases
according to the law & = —kx, where k is a constant depending on the room characteristics. When in the
ON mode, the temperature evolution is described by & = k(h — z), where h is a constant modeling the
heater performance. The goal of the thermostat is to keep the temperature between Thrax and TN
which dictates the switching logic between the ON and OF F modes. This hybrid automaton is therefore
defined by:

Q = {ON,OFF}

M =R

Init=Q x M

Inv(ON) =] — 00, Trprax]
Inv(OFF) = [Tyin, +00]
Guard(ON,OFF) = {Tyax}
Guard(OFF,0ON) = {Tyn}
Reset(ON,OFF,z) = {z}
Reset(OFF,ON,z) = {z}
F(ON,z) = k(h — z)
F(OFF,z) = —ka
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T =Tyax z:==x

OFF

z =k(h —x) T =—kx

< Tyax fx =2  =Tagn\ z > Tan

F1GURE 1. Hybrid automaton model of a thermostat.

The hybrid automaton model provides an operational description of hybrid systems in the sense that it
provides a way of computing or implementing the trajectories of an hybrid system. However, it does
not emphasize the structure of hybrid systems as a mathematical object. It is towards this objective
that we proceed in the next section, where we will provide an alternative description of hybrid systems

emphasizing their mathematical structure.

3. Abstract Control Systems

In order to capture continuous, discrete, and hybrid systems under an unified model, we need an abstract
definition of control systems. The essence of a control system is reflected into two different aspects: a
notion of evolution, and the ability to control the evolution. These two fundamental aspects are captured

in the following definition:

DEFINITION 4.2 (Abstract Control System). Let S be a set, M a monoid and A a fibering relation on
S x M with base space S such that A, is a prefix closed subset of M containing the identity for every
s € §. An abstract control system over S is a map ® : A — S respecting the monoid structure, that is

®, : A, — S verifies:

1. Identity: ®,(c) =s
2. Semi-group: ®g_(,,)(as) = ®s(asas)

Intuitively, we can think of the set S as the state space, and the fiber bundle A, also called in this work
a fibering monoid, as the set of possible actions, that depend on the base point. The map ® assigns to
each point s € S a function from A to S representing all the input choices that can be made at the point
s. Given an input choice as € Ag, ®s(as) returns the state reached under the action of the control input

as.

We adopt the following intuitive graphical notation to denote evolution from s controlled by a and

described by ®, that is, ®,(a) = s' is represented by s — s'.
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We could model abstract control systems in a more elegant way by defining them to be a generalized
monoid, that is a small category. We would then have as objects the elements of S and every as; € A,
would be considered a morphism from s to ®(s,as). However, we will use the above definition since it is
more easily associated and compared with standard notions such as monoid and group actions. To get a

better understanding of the above definition we will see how it applies to three classes of systems.

3.1. Discrete Control Systems as Abstract Control Systems. The usual model for discrete
control systems are automata however it will be enough to work with transition systems. Let (Q, X, d)
be a discrete labeled transition system, where (Q is a finite set of states, X is a finite set of input symbols,
and § : @ X ¥ — (@ is the next-state function. Usually, transitions are modeled by a transition relation
— € Q X ¥ x @, but we will restrict to deterministic transition systems. Note also that J is in general a
partial function. Let us denote by X* the set of all finite strings obtained by concatenating elements in
Y. In particular the empty string € also belongs to ¥*. With concatenation as a monoid operation, ¥*
can be taken as the monoid M. The state space is naturally S = ). The transition function § defines a
unique partial map from @ x £* to @ which is just an abstract control system & : (Sx M)|gp =4 — S,
where R is the fibering monoid given by R = {(s,m) € S x M : ®(s,m) is defined}.

To clarify the resemblances to the continuous case that we describe next, we elaborate a little on the
structure of the monoid ¥*. This monoid has been defined as the set of all finite sequences of elements
in ¥. Alternatively we can regard ¥* as the disjoint union of the collection of maps £2 U L{l:2:t}
with ¢t € {1,2,...,n}. Given any string s = mimamgmy ...m, € T* we can identify it with the map
u:{1,2...,n} — ¥ defined by u(1) = mq, u(2) = ma, ..., u(n) = m,. The empty string ¢ is identified
with the map u : @ — ¥ and concatenation of strings can be seen as concatenation of maps defined as

follows:

u(t) if 1<t<t
(4.1) (u(®),v(®) = (u-v)(t) = ‘

U(t—tl) if t1+1§t§t1+t2
The above operation only allows to concatenate maps such that its domain ends in a finite number, since
it is not possible to append the second map at the end of the first one, if the end is a non-finite! number.
This forces to work with the class of maps defined on intervals with finite end point, that is:

(4.2) o= &

tENp

which is closed for concatenation of maps, posses identity € and therefore it is a monoid since concatenation

is an associative operation. Note that in this case all the maps we are considering are defined on finite

n fact this is possible but one would have to resort to w-monoids, see for example [65]. This construction will be sketched
when dealing with the Zeno phenomena.
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subsets of the naturals and the condition that the end point of the domain is finite is equivalent to saying
that the number of symbols in the string is finite. This will not be the case for continuous systems as we

will see shortly.

3.2. Continuous Control Systems as Abstract Control Systems. For simplicity of presen-
tation, we consider only time-invariant control systems, although the construction to be presented is

generalizable to time varying systems. Let U be the space of admissible inputs. Define the set U’ as:
(4.3) Ut ={u:[0,4{=U | [0,t]CR}}

An element of U! is denoted by u!, and represents a map from [0, ¢[ to U. Consider now the set U* which

is the disjoint union of all U! for t € Ry :

(4.4) vr= [ v

terRy
The set U* can be regarded as a monoid under the operation of concatenation, that is, if u’* € Ut C U*

and u'2 € U2 C U* then uhtuf? = yh1+t2 € Uh1+t2 C U* with concatenation given by:

ult (t if 0<t<t
(4.5) ultu'?(t) = (®) - !
ub2(t—t1) if t <t<t;+ts

The identity element is given by the empty input, that is ¢ = u®. This construction parallels the

construction that obtains ¥* from X, however in this case the finiteness condition on the end point of

t

the domain of the map u® no longer implies that each string has only a finite number of elements. We

can have an infinite number of concatenations as long as the sum of the duration times converges.

We now show how this monoid is used to describe any smooth control system as an abstract control
system. Let # = f(z,u) be a smooth control system, where x € M, a smooth manifold and u € U, the
set of admissible inputs. Choosing an admissible input trajectory u?, f(z,ut) is a well defined vector field
and as such it induces a flow which we denote by ~, : [0,¢{[— M, such that ,(0) = z. We can then cast

any smooth control system into our framework by defining;:
b MxU* — M
(4.6) (z,ut) = (1)

It is not difficult to see that ® is in fact a well defined abstract control system since ®(z,e) = 7,(0) = =

and ®(z,u"u'?) = 7, (t1 + t2) = Yy, (11)(t2) = ®(P(2,u'),u’). In general the set of admissible control
inputs may change with the point z so that the domain of ® will be in fact a fiber bundle over M. It is
also interesting to note that when U is a singleton for every x € M (there are no choices to be made) the

set U' can be identified with the number ¢ so that U* is given by U* = HteR;rt = R} and our abstract
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control system ® degenerates into an action of ]RSL on M, that is, the solution of a differential equation

(a degenerate control system).

3.3. Hybrid Control Systems as Abstract Control Systems. Hybrid control systems also fit
in the abstract control system framework. The state space of an hybrid control system is usually described
as @ x M, where (Q is a finite set of states and M a smooth manifold. However it will be convenient to
relax this concept and look at the state space as a fiber bundle. Instead of considering the same manifold
M for every ¢ € () we consider a set of smooth manifolds X, parameterized by the discrete states and
denoted by X = {X,},eq. The discrete set () is thought as the base space, and for each base point ¢ € @
we attach a fiber X,;. A point in X is represented by the pair (g, z).

As action monoid we will use the set:
(4.7) M= T[w usy
t€Ng

assuming that U* N T* = {e} and regarding U* and ¥* simply as sets. Let us elaborate on the product
operation on M. This operation is defined as the usual concatenation and therefore it requires finite length
strings. To accommodate this requirement and still be able to have an infinite number of concatenations
of elements in U* we proceed as follows. Suppose that we want to show that ojuttu®? ... ul» ... 05 belongs
to M, where t,, is a convergent sequence. Instead of regarding each element in the string as an element in
M, which would not allow us to define the last concatenation since it would happen after oo, we regard

I
t2 yln ... = u' as an element of U* and consequently as an

o1 and o5 as elements of M and uf'u
element of M, where t' = nli_r)noo tn. This string is then regarded as the map w : {1,2,3} — M defined
by u(1) = o1, u(2) = u* and u(3) = 05. The product in M is then the usual concatenation on reduced
strings, that is, strings where all consequent sequences of elements of U* or ¥* have been replaced by
their product in U* or ¥*, respectively. The monoid M obtained by this construction is called the free
product of U* and ¥* and is is fact the coproduct in the category of monoids. Furthermore we have the

following characterization of M:

PROPOSITION 4.3 ([30]). The monoid M is freely generated by the symbols U* U X*.

Since the continuous control systems will, in general, be different at each fiber X, U will be a finite family
of admissible continuous control input spaces parameterized by the discrete states, that is U = {U, }4e0-

Hybrid control systems are now cast into the abstract control systems framework as:

DEFINITION 4.4 (Hybrid Control System). An hybrid control system H = (X, Ax,®x) consists of:

e The state space X = {X,},ec0.
e A fibering relation Ax on X x M defined by:
Ax ={((g,x),m) € X x M : ®x((¢q,z),m) is defined}.
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e A map &x : Ax — X respecting the monoid structure such that for all ¢ € @, there is a set
Inv(q) C X, and for all z € Inv(q), A(g,.) NU* # {¢} and ®((q,z),ul’) € Inv(q) for every prefix

ut' of every u! € A(g.2)-

The semantics associated with the evolution from (g, z) governed by ® and controlled by a € A, ) is the

0.z
standard transition semantics of hybrid automata [26]. Suppose that a = ut'oy05ut?, then ®((q,z),a) =
(¢',z') means that the system starting at (g, z) evolves during ¢; units of time under continuous input
u?', jumps under input o; and them jumps again under 5. After the two consecutive jumps, the system
evolves under the continuous control input u'? reaching (¢', z'), t2 units of time after the last jump. From

the hybrid system construction we can clearly extract the purely discrete case (X, is a singleton and

U, = @ for each q € Q) as well as the purely continuous case (@ is a singleton and ¥ = @).

3.4. Control System Abstractions. Having characterized the structure of hybrid systems we now
consider simulation relations, and in particular abstractions, between the general systems considered in
Definition 4.2. These notions will be specified by requiring that the structure is preserved between the
original system and its abstraction. Although for discrete and smooth systems a notion of simulation
based on a map between fibering monoids is able to model the relevant concepts and constructions, that
will not be the case for hybrid control systems. A map between fibering monoids turns out to be too
restrictive and one is forced to look into more general notions of simulation. The link between the fibering
monoids will be provided by a relation? which is general enough for our purposes. A notion of simulation
will involve a relation between fibering monoids that respects the control structure given by the map ®.

This is formalized as follows:

DEFINITION 4.5 (Simulations of Abstract Control Systems). Let ®x and ®y be two abstract control sys-
tems over X and Y with fibering monoids Ax and Ay, respectively. Let R C Ax x Ay be a fibering
monoid respecting relation. Then ®y is a simulation of ®x with respect to R or a R-simulation if and

only if:

(48) vaX (iU,y) € Rp = v(z,am)Gdom(R) Ei(:t,n,m,g):,ay)GR ((PX(maax)aq>Y(y7ay)) € Rp

This definition slightly generalizes the usual notions of morphisms between transition systems as in [89],
since we allow the control inputs to depend on the state space and since we use relations instead of
functions. It is not difficult to see that abstract control systems and relations satisfying condition (4.8)
form a category, that we call the abstract control systems category. It is also clear that the category of
discrete control systems and also the category of smooth control systems are subcategories of this larger

category.

2Tn fact it was by means of a relation that the notion of bisimulation was introduced in [52]
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It may seem that checking if R is fibering monoid preserving might be a difficult task in concrete examples.
We will see, however, that for hybrid systems the relations we will consider are fibering monoid respecting

by construction.

If we regard an abstract control system as a small category, then a simulation is a functor between

categories that may be multi-valued on both objects and morphisms.

We now propose the following notion of abstraction based on simulations:

DEFINITION 4.6 (Abstractions of Abstract Control Systems). Let ®x and ®y be abstract control sys-
tems over X and Y with fibering monoids Ax and Ay, respectively. If R C Ax x Ay is a fiber respecting
relation we say that ®y is an R-abstraction of ® x iff ®y is an R-simulation of ® x and R is a surjective

relation with domain Ax.

The notion of bisimulation also follows naturally:

DEFINITION 4.7 (Bisimulations of Abstract Control Systems). Let ®x and ®y be abstract control sys-
tems over X and Y with fibering monoids Ax and Ay respectively. If R C Ax x Ay is a fiber respecting
relation we say that ® x is R-bisimilar to ®y iff ®y is a R-simulation of ®x and ®x is a R~!-simulation

of (I)y.

The approach taken to define bisimulation is similar in spirit to the one in [52], however instead of
preserving labels of the abstract control systems, we relate them through the relation. Several other
approaches to bisimulation are reported in the literature and we point the reader to the comparative
study in [73] and the references therein. How this notion relates with the others is an important issue

that will be discussed elsewhere.

The importance of simulations lies on the fact that simulations capture all trajectories of the simulated
abstract control system. We now make this fact precise. Instead of trying to define trajectories of abstract
control systems (which would be as difficult as defining trajectories of hybrid control systems, see the
different approaches in [35, 53, 67, 85]) we will restrict our attention to the orbits of abstract control

systems.

DEFINITION 4.8. Let ®x be an abstract control system over X with fibering monoid Ax. The set O, is

an orbit from the point z € X iff:

(4.9) Ja,ea, such that O, = {z' € X : 2’ = ®dx(z,d.,) for every prefix a!, of a,}

Intuitively, the orbit O, through x is the set of all the points visited by ® x while being controlled by a,.

We can now relate the orbits of abstract control systems to the orbits of the corresponding simulations:
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PROPOSITION 4.9. Let ®x and ®y be abstract control systems over X and Y with fibering monoids Ax
and Ay, respectively. If ®y is a R-simulation of ®x with respect to a fibering monoid respecting relation

R induced by a map ¢ : Ax — Ay then:

(410) ¢(Om) = O¢(x) Viex Vo,

where ¢ : X — 'Y is the map induced by Rp.

PROOF. Assume that ®y is a R-simulation of ®x and let x € X be Rp related to y € Y. For
any (z,a,) € dom(R) there exists a pair ((z,az), (y,ay)) € R such that ¢ o ®x(z,a,) = ®v(y,ay) =

Oy (¢(z,a;)) by definition of simulation and the fact that R is induced by ¢. Therefore:

$(0,) = U #(@x(=,4a,))

a!, prefix of a,

- U avle@a)

a!, prefix of a,

Since ¢ maps prefixes of a, to prefixes of a, (as it is a fibering monoid respecting map) for (y,a,) =

o(z,a,) the previous expression can also be written as:

U  @vie(.a)) = U  ev.a)
a!, prefix of a, ay, prefix of ay
= Oy
= O

and the proof is finished. O

If the fibering monoids are related by a relation that is not induced by a function, then we only have a

weaker version of Proposition 4.9 as illustrated in the next example.

?13 Qyy y4

a
.%ﬂl { ]

1 Y2

o [ G [ .
T T3 Ty

FIGURE 2. An abstract control system and one possible simulation.

ExaMPLE 4.10. Consider the abstract control system Hx displayed in the lower part of Figure 2, where

the € transitions are not displayed. The abstract control system displayed in the top part of the figure is
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a simulation of Hx with respect to the relation:

R = {((xlaam): (yla ay1))= ((xlag)a (y1=5))= ((133, aza)a (yS, ay3))
(411) ((‘r375)7 (yS:E))= ((I375)7 (y2:5))7 ((1‘4,5), (y475))}

We then see that the evolution z; ﬂ x3 is simulated by ¥ ﬂ) 12 while the evolution x3 aﬁ Ty
is simulated by ys3 RN ys. However, yo # y3 as a consequence of the nondeterminism imposed by
Rp(x3) = {y2,y3}. Nevertheless, relations will be play an important role in describing simulations for

hybrid control systems.

We have already seen that abstractions preserve orbits but in the next section we will see in detail that

abstractions may preserve other properties as well.

3.5. Preservation of Properties. In this section we will study preservation of properties that will

become important for the later study of hybrid systems.

3.5.1. Reachability.

DEFINITION 4.11 (Reachable Space). Let ®x be an abstract control system over X. The reachable space
from a point € X, and denoted by Reach,(®x) is given by:
(4.12) Reach,(®x) = U Dy (z,a)
a€A,

The reachable space from a set X' C X is denoted by Reachx (®x) and is defined as:
(4.13) Reachx: (Px) = U Reach, (®x)

zeX'
Simulations preserve reachable sets in the sense that given an initial condition 2’ € X there exists a choice
function ¢ : X — Y relating the reachable space of and abstract control system with the reachable space

of its simulation:

PROPOSITION 4.12. Let ®x and Py be two abstract control systems on X and Y, respectively. If ®y is
a R-simulation of ®x for a relation R with domain Ax, then for every x' € X there exists a map ¢ : X

— Y such that (z,4(z)) € Rp and ¢(Reach, (®x)) C Reachy(, (Py)

ProOF. Let us define ¢. For z', ¢(z) is any 3y’ € Y such that (2',y') € Rp. For any z €
Reach, (®x), ¢(x) = @y (p(z'), ap(zr)), where ((2',a.), ((2'), ap(2))) € R and x = ®x (2, a,). Note
that (¢(z'), ag(,r)) exists since the domain of R is X and by definition of simulation (z, ®y (¢(2'), ag(.))) €
Rp. This allow us to conclude that for any = € Reach, (®x), ¢(x) = @y (¢(2'), ag(,)) € Reachg(y(Py)
as desired. We have already shown the desired inclusion so that the definition of ¢ for points not belonging

to Reach, (®x) is arbitrary. O
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This result is in fact a natural consequence of the fact that simulations preserve trajectories. Safety
properties expressed in several temporal logics can also be shown to be preserved based on the notion of

simulation, however, we shall not explore further this aspect.

3.5.2. Blocking. Another important property is the absence of dead-locks on the system being mod-
eled by a discrete or hybrid control system. The analogue for continuous systems is the non-existence of

finite explosion times. This property is usually called non-blocking and is defined as:

DEFINITION 4.13. Let ®x be an abstract control system. ®x is said to be non-blocking from S C X iff

for every « € Reachs(®x), A, # {e}.

In general simulations do not preserve non-blocking, however this can be achieved under the proper

assumptions:
PROPOSITION 4.14. Let ®x be an abstract control system and ®y a R-abstraction of ®x. If:

e &x is non-blocking from S
e for any (z,y) € Rp such that:
— x € Reachs(®x)
— y € Reachpy(s)(Py)
— (2',y) € Rp for every ' € Reach,(®Px)

there exists an action az € U, cp1(,yAa such that R(z,a.) # {(y,€)}
B

then ®y is non-blocking.

ProOOF. We will proceed by contradiction. Assume that ®y is blocking from Rg(S) and that the
proposition conditions hold. Since ®y is blocking from Rp(S) there is a y € Reachg,(s)(®y) such that
A, = {e}. By surjectivity of R there is a (z,a,) € Ax that is R-related to (y,e). Let W be the set
of all (z,a;) € Ax R-related to (y,e). This set satisfies Reach,(®x) C wx (W) for every z € 7x (W)
since from dom(R) = Ax it follows that for any a, € A, (z,a;) € W and this in turn implies that
(®x(z,a;),y) € Rp by (4.8). It follows that ®x(x,a,) € nx (W) and therefore Reach,(®x) C wx(W).
However, we know that there is an action a, € Uyery(w)As such that ((z,a.), (y,ay)) € R with a, # ¢

which contradicts the fact that ®y is blocking at y. O

This condition is also necessary as we now show:

PROPOSITION 4.15. Let ®x be an abstract control system and ®y a R-abstraction of ®x. If ®x is

non-blocking from S and ®y is non-blocking from Rg(S) then for any (x,y) € Rp such that:

e © € Reach(®x)
e y € Reach(Py)
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e (2',y) € Rp for every ' € Reach,(®x)

there ezists an action a, € U (yyAa such that R(z,a,) # {(y,e)}.

tERG

PROOF. Admit that ®y is nonblocking from Rg(S). Let W be the set of all elements from X that
are Rp-related to some y € Reachp,(s)(®y). If Reach,(®x) ¢ W for any = € W then the result is
vacuously true. If Reach,(®x) C W for some z € W then since ®y is nonblocking from y there is an
action a, € Ay, a, # € such that the pair (y, a,) is R-related to (z, a,) with ay € Uzew A, by surjectivity
of R. O

This result is clearly unpractical since it involves conditions that are not possible to check in practice.
However it is difficult to give checkable conditions at this level of generality. When dealing specifically
with hybrid control systems at Section 4 we will be able to take advantage of the structure of hybrid

control systems to be able to give results based on more easily verifiable conditions.

3.6. When are two abstract control systems bisimilar? When synthesis (and not analysis) is
the important issue one is interested in ensuring that every trajectory of the abstraction has a feasible
implementation on the original, more detailed model. This allows to design controllers for the abstraction
and then refine them on the original system by incorporating the modeling details not present on the
abstraction. Feasibility of implementations or refinements asks for the original model to be a simulation of
the abstraction, emphasizing the role of bisimulations. They allow analysis as well as synthesis processes
to be performed more efficiently since they render both models equivalent, although one of the models
has preferably lower complexity than the other. Furthermore when dealing with hybrid control systems
we will provide a constructive algorithm to compute simulations of hybrid control systems. Ideally, one
would like to produce bisimulations through the algorithm and therefore we need to develop alternative
characterizations of bisimilar systems to determine when we are in fact computing bisimulations. To
accomplish this we will restrict attention to fibering monoids Ax freely generated by fiber bundles of
generators Gx. This means that any element a,, in the fiber A, over x € X can be obtained by multiplying
elements gl, g2, ... on the fiber G, over z € X. This assumption is justified by the fact that in the hybrid
case the monoid M is free on the set ¥* U U*. Furthermore ¥* is free on the set ¥ and U* is also free
on a set of infinitesimal generators. We restrict our attention to abstract control systems factored by
equivalence relations on the state space, since they capture the essence of the abstraction methodology
we will later propose for hybrid control systems. Let ¢ : X — Y be a surjective map and define the
equivalence relation ~ C X x X by x; ~ o iff ¢(x1) = ¢(x2). Based on this relation we can quotient ® x
obtaining ®y = ®x/ ~. To define the quotient abstract control system ®y we introduce the operator

R, ®x returning the subset of X reachable from z € X by ®x when controlled by elements in Gx, that
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is:

92€G,

This operator allows to introduce the fiber bundle Gy of the generators of Ay defined as a fiber bundle
over Y = ¢(X) with fiber over any y € Y isomorphic (as a set) to:

(4.15) U poR,Px
r€4~1(y)

The quotient control system ®y can now be defined by:
(4.16) ®y(y,ay) =y" iff Fa,ca, ®x(z,a,)=2" A ¢(x)=y A ¢(@')=y" N ¢(z,a;) = (y,ay)

for a surjective, fibering monoid respecting map ¢ : Ax — Ay implicitly defined by the following

commutative diagram:

Ay 2y
2 ¢
(4.17) Ay e X
or equivalently, by the following equality:
(4.18) ¢po Px(z,a:) = Py (p(z,a.))

To show that such a map ¢ exists (and is uniquely defined) we note that it suffices to define it from G x
to Gy. For any a, € Gy, ¢(z,a,) is defined to be the unique element (y,a,) € Gy such that ¢(z) =y
and @y (y,ay) = ¢ o Px(x,a,). Such an element a, always exists and is unique by definition of Gy. We
emphasize that the map ¢ is uniquely determined by the choice of the map ¢. This fact will be important
when dealing with hybrid control systems where this construction will be used several times. We resume

the above discussion in the following result:

PROPOSITION 4.16. Let ®x be an abstract control system over a set X with fibering monoid Ax freely
generated. Given a surjective map ¢ : X — Y, there exists a unique fibering monoid preserving lift
p: Ax — Ay of ¢ and a quotient abstract control system on Y with fibering monoid Ay which is a

p-simulation of ®x.

PRrROOF. The existence of &y and ¢ has been shown in the previous paragraph as well as the unique-
ness of ¢. We will only show that ®y is a y-simulation of ®x, which is a direct consequence of the

commutativity of (4.17).

Assume that z =% 2’ for some a; € Ax. The element a, can be written as a product of generators as

az = gtg?...g" and in particular we have n = 1 if a, € Gx. The evolution z = 2’ can then be written
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1 2 3 n
9z 9z 9z 9; .
as r — T; — T3 — ... — x'. By construction of ®y we know that we have:

(4.19) po®x(z,9,) = (1) =y = By (y,9,) = Py (¢(z,9;))

But since g2 € Gx we also have:

(4.20) ¢ o Bx(1,95) = ¢(x2) = y2 = By (y1,9;) = Py (o(z1,97))

so that by making use of the semi-group property of abstract control systems we conclude that:

y(y.9,90) = Pv(®v(y,9,),9;)
= ®y(y1,9;)
= Y2
(4.21) = ¢(z2)
A finite induction argument now shows that y —% y' for (y,ay) = (Y, 9595 - 90) = @2, 9195 .- 97) =
o(z,a;) and ¢(z') = y' implying that ®y p-simulates ®x since for any (z,y) € ¢ and any (z,a,) €
dom(yp) the tuple ((z,as), (y,ay)) € ¢ previously described satisfies (®x (2, a.), Py (y,ay)) € ¢. O

The use of a fiber respecting map ¢ instead of a product respecting map shows a different perspective
from the computer science approaches as described in [89]. This different approach is a consequence
of modeling abstract control systems as deterministic systems which naturally requires extra flexibility

when modeling state and input aggregation as illustrated in the next example.

EXAMPLE 4.17. Consider the following fibering monoid Ax = {(z1, a), (z1,¢), (z2,a), (x2,¢), (z3,€), (x4,€)}
and ®x (z1,a) = x3, Px(r2,a) = z4. If we model the state and input aggregation by a product respecting

map of the form ¢ = (¢, darq) with ¢ : X — YV and ¢ : Mx — My defined by:
P(x1) =1 ¢(32) =21 ¢(73) =73 P(74) = T4
omla) =a ¢mle) =«
The abstraction would satisfy:
(4.22) By (21,a) = {z3, 24}

which is clearly nondeterministic. This modeling problem can be overcome by using a fiber respecting

map ¢ : Gx — Gy defined by:
@(ml,g) = (331,8) (p(wlva) = (561,(1) 90(332’5) = (551:5)
@(m27a) = (wlab) (p(iEg,E) = (33355) (p(CU4,E) = (554:5)

that assigns a different generator for each different state reachable from z;.
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Inspired by the results in [59] we characterize bisimilar systems in terms of the reachable space previously

defined:

PROPOSITION 4.18. Let ®x and ®y be two abstract control systems over X and Y respectively. Given

an equivalence relation ~C X x X, ®x is R™-bisimilar to ®y = ®x/ ~ iff:

(4.23) RE(R:®x) = Ry (Rpy-10ry () Px)

PROOF. Assuming R™-bisimilarity we will show that R3(Rpy-10r~(a)®x) C Rp(Re ®x) since
the other inclusion is obvious. Let zo € Ry~ ' o Rj(z;1) and oy € R,,Px, that is z» 2o xh for some
ag, € Gg,. By the fact that ®y is a R™-simulation of ®x we get that R} (z2) EGe R%; () for some
AR (25) € GRy(x,)- Using now the fact that ®y is a R™~"'_simulation of ®y and x» € R,;‘l o Ry (z1)
we conclude that z; —% z} for some a,, € A,, and for a state x} such that (z},25) € Rp. However
by construction of ®y, the preimages of AR (2,) under R™ have non empty intersection with Gx and

therefore we can assume that a,, € Gx implying that 2} € R,, ®x. This allows to conclude that for any

Ty € Rry-10R% (o)) We have RE(25) = Ry (z}) € R3 (R4, ®x) thereby showing the desired inclusion.

To show the converse, we recall that by Proposition 4.16 the quotient system ®y is a simulation of ® x so
that we only need to show that ®x R~ '-simulates ®y. Let y’ € Reach,®y, that is, there is a a, € A4,
such that y SN y' and assume that ¢(z) = y and ¢(z') = y' (which can always be done since ¢ is a

surjective map). The element a, can be written as a finite multiplication of generators as a, = g;gz c Gy

iy 9

where n equals 1 if a, € Gy and the evolution y N y' decomposes as y BN Y1 —§> Yo g—§> g—;> y'
By construction of ®x/ ~ we have that g; is the image under R™ of some gL € Gx and the equality
¢odx(z,gl) = @y(y,g;) holds meaning that the evolution y g—;> y1 is simulated by the evolution
T g—;> z1. But by the same argument the evolution g g—3> Y2 is simulated by the evolution x; g—§> zo and
the semi group property of abstract control systems allows to conclude that ¢po®x (2, g;93) = @y (, 9,97)-
An induction argument now shows that the evolution y N y' is simulated by the evolution z —= 2’
with a, = glg2...g" thereby showing that ®x R™'-simulates ®y since R~(a,) = R~ (glg>...g") =
R™(9,)R™(93)--- B~ (93) = 9,95 --- 9 = ay- O

At this level of generality this characterization of bisimulation is as unpractical as the definition since we
have no means of computing the relevant Reach sets. However for discrete systems the Reach sets can be
computed algorithmically and for continuous systems there are reasonable infinitesimal characterizations.
When dealing specifically with hybrid control systems we will be able to give sufficient conditions for the

desired equality between the relevant Reach sets.
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3.7. Compositional Abstractions. In this section, we follow the categorical description of tran-
sition systems in [89], and introduce a notion of parallel composition for abstract control systems, then
we determine under what conditions does this notion of parallel composition respect simulations and

bisimulations.

3.7.1. Parallel Composition with Synchronization. The first step of composition combines two ab-
stract control systems into a single one by forming their product. Given two abstract control sys-
tems ®x : Ax — X and ®y : Ay — Y we define their product to be the abstract control system
Ox x Py : (Ax x Ay) = (X xY), ®x x ®y(ay, ay) = (Px(az), Py (ay)), where the fibers of (Ax x Ay)
are subsets of the direct product monoid Mx ® My. The trajectories of the product control system
consist of all possible combinations of the initial control systems trajectories. The product can also be

defined in a categorical manner.

DEFINITION 4.19 (Product of abstract control systems). Let ®x : Ax — X and ®y : Ay — Y be two
abstract control systems. The product of these abstract control systems is a triple (?x x ®y,7x,7y)
where ®x x ®y is an abstract control system and 7x € (X xY) x X and 7y C (X xY) x Y are
projection relations such that ® x is a wx-simulation of ®x x ®y, ®y is a wy-simulation of ®x x Py,
and for any other triple (®z,px,py) of this type there is one and only one relation ( C Z x (X x Y)
such that &x x ®y is a (-simulation of ®z, and the following diagram commutes:

<I>X<7<I>X><<I>y4>

N

The relations 7x and 7y are in fact those induced by the canonical projection maps 7x : X xY — X,

(4.24)

my : X XY — Y and the relation ( is easily seen to be given by ( = (px,py). This definition of product
may seem unnecessarily abstract and complicated at the first contact, it will, however, render the proof of
the main result on the compatibility of parallel composition with respect to simulations an almost trivial

task.

EXAMPLE 4.20. Consider the transition system inspired from [89] and displayed on the left of Figure 3
where the e evolutions are not represented. The product of these transitions systems will consist of all

possible evolutions of both systems as displayed on the right of Figure 3.

In the product system we capture all possible trajectories of both systems and consequently several non
physically meaningful trajectories. One allows, for example, input trajectories of the form (g, u’) where

no time elapses in system ®x and ¢ units of time elapse in system ®y. These trajectories need to
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FI1GURE 3. Two transition systems on the left and the corresponding product transition
system on the right.

be removed from the product system in order to faithfully model a physical system. Another reason to
remove transitions from the product system comes from the fact that in the product system, the behavior
of one system does not influence the behavior of the other system. Since in general the behavior of a
system composed of several subsystems depends strongly on the interaction between the subsystems, one
tries to capture this interaction by removing undesired evolutions from the product system ®x x ®y

through the operation of restriction.

Given a fibering submonoid® A; C Ay we define the restriction of control system ®yw : Ay — W to
Ap as a new control system ®y |4, : A, — L which is given by ®w |4, (z,a) = ®w(z,a) iff (z,a) € AL
and @y (x,a’) belongs to L for any prefix a' of a. If the fibering submonoid Ay, has the same base space
as Aw but “smaller” fibers, then restriction is modeling synchronization of both systems on the control
inputs. If on the other hand the fibers are equal but the base space of Ay, is “smaller” then the base
space of Ay then both systems are being synchronized on the state space. Synchronization on inputs and
states is also captured by the operation of restriction by choosing a fibering submonoid with “smaller”

fibers and base space. This operation also admits a categorical characterization.

DEFINITION 4.21 (Restriction of abstract control systems). Let ®y : Ay — W be an abstract control
system, Ay, a fibering submonoid of Ay and g and h two simulation relations such that A;, = {(w, a,) €
Aw | g(w,ay) = h(w,a,)}. The restriction of ®w to Ay is a pair (®Pwl|a,,ir) where ®w |4, is an
abstract control system and i;, C L x W is an inclusion relation such that ®y is a iz-simulation of
Dy |4, satisfying g oir, = hoir and for any other pair (®z,iz) of this type such that goiz = hoiy

there is one and only one relation n such that ®y|4, is a n-simulation of ® 7, and the following diagram

3A fibering submonoid A of a fibering monoid B is understood as a fibering monoid such that the inclusion map i: A < B
is fibering monoid preserving.
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(a,b) (€:¢)

(z1,9) (22, 91) (z2,2)

FI1GURE 4. Parallel composition with synchronization of the transition systems displayed
on the left of Figure 3.

commutes:
Py |a, L, Sy ——= Py
n iz
(4.25) 3,

In general the domain of ®w|4,, Az, may be strictly contained in Ay since restricting the base space
implies also restricting the fibers to the actions that do not force the abstract control system to leave the
restricted base. In any case the relation iz, is simply the inclusion iz (a;) = a; € Aw for every a; € Ap.
With the notions of products and restriction at hand, we can now define a general operation of parallel

composition with synchronization.

DEFINITION 4.22 (Parallel Composition with synchronization). Let ®x : Ax — X and &y : Ay — Y
be two abstract control systems and consider a fibering submonoid A, C Ax x Ay. The parallel
composition of ®x and ®y with synchronization over Ay is the abstract control system denoted by

Dy |4, Py and defined as:

(4.26) Dy [la, Py = (Px x Py)|a,

ExAMPLE 4.23. Consider the transition system displayed on the left of Figure 3. By specifying the
subbundle:

Ap = {((‘rlayl)= (aa b))/ ((x17y1)7 (575))7 ((xlayl)a (a= bc))a
(427) ((‘r2:y1)7 (57 C)), ((1’2, yl)a (575))7 ((x2:y2)7 (575))}

it is possible to synchronize the event a with the event b on the parallel composition of these systems.
The resulting transition system is displayed in Figure 4. For purely continuous examples of parallel
composition with synchronization we defer the reader to Chapter 5 where the abstractions of directed
formations can be seen as the parallel composition of the individual agents with synchronization on
the submanifold of the state space defined by the formation constraints. Note that contrary to the
construction described in this section, in Chapter 5 only the control system is the parallel composition

of the individual control systems, since the state space remains the product state space.
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3.7.2. Compositionality of Simulations. We now determine if composition of subsystems is compatible
with abstraction. A positive answer to this question is given by the next theorem which describes how
the process of computing abstractions can be rendered more efficient by exploring the interconnection

structure of hybrid systems.

THEOREM 4.24 (Compositionality of Simulations). Given abstract control systems ®x, 5 (which is a
Rx -simulation of ®x ), ®y, ®w (which is a Ry -simulation of ®y ) and the fibering submonoid Ay, C
Ax x Ay, the parallel composition of the simulations ®z and ®w with synchronization over Rx«y (Ar)
s a RXXy|E-simulation of the parallel composition of ®x and ®y with synchronization over A, where

A_L = dom((I>X ||AL ‘Py)

Proo¥F. Consider the product system (®z x @y, 7z, 7w ) and the triple (Px x Py, Rxomx, Ry omy).
By definition of product we know that there is one and only one relation ¢ such that:

<I>z<7<1>z><q>W4><I’W
%

(PXX‘PY

commutes and this relation is given by ( = (Rx,Ry) = Rxxy, meaning that &z x & is a Rxxy-

simulation of ® x x ®y. Consider now the following diagram:

i g9
(@7 % Bw)o(a,) — e 7 x By — v
COiAL

(4.28) (Bx X Dy)|a,

where g and h are equal on the fibering submonoid ((Ay,). It is clear that go (oia, = ho (o4, since
A C Ay implies ( oia, (Ar) = ((AL) C ((Ar). Therefore there exists one and only one simulation

relation n) from ®x |[4, Py to Pz ||¢(a,) Pw whichis given by n = (oia, = Rxxyoia, = RXXy\E. O

The above result was stated for parallel composition of two abstract control systems but it can be easily
extended to any finite number of abstract control systems. The relevance of the result lies in the fact that,
in general, it is much easier to abstract each individual subsystem and by parallel composition obtain an

abstraction of the overall system.
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3.7.3. Compositionality of Bisimulations. We have already seen that bisimulation is a very powerful
tool to deal with the complexity of large scale systems. In this subsection we will try to extend the
previous compatibility results from simulations to bisimulations. We start with a very simple lemma

stating that product respects bisimulations:

LEMMA 4.25. Given abstract control systems ®x, ®; (a Rx-bisimulation of ®x ), Py and ®w (a Ry-

bisimulation of ®y ) the product abstract control system ®; x ®w is a Rxxy -bisimulation of ®x x Py .

ProoOF. Consider the following commutative diagrams:

Py x &y Py x Oy
TX Ty X Ty
dx by dx Py
Rx m Ry Ry 72 Ry!
0y Sy i Py
A ™w Tz ™w
(4.29) By x by By x Oy

By definition of product there exists one and only one relation n; and one and only one relation 7
such that both diagrams commute. In fact, n; is the relation 7 = (Rx o mx, Ry omy) = Rxxy and

= (R;(1 o WZ,R;l omw) = R}lxy meaning that ®x x ®y is Rxxy-bisimilar to &z x ®pp. O

Although the product respects bisimulations the same does not happen with the operation of restriction.

Consider the example displayed in Figure 5 where the abstract control system on top is bisimilar to the

FIGURE 5. Bisimilar abstract control systems.

system below with respect to the relation:
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R = {((‘rhs): (1’1,6)), ((x1=a11)a (‘r17azl))’ ((‘r%‘g)a (‘r3a5))7
(430) ((‘r% amz): (1’3,6)), ((x375)7 (1’3,6)), ((1’3, azs)a (‘r37a13))7 (($4,€), ($4,€))}

If we now restrict the fibers of the system below to the set {g,a,,, az,} through the fibering submonoid:

(431) Ap = {(w1=5)= (371:0’101)7 (vaE)v (333,8), (w3va963)= (374:5)}

and restrict the fibers of the bisimilar system on top to R(Ay,) the systems will cease to be bisimilar since
the system on top can move from z3 to x4 by a,, but the system below can not simulate that evolution

when on z5 € R5' (z3).

Assuming some extra structure on the relation R we can overcome this difficulty as stated in the following

result:

PROPOSITION 4.26. Let ®x be an abstract control system, ®y a R-bisimulation of ®x and AL a fibering

oR|; =idg, and R|E°R‘E71 = idp 5 for A, = dom(®x|a,)

submonoid of Ax such that R™}| AT

R(Ar)

and R(Ar) = dom(®y|gr(a,)). The restriction ®x|a, is a Rlg—-bisimulation of ®y|p(a,)-

PROOF. A similar argument to the proof of Proposition 4.24 shows that ®y is a R|E—simulation of

® y so that we will only show that ®x is a R| ! _simulation of ®y. Consider the following diagram:

Ag,
QY‘R(AL)
R 1'o iR(AL)
(4.32) Bla, bx ——2 Iy

L

where g and h are equal on the fibering submonoid Aj,. We will show that (4.32) commutes by proving the
only nontrivial equality, goR~* OiR(AL) = hoR™ ! OiR(AL)- Recall that the assumptions R~! |WOR‘E =
idg and R‘E o R|E*1 = id—R(AL) imply that R~! |—R(AL) and R|371 are right and left inverses of

R‘E’ respectively. However, by associativity of composition, inverses are unique and we must have

R’Hm = R|E71 and R(Az) = R(Ar). This allows to conclude that:
R~ oipa,)(R(AL)) = R oipa,) o R(AL)
(4.33) = R g,y 0 Blu(AL) = idy, (Ar) = AL C Ar

Since (4.32) commutes we can invoke the definition of restriction to ensure the existence of a unique

1

simulation relation from ®y|p(4,) to ®x|a, which is given by n = R™" oig4,) = R‘l\m = R\Efl

thereby showing bisimilarity. O
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The conditions R’Hm o R, = idg, and R4 o R\Efl = idp 4,y are very strong since they imply

that R|4, induces a set isomorphism between Ay, and R(A;). However this condition is in fact necessary

as we now show:

PROPOSITION 4.27. Let ®x be an abstract control system, ®y a R-bisimulation of ®x and Ap a fibering

submonoid of Ax . If the restriction ®x |5 is a R|g-bisimulation of ®y|g(4,) then R™' \mo Rl =

idg; and Rl 4o R\E_l = idgia,ys for Ap = dom(®x|a,) and R(AL) = dom(®y|g(ay))-

ProoOF. Consider the following commutative diagrams:

IR(A IR(A
Py |R(ar) A L, Py |R(ay) (Ar) Py
Rl R~! R|E_l R
(4.34) Byla, — A Ly B4, tAr Oy

From the left diagram we get the equality:

ia, = R 'oipa,)oRlq
(4.35) R gy 0 Bl
which gives R_l\m o R|5— = idy— by restricting the codomains to Az. A similar argument for the
diagram on the right allows to obtain R|z—o R\E_l = idgray O

The above propositions lead to the following result concerning the compositionality of bisimulations:

THEOREM 4.28 (Compositionality of Bisimulations). Given abstract control systems ®x, ®; (a Rx-
bisimulation of ®x ), ®y, ®w (a Ry -bisimulation of ®y ) and a fibering submonoid A, C Ax x Ay we
have that the parallel composition of the bisimulations ®; and ®w with synchronization over Rx «y (Ar)
s a Rny|E—bisimulation of the parallel composition of ®x with ®y with synchronization over Ay iff
R}lxy|g o Rxxylg, = idg, and Rxxy|z; © RXXY‘Eil = idy A for Ap = dom(®x |la, ®v)

and RXXy(AL) = dom(q)z ||R(AL) ‘I>W)

From the previous result we conclude that if we have a mean of computing bisimulations and if we
choose the synchronization fibering submonoid carefully we can compute bisimulations by exploring the
interconnecting structure of large-scale systems. In the next section we provide an algorithm to effectively
compute abstractions and in certain situations bisimulations for hybrid control systems. We thus see
that these results of compositionality of simulations and bisimulations provide efficient tools to handle

the complexity of today’s applications.
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4. Hybrid Control Systems

4.1. Abstractions. Simulations of hybrid control systems are a simple instantiation of the pre-
viously introduced notion of simulation for abstract control systems. However, hybrid control systems
usually come equipped with a set of initial conditions Xo € X which must also be related with the set of

initial conditions of its simulation. The proper relation is expressed as follows:

DEFINITION 4.29 (Simulations of Hybrid Control Systems). Let Hx = (Xo, X, Ax,®x) and Hy = (Y5, Y, Ay, ®y)
be two hybrid control systems over X and Y respectively and let R C Ax x Ay be a fibering monoid

respecting relation. Hy is a R-simulation of Hx iff:

1. Rp(Xo) C Yo.

2. szX (‘ray) € Rg = v(x7am)€dom(R) 3(amcbmyﬂy)eR ((pX(‘raam):(bY(yaay)) € Rp.

The notion of abstraction is an instantiation of abstract control systems abstractions:

DEFINITION 4.30 (Abstractions of Hybrid Control Systems). Let Hx and Hy be two hybrid control sys-
tems over X and Y respectively and let R C Ax x Ay be a fiber respecting relation. Hy is a R-abstraction

of Hx iff R is a surjective relation with domain Ax and Hy is a R-simulation of Hy.

as is the notion of bisimulation:

DEFINITION 4.31 (Bisimulation of Hybrid Control Systems). Let Hx and Hy be two hybrid control sys-
tems over X and Y respectively and let R C Ax x Ay be a fiber respecting relation. Hy is R-bisimilar

to Hx or a R-bisimulation of Hx iff Hy is a R-simulation of Hx and Hx is a R~ !-simulation of Hy.

4.2. Computing Abstractions. The goal of obtaining algorithmic procedures for computing ab-
stractions guide us to more amenable characterizations of hybrid control systems. A first step in this
direction is given by characterizing hybrid control systems in terms of its generators. From this point on

we will simplify the notation by writing an element of A, .y as (g, z,a) instead of ((¢, ), a).

PROPOSITION 4.32 (Hybrid Generators). A set of initial conditions Xo C X, a finite set of symbols X x,
a family of smooth fiber bundles 7% : Uy, — X, a partially defined map 6x : X x Ex — X and a family
of smooth control systems Fx = {F%}seq, Fy : Uy — TX, defined on fiber bundle U% over an open
subset of X, for each q € Q uniquely define a hybrid control system Hx. The maps dx and Fx are called

the discrete and continuous generators of Hx, respectively.
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PRrROOF. We start by showing that dx extends uniquely to a partial map dx* : X x ¥% — X. This

action is obtained from dx by:

(4.36) ox"(q,z,6) = (¢,7)

(4.37) 0x*(q,z,010) = Ox*(0x"(q,z,01),0) o0 € X%, 01 € Xx
defining dx* uniquely since ¥% is the monoid freely generated by Xx.

A similar construction is possible for Fx. Denote by C, the projection under 7% : Uy — X, of the open
subset of X, where each F} is defined. A unique action FL" : cl(C,) x U%" — ¢l(C,) can be obtained
from F§, where we denote by cl(C,) the closure of C, in the topology of X,. This is accomplished by

defining Fy." as:
(4.38) Fi" (@, uf) = va(t))

where v, (t) is the integral curve of the vector field Fy. (v, (t),u") satisfying v, (0) = z. By existence and
uniqueness of integral curves of vector fields follows existence and uniqueness of the action Fg* : Cy x Uy
— C, since F} is smooth. Moreover, we can extend F§™ : Cp x Uy — Cy to F§* : cl(Cy) x UL”
— cl(C,) in a unique way by continuity since C, is dense on ¢l(C,) and X, is an Hausdorff, second

countable topological space.

We can now combine §x* and F" to get an hybrid control system Hx = (Xo, X, Ax, ®x) with Ay C
X x M and M =[]y, (Ux UE%)". Let a € Uy UX% and define:

(q,2) if a=e¢
(4.39) ®x(q,z,a) = dx*(¢,7,a) if a€¥%
Fi{*(z,a) if a€Uy

For a general a € M, split a into a = ajay with a; € Uy UX%, then ®x is given by:
(440) Px (Qa T, a) = (PX((L T, ala?) = (PX((I)X (Qa T, al): a2)

and ®x(q,z,e) = (¢,x). This construction always provides a unique abstract control system ®x since

we are using as monoid, the monoid freely generated by Uy U X% as asserted in Proposition 4.3. O

This result tells us that it is enough to work with vector fields and single event jumps, which is how
hybrid automata are usually defined in the literature [27]. In the light of this result we will also denote an
hybrid control system by the tuple Hx = (X, Xo,Xx,Ux,dx, Fx). This representation of hybrid control
systems will allow constructive methods to generate abstractions by combining discrete and continuous

abstraction methodologies.

In order to benefit from the continuous abstraction methodology developed in [60, 63, 64] we will consider

abstractions of hybrid control systems defined by equivalence relations on the state space. Other possible
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alternatives would consider equivalence relations on the inputs or on states and inputs. However, from
a systems engineering point of view, it seems more natural to specify which state information should be
ignored since the inputs are regarded as a means of obtaining the desired state behavior. This contrasts
with the computer science approaches where the emphasis is put on the inputs which describe the behavior

of the systems being analyzed through the language accepted by some automaton [29].

In this spirit, we start with a surjective map ¢ : X — Y which specifies the state aggregation. It will be
useful to decompose ¢ into its discrete and continuous components. We shall denote by ¢p : X — P the
discrete component of ¢. Note that since we allow continuous to discrete aggregation the map ¢p does
depend on X, as well as on ). Specifically, we assume that there is a finite covering of 7% (dom(F%)) C X,
for every ¢ € @) denoted by I', = {I‘é}ig such that I‘é N I‘g = @ for i # j. We denote the set covering
the point (¢,z) by [',(z) and we call T'j(x) adjacent to [y(2') iff cl(T,(z)) Nel(Ty(2')) # @, where cl
denotes the closure in the topology of X,. Note that ¢p when restricted to the sets I'y(z) simply gives
the discrete state associated with the covering sets I';(z). We also introduce the set IT C @ x P for later
use. It contains all the pairs of points (g, p) for which there exists a € X, such that ¢p(g,z) = p. The
continuous component of ¢ will be denoted by ¢ and consists of a family of smooth surjective submersions
dc = {bgp}(qp)en With ¢y, + X, — Y. Having defined the state aggregation to be performed in the
abstraction process we have also implicitly defined the surjective map ¢ : Ax — Ay relating the fibering
monoids of the original system and its abstraction. This map is determined by the methods described in
Subsection 3.6 and once again it is useful to have notation for its continuous and discrete components.
The continuous part of ¢, will be a family of smooth surjective fiber respecting maps o = {@gp}(q.p)er
¢qp : Uy — Uy which can be computed by the methods described in [78] and Chapter 3. The discrete
component of ¢, will be denoted by vp = (ép, ps5).

Another important point to mention, and which is a consequence of the difference between continuous
and discrete systems, is that although we have partitioned the sets 7% (dom(F'%)) into a finite number of
subsets, the continuous flows generated by F% can cross an infinite number of adjacent coverings sets in
finite time. This will cause difficulties in the current framework since we are using as monoid the monoid
free on the set ¥% U Uy which consists of finite length strings. We will, therefore, assume that the
covering of 7% (dom(F{)) is such that the flows generated by F3. only cross adjacent covering sets a finite
number of times in any finite time interval. Any covering satisfying this assumption will be called finitely
compatible with Fy. Sufficient conditions for finite compatibility, involving subanalytic stratifications

for example, are given in [41]. This assumption can be dropped in two different scenarios:

e If there is no continuous to discrete aggregation,

e or if one extends the monoid M to a w-monoid which can accommodate non finite length strings.
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We now show how it is possible to specify a fibering monoid respecting relation based on the above maps.

We start by defining several relations that will induce a unique fibering monoid respecting relation.

DEFINITION 4.33. Given a hybrid control system Hx and:

e A finite covering T'y = {I'} }iesr by pairwise disjoint sets of 7% (dom(F%)) finitely compatible with
F% for every ¢ € Q.

e A family of smooth surjective fiber preserving submersions 9o = {@gp} (g pyem: o : Uy — Uy
induced by a family of smooth surjective submersions ¢c = {dgp} (g,p)emr; Pgp * Xqg — Y.

e A partial map ¢y : X x £% — X3, induced by a surjective map ¢: X — Y.
we define the following relations:

e R} C Ax x Ay for j € TI, capturing continuous flows remaining inside a single covering set:

(4.41)

((q,x,u;), (¢D(q:m):@ngp(q,m)(wau;)) € RZ iff EliEI v0<t’<t (I)X(q:m:ug) € qu A (q,w,u;) € AX

e R. C Ax x Ay, capturing the discrete jumps induced by the crossing of adjacent covering sets:

(442)(((1, J,’,E), (pjayjag)) € RE VJGJ
(4-43)((‘1:37:5): (pjayjaopjpk)) € R. ijJ’j?fk where Opipr € Yy and (I)Y(pj:QjaUpjpk) = (pkayk)

iff the following holds:

(4.44) Fycr (g.2) € ﬂ d(T)) A pes, to, ut €U% Sy (g, ul) € F’q“ for all ' €]0, ¢]
Jje€J
(4.45) A ¢D|rg =pj N ¢, (¥) =Y; Vjes

e R, C Ax x Ay, capturing all discrete jumps of Hy:

(446) (((ano): (¢D(Q:x):¢q¢,3(q,x) ($)7¢Z(Q:x7a))) € RU iff o€ Zi;( A (q,$,0) € AX

These relations capture different aspects of an hybrid control system dynamics. We now show that there
is a unique way of combining these different relations to determine a unique fibering monoid respecting

relation with domain Ax.

PROPOSITION 4.34. Under the assumptions of Definition 4.33 we have that A} = dom(RJ), A. =
dom(R:) and A, = dom(R,) are fibering submonoids of Ax. Furthermore, given fibering monoid pre-

serving relations fi C Al x Ay, f. C A. x Ay and f, C A, x Ay with domains A, A. and A,,
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respectively, there is one and only one fibering monoid preserving relation n C Ax x Ay with domain Ax

such that the following diagrams commute:

Al Ay A — e Ay A, —l7 o Ay
fi 1 fe U fo U
(4.47) Ay Ay Ay

foril C Al x Ax,i. C A. x Ax and i, C A, x Ax the inclusion relations and any fibering monoid Ay .

PRrROOF. We start by showing that A7, A. and A, are fibering submonoids of Ayx. Consider AZ first.
If (¢,2) € ﬂjeJcl(Fg) then ® x (q,z,u?) satisfies (4.41) and consequently (q,z,¢) € AJ. Consider now any
(z,ul) € Al. By definition of RJ, ul, satisfies:

(4.48) ®x (g, z,ub) € T for all ' €]0,]

but this implies that (z, ui’) also belongs to AZ for any ' €]0, ¢], that is any prefix of u!, also belongs to A7
since for ' = 0 we have u® = . Al is therefore a fibering monoid since its fibers contain the identity and

are prefix closed. The inclusion relation i) C AJ x Ax taking (¢,7,a) € Al to il(q,z,a) = (¢,z,a) € Ax

renders A a fibering submonoid of Ax.

Consider now A, by definition of R. we have that for any (q,z) € dom(R.g), the triple (¢, z,¢) belongs
to dom(R.) = A.. Consider now any (¢,z,a) € A.. Then a € ¥x and any prefix of a is a it self or &
which both belong to A. making A. a fibering monoid and a fibering submonoid of Ax by the inclusion

relation i. C A, x Ax.

Finally (¢q,z,€) € A, by (4.46) and the fact that ¢ € £%. If (¢, z,0) belongs to A, then any prefix ¢’ of
o also satisfies (¢, z,0') € A, since o’ € ¥% and Ax has prefix closed fibers. Once again the inclusion
relation makes A, a fibering submonoid of Ax.

We now show the existence of the relation n C Ax x Ay with domain Ax by defining it. Let (¢, z,a) € Ax,
then a = a*a®...a" where the elements a’ belong to U% and X% in a alternate fashion. Without loss of

generality we can assume that a! € U% and therefore every a?*~! for i = 1,2,...,n can be decomposed

as a finite concatenation of elements of the form:

(449) (q: z, G/Qi_l) = (q: Z, a’fi_l)(qQ: T2, 5)((12= Za, Ggi_l)(QSa xs3, E) s (qm, Tm, a?yﬁ_l)

2i—1
J

1

where each (gj,zj,a7'"") € Al and (gj41,2j41) = @x(qj,wj,aii_l). Replacing each element ¢?~! in

ata®...a"™ by its string (4.49) still results in a finite string which we denote by:

(4.50) (qu,z1,01)(q2, T2, 2) ... (qk, Tg, )
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Note that this decomposition is unique and will allow to define n as follows:

(g, 2,a), (p,y,a")) €n it ((¢,2,0),(p,y,a)) € AL
V. ((¢;2.a),(p,y,a")) € A
vV ((g.7,0),(p,y,a)) € Ao
VvV (g,z,a) € Ax A a=(q1,71,01)(q2,%2,@2) ... (qk, Tk, x)
A a' = (p1,y1, B1) (2, y2,m2) - - (Drs Yk Br)
A A (@rsrs @), (e, yr, Br)) € RE N ((@r, @y an), (PrsYr, Br)) € Re
(4.51) V (¢, 2r,00), (Dr,Yr, Br)) € Ry forr=1,...,k

We now show that 7 is fibering monoid preserving. Let ((q, z), (p,y)) € np then ((¢,z,¢), (p,y,€)) € Ay so
that ((q,z,¢), (p,y,€)) € n. Consider now the triples (¢, z,a),(q',2z',a') € Ax such that (¢,z,ad’') € Ax
and let ((q,z,a),(p,y,b)),((¢',z',a"),(p',y',b')) € n. Since (¢,z,aa’) € Ax and n is defined for every
element in Ax we know that (¢, x, aa’) € dom(n). Decomposing aa’ in its unique string described in (4.50)

we get:

(4.52) (g, z, a1z ... apaial ...al), (D, y, B1Ba ... BuB1By .- Bhi)) €

However, by definition of n we conclude:

(453) ((q: T, 0103 ... anallaé s a{n’)v (p: Y, BlﬂQ s Bnﬂ{ﬁé s ﬂ;z’)) = ((q: T, aal)a (p: Y, bb,))
which shows that 7 is fibering monoid preserving.

To show uniqueness assume the existence of another relation n' satisfying all the proposition conditions.
Then for any (q,z,a) € Ax we have ((¢,z,a),(p,y,b)) € 1. If (¢,z,a) € dom(AJ U A. U A,) then
n'(q,z,a) = n(q,=,a) by commutativity of diagrams (4.47). If (¢,x,a) ¢ dom(AJ U A. U A,) then we
can write a and b in its unique decompositions and since i’ is fibering monoid respecting we have that
n'(g,7,a) = n'(q,7,01)n' (q2, 22, 2) .. .0 (q, Tk, ) where each (q;,z;, ;) € dom(AJ U A. U A,) and
consequently n'(¢;, z;, @;) = n(qi, xi, ;) so that we conclude equality between n' and 1 and the proof is

finished. O

The unique relation induced by the relations RZ, R. and R, will be denoted by R and called an admissible

relation for the remaining of this paper.

The reason why relations are necessary, and in particular the relation R., can now be explained through

an example.

ExaMPLE 4.35. Consider a smooth control system (an hybrid control system with a single discrete state
q) with state space covered by F; and F3 and assume that the abstracting maps are given by ¢D\F; = p1,

¢D\F3 = D2, Qgpr = idp; and ¢gp, = idrg. Suppose now that Fé is open. Then a continuous flow
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controlled by u!, = utul> leaving '} and entering I'2 should be simulated by the abstraction as displayed
in Figure 6, where continuous flows are represented by straight arrows and discrete jumps by an arc of
circle arrows. The evolution on the abstraction is controlled by continuous flow ui} on p; followed by a
discrete jump from p; to po and followed by another continuous flow ugtf on ps. But since Fé is open we
cannot specify the point in Y1 = I‘; where the jump will take place. If one would attempt to define ¢¢
so as to send cl(T'}) N cl(T?) to Yp, and not to Y}, then the same problem would occur to a flow leaving
Fg and entering Fé. The natural way of overcoming these difficulties is by using a relation which sends
cl(T'}) Nel(T2) to both Y}, and Y),. Associated with this “nondeterminism” on the boundary points we

“nondeterminism” at the level of control inputs. The relation R. sends ¢ at the boundary

also introduce
points to ¢, but also sends ¢ to the discrete input op,,, controlling a jump from p; to p». This allows to

simulate the continuous flow on X controlled by u!, by the evolution on ¥ controlled by ult oy, ,,ut?.

t

u?/
—
P1 O pip2
t2
u?/
< - >
b2
1 2
r T
q q
t to

FI1GURE 6. A continuous flow simulated by an hybrid abstraction.
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Admissible relations allow us to effectively compute abstractions of hybrid control systems. A conceptual

algorithm may be formulated as follows:

ALGORITHM 4.36 (Abstracting Algorithm).
Input data: Hx = (Xo,X,Yx,Ux,d0x,Fx), RC Ax x Ay
Body:

1. Y := Rp(X)

2. Yy := Rp(Xp)

3. %y = (X x Bx)U{o : I((¢,7,¢),(p,y,0)) € R}

L Uy = (U hyer, U = o (U)

5. J =A{,y, 05,0y : Hg,2) € Npercl(T¥) Ju € UL () such that Fy(u) is transversal to
the boundary of T'é, points to T, ((¢,2),(p,y)) € R, p # ¢p ri and ((¢,2),(p".y")) € Rp,
p' =¢plri}

6. Oy := (¢D, Peop: ¥, PDs Ggép )(0x) U J where dx is regarded as the set dx C X x ¥x x X.

7. F¥ :=is the @gp-abstraction of FY. for every (¢,p) € II.

Output data: Hy = (Yy,Y, 2y, Uy, oy, Fy)

Intuitively the above algorithm can be described as follows. Steps 1 and 2 simply define Y and Y; as
the image under R of X and Xy, respectively. In step 3 the set of labels ¥y is computed as the
image under 5 of X x ¥x and all the symbols op, created when the continuous flows crosses the
boundary between adjacent covering sets. In step 4 the continuous control bundle is computed as the
image of U% under each map ¢,,. In step 5 the set .J is computed to be used on the next step. Step 6
determines dy in a way that can be described as follows: for every transition (¢, ) = (¢',2') defined
by éx there will be a transition (¢p(q, ), Pgep (g,2)(T)) #(0,8,0) (¢p(d',2"), g 4 (q'.27) (")) expressed by
the set (¢p, Pgon . 5, PD, Pgep ) (0x), where dx is regarded as a subset of X x ¥x x X. Furthermore,
every time a continuous flow crosses the boundary between adjacent covering sets, the required discrete
transitions are captured by the set J. Finally in the last step the continuous generator of Hy is obtained

from the continuous generator of Hx by the methods described in [60, 64] and reviewed in Chapter 3.

The above algorithm does compute a simulation of Hx as asserted in the next theorem:

THEOREM 4.37. Let Hx be an hybrid control system over X and R C Ax x Ay an admissible relation.

Then hybrid control system Hy obtained through Algorithm 4.36 is a R-abstraction of Hx.

ProoF. We will split the proof into four distinct parts. We start by showing that Hy simulates
every discrete jump of Hx, next we show that Hy also simulates every continuous flow of Hx that

remains inside a single covering set. On the third part we show that continuous flows crossing adjacent
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covering sets are also simulated by Hy and finally we will use the preceding results to show that any

finite sequence of continuous flows and discrete jumps is also simulated by Hy .

Discrete Jumps

By construction, dy simulates dx so that every discrete jump of Hy is simulated by Hy .
Continuous flows inside a single covering set and starting on a interior point

If the flow of F§ remains inside a single covering set and starts on a interior point, then the smooth
abstraction results in [60, 64] show that F} generates a continuous flow that simulates the flow generated
by F%.

Continuous flows inside a single covering set and starting on a boundary point

Let (q,2) € Ngexcl(T¥) and assume that x((q,z),ul) € Tl for all 0 < # < t. This implies that
there exists a u € Uy (x) such that Fy(u) is transversal to the boundary of T) and points to T'..

Consequently, steps 5 and 6 of Algorithm 4.36 ensure that for any point (p,y) Rp-related to (g, ), there
. A(p,
is & a(,y) € A(py) such that (p,y) =% (p;,y;), where ((¢,2), (pi,5:)) € R and p; = ¢p

ri Ifz e 1"2,
then by the previous paragraph ®x (¢, z,u,) is simulated by ®y (p;, y;, ul)) with ul, = @gp, (ul). If z ¢ T},
then x € T'J for some j # i and j € K. Also by the previous paragraph we have that ®x (¢, z,u’) is
simulated by ®y (pj, yj, a(p,,y,)uh)-

Continuous flows crossing adjacent covering sets

Let u!, be a continuous input such that ®x (¢, z, ul) crosses the boundary between adjacent covering sets

once at t = t;. We decompose u!, into u!, = uliul? with ¢t = t—t;. Since ®x (g, z,ul!) remains on the in-

terior of a single covering set we have (®x (¢, z,ul!), @y (p,y, ul})) € Rp. Now let (¢',2') = ®x(q, =, ull).

It is not difficult to see that (¢',z') belongs to the boundary between adjacent covering sets. By the
tg t2

previous paragraph ®x(¢', z',u!?) is simulated by ®y (¢p(q', '), ¢q,¢D(q,7x,),a(¢D(q,’x,)’¢q,¢D(q,’m,))uy ) so

that ®x(q,z,ul) = ®x(q, z,ul ul?) is simulated by v (¢p(q,z), ¢q¢D(q’z),u‘f}la(%(q,’m,)@q,%(q,vm,))ufjf).
Since a continuous input making ® x cross adjacent covering sets several times can be decomposed into a
finite product of several continuous inputs making ® x cross adjacent covering sets only once, the previous

argument extends to all continuous inputs by induction.
Any finite sequence of discrete jumps and continuous flows

Consider a a € Ax. This element can be decomposed into a finite concatenation of elements belonging
to X% and U%. Since every such element can be simulated by Hy we can extend in a unique way ®y
defined for Uy U ¥% to finite length sequences, since M is the monoid freely generated by Uy U X% as

asserted in Proposition 4.3. O
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EXAMPLE 4.38. As an illustration of the construction given by Algorithm 4.36 we present a simple
example adapted from [37, 23]. Consider a simple model of a six legged mechanical insect as displayed

in Figure 7.

FIGURE 7. Six legged mechanical insect.

The control system associated with this mechanical system can be described by:
21 = cosb(alhy)ur + B(h2)us)
o = sinf(a(hy)us + B(ha)us)
0 = la(hi)ur —18(ha)us

élzul
£2=u2
hi = us
hy = uy

where the functions « and 3 are defined as:
1 « h1 =0 1 < hy=0

(4.54) alhy) = B(ha) =
0 <« h >0 0 <« hy>0

The variables in the above control system have the following interpretation:
z1 and xo position of the insect center of mass.
0 insect orientation with respect to some fixed reference frame.
& angle of the legs 1, 4 and 5 with respect to the insect central body.
& angle of the legs 2, 3 and 6 with respect to the insect central body.
hi height of the legs 1, 4 and 5 with respect to the floor.
ha height of the legs 2, 3 and 6 with respect to the floor.

w1, Uz, u3 and uy control inputs.
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It is assumed that the robot moves the legs in a alternate fashion, that is legs 1,4 and 5 move together and
then legs 2,3 and 6 move together and this pattern is repeated to achieve insect motion. It is furthermore
assumed that the legs execute synchronous motions so that they can be described by their equal height
h; and angle &. When all legs are in contact with the floor, that is hy = 0 = hg, all contribute to the
motion of the insect through inputs u; and us. If Ay > 0 and hy = 0 only the legs 2,3 and 6 are on the
floor influencing the insect motion. On the other hand, when only legs 1,4 and 5 are on the floor only
input us influences the insect motion. Finally there is still an uninteresting case which corresponds to
all the legs being on the air which we shall not consider. If we denote by ¢; the state where all legs are
on the floor and by f¥ the corresponding control system in local coordinates, g, the state where only
legs 1,4 and 5 are in contact with the floor and f¥ the corresponding control system and gs the state
where legs 2,3 and 6 are on the floor and by f¥ the associated control system we can model the insect

controlled kinematics by the hybrid control system displayed in Figure 8.

F1GURE 8. Hybrid control system model of the mechanical insect displayed in Figure 7.

Suppose now that there is a team of several mechanical insects that needs to be collectively controlled to
perform some task. If the number of insects is large it becomes unfeasible to coordinate the motion of all
the legs among the whole team. The advocated solution to overcome the complexity of such a problem
is to perform an abstraction of the insect model so as to design the coordination in a more efficient way.
A natural choice is to retain on the abstracted model only information about the insect position and to
abstract away the switching policy necessary for the insect motion. This leads to the following choice for

the state aggregation maps where by x we denote a point in X:

(4.55) é¢p(q1,2) =p éplg2, ) =p ¢plgs, ) =p
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and

(4.56) bop@ = | bun@ = || Gap) = |

T2 T2 T2

This choice implies that the abstraction will be a hybrid control system with a single discrete state p and
only two continuous variables z; and x5 modeling the insect position. Assuming that the initial state
of the hybrid control system is X since the insect can start in any discrete and continuous location, we

follow the steps of Algorithm 4.36 to obtain:

VY o= {p) x B = B (X)
Yo = YV =TRs(X)=Fn(Xo)
Yy = {E} = @E(X X {5:Uq1q27UQ2Q1:UQ1Q3:UQ3Q1}) = @E(X X ZX) Ug

The control bundle U is computed by the methods in [78] and Chapter 3 and equals Y x R?. On step 5
J is computed to be the empty set since there is only one covering set for each set 7% (dom(F'%)). Step

6 determines the map dy which is simply given by:

(4.57) by (y.€) =y

since ¥y = {e}. Finally the continuous abstraction of each F} is computed by the methods described

in [64] and is given by:

Y1 = w1

(458) QQ = V2

where v; and vy are control inputs. This simple example shows the power of the abstraction methodology
by reducing the hybrid automaton in Figure 8 to two integrators. The abstraction is clearly a much simpler

and useful model to design the coordinated motion of a team of such robotic insects.

4.3. From hybrid abstractions to hybrid bisimulations. In this section we try to determine
when can we use Algorithm 4.36 to compute a bisimulation. By taking advantage of the special structure
of admissible relations we will be able to provide checkable sufficient conditions for bisimilarity. We start

by relating simulation with respect to relations defined only for A7, A. and A, with relations defined for

Ax.

PRroOPOSITION 4.39. Let Hx and Hy be hybrid control systems and assume that Hy is a Rg—simulatz'on,
a R.-simulation and a R,-simulation of Hx. Then Hy is also a R-simulation of Hx , where R is the
unique relation with domain Ax defined by R, R. and R,. Furthermore, if one replaces each relation

with its inverse relation the result still holds.
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PRrROOF. We only need to show that for any (¢,2,a) € Ax such that (¢,z,a) ¢ dom(RJ U R. U R,)
there is a pair ((q,z,a), (p,y,b)) € R such that ((¢,z), (p,y)) € Rp and (®x(q,z,a), ®y(p,y,b)) € Rp.
Decompose a in the unique sequence (¢, z,a) = (q1,21,1)(g2, T2, a2) . .. (Gn, Tn, @n) With (gir1,pir1) =
®x(qi, pi, ;) and a; € dom(RI U R. UR,) fori =1,...,n as described in the proof of Proposition 4.34.
Since each (g;, p;, ;) belongs to dom(R} U R. U R,) we have that (®x(qi,21,01), @y (p1,v1,51)) € R,
(®x (g2, T2, 2), Py (P2, yo, f2)) € R but ®x(q1,pi,a1) = (g2, 25) so that by the semi group property of

abstract control systems we have:

(4.59) (®x(q1,21,100), Py (p1,y1,5152)) € Rp

By induction we conclude that (®x (g1, 21,100 ...05), @y (p1,y1, 5182 ...0n)) € Rp showing that for
any (¢,2,a) € Ax there is a ((¢,7,a),(p,y,b)) € R such that ((®x(g,z,a), ®y(p,y,b)) € Rp and

concluding that Hy is a R-simulation of Hy.

The same argument also shows that the result still holds if the relations are replaced by the corresponding

inverse relations. |

The previous result allows to give a sufficient condition for bisimilarity which is based on the conditions

given for abstract control systems:

PROPOSITION 4.40. Let Hx be an hybrid control system, R an admissible relation and Hy a R-abstraction

obtained through Algorithm 4.36. If the equality:

(4.60) Bp(Riga Hx) = Rp(R Hy)

EJ?OEB(Q@)

holds then Hy is R-bisimilar to Hx.

PROOF. We recall that Hy is a R-simulation of Hy by Theorem 4.37 so that we need only to show
that Hx E_l-simulates Hy . The proof will be done by showing that under the proposition hypotheses
Hy is a BRI~ '-simulation and a R '-simulation and a R;'- simulation of Hy so that by Proposition 4.39

Hyx will also be a B -simulation of Hy-.

We start by analyzing R/ using Proposition 4.16 with the restriction of Hx to Al denoted by Hx| ;.
This is accomplished by noting that Hx is a i/-simulation of Hx|,; where i4 is the inclusion morphism
from Hx|,; to Hx. The set Ri(s) is a singleton for every s € dom(RJ) so that the relation RJ induces
the fibering monoid preserving map fRi : AJ — Ay. This map is in fact induced by the base map
f/5 (defined by the base relation R’,) through the methods described in Section 3.6 and we can apply
Proposition 4.16 to HX‘Aﬁ to conclude that if:

(461) f'cj(R(qm)HX‘A{,) = .fcj(RchjofoB_l( )HX‘A{,)

q,T
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holds then Hx|,; is a fcjil-simulation of Hy. However, the assumptions of the theorem imply (4.61)
therefore Hx| ,; is in fact a fcjil-simulation of Hy. By composing fg"l with the inclusion morphism i/,
we conclude that i/ o f;l = Rg_l is a morphism from Hx to Hy showing that Hyx is a Rg_l—simulation

of Hy.
The argument for the relation R, is similar to the one for the relations R:.

Finally we need to show that Hx is a R;l—simulation of Hy. We recall that the relation R. captures
the discrete jumps on Hy introduced to model the switching between discrete states caused by the
crossing of adjacent covering sets on 7% (dom(F%)) by continuous flows. Let ((g,z), (p,y)) € Rep and let
(p,y,a) € Range(R.). Then a = a,,, ((¢,7), (®y (p,y,a)) € R.p by construction of R and definition of
R.. Furthermore ((¢,z,€), (p,y,0pp)) € Re also by construction of R., but then for every ((¢, z), (p,y)) €
R.p we have ®x(q,z,¢) = (¢, ) showing (®x(q,,¢), Py (p,y, 0pp')) € Rep and implying that Hx is a

RZ'-simulation of Hy. The proof is now finished. O

We now replace the condition of the previous result by conditions that are checkable in concrete examples.

THEOREM 4.41. Let Hx be an hybrid control system, R an admissible relation and Hy a R-abstraction
obtained through Algorithm 4.36. If:

the guards intersecting ©% (dom(F%)) are invariant for Ker(T¢qp);

the reset maps satisfy ¢qp (Resetyqy (9, © dgp(t))) = Ggp (Resetyy (x)) for all q,¢' € Q and

(g,p),(d',p") € TN

o FY is controlled invariant for Ker(T ¢,,)

There is only one covering set for each set % (dom(F%)).

then Hy is a R-bisimulation of Hx

ProOF. The first condition ensures that every point belonging to preimage of y € Y, by ¢4, has the
same jumping capabilities since the guards are enabled or disabled for all those points. This ensures that
the discrete part of the states reachable by the system Hx, when controlled by an element in X x, is the
same for every point in E; o Rp(q, ). To ensure that the continuous part is also the same, we invoke
the second condition that ensures Rp(Reset,y () = Rp(Resetyy (Ry o Rp(z))). We have thus shown
that we have:

(4.62) Rp(Hx(g,z,0)) = Rp(Hx(R3' o Rp(q,7),0)) Vsexy
t

Since X% is freely generated by Y x we only need to show that for every u

Rp(Hx (g, 2,u')) = Rp(Hx(Ry o Rp(g,z),u')). From Theorem 3.16 in Chapter 3 we know that con-

€ Ux we also have

trolled invariance is equivalent to projectabilty of the control section and this implies that for every
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(¢,2) € By o Rp(g,z) the control section is the same modulo Ker(Tgp). This is simply the infinitesi-

mal statement of:
— 1 =
(4.63) Ggp 0 Tx, (Hx (¢, 2,u")) = ¢gp o mx,(Hx (Rp © Rp(g,2),u")) Vyeeps

where we have denoted by 7x, the natural projection from X to X, taking (¢,z) € X to z € X,;. By an

argument similar to Theorem 3.7 in [60] it can be shown that controlled invariance implies (4.63).

We now use the last assumption of the theorem to ensure that:
— 1 —
(464) ¢D(HX(Q:x=ut)) = ¢D(HX(RB ORB(Q:x)=ut)) vu‘EUg(*

which follows from the fact that all the states (¢, z) € E;l o Rp(q,r) are mapped to the same discrete
state since there is only one covering set for each set 7% (dom(F%)). Equation (4.63) together with (4.64)

in turn imply that:

(4.65) Rp(Hx(q,z,u")) = Rp(Hx(Rp o Rp(g,2),u')) Vyeys

The desired equality:

(4.66) Rp(R(ga)Hx) = RB(Rp-1 7, (4.0 HX)

now follows from the fact that M is freely generated by ¥x and Uy and the result is a consequence of

Proposition 4.40. O

This result provides easily checkable conditions for bisimilarity, however controlled invariance is a strong
requirement. Weaker conditions for bisimilarity between hybrid control systems can be achieved if one
uses weaker notions of bisimulation such as weak bisimulation [52], however those results rely on a
complete and thorough understanding of bisimilarity for continuous control systems which is still an area

of current research.

4.4. Preservation and Reflection of Properties. In this section we will specialize the results of
Subsection 3.5 to hybrid control systems and consider properties that are specific of hybrid systems such

as the Zeno phenomena.

4.4.1. Blocking. Blocking was already discussed in Subsection 3.5 where a necessary and sufficient
result for preservation of non-blocking was given. We now provide a sufficient condition that is easier to

check:

PROPOSITION 4.42. Let Hx be an hybrid control system, R an admissible relation and Hy a R-abstraction

of Hx. If Hx is non-blocking and

e For all p € P, N, satisfies dim(N,) > 0.

e Proposition 4.14 holds for the finite automaton underlying Hx
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then Hy is non-blocking.

PrOOF. The first condition ensures that for any y € 7. (dom(F¥)), A, # {e} by definition of hybrid
control system and the continuous abstracting methodology [60, 64]. This means that blocking can only
occur by removing discrete transitions. However the second assumption implies that blocking is not

created on the abstracting process by removing discrete transitions. O

This result reveals that while we have continuous dynamics we only need to check what happens to the
finite automaton underlying the hybrid control system to infer non-blocking. This is in principle a simple

task since the number of discrete states is finite and Proposition 4.42 can be checked algorithmically

One could also attempt to determine when non-blocking is reflected by R. However checking the condi-
tions to determine if the reflection holds would be as expensive as determining if the original system is

non-blocking.

4.4.2. Zeno. Next we examine a phenomena that has no counterpart in the discrete neither in the
continuous world, the Zeno phenomena. Intuitively we say that a trajectory of an hybrid system is
Zeno if there is an infinite number of jumps in finite time. This is in fact a modeling problem since no
physical system is able of generating such a trajectory. On a more mathematical level existence of Zeno
trajectories is equally a problem. First, one needs to deal with cardinals greater than the cardinal of the
natural numbers if one attempts to define or even to refer to the states visited by the trajectory after the
occurrence of infinitely many jumps in finite time. Second, Zeno trajectories make impossible to prove
results using finite induction. We will have to slightly extend our setting to be able to talk about Zeno
since the elements of M are finite length strings, therefore not capturing an infinite number of jumps.
We thus need to move from finite monoids to w-monoids. We will just briefly explain how one can extend

(4.67) M= T[ @ uzry

teENp

to accommodate infinite strings without entering the technical definitions. The interested reader is
deferred to [65] for more details regarding automata, infinite strings and semigroups. First we add to M

the set of infinite strings of elements in U* U £* defined as:
(4.68) M, = U UuT)N

to get Mo = M U M,. Then we extend the product operation (concatenation in this case) to the

following situations:

(4.69) (a,b) + abfor (a,b) € M x M, and ab € M,

(4.70) (a1,a2,...,an,--Jnen > (a1a2...an ... )nen for a, € M and (a1as...ay, ... )peny € My,
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In this setting we can talk about Zeno sequences. Let us denote by |m/; the time duration of an element of
M. This duration is defined as the sum of the durations of all the elements of U* that were concatenated

to obtain m. A Zeno sequence is therefore defined as follows:

DEFINITION 4.43 (Zeno Sequence). Let m € M, be an input sequence. We say that m is a Zeno sequence

iff we have |m|; < oo.

A Zeno hybrid control system is an hybrid control system such that its action is defined for Zeno input

sequences:

DEFINITION 4.44 (Zeno Hybrid Control Systems). Let Hx be an hybrid control system. Hyx is a Zeno

hybrid control system iff ® x is defined for Zeno input sequences.

First we will show how one can ensure that non-Zeno trajectories are abstracted to non-Zeno trajectories.

This will ensure that these non-physically meaningful sequences are not created by the abstraction process.

PROPOSITION 4.45 (Preservation of Non-Zeno). Let Hx be an hybrid control system over X, R an admis-
sible relation and Hy a R-abstraction of Hx. If there is only one covering set for each set 7% (dom(F%))
or if the covering Ty is finitely compatible with F3. for every q € Q then non-Zeno input sequences are

abstracted to non-Zeno input sequences.

PRrOOF. Let a(, ) be an input sequence of Hx and a(,,) the corresponding abstracted input se-

quence. If a(, ;) is non-Zeno then the abstracted input sequence {y will be Zeno only if additional jumps

0,z
are introduced by the abstracting process, that is, only if the continuous state space is abstracted into
discrete components. We have therefore that if each set 7% (dom(F%)) is covered by a single set no
jumps are created and the input sequence remains non-Zeno. When there are several covering sets, the
jumps created by crossing these sets will not induce Zeno sequences since the covering and the flow of
F)q( define a Zeno-free transition system. In details, we have that the number of elements from Xy in
(p,y) 18 given by the sum of number of elements of ¥x in a(,,) not abstracted to € plus the number of
jumps induce by the crossing of adjacent covering set by the trajectories of F§. Since (q,¢) 18 nON-Zeno
and the trajectories of F'% cross the boundaries of adjacent covering sets a finite number of times in finite

time we have that the total number of elements of Xy in a(, ) is finite for finite time. This implies that

every input sequence of Hy is non-Zeno by surjectivity of R. O
Note that a sufficient condition to ensure that the partition defines a Zeno-free transition system is given
by the use of sub-analytic stratifications as described in [41].

The previous result formally shows that Zeno phenomena is introduced in hybrid models of physical

systems by incorrect abstractions. When one models by discrete jumps, continuous evolutions that occur
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in a time scale much faster then the remaining process one may introduce non-physically meaningful
trajectories such as Zeno sequences. This calls for the need to understand approximate abstractions

where the abstracting systems need only to simulate the original systems approximately.

Having shown that it is not difficult to guarantee that non-Zeno trajectories propagate up in the hierarchy
we came to a more interesting question. When can we ensure that a non-Zeno trajectory has non-Zeno
refinements? We will only partially answer this question by determining when every refinement of a
non-Zeno trajectory is non-Zeno. This amounts to ensuring that Zeno trajectories are abstracted to Zeno
trajectories so that the trajectories are always divided into disjoint classes and the abstraction does not

mix these classes.

PROPOSITION 4.46 (Preservation of Zeno). Let Hx be an hybrid control system over X, R an admissible
relation and Hy a R-abstraction of Hx. Every refinement in Hx of a non-Zeno input sequence of Hy

is non-Zeno if R preserves non-Zeno and for any state (q,z) € X and any discrete input o € A(q,a) such

that B (q,2) N Bp(®x((q,2),0)) # & we have 7x (R(q.z,a)) = {(p,y)} and R(q.z,a) # {(p.y,e)}.

PrOOF. We want to that non-Zeno sequences are abstracted to non-Zeno sequences and that Zeno
sequences are abstracted to Zeno sequences. The first part is ensured if R propagates non-Zeno while the
second part will now be proved. If a(, ,) is a Zeno input sequence of Hx and a(, ) (the corresponding
abstracted input sequence of Hy ) is non-Zeno, then an infinite number of jumps has been removed from
a(q,z)- This can only be accomplished if the discrete inputs associated with these jumps are abstracted
to e. However (4.8) implies that if o € A, ,) is abstracted to ¢ then Rp(q,2) N Rp(®x((¢,),0)) # @

but by assumption all such events o are not abstracted to €. O

We have only provided a superficial treatment of the Zeno phenomena which is however enough to provide
some guarantees in real applications. We believe that a full understanding of this kind of behavior can
only be achieved through the mathematical formalization of the operation that takes a discrete and a
continuous control system and combines them into an hybrid system. We are, in fact, convinced that

Zeno phenomena will be the result of that operation on singular (in some sense) cases.

4.5. Compositional Hybrid Abstractions. The results presented for compositionality of abstract
control systems in Subsection 3.7 also carry over to hybrid control systems. In this subsection we present

two examples of how modularity can be exploited to simplify abstraction tasks.

ExXAMPLE 4.47. Consider a rubber ball bouncing on the floor under the action of gravity. Its dynamics
can be described by the automaton displayed on the left of Figure 9. The state of the ball is described
by the variables  and y modeling the ball position and v, and v, the velocity. The ball hits the floor
at y = 0 triggering a jump which resets the velocity on y with the new value —ev,, where e €]0,1] is a

parameter modeling the elasticity of the ball. To model two balls synchronized on the z position we start



88 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMS

K
fiun

(a1, 92)

T =, T =0,

Yy=1 Yy =1y 11):1)“,

=0 Vy := — €Uy UV, =0 Y,=—g

5 — o ; = —ev
vy 1= — ey, ! y

y>0Aw >0
y<0

FI1GURE 9. Hybrid automaton modeling a bouncing ball on the left and the composition
with synchronization of two automata modeling a bouncing ball.

(qhqz)

hy = vy,
]’Lz = Up,

F1GURE 10. Left: abstraction of the hybrid automaton displayed on the right of Figure 9;
Right: abstraction of the hybrid automaton on the left of Figure 9.

by computing the product automaton which is restricted to the set L = {((@,y, vz, vy), (z,w,v;,vy)) €
R xR* : 2 = zAw, = v.} resulting in the automaton displayed on the right of Figure 9. An
abstraction can now be performed to retain only height information. The new state coordinates are
naturally given by hy = y, ha = w,vs, = vy and vy, = v,, and the abstraction computed by Algorithm 4.36
is displayed on the left of Figure 10. However, the abstraction process can be simplified by making use
of Theorem 4.24. This is achieved by first abstracting the hybrid automaton modeling each individual
ball which results in the hybrid automaton displayed on the right of Figure 10. The next step is to
perform the parallel composition with synchronization of these hybrid automata. Note that this product is
already simpler to perform than the product of the unabstracted systems. Furthermore the synchronizing
set given by (¢1,#2)(L) equals the state space of the product system since ¢1(x,y,vs,vy) = (h1,vn,),
d1(z,w,v5,0y) = (ho,vp,) and L = {((z,y,v2,0y), (2,0, 05,0y)) : Yy =w A vy, = vy}. We then
see that no synchronization step needs to be performed and the resulting hybrid automaton is simply
the product of two copies of the automaton displayed on the right of Figure 10. As expected the final
hybrid automaton is the same as in the previous case, but the complexity of the process was considerably

reduced by taking advantage to compositionality.
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EXAMPLE 4.48. In this example we illustrate the use of Theorem 4.24 with the celebrated water tank
system from [2]. Consider two water tanks that can be filled by water coming from a pipe as displayed

on the left of Figure 11. The water level at tank A is measured by x; while the water level at tank B is

w

F1cURE 11. Water tank system: Physical setup on the left and hybrid model on the right.

measured by z2. Each tank has also an outflow that causes a decrease in the water level. The outflow rate
at tank A is v; while at tank B is vy. This outflow can be compensated by a water inflow coming from
the pipe on top of the tanks. This pipe has an inflow rate of w which can be directed to tank A or to tank
B by means of a valve located in the pipe. Contrary to [2] we explicitly incorporate a first order model
of the pump in the hybrid automaton describing this hybrid control system, displayed on the right of
Figure 11. We now seek to abstract away the pump dynamics to obtain the usual model that considers the
commutation of the inflow from one tank to the other instantaneous*. Instead of computing an abstraction
directly from this hybrid automaton we start by realizing that this automaton can be obtained by parallel
composition of hybrid control systems Hx and Hy modeling the pipe and the tanks, respectively, as shown

in Figure 12. This composition is synchronized on the fibering submonoid Ay C Ax x Ay defined by the

&

F1cURE 12. Hybrid model of the pipe and water tanks on the left and right, respectively.

points of the form (((QI:w)= (x17x2))7 (5=ut))a (((QIaw)a (‘r1=x2))7 (0175))7 (((QQ,’LU), (‘r1=x2))7 (5,ut)) and

(((g2,w), (z1,2)), (02,€)), where the continuous inputs satisfy u' = (w(t), w—w(t)). We now abstract the

4We remark that considering the water commutation instantaneous leads to Zeno trajectories [35]. However, in our per-
spective, the hybrid model of the water tank system already allows infinite switches between discrete states ¢ and g2 in
finite time.
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pipe model by aggregating all the continuous states in discrete state ¢; to 0 and all the continuous states
in discrete state g» to w. Theorem 4.24 ensures that composing Hy with this abstraction will result in
an abstraction of hybrid control system Hx ||4, Hy. The new synchronizing fibering monoid is obtained
from Ay by replacing w by 0 on the continuous inputs in state ¢;, replacing w by @ in the continuous
inputs at discrete state g» and identifying (¢1,w) and (g2, w) with ¢; and g¢o, respectively. The resulting

hybrid control system is displayed in Figure 13. This example illustrates the clear advantage of exploring

F1GURE 13. Abstracted hybrid model of the water tank system.

compositionality in computing hybrid abstractions. We have only computed continuous abstractions of
one-dimensional control systems (for the pipe automaton), whereas if one would have proceeded directly
from hybrid control system Hx ||4, Hy without exploring the compositional structure, one would have
computed continuous abstractions of the three-dimensional continuous control systems at each discrete

location.



CHAPTER 5

Formations and Abstractions of Multi-Agent Systems

1. Introduction

Advances in communication and computation have enabled the distributed control of multi-agent systems.
This philosophy has resulted in next generation automated highway systems [86], coordination of aircraft
in future air traffic management systems [82], as well as formation flying aircraft, satellites, and multiple
mobile robots [7, 10, 80, 19]. The control of multi-agent systems is greatly simplified when the agent’s
mission can be executed by means of a formation. In several applications, maintaining a formation is even
fundamental as in multiple aircraft where the formation is used to explore aerodynamic effects [51, 11]

or in robotic exploration of large areas with restricted sensor capabilities [17].

The several approaches to formation control of a group of agents can roughly be divided into three cate-
gories: Behavior-based, Leader-Follower and Virtual Structures or Rigid-Body type formations. Behavior
based approaches [7, 42, 90, 47] start by designing simple and intuitive behaviors or motion primitives for
each individual agent. Then, by a weighted sum of these simple primitives more complex motion patterns
are generated through the interaction of several agents. These motion patterns are usually called the
group behavior that is said to emerge from the individual ones. Although this approach is characterized
by being difficult to analyze in a rigorous and formal way, there have been some attempts to formally
define and model behavior-based control schemes [20]. In leader-follower approaches [87, 19] one agent is
designated the leader and is responsible for guiding the formation. The remaining agents are required to
follow the leader with a predefined offset. This approach contrasts with rigid-body type formations [80]
where rigidity allows to specify a trajectory for each agent requiring a centralized control architecture.

See also [75] for a different centralized approach.

Despite the large activity in the area of formation control there are still fundamental questions unan-
swered. The control of a formation requires individual agents to satisfy their kinematics while constantly
satisfying inter-agent constraints. In typical leader-follower formations, the leader has the responsibility
of guiding the group, while the followers have the responsibility of maintaining the inter-agent formation.
Distributing the group control tasks to individual agents must be compatible with the control and sensing
capabilities of the individual agents. As the inter-agent dependencies get more complicated, a systematic

framework for controlling formations is vital.

91
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In this chapter, we propose a framework to study formation feasibility of multi-agent systems. Forma-
tions are modeled using formation graphs which are graphs whose nodes capture the individual agent
kinematics, and whose edges represent inter-agent constraints that must be satisfied. A similar approach
has been proposed in [19]. In [21] graphs are also used in the context of formation control, but the
emphasis in on the communication flow and not on formation constraints. We assume kinematic models
for each agent described by drift free control systems. This class of systems is rich enough to capture
holonomic, nonholonomic, or underactuated agents. Two distinct types of formations are considered :

undirected formations and directed formations.

In undirected formations each agent is equally responsible for maintaining the formation. For each edge
constraining two agents of the formation graph, both agents cooperate in order to satisfy the constraint.
Undirected formations therefore present a more centralized approach to the formation control problem as
communication between agents is, in general, necessary. In directed formations, for each edge constraining
two agents, only one of the agents (the follower) is responsible for maintaining the constraint. Directed

formations, therefore, represent a more decentralized solution to the formation control problem.

In this chapter, we focus on the feasibility problem: Given the kinematics of several agents along with the
inter-agent constraints, determine whether there exist agent trajectories that maintain the constraints.
For both directed and undirected formations we obtain differential-geometric conditions that determine
formation feasibility. When such conditions are verified, the group abstraction problem is then consid-
ered: Given a feasible formation, extract a smaller control system that maintains formations along its
trajectories. The extracted control system allows to control the formation as a single entity, therefore
being well suited for higher levels of control. In the case of undirected formations, the centralized nature
of the problem allows us to determine feasibility using a single mathematical object. An unified approach
that captures both the agent kinematics as well as the formation constraints is offered by differential
forms and exterior differential systems [61]. In both the undirected and the directed cases the proposed
framework allows for the extraction of a formation control abstraction. Since the abstraction can also
be represented by differential forms, non-holonomic motion generation techniques based on exterior dif-
ferential systems [81, 46] can readily be used to plan paths for the abstraction. The construction of
these abstractions can be seen as a purely continuous example of the notion of parallel composition with
synchronization introduced in Chapter 4. A preliminary version of the results presented in this chapter

appeared in [79].
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2. Formation Graphs

Consider n heterogeneous agents with states z;(t) € M;, i = 1, ...,n whose kinematics are defined by

drift free controlled distributions on manifolds M; as:
(51) Al = Z XjUj
J

where U; is the control space, and the vector fields X; form a basis for the distribution. The controlled

distributions are general enough to model nonholonomy and underactuation.

The formation of a set of agents is defined by the formation graph which completely describes individual

agent kinematics and global inter-agent constrains.

DEFINITION 5.1 (Formation Graph). A formation graph F' = (V, E, C) consists of:

e A finite set V of vertices whose cardinality is equal to the number of agents. Each vertex v; : M; xU;
— T'M; is a distribution A; modeling the kinematics of each individual agent as described in (5.1).

e A binary relation £ C V' x V representing a link between agents.

e A family of constraints C' indexed by the set E, C = {c.}cer. For each edge e = (v;,v;), c is a
possibly time varying function c.(;, ;,t) = 0 describing the ¢(e) independent constraints between
vertices v; and v;. For a generic edge e = (v;,;), ¢ is mathematically defined as c. : M; x M; xR

— R¢(e) ¢(€) €N veeE.

Two different types of formation graphs will be considered: undirected formations where (V, E) will be an
undirected graph and directed formations where (V| E) will be a directed graph. In undirected formations,
for each edge e = (v;,v;) both agents are equally responsible for maintaining the associated constraint c..
Undirected formations are represented by the underlying undirected graph (V, E) as displayed in Figure 1

for a formation with two agents and an edge between them. In directed formations the constraint c,

FI1GURE 1. Undirected graph representing an undirected formation consisting of 2 agents
and a constraint between them.

associated with the edge e must only be guaranteed by agent i. Directed formations are represented by
the underlying directed graph as in Figure 2. At this point no further structure is assumed on the set E.

Additional structure will be explicitly mentioned when needed.

We focus on the formation feasibility problem, more precisely:
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FI1GURE 2. Directed graph representing a directed formation consisting of 2 agents and
a constraint between them

PROBLEM 5.2. Feasibility Given a formation graph F = (V, E,C) determine whether there are solutions

z;(t) of all agent kinematics (5.1) that maintain the constraints ce for all e € E and for all t € R.

We will solve Problem 5.2 for both undirected and directed formations. In case the formation is feasible, a
new problem immediately emerges, the extraction of a formation control abstraction which characterizes

the solution space of Problem 5.2 :

PROBLEM 5.3 (Group Abstraction). Given a feasible formation graph F = (V,E,C), extract a smaller

control system that maintains formation for all values of its control inputs.

Problem 5.3 will also be solved for both the undirected and the directed cases.

3. Undirected Formations

3.1. Feasibility. In undirected formations each agent is equally responsible for maintaining con-
straints. Because of this property it will be useful to collect all agent kinematics and constraints on a

single manifold:
(5.2) M =] M
. Given an element z of M the canonical projection on the ith agent,
(5.3) mit M — M;
allows us to denote the state of the individual agents by x; = 7;(z). The formation kinematics is obtained
by appending individual kinematics through direct sum, that is:
A:MxU—TM
(5.4) A =3 A
where U is taken to be U = [];_, U;. This new control system A on M describes the kinematics of

all formation agents, however it does not model any interaction between them. This interaction will be

induced by the formation constraints that we now lift to the group manifold M. Each constraint c,
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linking agent i to agent j induces a constraint C. on M x R defined by:
Cc : MxR— R
(5.5) Ce(m,t) = ce(mi(@), mj(2), 1)

All of these constraints can now be grouped in a single map from M x R to R? with d = Yecr dle).

This constraint map C is obtained by stacking all individual constraints as follows:

C1
Ca
(5.6) C=
Cm
where we have considered an enumeration {1,2,...,m} of the edges set E. Since the constraints are

independent the set C~(0) = {(z,t) € M xR | C(=x,t) = 0} defines a submanifold! P of M x R. The
projection of P on M (which is also a submanifold of M), denoted by N, characterizes the interaction
between the agents since the state variables of each agent are restricted to live on this submanifold.
Formation feasibility requires that the constraints are satisfied along the formation trajectories, that is,

that the submanifold IV is invariant under A trajectories:

d ac
(5.7) ZC=LxCH 5 =0 VX eA

Note that since C is vector valued we consider that the Lie derivate of C along X is given by:
LxCq
LxCy

(5.8) LxC = _

LxCp

To develop a single mathematical object that will allow us to check for feasibility we will adopt a differen-

tial forms approach instead of working directly with the vector fields. By defining the exterior derivative

of C as:

dCy

dcs
(5.9) dc =

dCp,

L Although the map C depends on the chosen enumeration, the submanifold it defines does not.
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equation (5.7) can be written as dC|;(X) = —£ZC, where we have denoted by dC|; the exterior derivative

of C for fixed ¢t. If we now define the following vector valued forms:

dC s %
dCal¢ %2
oy o2
we can express equation (5.7) as:
(511) wF(X) = TF

The kinematics can also be modeled as differential forms by using the annihilating codistributions. This

lead us to define a single codistribution wg modeling the kinematics of all formation agents as:

WK, (Xl)
WK> (XQ)
(5.12) wi (X) = _ =0
Wk, (Xn)
Solutions of equation (5.11) represent vector fields that maintain formation while solutions of equation

(5.12) satisfy the kinematics. Therefore by merging both objects into:

T
(5.13) a=|“" =T
WK 0

we can check for formation feasibility in a single equation:
(5.14) 2. (X)=T VzeN

Note that this equation only needs to hold for points belonging to IV, since outside N the agents are no

longer in formation. The previous discussion leads to the following solution of Problem 5.2:

PROPOSITION 5.4. An undirected formation is feasible iff equation (5.14) has solutions, equivalently iff

T belongs to the range of Q for all x € N.

COROLLARY 5.5 (Time-Invariant Case). If the formation constraints C are time-invariant then the undi-

rected formation is feasible iff Q, is not of full rank at every v € N

A solution of equation Q,(X) = T specifies the infinitesimal motion of each individual agent. When
more than one independent solution exists, a change in the direction of a single agent may require that
all other agents also change their actions to maintain formation. This shows that, in general, solutions for

undirected formations are centralized and require inter-agent communication for their implementation.
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EXAMPLE 5.6. As an example of the methodology developed so far we consider an undirected formation

consisting of three mobile robots of the unicycle type as displayed in Figure 3. The kinematics of each

6261

F1GURE 3. Undirected 3 agents formation.

agent is given by codistributions of the form (2.22). To completely specify the formation graph we need
to define the constraints between the agents. Denoting by e; the edge between agent 1 and 2 we define
the associated constraint as:
Ty — To — Oy
(.19 o P
0, — 6
where d, and 4, are positive constants. The edge between agents 1 and 3 is denoted by es and the

associated constraint is given by:
(5.16) Ces = |5(m1 —m3)> + 5(y1 —y3)? — 5(61 —03)> — 6

where § is a positive constant. The constraint between agents 1 and 2 requires them to perform the same
trajectories with an offset between their position coordinates given by 6, and d,. It is intuitive that it is
always possible to do so. However the constraint between agents 1 and 3 states that the distance between
their positions should always equal § + %(91 — 63)%. This is clearly a non-intuitive constraint and no a
priori answer can be given regarding feasibility. We will now study feasibility of this formation according
to the methods developed so far. First we compute wx which is given by:
—sinf;dz; + cosfdy,
(5.17) Wk = | —sinfydzy + cosfardys
—sinf3dzs + cosfsdys
Since C is given by:
L1 — Ty — Oy
Y1 — Y2 — 5y
61 — 6>
3@ —x3)” + 3(1 —y3)® — 5(61 —63)* =9

(5.18) C=
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the form wp will be given by:

(5.19)
dz; — dzs
op = dyr — dys
dé, — df,

(561 — :E3)d:l71 + (y1 - yg)dy1 + (03 - 01)d91 + (563 — Cﬂl)dw3 + (y3 — yl)dyg + (01 - 03)d03
Combining wr and wg into Q one easily verifies that €2 is not of full rank for every z € N. This means
that the formation is indeed feasible, that is, there are trajectories for each agent satisfying the formation

constraints as well as its kinematics.

In the next section we will see how one can control the individual agents while maintaining the formation

and gain some insight into the group trajectories.

3.2. Group Abstraction. Whenever more than one independent solution exists, the solution space
of equation Q(X) = T can be used to extract a smaller control system that will preserve the formation
along its trajectories. This new control system is an abstraction that hides away low-level control nec-
essary to maintain the formation and can be used in higher levels of control. Since the solution space is
in general an affine space the new control system will also be affine in the control. If Kp is a particular

solution of equation (5.14), we can solve Problem 5.3 with the new control system:

(5.20) Ag = Kp + Ker(Q)
By making use of a basis {K1, Ko, ..., Ky} for the kernel of €, we can rewrite (5.20) in a more usual
form as:
k
(5.21) Ag=Kp+ Y Kju,
j=1

In the time-independent case we recover linearity of the abstracted control system since we can chose
Kp = 0. The centralized nature of the problem is also reflected on the control abstraction. When one
or more of the control inputs u; are used, inter-agent cooperation is necessary to implement the new

direction of motion since each vector K; specifies the motion for all formation agents.

ExAMPLE 5.7. Continuing with the previous example we will extract an abstraction representing the

formation as a whole. Straightforward computations provide the following basis for the kernel of (2:
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K1 = (93—91)C08918iwl+(63—91)8iﬂ61%+(63—01)cosel%+(63—01)C08918iy2
+ ((xl —xz3)cosby + (y1 —yg)sin01)i
00
Ky = ((xl —xz3)cosfs + (y1 — y3) sin03) cost91i + ((xl —x3)cosbs + (y1 — ys) sin93) sin01i
6331 ayl
+ ((xl —x3)cosfs + (y1 — y3) sin03) cost91i + ((xl —x3)cosbs + (y1 — ys) sin93) sin01i
6332 ay?
+ ((xl —xz3)cosby + (y1 — y3) sin01) cost93i + ((xl —x3)cosbi + (Y1 — y3) sin91) sin03i
6333 52/3
Kg = (91 — 93) COS Gli + (01 — 93) sinéli + ((561 — 2133) C0801 + (y1 — yg) sin91) i
oz oY1 061
+ (91 — 93) COS Gli + (01 — 93) sinéli + ((561 — 2133) C0801 + (y1 — yg) sin91) i
a$2 6y2 802

These vector fields define the abstraction through the control system:
(522) AG = K1u1 + KQUQ + K3U3

To gain some insight on the abstraction control system and the formation trajectories we display in

Figure 4 the formation evolution when the open loop control u; = 1, us = 0 and uz = 0 is used. Agent

40
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I Agent 3 -140 -120 -100 -80 -60 -40 -20 0 20

F1GURE 4. Formation flow along vector field K corresponding to u; = 1, us = 0 and
Uz = 0.

1 is represented by a trapezoid, agent 2 by a square and agent 3 by rectangle. The formation evolution
is characterized by agent 3 rotating around the same point while agent 1 and 2 perform straight line
motions. When the formation flows along vector field K5 corresponding to the open loop control u; = 0,
uo = 1 and ug = 0 all the agents in the formation move along parallel trajectories as displayed in Figure 5.
This was achieved since their initial orientations where identical. When this is not the case, more complex
motions characterize the flow along K. However it is always possible to achieve identical orientations
by flowing along K; or K3. The formation flow along basis vector K3 is somewhat dual to K;. Instead

of agent 1 rotating around itself to achieve different configuration errors regarding agent 1, agent 3 is
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FI1GURE 5. Formation flow along vector field K5 corresponding to uy = 0, us = 1 and
Uz = 0.
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FIGURE 6. Formation flow along vector field K3 corresponding to u; = 0, us = 0 and
Uz = 1.

now stopped and the remaining agents revolve around it as suggested in Figure 6. To generate more
complex motions for the formation other open or closed loops control laws can be used with the group

abstraction (5.22).

3.3. Formation Guidance. In addition to using the above abstracted system to control the forma-
tion, one can also guide the formation by appending a wvirtual vertex vg defining the reference trajectory
and several edges specifying how the reference should be followed by the formation. In particular con-
sider a feasible formation graph F = (V, E,C) and let V' be a singleton containing the vertex vy : R
— TMy, vg = %,Tg(t). This vertex is connected to the remaining formation by the additional edge
set E' = Ujer{(vo,v;)}, where I C V is a subset of all the vertices indices. Associated with each

vertex we have the constraints C' = {c.L}ecp and we can define a new formation graph given by
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F'=(V'UV,E'"UE,C"UC). Once again it is necessary to ensure that the feasible formation is capable

of maintaining the reference constraints by applying Proposition 5.4 to formation graph F'.

Note that this construction is general enough to encompass traditional formations such as: leader-follower
by superimposing the virtual vertex onto an existing vertex or placing references on the formation centroid.
It also allows some other interesting possibilities such as connecting a disconnected feasible formation

graph by the reference constraints, i.e. , several independent formations following a single reference.

4. Directed Formations

Another important class of formations can be modeled by directed graphs. A directed graph assigns
responsibilities to the formation members in an asymmetric way. For each edge e = (v;,v;) agent i is
responsible for maintaining the constraints c., while agent j is not affected by the constraint of the edge.
Once agent j determines its motion, agent i is always capable of locally computing a control strategy
enforcing the formation constraint. From an implementation point of view directed formations simplify
the synthesis of the low level control laws responsible for maintaining the agents in formation. These
control laws require only local information and are therefore easier to synthesize. The information flow
is also simplified since each agent determines its motion without the need of coordination/cooperation

with other agents.

We will assume through the remaining section that a directed formation graph is a directed acyclic
graph. As a consequence all directed formations will have at least one leader. This assumption will allow
recursive procedures to start on the leaders and to terminate since there are no cycles. Cyclic formation
graphs, although important, will not be considered in this thesis. We will also consider that the formation
constraints are time independent for simplicity of presentation although the results can easily be extended

to time-varying constraints.

4.1. Feasibility. Although in the undirected case we were able to lift the constraints and individual
agents kinematics to a larger manifold M, we will adopt a different approach for the directed case. Given

an edge e = (v;,v;) the time derivative of its associated constraints ¢, can be decomposed as:

dee
dt

(5.23) = Lx,Ce -I-EXJ.C6

Feasibility requires that ddcte = 0, however only X; can be chosen to ensure feasibility. In view of this we

will follow a similar approach to the undirected case, but in a recursive formulation. This requires the

following operators:
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DEFINITION 5.8 (Post and Pre). Let F' = (V, E, C) be a directed formation graph. The Post operator is
defined by:
Post:V — 2V

(5.24) v; = {v; €V : (v,v;) € E}
Similarly, the Pre operator is defined as:

Pre: vV — 2V

(5.25) v; — {v;eV : (vj,v;) € E}

Intuitively, Post(v;) will return the agents that are leading agent i, while Pre(v;) will return all the
agents that are following agent i. Post and Pre extend to sets of vertices in the natural way, Post(P) =
Upep Post(p) and Pre(P) = Upep Pre(p). A vertex v; is called a leader iff Post(v;) = @. By assumption
the graph underlying the formation is acyclic implying that there will be at least a leader in the formation

graph.

We shall abuse notation by representing the distribution A; defining the kinematics of agent v; as A(v;)
and for the set of agents Post(v;), A(Post(v;)) = @yepost(v;) A(v) defined over Il ¢ post(v,) M. Similarly

to the undirected case we define the following objects for each agent i:

dC1|xj dey z;
. dc2|zj . dC2 T;

(526) w% = ) wJF = — - 7 75]
dem|a; dem e,

where {1,2,...m} is an enumeration of the edges set between agent i and its leaders (Post(v;)). These

vector valued differential forms allow us to write equation (5.23) as:

(5.27) Wi (X;) = wh(X)

which is to be considered only for X; € A(v;) and X; € A(Post(v;)). Instead of restricting the X;’s to
A(v;) we can incorporate the kinematic restrictions directly into equation (5.27) by defining:

i J
(5.28) Qi = |“F o= |“F
Wi 0

where wé. is the vector valued form annihilating agent ¢ kinematic distribution A(v;). The equality

%ce = 0 can now be further modified to the following form:
(5.29) QX)) = (X;)  VXj€ A(Post(v;))

This motivates the following result analogous to the undirected case:
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PROPOSITION 5.9. A directed formation is feasible iff equation (5.29) has solutions for each agent i in
the formation. Equivalently iff the range of Q”A(post(vi)) is contained in the range of O for each agent

i.

Since Proposition 5.9 must be true for each agent, an algorithm can be constructed to determine feasibility.
Let L C V be a set of leaders and denote by F' the operator returning the feasible directions of an agent ¢
and defined by F(v;) = () "H(R(Q|a(Post(v:)))), where (1)71(S) denotes the set of preimages of each
s € S under Q.

Algorithm 1 (Directed Feasibility)

initialization: V := L

while Pre(V) # @ do

V = Pre(V)
for all v; € V do
A(’U,) =0

if R(YV[a(Post(vi) € R(V)
return UNFEASIBLE
STOP
else
Avi) == A(v;) + F(v;)
end if
end

end

All the computations in the algorithm can be performed using basis vector fields for the distributions, in
particular the inclusion R(Qj‘A(Post(vi))) C R(9Y) needs to be tested only for the basis vectors and the

1

inverse (27)~! can be computed using pseudo-inverse techniques. The acyclic nature of the graph ensure

us that the algorithm will terminate so that the following result naturally follows:

THEOREM 5.10 (Directed Formation Feasibility). Let F = (V, E,C) be an acyclic, directed formation

graph. Algorithm 1 terminates in a finite number of steps and returns:

e Unfeasible if the formation is not feasible.
e A distribution per agent specifying the available directions to maintain formation if the formation

is feasible.

EXAMPLE 5.11. An example of directed feasibility motivated by the transportation of an hazardous load

by a group of robots, escorted by another group of robots can be given by a 6 agent formation as depicted
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in Figure 7. Agents 1,2 and 3 move as a rigid body to collective transport the load. The remaining

€6

FIGURE 7. Directed graph representing a 6 agents formation.

agents serve as an escort to avoid attempts from external agents to approach the load, simultaneously
protecting them from the possible hazards induced by the load. We will consider that agent 2 is of
unicycle type being modeled by a distribution of the form (2.22) and all the remaining agents have no

kinematic constraints, being therefore modeled by:

(5.30) Ay = X{ud + Xiub + Xiul i=1,3,4,5,6
The constraints associated with edges e4, e5 and eg are simply given by:
(5.31) Ce; = (Timg —)” + (Yims —yi)> — 0> i=4,5,6

Intuitively the constraints model the fact that each agent belonging to the escort should keep a fixed
distance of § to a given robot transporting the load. The remaining constraints model in a directed way

a rigid-body type formation with respect to the agents positions and are given by:

:El—wg—(sx $2_333+690
(5.32) Cer = |1 —y2— 0y | Ceo = | yo—u3
61 — 0> 0y — 05

Following the steps of feasibility algorithm we start by analyzing the edge between agent 1 and 2. This

requires the computation of:

dz; dzs

(5.33) wp = |dyy | wE = |dye

dé, df-

oy
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and:
dzy dzs
(5.34) o= |W| oo dy
d91 d92
0 sin egdwg — COS egdyg

From these expressions we immediately see that R(Q') ¢ R(Q?) since [sinf — cosf 0 0]7 belongs to
R(Q) but it does not belong to R(0?). The formation is therefore not feasible. However if the edge e;
is replaced by a new edge with the same associated constraint but with a reversed direction as displayed

in Figure 8 feasibility is ensured. In this case we have that:

FIGURE 8. Directed graph representing a 6 agents formation with a new edge e;.

d:l?l dCUQ
(5.35) Q= |dy | 9= |dye
de, do,

and inclusion R(Q') C R(0?) is true. The next vertex to analyze is vz, but R(Q?) C R(Q?) since the
kinematics of agents 1 and 3 are equal as well as the exterior derivative of the constraints linking them

to agent 2. To analyze edge e4 one computes:
Q' = [2(21 — z4)day + 2(y1 — ya)du ]
(5.36) Ot = 2(z; — 24)dzg + 2(y1 — ya)dya)
and since agent 4 has no kinematic constraints the inclusion R(|a(post(vs))) € R(2*) holds indepen-

dently of A(Post(vs4)). A similar reasoning shows that the corresponding inclusions also hold for agents

5 and 6. We conclude that the formations is feasible meaning that independently of agent 2 motion the
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remaining agents are always capable of locally determine a control strategy that will enforce the formation

constraints.

4.2. Group Abstraction. When a directed formation is feasible the formation control abstraction
is trivially taken as the control systems of the leaders. In the previous example the abstraction is simply
given by the control system of agent 2. Contrary to the undirected case this abstraction does not allow
direct control over each individual agent. Control is exerted on the leaders that indirectly control the
formation through inter-agents links. Note that any attempt to control a non-leader agent in a abstraction
would violate the semantics of a directed edge. On the other hand regarding the leaders as an abstraction
of the formation is already implicit when the formation is specified by placing only ingoing arrows in

these agents.



CHAPTER 6

Conclusions

Hybrid systems have been used to model multi-agent, networked and embedded systems among other
kinds of complex large-scale systems. The increasing complexity of nowadays applications ask for anal-
ysis and synthesis methods that scale well with dimension and complexity. One approach is to adopt a
hierarchical perspective by modeling hybrid systems through a hierarchy of different layers of abstraction
representing different aspects of the same system. Analysis tasks are then performed on simpler, ab-
stracted models that are equivalent with respect to the relevant properties. Synthesis tasks also benefit
from this approach since the design starts as the top of the hierarchy on a simple model and is then
successively refined by incorporating the modeling details of each layer of abstraction. A complementary
approach to hierarchies of abstractions is to take advantage of the compositional structure of embedded
systems. These systems are usually constructed through the interconnection of smaller components or
subsystems. This should be regarded as structure that must be exploited to deal with the inherent com-
plexity of these systems. One possible approach is to take advantage of this compositional structure of
hybrid systems to simplify the computation of abstractions. This simplification comes from the fact that
it is, usually, much simpler to abstract subsystems individually and then interconnect them to obtain
an abstraction, than to extract the abstraction of the system as a whole. In order to accomplish this,

compositional operators need to be compatible with abstraction operators.

In this thesis we introduced a general methodology for compositional abstractions of hybrid control sys-
tems. To accomplish this goal we also made several contributions to related areas such as abstractions
of smooth control systems and formation control of multi-agent systems. In Chapter 3 we extended the
continuous abstraction methodology proposed in [60, 63, 64] to model explicitly control inputs. We have
characterized the structure of the abstracted control bundles in a hierarchy of abstractions induced by
equivalence relations on the state space. These results were obtained by resorting to simple ideas from
category theory that allowed to expose and understand the structure of smooth control systems. In Chap-
ter 4 we proposed a methodology for compositional abstractions of hybrid control systems. An abstract
framework capturing discrete, continuous and hybrid control systems was proposed as a category. In
this category we introduced a notion of abstraction based on simulations and also the notion of bisimu-
lation. We also introduced a composition operator modeling the interconnection and synchronization of
subsystems. This operator was shown to be compatible with simulations and, under certain conditions

on the synchronization, with bisimulations. All of these results were then specialized for hybrid control
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systems where an algorithm was proposed for the computations of abstractions. It was also shown that
this algorithm also computes bisimulations under certain assumptions. All of these results constitute im-
portant tools to effectively deal with the complexity or large-scale, complex, embedded systems. Finally,
in Chapter 5 we addressed and solved the formation feasibility problem for both directed and undirected
formations. Furthermore we also provided a way of obtaining a group abstraction that maintains the
formation along its trajectories. This abstraction can be regarded as a purely continuous example of the

compositional abstraction methodology introduced in Chapter 4.

The research carried out under this Ph.D. program also lead to many interesting open questions that we

mention only a few:

e In the case of purely continuous control systems it is not yet well understood when an abstraction
is in fact a bisimulation. Determining checkable conditions for bisimilarity of smooth control
systems is an extremely important problem not only from the applications perspective as well as
from a theoretical point of view. Bisimilar control systems allow to design controllers hierarchically
since we are assured that any specification for an abstract model has a feasible implementation
or refinement in a more detailed level. Besides this perspective of a hierarchical control theory
bisimilarity is also provides a major contribution to the classification of control systems. In this
respect it would also be very rewarding to understand the relation between the symmetries of
control systems and its bisimulations. It is clear that partial-symmetries as described in [57] lead
to bisimilar quotient systems but is this always the case?

e With respect to hybrid control systems, it is fundamental to render the results developed in this
work computational. In this respect it matters to identify special classes of hybrid control systems
for which the proposed abstracting algorithm can be fully automated. Also some of the given
results may be difficult to check in real examples, and again the identification of special classes
of hybrid systems could be extremely helpful to overcome these difficulties. It is also important
to stress that since large-scale, embedded systems are becoming increasingly distributed and net-
worked an extension of the proposed methodology toward the explicit modeling of communication
channels would be another valuable tool for the analysis and synthesis or real world applications.

e Finally, although we are able of determining if a given directed formation is feasible or not, it
is important to consider the problem of determining if there are other inter-agents constraints
defining a formation with the same trajectories as an unfeasible directed formation. A related
problem is to extract the largest feasible directed formation from an unfeasible directed formation,

since this would have direct impact in control and communication design.
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