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ResumoNa �ultima d�eada a modela�~ao, an�alise e ontrolo de sistemas omplexos, embebidos e de larga esala,tem vindo a ser alvo de aten�~ao resente. Os avan�os e o reduzido usto de novos e mais performantesdispositivos de omunia�~ao, �alulo e sensoreamento alargam onsideravelmente os limites do que �ehoje exequ��vel. As aplia�~oes atuais ultrapassam j�a o onheimento formal e te�orio que existe sobreestes sistemas pelo que uma abordagem formal reveste-se de partiular importânia. Neste sentido,prop~oe-se algumas solu�~oes nesta tese ao onsiderar Sistemas H��bridos omo modelo formal para sistemasembebidos.Neste trabalho introduz-se um enquadramento te�orio e abstrato para o estudo de sistemas de ontroloinlu��ndo sistemas de ontrolo disretos, ont��nuos e h��bridos. Uma no�~ao de abstra�~ao �e apresentadapara sistemas de ontrolo h��bridos que pode ser enarada omo um sistema quoiente que preservaas propriedades de interesse enquanto ignora detalhes de modela�~ao. �E dediada espeial aten�~ao asistemas de larga-esala que s~ao usualmente onstru��dos atrav�es da interliga�~ao de subsistemas. Umano�~ao formal de omposi�~ao �e tamb�em introduzida por forma a modelar a interliga�~ao e sinroniza�~aode subsistemas. Mostra-se que a no�~ao de abstra�~ao �e omposiional no sentido em que a omposi�~ao deabstra�~oes de subsistemas �e uma abstra�~ao do sistema global. �E tamb�em proposto um algoritmo paraalular abstra�~oes de sistemas h��bridos. Estes resultados perspetivam uma metodologia hier�arquiapara efetuar tarefas de an�alise e s��ntese em sistemas de ontrol h��bridos.Palavras Chave: Sistemas H��bridos, Sistemas de Controlo, Abstra�~oes, Composiionalidade, Hierar-quias. iii
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AbstratIn the last deade an inreasing attention has been paid to the modelling, analysis and ontrol of large-sale, embedded, omplex systems. The advanes and the low ost of new and more powerful omputing,sensing and ommuniating devies push further the limits of what is now possible to aomplish. Todaysappliations have gone way beyond the formal and theoretial understanding we have about those systems.This fat suggests a formal approah and this thesis provides some answers by regarding Hybrid Systemsas a formal model for embedded systems.In this work we introdue an abstrat framework for the study of ontrol systems apturing ontinuous,disrete and hybrid ontrol systems. A notion of abstration is de�ned for hybrid ontrol systems whihan be regarded as a quotient system that preserves properties of interest while ignoring modellingdetails. Speial attention is devoted to large sale systems whih are usually built by interonnetingsmaller subsystems. A formal notion of omposition is also introdued to model the interonnetionand synhronization of subsystems. It is shown that the notion of abstration is ompositional in thesense that by omposing abstrations of subsystems one obtains an abstration of the overall system.An algorithm is proposed to ompute abstrations of hybrid ontrol systems providing a useful toolto deal with the inherent omplexity of embedded systems. These results perspetivate a hierarhialmethodology to perform analysis and design tasks for hybrid ontrol systems.Keywords: Hybrid Systems, Control Systems, Abstrations, Compositionality, Hierarhies.
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CHAPTER 1IntrodutionIn the last deade an inreasing attention has been paid to the modeling, analysis and ontrol of large-sale, embedded, omplex systems. The thrust from the appliation side has been tremendous andinludes, among others:� Automotive engines, where disrete phenomena suh as torque generation and spark ignitioninterats with the ontinuous evolution of the power train and air dynamis [9℄, see also [8℄.� Air-TraÆ management where disrete deisions about the ontinuous evolution of several airraftsare addressed [82℄.� Chemial bath plants operating in multi-bath mode where a disrete sequene of ontinuousations suh as mixing, heating or ooling produts needs to be determined in order to produethe desired produt [54℄.� Manufaturing industry where some proesses are modeled by a ontinuous and a disrete layer.In the ontinuous, time driven layer, the manufaturing of produts is desribed by ontinuousdynamis whereas on the disrete layer, a disrete event system models the manufaturing systembased on events generated by the ontinuous proesses [22℄.� Proess ontrol [68℄.� TCP ongestion ontrol [28℄.� Biomoleular networks [3℄.� et.It is fair to say that embedded systems are now everywhere where we mean by embedded systems all thoseappliations where omputing systems interfae the ontinuous world through sensors and atuators. Theadvanes and the low ost of new and more powerful omputing, sensing and ommuniating devies pushfurther the limits of what is now possible to aomplish. Todays appliations have gone way beyond theformal and theoretial understanding we have about those systems. In fat, designing embedded systemsis a very diÆult task sine several di�erent domain spei� tehniques must be ombined together.Software engineering and onurreny theory tehniques as well as real-time sheduling need to meetsignal proessing and ontrol theory to aommodate the needs of embedded systems. The inreasinglysophistiation of the produts, the large number of modes of operation as well as interativity and dynamireon�gurability render impossible for single engineer to ompletely design an embedded system. These1



2 1. INTRODUCTIONdiÆulties all for a formal approah. In this spirit we regard Hybrid Systems as a formal model forembedded systems sine it allows to speify both the ontinuous (world) dynamis as well as the disrete(omputational) dynamis.The emerging omplexity of embedded systems also raises a fundamental question that we partially ad-dress in this work: how to ensure that embedded systems satisfy their spei�ations? The high omplexityof these systems as well as the di�erent sienti� tehniques used in their design makes almost impossibleto formally prove that the system satis�es desired properties. Two approahes to this question seem spe-ially promising: one is to satisfy the spei�ations by onstrution so that it is not required to prove thatthe �nal system meets its requirements. The other is to prove the desired properties by taking advantageof the struture of large-sale omplex embedded systems. In any ase, formal methods are neessaryto understand how the properties of subsystems are propagated or preserved by the interonnetion andsynhronization of these subsystems. This learly demands for formal notions of ompositionality betweensubsystems or submodules. It is also neessary to have formal notions of abstration for omplexity re-dution of these systems. Abstrations allows maro modeling by ignoring modeling details that areunimportant at a desired level of abstration. When an engineer is developing a partiular module heonly needs to take into onsideration the behavior of the general system that inuenes or is inuenedby the spei� module under development. He would therefore onsider only two systems: the moduleto be designed and an abstration of the remaining system that hides irrelevant details. The onepts ofabstration and ompositionality will be reurrent themes through this thesis.1. Hierarhies of Compositional AbstrationsIt has been reognized and widely aepted that hierarhies are a very useful way of dealing with theomplexity of large sale systems. Examples of the use of hierarhies are ommonly spread throughoutsystems engineering. However, its use in real appliations, and sometimes even in the aademi worldhas not been followed by an e�ort to formalize and to understand the modeling power and expressivenessor the analysis and synthesis advantages/drawbaks when ompared with single-layered models. Exeptfor the theoretial omputer siene ommunity whih has already developed very mature notions ofabstration and omposition, in partiular, in the areas of onurreny theory [52℄ [89℄, and omputeraided veri�ation [48℄, no suh e�ort was ever made in the ontrol ommunity. This e�ort, by theomputer sientists, has resulted in formal and very meaningful notions of abstration whih are usedto takle exponential explosion of purely disrete systems. Given a disrete system, an abstration anbe seen as a quotient system that preserves some properties of interest while ignoring modeling details.Language equivalene, simulation, and bisimulation are established notions of abstration for disretesystems that preserve properties expressed in various temporal logis.



1. HIERARCHIES OF COMPOSITIONAL ABSTRACTIONS 3We believe, however, that these ideas, notions and onepts are so general and useful that it is veryworth it to transpose them to the ontinuous as well to the hybrid world. From the ontinuous side thisline of researh initiated in [62℄ and has resulted in automati onstrutions of abstrations for linearontrol systems, nonlinear ontrol systems [63, 64℄ and Hamiltonian ontrol systems [77℄ while preservingontrol theoreti properties. Preliminary investigations trying to ombine the ontinuous with the disreteresults were presented in [77℄, however, we take a di�erent and more general approah in this thesis thatomprise those results as a speial ase. Other approahes to this problem in the hybrid ase are desribedin [4, 15, 18, 69℄.The approah taken in this work regards disrete, ontinuous and hybrid systems as partiular examplesof a more general notion of abstrat ontrol systems. It is within this lass of systems that the notions ofsimulation, bisimulation and abstration will be formulated. We identify the struture of abstrat ontrolsystems and restrit the lass of maps between them to those that respet that struture. This is elegantlypresented by making use of some elementary notions of ategory theory. We therefore de�ne the ategoryof abstrat ontrol systems whih will serve as the domain of mathematial disourse for our study. Anabstration of a given abstrat ontrol system will simply be another abstrat ontrol system suh thatthere is a struture preserving (morphism) surjetive map from the original system to the abstration.This quotienting or aggregation map de�nes what is ignored and what remains from the original model.All the properties that will be preserved from the original system to the abstration or reeted from theabstration to the original system will depend ritially on the struture that is preserved by the maprelating both systems. We determine whih further assumptions on the abstrating maps are required topreserve hybrid systems relevant properties.Struture preserving maps are losed under omposition and this property allows to build an hierarhyof di�erent levels of abstration. If one starts with system A, one an extrat an abstration B and thenfurther abstrat C from B. By omposing the aggregation maps we ensure that C is still an abstrationfrom the original system, as displayed in Figure 1. By this proess we an formalize an hierarhy with any�nite number of levels and provide a oneptual basis for a hierarhial approah to proof, veri�ationor design methodologies for large-sale systems. Suppose we want to prove that property P is true forsystem A. If the maps between system A and its abstrations are suh that all the models are equivalentwith respet to that property, then determining if the property holds for A is equivalent to determiningif the property holds for C, whih has lower omplexity.Another related onept that is extremely useful in dealing with the omplexity of large sale systemsis ompositionality. Common large-sale systems are built by interonneting smaller subsystems. Thisshould be onsidered as struture for those partiular systems that should be exploited to further reduethe omplexity of analysis and/or design tasks. We introdue a formal notion of parallel ompositionwith synhronization, modeling this aspet of large-sale systems, and show how we an use it to simplify



4 1. INTRODUCTION
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Figure 1. A hierarhy of abstrations of system A.
the task of omputing abstrations. Indeed, we show that abstrations are ompatible with parallelomposition in the sense that if system A is in fat built by interonneting subsystems A1, A2 and A3,then we an abstrat eah Ai to Bi, individually. Compatibility now means that the system obtained byinteronneting the subsystems B1, B2 and B3 is an abstration of system A as displayed in Figure 2.Clearly the task of abstrating eah subsystem will be easier to aomplish then abstrating the wholesystem A, speially for large-sale systems.
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Figure 2. Abstration of system A as a whole and subsystem by subsystem.These ideas will be disussed in grater detail in the next setion where we summarize the thesis hapters.



2. THESIS OUTLINE 52. Thesis outlineThis thesis is divided into 6 hapters overing some aspets of ontinuous abstrations, hybrid abstrationsand multi-agent systems.2.1. Mathematial Bakground. In this hapter we review some misellaneous mathematialfats required through the thesis. We introdue some elementary notions of ategory theory whihwill provide the formal setup for our study of ompositional abstrations. Some ideas from theoretialomputer siene provide the neessary bakground for the disrete part of hybrid systems while theontinuous part requires some notions of di�erential geometry and di�erential geometri ontrol theorywhih are also presented in this setion.2.2. A Walk Through the Continuous World. With the goal of developing a general theory ofabstrations for hybrid ontrol systems omprising the already existing theory for disrete systems andthe reent developed theory for ontinuous system, we faed the need to extend the existing ontinuousresults. Atually, we wanted to de�ne a parallel omposition operator with synhronization for hybridsystems that would have as a speial ase the existing results for omposition of transition systems withevent synhronization. It so happens that, in our interpretation, the events orrespond to the inputs ofa ontrol system and the existing results for ontinuous abstrations did expliitly model the inputs. Wehave thus extended the ontinuous abstration theory from the state spae manifold to the orrespondingontrol bundle. In this hapter we present a notion of simulation expliitly modeling the inputs thatis equivalent to the existing one, and haraterize the geometry of the ontrol bundle of a simulationindued by an equivalene relation on the base spae of the original ontrol system. We were stronglyinuened by some ideas of ategory theory and handled the problem in a ategorial way. This turnedout to be useful in various ways sine we gained a muh deeper insight into the struture of ontinuousontrol systems. But, perhaps even more important, is the fat that we were able to distinguish whihproperties of ontinuous ontrol systems where intrinsi and whih depended on the additional struturewe assumed (smoothness). With these insights, provided by the ategorial approah, we developed asimilar theory for hybrid ontrol systems in the next hapter. It was also extremely rewarding the fatthat a large number on interesting problems and researh diretions were also unveiled in this walk troughthe ontinuous world.This hapter aimed at a oneptual and formal understanding of the struture of a hierarhy of ontrolbundles indued by an hierarhy of abstrations. We have also exposed the struture of the maps relatingthe inputs of a ontrol system to the inputs of its abstration. Although the results enable the developmentof a hierarhial ontrol theory for ontinuous systems it was never the purpose to proeed towards resultsdiretly useful to the pratitioner. In fat, the sare examples and the language of ategory theory may



6 1. INTRODUCTIONrepeal some readers although we have only used some elementary fats from ontrol theory and di�erentialgeometry in our approah. To overome these diÆulties we made Chapter 4 independent of Chapter 3,exept for some referenes that an safely be ignored without risking the omprehension of that hapter.2.3. Hybrid Control Systems. This hapter of the thesis ontains the major ontributions. Aompletely abstrat and general theory of ontrol systems is presented. In this general framework,strongly inuened by simple ategorial ideas, we de�ned and proved all the relevant onepts andresults that we later spei�ed to hybrid ontrol systems. On the �rst part of this hapter we providea general notion of ontrol system enompassing disrete, ontinuous and hybrid ontrol systems. Weintrodue a notion of abstration and determine some preserved properties. This notion of abstrationalso de�nes an equivalene relation on the lass of ontrol systems if we render it symmetri sine it wasalready transitive and reexive. We give onditions for equivalene whih are, in priniple, easier to hekthan the de�nition and move towards ompositionality. We de�ne a omposition operator that models asystem built by the interonnetion and synhronization of two (or any �nite number of) subsystems. Wealso show that our operator is ompatible with the introdued notion of abstration. On the seond partof the hapter all of these results are instantiated for the hybrid ase and some suÆient results (whihare easier to hek then the suÆient and neessary ones) are also given. We also provide a very brieftreatment of the additional assumptions required for abstrations to preserve a purely hybrid phenomena:Zeno sequenes. It is fair to say that most of the work in this hapter was strongly inuened by omputersiene ideas speially in the �elds of onurreny and omputer aided veri�ation and that we followedlosely [89℄ in our developments. We have, however, taken a ontrol theory twist in the interpretation ofsome of the onepts and results.Although we provide the standard de�nition of hybrid ontrol systems, the hybrid automaton, we pre-ferred to work in the abstrat setting introdued in the �rst part of the hapter. However, when spe-ializing the developed results for hybrid ontrol systems, we returned to the notation and onepts ofthe hybrid automaton to make the developed results aessible to a wider audiene. As in the seondhapter, the abstrat formulation of the addressed problems and the language of ategory theory may notplease all of the readers, speially those from the ontrol ommunity where omputer siene ideas andategorial language are rather new. We feel, however, that it is a risk worth taking as the tehnologi-al advanes are pushing the limits of our knowledge further and further with inreasingly ompliatedproblems. This an only be mathed by an e�ort from the ontrol ommunity to use more sophistiatedand diverse mathematial tools to address these new problems. In this sense, this work represents a steptowards this new interdisiplinary vision of the new systems and ontrol theory.2.4. Formations and Abstrations of Multi-Agent Systems. This hapter ollets some re-sults on formations of multi-agent systems as an illustrative example of some of the onepts introdued



2. THESIS OUTLINE 7in Chapter 4. Sine the word agent may have di�erent meaning aording to the sienti� ommunitywhere it is employed it matters to stress that we mean by multi-agent systems, systems omposed byseveral ontrol systems that usually require some form of ommuniation, oordination or ooperation toahieve the desired spei�ations. In this regard we introdue a formal model for formations allowing thestudy of the feasibility problem: Given a set of agents, their kinematis, a set of inter-agent onstraintsde�ning the formation, determine if there are trajetories for the individual agents satisfying all the on-straints. This problem is solved and the omputations neessary to determine the answer to this questionlead also to the solution of the group abstration problem: Given a feasible formation, extrat a smallerontrol system, the group abstration, representing the formation as a whole. This new ontrol systemthat we all the formation or group abstration has smaller omplexity than the original ontrol systemsand also ensures that all its trajetories satisfy the formation onstraints.The group abstration introdued in this hapter is in fat an instantiation of the notion of parallelomposition with synhronization that was introdued for abstrat ontrol systems in Chapter 4. Inpartiular, the group abstration is no more then the parallel omposition of the individual agents withsynhronization over the formation onstraints.This work on formation was oneived in order to be aessible to wide audiene omprising the robotis,ontrol and aerospae ommunities. In this sense we have deliberately emphasized the readability overthe mathematial sophistiation. We have, therefore, preferred to talk about pointwise solving equationsof the form Ax = b on manifolds than to talk about exterior di�erential systems with independeneonditions.2.5. Conlusions. In the last hapter we review the ontributions of this thesis, present the overallonlusions as well as several important topis for further researh.
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CHAPTER 2Mathematial BakgroundIn this setion we review the basi mathematial onepts required for the presentation of the ideas inthis work. 1. MisellaneousWe start by reviewing some misellaneous mathematial fats to set notation. If A is a set, we denotethe set of all subsets of A, also alled the power set of A, by P(A). Let f : A �! B be a map, if S is asubset of A we denote by f(S) the subset of B de�ned by:f(S) = [s2S f(s)(2.1)When f is a linear map between modules or vetor spaes we denote the range of f by R(f) = f(A). Wealso use the set notation f�1(b) to refer to all the points a 2 A suh that f(a) = b and if S is a subset ofB we denote by f�1(S) the set: f�1(S) = [s2S f�1(s)(2.2)1.1. Relations. A relation is a generalization of a funtion in the sense that it assigns to eahelement in its domain a set of elements in its odomain. Mathematially a relation R between the setsS1 and S2 is simply a subset of their Cartesian produt, that is:R � S1 � S2(2.3)The domain of a relation is the set:dom(R) = fs1 2 S1 : 9s2 2 S2 (s1; s2) 2 Rg(2.4)and the range of a relation is de�ned by:range(R) = fs2 2 S2 : 9s1 2 S1 (s1; s2) 2 Rg(2.5)A relation is said surjetive if range(R) = S2. Given two relations R � S1�S2 and R0 � S2�S3 we ande�ne their omposition to be the relation R0 ÆR � S1 � S3 de�ned by:R0 ÆR = f(s1; s3) 2 S1 � S3 : 9s2 2 S2 (s1; s2) 2 R ^ (s2; s3) 2 R0g(2.6) 9



10 2. MATHEMATICAL BACKGROUNDGiven a relation R � S1 � S2 we denote its inverse relation as R�1 � S2 � S1, given by:R�1 = f(s2; s1) 2 S2 � S1 : (s1; s2) 2 Rg(2.7)An objet that we will use frequently is the set valued map R : S1 �! P(S2) indued by a relation R andde�ned by: R(s1) = fs2 2 S2 : (s1; s2) 2 Rg(2.8)Given a map f : S1 �! S2 it indues the relation R = f(s1; s2) 2 S1 � S2 : s2 = f(s1)g. Conversely,every relation R � S1�S2 with domain dom(R) = S1 and suh that R(s1) is a singleton for every s1 2 S1de�nes a map f : S1 �! S2, by f(s1) = R(s1).We also introdue some notation for later use. Given relations R1 � S1 �S2, R2 � S3 �S4 and a subsetL � S1 � S3 we de�ne the new relations R1�2 and R1�2jL as:R1�2 = f((s1; s3); (s2; s4)) 2 (S1 � S3)� (S2 � S4) : (s1; s2) 2 R1 ^ (s3; s4) 2 R2g(2.9) R1�2jL = f((s1; s3); (s2; s4)) 2 R1�2 : (s1; s3) 2 Lg(2.10)The Cartesian produt S1 � S2 omes equipped with two projetion maps �S1 : S1 � S2 �! S1 and�S2 : S1 � S2 �! S2. If we now hoose a subset R of the produt suh that �S1(R) = S1 we an regardthis subset R as a (set theoreti) �ber bundle over the base spae S1 and we all R a �bering relation.The �ber over s 2 S1, denoted by Rs = ��1S1 (s) is given by all the elements r 2 R suh that �S1(r) = s.We also denote an element r = (a; b) 2 R by ba when we whish to emphasize the �ber part of r.1.2. Monoids. A monoid is a triple (M; �; ") whereM is a set losed under the assoiative operation� :M�M�!M and " is a speial element ofM alled identity. This element satis�es " �m = m � " = mfor any m 2M. We will usually denote m1 �m2 simply by m1m2 and refer to the monoid simply asM.Given two elements m1 and m2 fromM we say that m1 is a pre�x of m2 i� there exists another m 2Msuh that m1m = m2. Suppose now that we have a �bering relation R � S �M with base spae S. If��1S (s) ontains (s; ") and is pre�x losed for every s 2 S then we all R a �bering monoid.We now relate relations with �ber bundles and monoids. Suppose that the sets S1 and S2 are in fat�ber bundles. Then a relation R � S1 � S2 indues a relation RB � B1 �B2 on the base spaes B1 andB2 of S1 and S2, respetively, de�ned by:(b1; b2) 2 RB i� (b1; b2) = (�S1(s1); �S2(s2)) and (s1; s2) 2 R(2.11)If the �ber bundles have a riher struture suh as �bering monoids we need the relation to respet thatstruture. We then say that a relation R � S1 � S2 between two �bering monoids is �bering monoidrespeting i� satis�es:� Identity: (b1; b2) 2 RB ) ((b1; "); (b2; ")) 2 R



2. CATEGORY THEORY 11� Semi-group: ((b1;m1); (b2;m2)); ((b01;m01); (b02;m02)) 2 R and (b1;m1m01) 2 S1) ((b1;m1m01); (b2;m2m02)) 2 R.
2. Category TheoryIn this work we will not have the opportunity to fully take advantage of the doors opened by ategorytheory, but we will rather make an elementary use of it. We point the reader to [43℄ for further detailsas well to [44℄ and [5℄ (by this order) for a sequene of books that provide the neessary \maturity"for [43℄. Informally speaking, a ategory is a universe of mathematial disourse and is perhaps betterdesribed by examples. If one is interested in group theory one would ertainly work in the universe ofgroups and group homomorphism, whereas if one is learning elementary topology the natural universeare topologial spaes and ontinuous maps between then. In linear algebra one deals with vetor spaesand linear maps, in di�erential geometry with smooth manifolds and smooth maps between then, et.This idea of universe of mathematial disourse an be formally de�ned as follows:Definition 2.1 (Category). A ategory is a tuple (O; hom; id; Æ) onsisting of:� A lass of objets O.� For eah pair of objets (A;B) belonging to O, a set hom(A;B). The elements of hom(A;B)are alled morphisms from A to B. An element of this set f 2 hom(A;B) is usually denotedgraphially as A f�! B.� For eah objet A 2 O a speial morphism A idA�! A, alled the identity on A.� A binary operation whih maps a pair of morphisms (A f�! B;B g�! C) to the omposite1A gÆf�! C while satisfying:{ Assoiativity: h Æ (g Æ f) = (h Æ g) Æ f whenever the omposition is de�ned.{ Identity: for a morphism A f�! B we have idB Æ f = f = f Æ idA.{ The sets hom(A;B) are pairwise disjoint.In the above examples the objets are the groups, topologial spaes, et, while the arrows are the grouphomomorphisms, ontinuous maps, et, between them. As morphisms are displayed graphially, moreelaborate relations between morphisms are usually displayed in ommutative diagrams. We shall say thata diagram ommutes i� the omposition of morphisms in any path from one objet to another objet is1Note that omposition of f and g is only de�ned if the target of f equals the soure of g.



12 2. MATHEMATICAL BACKGROUNDthe same. Consider for example the following diagram
C D-jA B-f?h ?g(2.12)where ommutativity simply means that the two existing paths from A to D are equal, that is gÆf = jÆh.We will almost only use onrete ategories where all the objets an be seen as sets with added stru-ture and the morphisms are maps between the sets that preserve the struture. This is easily seen fortopologial spaes whih are sets with the added olletion of open sets as struture or manifolds whihare sets equipped with a maximal atlas.We shall make some use of the following objets:Definition 2.2 (Produt). Let A and B be objets in a ategory. The produt of A and B is the triple(C; �A; �B) suh that for any other triple (C 0; �0A; �0B) there exists one and only one morphism � makingthe following diagram ommutative:

C 0�0A ����IA C� �A B-�B6� �0B�����(2.13)Note that the produt aptures the relevant notion of produt with respet to the orresponding ategory.The produt on the ategory of sets and maps between them is the usual Cartesian produt, while in theategory of groups is the diret produt, in the ategory of topologial spaes is the Cartesian produtof the supports equipped with the produt topology, et.Another objet that we will use to apture the notion of embedding a system into a larger system is theequalizer:Definition 2.3 (Equalizer). Let g and h be morphisms in a ategory. The equalizer of g and h is themorphism f satisfying g Æ f = h Æ f and suh that for any other morphism f 0 satisfying g Æ f 0 = h Æ f 0there is one and only one morphism f suh that the following diagram ommutes:A B-fA06f f 0����� C-g -h



3. LABELED TRANSITION SYSTEMS 13The notion of o-equalizer, dual to the notion of equalizer, will also play an important role sine o-equalizers an be regarded as the ategorial formalization of the ontinuous abstration proess desribedin Chapter 3:Definition 2.4 (o-Equalizer). Let g and h be morphisms in a ategory. The o-equalizer of g and h isthe morphism f satisfying f Æ g = f Æh and suh that for any other morphism f 0 satisfying f 0 Æ g = f 0 Æhthere is one and only one morphism f suh that the following diagram ommutes:B C-ff 0����RC 0?fA -g -h
Another relevant onept is that of free objet, we now provide a partiular version of the onept thatis enough for our needs:Definition 2.5 (Free Objet). Let A be an objet in a ategory, S a set and i : S �! A the inlusionmap taking s 2 S to i(s) = s 2 A. We say that A is free on the set S or that A is freely generated byS i� for every map i0 from S to A0 there exists one and only one morphism i suh that the followingdiagram ommutes: S A-ii0����RA0?iThe elements of S are also usually alled the generators of A. We then see that in order to speify amorphism from a freely generated objet to another objet it suÆes to de�ne the morphism on thegenerators sine it extends in a unique way to a morphism de�ned on its domain. This is something wellknown, for example, in the ategory of vetor spaes. To de�ne a linear map between vetor spaes itsuÆes to de�ne it on the basis of that spae sine it extends in a unique way to all the elements of thevetor spae by linearity. 3. Labeled Transition SystemsAs already stated in the introdution several ideas from theoretial omputer siene play a ruial rolein hybrid systems theory and also on this thesis. We now reall the onept of labeled transition systems:Definition 2.6 (Labeled Transition Systems). A labeled transition system is a triple (Q;�;�!) whereQ is a set of states, � is a set of labels or events and �!� Q � � � Q is a (transition) relation. Iffurthermore Q and � are �nite we have a disrete labeled transition system.



14 2. MATHEMATICAL BACKGROUNDAlthough this notion has its roots in theoretial omputer siene and digital systems [29℄ we shallinterpret it in a ontrol theoreti way whih even di�ers from the disrete event systems ommunity [70,71, 16℄:The setQ is our model for the \state-spae", � is a set of labels assoiated with the hoies and the relation�! determines how the hoies govern the evolution. An element (q1; �; q2) 2�! is usually representedgraphially as q1 ��! q2 and is interpreted as the hoie � e�etuated at state q1 has the e�et of makingthe system evolve to the new state q2. Note that by using a relation to model the evolutions we allownondeterminism in the sense that both triples (q1; �; q2) and (q1; �; q3) may belong to �!, for example.However in this work we will make the assumption that all the systems are deterministi so that we anreplae the relation �! with the partially de�ned next-state map Æ : Q�� �! Q.Definition 2.7 (Input Trajetories). Given a disrete transition system (Q;�;�!) and a state q0 2 Q,an input trajetory (also alled a sequene, string or trae) starting at q0 is a �nite sequene of labels�1�2 : : : �i : : : �n suh that q0 �1�! q1, q1 �2�! q3, .... and qn�1 �n�! qn, for some qi 2 Q, i = 1; : : : ; n.Although the emphasis on disrete ontrol systems in on the input trajetories that an be feed (or thatare aepted by) to the transition system, for ontinuous ontrol systems the emphasis is on the sequeneof states that are visited by some hoie of inputs. In fat, we regard the labels � 2 � as inputs that wean ontrol to inuene the evolution desribed by Æ, where as in the omputer siene ommunity eventsare triggered by some external element that is beyond our ontrol.4. Di�erential GeometryWe now review the neessary onepts from di�erential geometry following more or less losely [1℄ and [12℄.In this work we understand by a smooth manifold an Hausdor�, seond ountable di�erentiable manifold.Let M be a smooth manifold and TxM its tangent spae at x 2M . The tangent bundle of M is denotedby TM = [x2MTxM and �M is the anonial projetion map �M : TM �! M taking a tangent vetorX(x) 2 TxM � TM to the base point x 2 M . We reall that TxM has a vetor spae struture overthe real �eld. Dually we de�ne the otangent bundle to be T �M = [x2MT �xM , where T �xM is the linearspae of all linear maps from TxM to the real �eld. The otangent bundle also omes equipped with anatural projetion map from T �M to M . Both TM and T �M an be endowed with the struture of amodule over the ring of smooth real funtions on M . Now let M and N be smooth manifolds and � :M�! N a smooth map, we denote by Tx� : TxM �! T�(x)N the indued tangent map whih maps tangentvetors from TxM to tangent vetors at T�(x)N . If � is suh that Tx� is surjetive at x 2M we say that� is a submersion at x. When � is a submersion at every x 2 M we simply say that it is a submersion.When � has an inverse whih is also smooth we all � a di�eomorphism. We say that a manifold M isdi�eomorphi to a manifold N , denoted by M �= N , when there is a di�eomorphism between M and N .



4. DIFFERENTIAL GEOMETRY 15When this is the ase we an de�ne the pullbak of a vetor �eld Y 2 TN , denoted by ��Y , as the vetor�eld X 2 TM given by X(x) = T�(x)��1Y (�(x)).To later desribe ontrol systems we will need the onept of �ber bundle:Definition 2.8 (Fiber Bundle). A �ber bundle is a tuple (B;M; �B ;F ; fOigi2I), where B, M and Fare smooth manifolds alled the total spae, the base spae and standard �ber respetively. The map�B : B �!M is a surjetive submersion and fOigi2I is an open over of M suh that for every i 2 I thereexists a di�eomorphism 	i : ��1B (Oi) �! Oi �F making the following diagram ommutative:��1B (Oi) Oi �F-	i
Oi?�B �oi������	(2.14)that is, satisfying �oi Æ	i = �B , where �oi is the projetion from Oi�F to Oi. The submanifold ��1B (x)is alled the �ber at x 2M and is di�eomorphi to F .We will usually denote a �ber bundle simply by � : B �!M . The morphisms in the ategory that has asobjets �ber bundles are alled �ber preserving maps:Definition 2.9 (Fiber Preserving Maps). Given a smooth map ' : B1 �! B2 between two �ber bundleswe say that ' is a �ber preserving map i� for any a; b 2 B1:�B1(a) = �B1 (b)) �B2 Æ '(a) = �B2 Æ '(b)(2.15)Note that a map ' : B1 �! B2 being �ber preserving implies and is implied by the existene of a map� :M1 �!M2 making the following diagram ommutative:
M1 M2-�B1 B2-'?�B1 ?�B2(2.16)Given �ber bundles B1 and B2 we will say that B1 is a subbundle of B2 if the inlusion map i : B1 ,! B2is �ber preserving.



16 2. MATHEMATICAL BACKGROUNDGiven a map h :M �! N de�ned on the base spae of a �ber bundle we denote its extension to all of thebundle B by he, de�ned by the following ommutative diagram:
M N-h he����RB?�B(2.17)that is he = h Æ �B . We now onsider the extension of a map H : B �! TM to a vetor �eld in B. Wewill de�ne loal and global extensions of H . Globally, we de�ne He as the set of all vetor �elds X 2 TBsuh that:

B TM-HX�����
��TB?T�B(2.18)ommutes, that is T�B(X) = H . When working loally, one an be more spei� and selet a distin-guished element of He, denoted by H l, whih satis�es in trivializing oordinates T�F(H l) = 0, where�F is the projetion from Oi � F to F . Using trivializing oordinates (x; b) this simply means thatH l = H ��x + 0 ��b . A vetor �eld Y : M �! TM on the base spae M of a �ber bundle an also beextended to a vetor �eld on the whole bundle. It suÆes to ompose Y with the projetion �B : B�! M and reover the previous situation sine Y Æ �B is a map from B to TM . Given a distribution Don M we denote by De the extension of D de�ned as:De = [X2DXe(2.19)Note that the previous de�nitions imply the equality Ker(The) = (Ker(Th))e sine Ker(The) =Ker(T (h Æ �B)) = Ker(Th Æ T�B) = fY 2 TB : T�B(Y ) 2 Ker(Th)g = (Ker(Th))e.We reall that a distribution is a smooth assignment of a subbundle of the tangent bundle, that is, ateah point x 2M a distribution � assigns a linear subspae of TxM . Given vetor �elds X1; X2; : : : ; Xnsuh that SpanfX1(x); X2(x); : : : ; Xn(x)g = �(x) for every x 2 M we abuse notation and identify �with the set of vetor �elds fX1; X2; : : : ; Xng. On the otangent bundle we have similar objets, namelyodistributions. A odistribution assigns in a smooth way a subspae of T �xM at eah x 2 M . Also inthis ase we identify a distribution ! with the set of ovetor �elds or one-forms f�1; �2; : : : ; �ng whenSpanf�1x; �2x; : : : ; �nxg = !x for every x 2 M . Given a distribution � there is a unique annihilatingodistribution ! de�ning �. This odistribution is de�ned as:! = f� 2 T �M j �(X) = 0 8X 2 �g(2.20)



5. CONTROL THEORY 17Conversely, a odistribution ! de�nes a unique distribution Ker(!) given by the set of all vetor �eldsX 2 TM suh that !(X) = 0. If a odistribution ! de�nes a distribution � by annihilation we have that� = Ker(!).Consider for example a uniyle type robot. If we model its state spae by the manifold M = R2 � S1,denoting a point in M by (x; y; �) where x and y represent the position of the robot and � its orientationwe an de�ne its kinematis by a distribution. Consider the following basis for TM :X1 = 2666400137775 X2 = 26664os �sin �0 37775 X3 = 26664� sin �os �0 37775(2.21)With respet to this basis the kinematis is desribed by the distribution:� = X1u1 +X2u2(2.22)where u1 2 R and u2 2 R are ontrol inputs. Equivalently the kinematis is given by the odistribution:! = � sin �dx+ os �dy(2.23)sine any vetor �eld X 2 TM suh that !(X) = 0 is of the form (2.22).Given distributions �1 on M1 and �2 on M2 we denote their diret sum �1 � �2 as the �ber bundlede�ned pointwise by: (�1 ��2)(x1; x2) = T i1(�1(x1))� T i2(�2(x2))(2.24)where i1 : M1 �! M1 �M2 and i2 : M2 �! M1 �M2 are the anonial injetions. Note that the diretsum on the right side of (2.24) is performed on the vetor spae T(x1;x2)(M1 �M2).
5. Control TheoryWe regard ontrol systems as dynamial systems where hoies inuening the evolution an be madeduring the evolution. Another interesting and useful interpretation of ontrol systems are families ofdynamial systems (or their trajetories if one adopts a behavioral point of view [66℄) parameterized byone or more ontrols. By hanging the ontrols we are hanging the dynamial system, and therefore thetrajetories or solutions.Continuous ontrol systems are usually desribed by di�erential equations on some manifold M withthe hoies parameterized by one or more ontrol inputs inuening diretly the di�erential equations.Consider, for example, the simplest mehanial system: a point mass on a line without any potential. If



18 2. MATHEMATICAL BACKGROUNDwe denote by x the position and by v the veloity we an desribe the equations of motion as:_v = 0_x = v(2.25)However if we have a mean of exerting a fore F on that point mass the equations of motion would hangeto: _v = F_x = v(2.26)whih an be regarded as a family of di�erential equations parameterized by F . Changing the value ofF will hange the solutions of the di�erential equation.Resorting to the onepts introdued in Subsetion 4 we introdue the notion of ontrol setion that islosely related with ontrol systems and whih will be fundamental in our study of ontinuous abstrations:Definition 2.10 (Control Setion). Given a smooth manifold M , a ontrol setion on M is a subbundle�SM : SM �!M of TM .We denote by SM (x) the set of vetorsX 2 TxM suh that X 2 ��1SM (x). When we impose more strutureon SM we reover more familiar objets, suh as if to eah x 2 M we assign a linear subspae of TxM ,then SM will be a distribution on M , if on the other hand, we assign an aÆne subspae then SM willbe an aÆne distribution. When SM is an aÆne distribution we may need to refer to the assoiateddistribution denoted by � and de�ned pointwise by:�(x) = S(x) � S(x) = fX 2 TxM : X = Y � Z for some Y; Z 2 S(x)g(2.27)Sine the early days of ontrol theory it was lear that in order to give a global de�nition of ontrol systemsthe notion of input ould not be deoupled from the notion of state [13, 88℄. The natural mathematialobjet to onsider are �ber bundles:Definition 2.11 (Control System). A ontrol system �M = (UM ; FM ) onsists of a �ber bundle �UM : UM �!Malled the ontrol bundle and a smooth map FM : UM �! TM making the following diagram ommutative:UM TM-FM
M?�UM �M�����	(2.28)



5. CONTROL THEORY 19that is, �M ÆFM = �UM , where �M : TM �!M is the tangent bundle projetion. Given a ontrol system�M = (UM ; FM ), the ontrol setion SM � TM of ontrol system �M , is naturally de�ned pointwise by:SM (x) = FM (��1UM (x))(2.29)for all x 2M .The ontrol spae UM is modeled as a �ber bundle sine in general the ontrol inputs available maydepend on the urrent state of the system. In loal oordinates, De�nition 2.11 redues to the familiarexpression _x = f(x; u) with u 2 ��1UM (x). The notion of ontrol setion allows us to refer in a onise wayto the set of all vetors that belong to the image of FM by saying that X 2 TxM belongs to SM (x) i�there exists a u 2 UM suh that �M (u) = x and F (u) = X .We shall all a ontrol system, ontrol aÆne i� there exists oordinates around eah x 2 M suh thatFM an be written as: FM = f(x) + nXi=1 gi(x)vi(2.30)where f(x); g1(x); g2(x); : : : ; gn(x) are (loally de�ned) vetor �elds and v1; v2; : : : ; vn are ontrol inputs,that is, oordinates for the �ber above x. We also all vetor �eld f(x) the drift and all an aÆne ontrolsystem drift-free when f(x) = 0. We shall use the expression full nonlinear ontrol system to refer to anonlinear ontrol system that is not ontrol aÆne.Note that the struture of the ontrol setion depends on the struture of the ontrol system. For ontrolaÆne systems we have aÆne distributions as ontrol setions, if there is no drift we reover distributionsas ontrol setions, however, in general, we will have to onsider arbitrary ontrol setions on M .Returning to the example of the point mass moving on the line we see that the state spae manifold M isR2 and the �ber bundle UM is in fat the trivial bundle UM = R2 �R. This ontrol system is an exampleof a ontrol aÆne system as an be seen by the expression of FM in oordinates:FM = f(x; v) + g1(x; v)v1 = 240v35+ 241035 v1(2.31)where v1 = F 2 R is the ontrol input.A ontrol system an alternatively be de�ned by a ontrol setion SM onM in the sense that at eah pointx 2M , SM (x) de�nes all the possible diretions along whih we an ow or steer our system. Sine we willneed to work with suh ontrol systems in Chapter 3 in a ategorial framework we introdue them alreadyusing ategorial language. Given a ontrol setion SM there an be several ontrol parameterizations forSM and it matters to understand in what sense all those parameterizations represent the same ontrolsystem. This will be aomplished by giving a ategorial de�nition of ontrol parameterization.



20 2. MATHEMATICAL BACKGROUNDDefinition 2.12 (Control Parameterization). Let SM be ontrol setion on M , g : TM �! N andh : TM �! N two smooth maps suh that SM = fX 2 TM : g(X) = h(X)g. A ontrol parameterizationfor SM is a ontrol system (UM ; FM ) suh that g Æ FM = h Æ FM and for any other ontrol system(U 0M ; F 0M ) suh that g ÆF 0M = h ÆF 0M there exists one and only one �ber-preserving map FM making thefollowing diagram ommutative: UM TM-FMU 0M6FM F 0M����� N-g -h(2.32)Sine the ontrol parameterization was de�ned through an universal property, any two ontrol parame-terizations are isomorphi. It is in this sense that we do not need to distinguish between ontrol systemswith the same ontrol setion. They are the same ontrol system, up to a hange of ontrol oordinates.This will be important when onsidering the e�et of feedbak sine this hange of ontrol oordinates anbe regarded as feedbak. It is also important to mention that a ontrol parameterization is an equalizerin the ategory of smooth manifolds.Having de�ned ontrol systems the onept of trajetories or solutions of a ontrol system is naturallyexpressed as:Definition 2.13 (Trajetories of Control Systems). A urve  : I �! M , I � R+0 is alled a trajetoryof ontrol system �M = (UM ; FM ), if there exists a urve U : I �! UM making the following diagramsommutative:
I M-U�����UM?�UM I TM-TU�����UM?FM(2.33)where we have identi�ed I with TI .The above ommutative diagrams are equivalent to the following equalities:�UM Æ U = T  = FM (U )whih mean in loal oordinates that x(t) is a trajetory of a ontrol system if there exists an input u(t)suh that x(t) satis�es _x(t) = f(x(t); u(t)) and u(t) 2 ��1UM (x(t)) for all t 2 I .



CHAPTER 3A Walk Through the Continuous World1. IntrodutionIn the abstrating methodology proposed in [63, 64℄ it was impliit that ertain states might beomeinputs on the abstrated model. It is perhaps surprising that this abstrating methodology interhangesthe role of state and input. However, this fat is the ruial fator that perspetivates a hierarhialontrol theory. A ontrol design performed on a abstrated model is a ontrol law assoiated with ertaininputs, but these are in fat states of a more detailed model. We an therefore regard a ontrol design as aspei�ation for the evolution ertain state variables on the more detailed model. In a hierarhial designparadigm those spei�ations would then be re�ned to obtain a ontrol law that ould again be regardedas a spei�ation for a even more detailed model. A omplete and thorough understanding of how thestates and inputs propagate from models to their abstrations will enable suh a hierarhial designsheme. The purpose of this hapter is to give the �rst steps in this diretion. We address the problemof desribing the relation between states and inputs of di�erent levels of abstration. To aomplish thisgoal we will study quotients of ontrol systems sine they apture the notion of abstration introduedin [63, 64℄.We will build on several aumulated results of di�erent authors that in one way or another have madeontributions to this problem. One of the �rst approahes was given in [40℄ where the analysis of the Liealgebra of a ontrol system lead to a deomposition into smaller systems. In [72℄, Lie algebrai onditionsare formulated for the parallel and asade deomposition of nonlinear ontrol systems while the feedbakversion of the same problem was addressed in [56℄. A di�erent approah was based on redution ofmehanial systems by symmetries. In [83℄, symmetries were introdued for mehanial ontrol systems,and further developed in [25℄ for general ontrol systems. The existene of suh symmetries was then usedto deompose ontrol systems as the interonnetion of lower dimensionality subsystems. The notion ofsymmetry was further generalized in [57℄, where it was shown that the existene of symmetries implies thata ertain distribution assoiated with the symmetries was ontrolled invariant. This related the notion ofsymmetry with the notion of ontrolled invariane for nonlinear systems. Controlled invariane [55, 32℄was also used to deompose systems into smaller omponents. A di�erent approah was taken in [50℄where it was shown how to study ontrollability of systems evolving on priniple �ber bundles throughtheir projetion on the base spae. More reently, a modular approah to the modeling of mehanial21



22 3. A WALK THROUGH THE CONTINUOUS WORLDsystems has been proposed in [84℄, by studying how the interonnetion of Hamiltonian ontrol systemsan still be regarded as a Hamiltonian ontrol system.In several of the above approahes, some notion of quotienting is involved. When symmetries exist, oneof the bloks of the deompositions introdued in [25℄ is simply the original ontrol system fatored bythe ation of a Lie group representing the symmetry. If a ontrol system admits a ontrolled invariantdistribution, it is shown in [55, 32℄ that it has a simpler loal representation. This simpler representationan be obtained by fatoring the original ontrol system by the equivalene relation de�ned by onsideringthe leaves of the foliation indued by the ontrolled invariant distribution, equivalene lasses. The notionof abstration introdued in [64℄ an also be seen as a quotient sine the abstration is a ontrol systemon a smaller dimensional state spae de�ned by an equivalene relation on the state spae of the originalontrol system. These fats motivate fundamental questions suh as existene and haraterization ofquotient systems.In this hapter, we take a new approah to the study of quotients by introduing the ategory of ontrolsystems as the natural setting for suh problems in systems theory. The use of ategory theory forthe study of problems in system theory also has a long history whih an be traed bak to the worksof Arbib (see [6℄ for an introdution). More reently several authors have also adopted a ategorialapproah as in [45℄ where the ategory of aÆne ontrol system is investigated. We mention also [74℄,where a ategorial approah has been used to provide a general theory of systems.We de�ne the ategory of ontrol systems whose objets are fully (non-aÆne) nonlinear ontrol systems,and morphisms map trajetories between objets. The morphisms in this ategory extend the notion of�-related systems in [60℄. In this ategorial setting we formulate the notion of quotient ontrol systems,and show that under mild regularity assumptions on the state and ontrol spaes, quotients always exist.This should be ontrasted with several other approahes whih rely on the existene of symmetries orontrolled invariane to assert the existene of quotients. We also show that the onstrution proposedin [64℄ omputes quotients up to isomorphism. We introdue the notion of projetable ontrol setions,whih will be a fundamental ingredient to haraterize the struture of quotients. This notion is in fatequivalent to ontrolled invariane, and this allows to regard quotients based on symmetries or ontrolledinvariane as a speial type of quotients. General quotients, however, are not neessarily indued bysymmetries or ontrolled invariane and have the property that some of their inputs are related to statesof the original model. This fat, impliit in [64℄, is expliitly haraterized in this paper by understanding,how the state and input spae of the quotient is related to the state and input spae of the original ontrolsystem.



2. ABSTRACTIONS OF CONTROL BUNDLES 232. Abstrations of Control BundlesWe start by reviewing the abstration framework developed in [60, 64℄ and single out the fundamentalonepts that will support the desired extension towards ontrol inputs. Then we present a ategorialformalization of abstrations based on the notion of simulation and show that abstrations at the levelof ontrol bundles are equivalent to the abstration theory in [63, 64℄.2.1. �-related Control Systems. We reall the notion of �-related ontrol systems whih is themain pillar of the abstration theory:Definition 3.1 (�-related Control Systems). Let �M and �N be two ontrol systems de�ned on smoothmanifolds M and N , respetively. Given a smooth map � :M �! N we say that �N is �-related to �Mi�: Tx�(SM (x)) � SN Æ �(x)(3.1)for every x 2M .In [60℄ it is shown that this notion, loal in nature, is equivalent to a more intuitive and global relationbetween �M and �N .Proposition 3.2 ([63℄). Let �M and �N be two ontrol systems de�ned on smooth manifolds M and N ,respetively and let � : M �! N be a smooth map. Control system �N is �-related to �M i� for everytrajetory (t) of �M , �((t)) is a trajetory of �N .Propagating trajetories from a system to another is learly a desired property. If, in fat, system �Nis lower dimensional than system �M , then we are learly reduing the omplexity (dimension) of �M .We an therefore regard �N as an abstration on �M in the sense that some aspets of �M have beenollapsed or abstrated away, while others remain in �N . This motivated a notion of abstration [60℄based on trajetory propagation whih de�ned an abstration of a ontrol system �M as a �-relatedontrol system �N by a surjetive submersion �. However this proess is desribed in terms of ontrolsetions and the ontrol inputs are not expliitly modeled although they an be impliitly reovered bythe algorithms proposed in [60, 64℄ to ompute abstrations.The idea of sending trajetories from one system to trajetories of another system has been used manytimes in ontrol theory to study equivalene of ontrol systems. We mention for example linearizationby di�eomorphisms [39℄ or feedbak linearization [14, 31, 34℄. In these examples the maps � relating theontrol systems were in fat di�eomorphisms so that no aggregation or abstration was involved. Howeverthe onept of using other maps besides di�eomorphisms for ontrol systems an be traed bak to theworks of Arbib (see [6℄ for an introdution) where it is shown that (disrete time) ontrol systems and�nite state automata are just di�erent manifestations of the same phenomena.



24 3. A WALK THROUGH THE CONTINUOUS WORLD2.2. Construting �-related Control Systems. We now reall the onstrution of �-relatedontrol systems given in [64℄. We shall restrit ourselves to a purely loal treatment without expliitfurther mention of this fat.Given an aÆne ontrol system �M = (UM ; FM ) over a smooth manifold M and a smooth surjetivesubmersion � : M �! N , we want to build a new aÆne ontrol system �N = (UN ; FN ) over N that is�-related to �M . We start by realizing that if �M is an aÆne ontrol system then the ontrol setion SMis an aÆne subspae of TM so that it an be written as SM = XM +�M , where XM is a vetor �eld and�M a linear subspae of TM . We will denote by K the subbundle of TM given by K = Ker(T�) andnote that it is an integrable subbundle in the Frobenius sense whose leaves orrespond to points where� is onstant. We start by giving a haraterization of aÆne subbundles invariant under a given vetor�eld.Proposition 3.3 (Invariane of AÆne Subbundles [64℄). Let A = X +� be an aÆne subbundle of TMand Y 2 TM a vetor �eld. A is invariant under Y i�:[Y;A℄ � �(3.2)Based on the above proposition we an give a onstrutive proedure to ompute invariant aÆne sub-bundles:Definition 3.4. Let SM = XM +�M be an aÆne ontrol setion on M . The K-invariant aÆne ontrolsetion anonially assoiated with SM is given by:SM = XM + LM [ [K; LM ℄ + [K[K; LM ℄℄ + : : :(3.3)with LM = K [�M [ [K; XM ℄.The ontrol setion SM is anonial in the following sense:Proposition 3.5 ( [64℄). The anonial K-invariant aÆne ontrol setion SM anonially assoiatedwith SM is the smallest K-invariant aÆne ontrol setion that ontains SM .Invariane under K allows to ompute a ontrol setion on N as follows:Definition 3.6 (Canonial onstrution). Let �M = (UM ; FM ) be an aÆne ontrol system on M withontrol setion: SM = XM +�M(3.4)and let � :M �! N be a surjetive submersion. The aÆne ontrol setion on N de�ned by:SN (y) = Tx�(SM (x))(3.5)



2. ABSTRACTIONS OF CONTROL BUNDLES 25for any x 2 ��1(y) is said to be anonially �-related to SM . Any aÆne ontrol system �N = (UN ; FN )with ontrol setion SN is said anonially �-related to �M .Note that SN is well de�ned sine by K-invariane Tx�(SM (x1)) = Tx�(SM (x2)) for any x1; x2 2M suhthat �(x1) = �(x2). The ontrol setion SN on N de�nes therefore an abstration of SM so that anyontrol system �N with ontrol setion SN is the desired abstration. It is also important to mention thatin this proess there is no expliit onstrution that allows to ompute �N from SN . The haraterizationof �N , speially of UN will be the topi of the remaining hapter.2.3. From �-related Control Systems to Abstrations of Control Bundles. There are twomain motivations to work at the level of ontrol bundles. The �rst one omes from onrete real problemswhere often it is neessary to build a hierarhy of di�erent models (abstrations) that would allow toontrol the system with di�erent levels of detail. A better understanding of how to transform ontrolinputs between di�erent levels of abstration would allow the design of ontrol laws for the oarser(abstrated) models and then re�ne then until obtaining ontrol laws for the more detailed ontrolsystems. The seond reason omes from the following proposition whose proof we delay for now.Proposition 3.7. Let �M and �N be two ontrol systems de�ned on smooth manifolds M and N ,respetively and let � : M �! N be a smooth map. Control system �M is �-related to �N i� there is a�ber-preserving lift of �, denoted by ' : UM �! UN suh that:Tu'(SM (x)e) � (SN Æ �(x))e(3.6)for every x 2M and u 2 ��1M (x).The above proposition suggests that one should study ontrol systems as dynamial or ontrol systemsevolving on the ontrol bundle rather on the base state spae. To proeed towards this diretion we�rst introdue the ategory of ontrol system, denoted by Con, whih has as objets ontrol systemsas desribed in De�nition 2.11. The morphisms in this ategory extend the onept of �-related ontrolsystems desribed by De�nition 3.1. Sine the notion of �-related ontrol systems relates ontrol setionsand these an be parameterized by ontrols, the lifted notion should relate setions as well as ontrolbundles.Definition 3.8 (Morphisms of Control Systems). Let �M and �N be two ontrol systems de�ned onsmooth manifolds M and N , respetively. A morphism f from �M to �N is a pair of maps f = ('; �),



26 3. A WALK THROUGH THE CONTINUOUS WORLD' : UM �! UN and � :M �! N suh that both diagrams:
M N-�UM UN-'?�UM ?�UN TM TN-T�UM UN-'?FM ?FN(3.7)ommute.It will be important for later use to also de�ne isomorphisms:Definition 3.9 (Isomorphisms of Control Systems). Let �M and �N be two ontrol systems de�nedon smooth manifolds M and N , respetively. System �M is isomorphi to system �N i� there existmorphisms f1 from �M to �N and f2 from �N to �M suh that f1 Æ f2 = idUM and f2 Æ f1 = idUN .In this setting, feedbak transformations an be seen as speial isomorphisms. Consider an isomorphismf = ('; �) with ' : UM �! UM suh that � = idM . In loal oordinates (x; u) adapted to the �bers,where x represents the base oordinates (the state) and u the oordinates on the �bers (the inputs),the isomorphism has a oordinate expression for ' of the form ' = (x; �(x; u)). The �ber term �(x; u)representing the new ontrol inputs is interpreted as a feedbak transformation sine it depends onthe state at the urrent loation as well as the former inputs u. We shall therefore refer to feedbaktransformations as isomorphisms over the identity map sine we have � = idM .The relation between the notions of �-related ontrol systems (3.1) and Con morphisms (3.8) is ofequivalene as stated in the next proposition:Proposition 3.10. Let �M and �N be two ontrol systems de�ned on M and N , respetively. Controlsystem �N is �-related to �M i� f = ('; �) is a Con morphism from �M to �N for a �ber preservinglift ' of �.Proof. De�nition 3.8 trivially implies De�nition 3.1 so let us prove that De�nition 3.1 impliesDe�nition 3.8. If �N is �-related to �M then by De�nition 3.1, Tx�(SM (x)) � SN Æ �(x). But SM isparameterized by UM , so we an regard the map T� ÆFM : UM �! SN � TN (see the diagram below) asa parameterization of SN and by de�nition of ontrol parameterization there is a �ber preserving map �suh that the following diagram



2. ABSTRACTIONS OF CONTROL BUNDLES 27UM UN-�?FM ?FN
M N-�TM TN-T�?�M ?�Nommutes. By taking ' = �, �UM = �M Æ FM and �UN = �N Æ FN one reovers De�nition 3.8 and theequivalene is proved.We now see that if there is a morphism f = ('; �) from �M to �N , then this morphism arries trajetoriesof �M to trajetories of �N in virtue of Proposition 3.2. In this sense �N is also alled in the literaturea simulation of �M sine any trajetory M (t) of �M an be simulated by a trajetory N (t) = � Æ M (t)of �N .We are now in onditions of proving Proposition 3.7 whih shows that Con morphisms also admit ageometrial haraterization at the level of ontrol bundles:Proposition 3.7. Let �M and �N be two ontrol systems de�ned on smooth manifolds M and N ,respetively. There exist a Con morphism f = (�; ') from �M to �N i�Tu'(SM (x)e) � (SN Æ �(x))e(3.8)for every x 2M and u 2 ��1M (x).Proof. Assume that �M is �-related to �N and let M (t) be a smooth trajetory of �M suh thatM (0) = x. By de�nition of trajetory there is a urve UM (t) on UM suh that �UM Æ UM = M andUM (0) = u. By �-relatedness the urve N = �(M ) is a trajetory of �N implying the existene of aurve UN in UN suh that �UN Æ UN = N . However �M being �-related to �N implies that there is aCon morphism f = (�; ') from �M to �N and we have '(UM ) = UN . By time di�erentiation at t = 0we get Tu'(X) = Y with X = ddtUM (t)jt=0 and Y = ddtUN (t)jt=0 showing that for any X 2 SM (x)e wehave Tu'(X) = Y 2 (SN Æ �(x))e as desired.Assume now that (3.6) holds. Then, ontrol system de�ned by ontrol setion SeM is '-related to ontrolsystem de�ned by ontrol setion (SN Æ�)e so that Proposition 3.2 ensures that for every trajetory UM (t)of SeM , '(UM (t)) = UN (t) is a trajetory of (SN Æ �)e. Projeting the equality'(UM (t)) = UN (t)(3.9)on the base spae we get �(M (t)) = N (t)(3.10)



28 3. A WALK THROUGH THE CONTINUOUS WORLDTime di�erentiation of (3.10) now gives:T� � FM (UM (t)) = FN (UN (t))= FN Æ '(UM (t))(3.11)where the last equality holds by 3.9. We have thus shown that T� � FM = FN Æ ' sine the trajetoriesUM over all of UM .The previous proposition tell us that by working at the level of ontrol bundles we an reover morefamiliar notions suh as '-relatedness of vetors. Besides the lari�ation that an be gained at thebundle level we will see at next setion that we atually need to work at the bundle level when theontrol setions do not posses enough struture. The previous result an also be related with the notionof extended system desribed for example in [58℄. Instead of onsidering all possible lifts of SM to TUMas isolated vetor �elds one an regard that olletion of lifts as a ontrol system on UM . That ontrolsystem turns out to be the extended ontrol system of �M . We will, however, not explore further thislink on this hapter. 3. Quotients of Control SystemsGiven a ontrol system �M and an equivalene relation on the manifold M we an regard the quotientontrol system as an abstration sine some modeling details propagate from �M to the quotient whileother modeling details disappear in the fatorization proess. This fat motivates the study of quotientontrol systems as they represent lower omplexity (dimension) objets that an be used to verify proper-ties of the original ontrol system. Quotients are also important from a design perspetive sine a ontrollaw for the quotient objet an be regarded as a spei�ation for the desired behavior of the originalontrol system. In this spirit we will address the following questions:1. Existene: Given a ontrol system �M de�ned on a manifold M and an equivalene relation�M on M when does there exist a ontrol system on M= �M , the quotient manifold, and a �berpreserving lift pU of the projetion pM :M �!M= �M suh that (pM ; pU ) is a Con morphism?2. Uniqueness: Is the lift pU of pM , when it exists, unique?3. Struture of the quotient ontrol bundle: What is the struture of the quotient ontrolsystem ontrol bundle?We remark that the haraterization of the quotient ontrol system system map F : U �! T (M= �M )was already solved for the ase of ontrol aÆne systems in [64℄ where a onstrutive algorithm for itsomputation was proposed.To larify our disussion we formalize the notion of quotient ontrol systems:



3. QUOTIENTS OF CONTROL SYSTEMS 29Definition 3.8 (Quotient Control System). Let �L, �M , �N be ontrol systems de�ned on manifoldsL,M and N , respetively and g, h two morphisms from �L to �M . The pair (f;�N ) is a quotient ontrolsystem of �M if f Æ g = f Æ h and for any other pair (f 0;�0N) suh that f 0 Æ g = f 0 Æ h there exists oneand only one morphism f from �N to �0N suh that the following diagram ommutes:�M �N-ff 0����R�0N?f�L -g -h(3.12)that is, f 0 = f Æ f .Intuitively, we an read diagram (3.12) as follows. Assume that the set �= f(u; v) 2 UM �UM : (u; v) =(g(l); h(l)) for some l 2 ULg is a regular equivalene relation [1℄. Then, the ondition f Æg = f Æh simplymeans that f respets the equivalene relation, that is, u � v ) f(u) = f(v). Furthermore it asksthat for any other map f 0 respeting relation �, there exists a unique map f suh that f 0 = f Æ f . Thisis a usual haraterization of quotient manifolds [1℄ that we here use as a de�nition. The same hain ofreasoning shows that if we replae ontrol systems by the orresponding state spae and the morphisms bythe maps between the state spaes, then diagram (3.12) asks for N to be also quotient manifold obtainedby fatoring M by a regular equivalene relation �M on M de�ned by g and h. The same idea must,therefore, hold for ontrol systems and this means that ontrol system �N must also satisfy a uniquefatorization property in order to be a quotient ontrol system.From the above disussion it is lear that a neessary ondition for the existene of the quotient ontrolsystem is the existene of the quotient manifold M= �M . When �M is a regular equivalene relation thequotient spae M= �M will be a manifold [1℄ and the equivalene relation an be equivalently desribedby a surjetive submersion. We will, therefore, assume that the regular equivalene relation �M is givenby a surjetive submersion � : M �! N . Similarly, the �ber preserving lift ' of � will also have to be asurjetive submersion.The �rst two questions of the previous list are answered in the next theorem whih asserts that quotientsexist under very moderate onditions:Theorem 3.9. Let �M be a ontrol system on a manifold M and � : M �! N a surjetive submersion.If the distribution (TSM +Ker(TT�))=Ker(TT�) has onstant rank, then there exists:1. a ontrol system �N on N ,2. a unique �ber preserving lift ' : UM �! UN of � suh that the pair ((�; ');�N ) is a quotientontrol system of �M .



30 3. A WALK THROUGH THE CONTINUOUS WORLDProof. We start by de�ning ontrol system �N up to an isomorphism over the identity, that is,we de�ne the ontrol setion of �N to be SN = T�(SM ). As SM is a subbundle of TM we an expandT�(SM ) as: SM i1,! TM T��! T�(SM ) = SN i2,! TN(3.13)It then follows that TT� Æ T i1 has onstant rank sine rank(TT� Æ T i1) = dim(TSM ) � dim(TSM \Ker(TT�)) = dim((TSM +Ker(TT�))=Ker(TT�)) whih is onstant by assumption. Consequently SNis a manifold and a �ber bundle over N as SM is a �ber bundle over M and T� Æ i1 is a �ber preservingmap. Finally, it is not diÆult to see that i2 is also �ber preserving therefore making SN a subbundle ofTN .We now show that there is a unique �ber preserving lift ' of � suh that f = (�; ') is a morphism from�M to �N . By de�nition of SN we have T�(SM (x)) � SN Æ �(x) for every x 2 M . Consequently, themap T� � FM : UM �! TN satis�es g Æ T� � FM = h Æ T� � FM for maps g : TN �! P and h : TN�! P satisfying SN = fY 2 TN : g(Y ) = h(Y )g. If we now onsider any ontrol parameterization(UN ; FN ) for SN it follows, by de�nition of ontrol parameterization, that there exists one and only one�ber preserving map FN : UM �! UN making diagram 2.32 ommutative. It is not diÆult to see thatthis map is the desired ' : UM �! UN .We have thus shown that � de�nes ' uniquely and that f = (�; ') is a morphism. It remains to showthat any other morphism f 0 = (�0; '0) suh that �0 is ompatible with the equivalene relation de�nedby � fators uniquely through f . We start by realling that sine � is a surjetive submersion, �0 fatorsuniquely through � in Man [1℄, that is, there exists one and only one map � : N �! N 0 suh that�0 = � Æ �. From the equality �0 = � Æ � we onlude:Tx�0 = T�(x)� Æ Tx�(3.14)and it follows that: Ty�(SN (y)) � S 0N Æ �(y)(3.15)sine, by de�nition of SN , for any Y 2 SN (y) there is a X 2 SM (x) suh that �(x) = y and Tx� �X = Y ,therefore: Ty� � Y = Ty� Æ Tx�(X)= Tx�0(X) 2 S 0N Æ �0(x) = S 0N Æ �(y)(3.16)By the same argument that was used to show that there is a unique �ber preserving lift of � it followsthat there is also a unique �ber preserving lift ' of � suh that f = (�; ') is a morphism from �N to �0Nand f 0 = f Æ f . As both � and ' are unique so is f . It remains yet to show that '0 is ompatible with



3. QUOTIENTS OF CONTROL SYSTEMS 31the equivalene relation de�ned by ', but this is now trivial sine the equality f 0 = f Æ f implies:'(u) = '(v)) ' Æ '(u) = ' Æ '(v)) '0(u) = '0(v)(3.17)This result provides the �rst haraterization of quotient objets in Con. It shows that given a regularequivalene relation on the base (state) spae of a ontrol system and a mild regularity ondition1, therealways exists a quotient ontrol system on the quotient manifold2. Furthermore it also shows that theregular equivalene relation on M or the map � uniquely determines a �ber preserving lift ' whihdesribes how pairs state/input of the ontrol system onM relate to the pairs state/input of the quotientontrol system.The fatorization property expressed in diagram 3.12 allows to show that the onstrutive algorithmpresented in [64℄ omputes quotients of aÆne ontrol systems up to isomorphism:Corollary 3.10. Let �M be an aÆne ontrol system on a manifold M and � : M �! N a surjetivesubmersion. The quotient ontrol system omputed by the onstrution presented in [64℄ based on �Mand � is unique up to isomorphism.Proof. Let SN be the ontrol setion obtained by the onstrution proposed in [64℄ and let SN bethe ontrol setion de�ned in the proof of Theorem 3.9, that is SN Æ� = T�(SM ). In [64℄ it is shown thatSN is the smallest ontrol setion satisfying:T�(SM ) � SN Æ �(3.18)As SN also satis�es T�(SM ) � SN Æ� we have SN � SN . However, by (3.18) we have T�(SM ) = SN Æ� �SN Æ � ) SN � SN by surjetivity of � and onsequently SN = SN . Theorem 3.9 and in partiularommutativity of diagram 3.12 now imply that SN is unique up to isomorphism.Having answered the �rst two questions from the previous list, we onentrate on the haraterization ofthe quotient ontrol bundle. This problem requires a deeper understanding of how � determines ' andwill be the goal of the remaining paper. Sine Con was de�ned over Man, that is morphisms in Conare smooth maps and ontrol systems are de�ned on manifolds and �ber bundles, the haraterization of' will require an interplay of tools from di�erential geometry and ategory theory.1The onstant rank ondition on (Ker(TT�) + TSM )=Ker(TT�) is only required to ensure that SN is a manifold. If onedoes not require a ontrol setion to be a manifold, then this ondition an be weakened.2This fat an be put in a more general ontext by introduing a forgetful funtor from Con to Man that assoiates witheah ontrol system �M de�ned over M the manifoldM and to eah morphism from �M to �N the map �. In this ontextthe previous result assumes the form of a universal arrow for this funtor.



32 3. A WALK THROUGH THE CONTINUOUS WORLD4. Projetable Control SetionsWe now extend the notion of projetable vetor �elds from [49℄ and of projetable families of vetor�elds from [50℄ to ontrol setions. The notion of projetable ontrol setions is weaker then projetablevetor �eld or families of vetor �elds but nonetheless stronger than Con morphisms. The motivation forintroduing this notion omes from the fat that projetability of ontrol setions will be a fundamentalingredient in haraterizing the struture of the quotient ontrol bundle. Furthermore, we will also seethat projetability, as de�ned in this ategorial setting, will orrespond to the well known notion ofontrolled invariane.Given a vetor �eld X on M and a surjetive submersion � :M �! N we say that X is projetable withrespet to � when Y = T� � X , the projetion of X , is a well de�ned vetor �eld on N that satis�esT� � X = Y Æ � [49℄. The vetor �eld Y is also alled �-related to X [1℄. This notion was extended tofamilies of vetor �elds in [50℄ by requiring that the projetion of eah vetor �eld in the family is a wellde�ned vetor �eld on N . However, when working with ontrol setions, whih an be regarded as setsof vetors at eah base point x 2M , one should only require that the projetion of these sets of vetorsis the same set when the base points on M projet on the same base point on N . This is formalized asfollows:Definition 3.11. Let M be a manifold, SM a ontrol setion on M and � : M �! N a surjetivesubmersion. We say that SM is projetable with respet to � i� SM indues a ontrol setion SN on Nsuh that the following diagram ommutes:
M N-�P(TM) P(TN)-T�6SM 6SN(3.19)We see that if SM is in fat a vetor �eld we reover the notion of projetable vetor �elds. The notion ofprojetable ontrol setions is stronger then the notion of Con morphism sine for any x1; x2 2 M suhthat �(x1) = �(x2) we neessarily have T�(SM (x1)) = SN Æ�(x1) = T�(SM (x2)) if SM is projetable. Onthe other hand, if (�; ') is a Con morphism for a �ber preserving lift ' of �, we only have the inlusionsT�(SM (x1)) � SN Æ �(x1) and T�(SM (x2)) � SN Æ �(x1). Therefore projetability with respet to �implies that � an be extended to a Con morphism but given a Con morphism f = (�; ') from �M to�N it is not true, in general, that SM is projetable with respet to �.To determine the relevant onditions on SM that ensure projetability we will need an auxiliary result:



4. PROJECTABLE CONTROL SECTIONS 33Proposition 3.12. Let f :M �! N be a map between manifolds and let Xt be the ow of a vetor �eldX 2 TM suh that f ÆXt = f . Then the following equality holds for every x 2M :Txf TXt(x)X�t = TXt(x)f(3.20)Proof. The equality f ÆXt = f is equivalent to:f ÆXt(x) = f(x), f(Xt(x)) = f Æ (Xt)�1 ÆXt(x), f(Xt(x)) = f ÆX�t(Xt(x))(3.21)and by di�erentiation of the previous expression we arrive at the desired equality:TXt(x)f = Txf TXt(x)X�t(3.22)We an now give suÆient and neessary onditions for projetability of ontrol setions.Proposition 3.13 (Projetable Control Setions). Let M be a manifold, SM a ontrol setion on Mand � : M �! N a surjetive submersion. Given any ontrol parameterization (UM ; FM ) of SM and anyFM 2 F eM , SM is projetable with respet to � i�:[FM ;Ker(T�e)℄ � Ker(T�e) + [FM ; 0e℄(3.23)where 0e = T��1UM (0).Proof. We show neessity �rst. Assume that diagram (3.19) ommutes. Then we have:Tx�(SM (x)) = Tx0�(SM (x0))(3.24)for all x; x0 2M suh that �(x) = �(x0), that is, for any x and x0 on the same leaf of the foliation induedby Ker(T�). If we denote by Kt the ow of any vetor �eld K 2 Ker(T�e), expression (3.24) impliesthat: T�UM ÆKt(u)�(FM ÆKt(u)) 2 Tx�(SM (x))(3.25)for every t 2 R suh that Kt is de�ned and for every u 2 ��1UM (x). Sine the left hand side of (3.25)belongs to the right hand side we an always �nd a Y 2 0e suh that its ow Yt will parameterize theimage of the left hand side, that is:T�UM ÆKt(u)�(FM ÆKt(u)) = T�UM ÆYt(u)�(FM Æ Yt(u))(3.26)The previous equality implies that for any FM 2 F eM we have:TKt(u)�e(FM ÆKt(u)) = TYt(u)�e(FM Æ Yt(u))(3.27)



34 3. A WALK THROUGH THE CONTINUOUS WORLDhowever, the equalities �e ÆKt = Kt, �e Æ Yt = �e and Proposition 3.12 allow to rewrite (3.27) as:Tu�e(TKt(u)K�t Æ FM ÆKt(u)) = Tu�e(TYt(u)Y�t Æ FM Æ Yt(u)), Tu�e(Kt(u)�FM ) = Tu�e(Yt(u)�FM )(3.28)Time di�erentiation at t = 0 now implies:Tu�e([K(u); FM (u)℄) = Tu�e([Y (u); FM (u)℄)) [K;FM ℄ 2 [Y; FM ℄ +Ker(T�e)(3.29)whih trivially implies inlusion 3.23.To show suÆieny we use a similar argument. Assume that (3.23) holds, then for any K 2 Ker(T�e)there exists a Y 2 0e suh that: Tu�e([FM (u);K(u)℄) = Tu�e([FM (u); Y (u)℄), Tu�e([FM (u);K(u)� Y (u)℄) = 0(3.30)Consider now the regular and involutive distribution Ker(T�e). Involutivity and regularity imply thatZ�tW 2 Ker(T�e) for any W 2 Ker(T�e) and the ow Zt of any vetor �eld Z 2 Ker(T�e) [76℄. SineK 2 Ker(T�e) and Y 2 Ker(T�e) it follows that K �Y 2 Ker(T�e), but from (3.30), [FM ;K�Y ℄ alsobelongs to Ker(T�e) so that we onlude:Tu�e((K � Y )t(u)�[FM ;K � Y ℄) = 0(3.31)where (K�Y )t denotes the ow of the vetor �eld K�Y . However, the previous expression is equivalentto: Tu�e( ddt (K � Y )t(u)�FM ) = 0, ddtTu�e((K � Y )t(u)�FM ) = 0(3.32)where the last equality follows from the fat that T� is a linear map. Sine the time derivative is zero,we must have: Tu�e((K � Y )t(u)�FM ) = Tu�e((K � Y )0(u)�FM ) = Tu�e(FM (u))(3.33)From the equality �e = �e Æ (K � Y )t we onlude that Tu�e T(K�Y )t(u)(K � Y )�t = T(K�Y )t(u)�e byProposition 3.12 so that (3.33) an be written as:T(K�Y )t(u)�e(FM Æ (K � Y )t(u)) = Tu�e(FM (u))(3.34)and projeting on TM we get:T�UM (K0t(u))�(FM Æ (K 0)t(u)) = Tx�(FM (u))(3.35)



4. PROJECTABLE CONTROL SECTIONS 35with K 0 = K � Y . This equality shows that for any X 2 SM (x), Tx� � X 2 Tx0�(SM (x0)), thereforeTx�(SM (x)) � Tx0�(SM (x0)). However, replaing x by x0 and K by �K on (3.35) we get Tx0�(SM (x0)) �Tx�(SM (x)) so that we onlude the equality:Tx�(SM (x)) = Tx0�(SM (x0))(3.36)Sine any point x00 satisfying �(x00) = �(x) an be reahed by a onatenation of ows indued byvetor �elds in Ker(T�), transitivity of equality between sets implies that (3.36) holds for any two pointsx; x0 2M suh that �(x) = �(x0) from whih ommutativity of diagram (3.19) readily follows.It is interesting to note that if we assume some struture on SM we an give onditions for projetabilitywithout expliitly mentioning the ontrol parameterization. This is the ase for ontrol aÆne systemswhere the aÆne struture on SM allows to simplify expression (3.23) as follows:Corollary 3.14. Let M be a manifold, AM an aÆne distribution on M and � : M �! N a surjetivesubmersion. AM is projetable with respet to � i�:[AM ;Ker(T�)℄ � Ker(T�) + �M(3.37)where �M is the distribution assoiated to AM .By now it is already lear that projetability and loal ontrolled invariane are equivalent onepts. Wereall the notion of loally ontrolled invariant distribution:Definition 3.15 (Loally Controlled Invariant Distributions [58℄). Let �M = (UM ; FM ) be a ontrolsystem over a manifold M and let D be a distribution on M . The distribution D is loally ontrolledinvariant for FM if for every x 2 M there is an open set O � M , ontaining x and a loal (feedbak)isomorphism over the identity suh that in trivializing oordinates (x; v) the new ontrol system F 0M =FM Æ � satis�es: [F 0M (x; v);D(x)℄ � D(x)(3.38)for every (x; v) in the domain of �.If a ontrol setion is projetable then loally we an always hose FM = F lM and therefore reover theonditions for loal ontrolled invariane from [24℄:Theorem 3.16 ([24℄). Let �M be a ontrol system over a manifold M and � : M �! N a surjetivesubmersion. The distribution Ker(T�) is loally ontrolled invariant for FM i� SM is projetable withrespet to �.From the study of symmetries of nonlinear ontrol systems [25, 57℄ it was already known that the existeneof symmetries or partial symmetries implies ontrolled invariane of a ertain distribution assoiated with



36 3. A WALK THROUGH THE CONTINUOUS WORLDthe symmetries. This shows that ontrol systems that are projetable omprise quotients by symmetryand ontrolled invariane. However there are also quotients for whih projetability does not hold as wedesribe in the next setion.5. The Struture of Quotient Control SystemsWe have already seen that the notion of Con morphisms generalizes the notion of projetable ontrolsetions. This shows that it is possible to quotient ontrol systems whose ontrol setions are not pro-jetable. In this situation the map ' and the ontrol bundle of the quotient ontrol system will besigni�antly di�erent from the projetable ase. To understand this di�erene we start haraterizing the�ber preserving lift ' of �. Reall that if f = (�; ') is a morphism from �M to �N we have the followingommutative diagram:
TM TN-T�UM UN-'?FM ?FN(3.39)Sine ' is a surjetive submersion we know that UN is di�eomorphi to UM= �, where � is the regularequivalene relation indued by '. This means that to understand the struture of UN it is enoughto determine the regular and involutive distribution on UM given by Ker(T'). However the map ' isompletely unknown, so we will resort to the elements that are available, namely FM and � to determineKer(T'). Di�erentiating3 diagram (3.39) we get:

TTM TTN-TT�TUM TUN-T'?TFM ?TFN(3.40)from whih we onlude: Ker(TT� Æ TFM ) = Ker(TFN Æ T') = Ker(T')(3.41)where the last equality holds sine FN is an immersion by de�nition of ontrol parameterization. Wean now attempt to understand what is fatored away and what is propagated from UM to UN sineKer(T') is expressible in terms of FM and �. The �rst step is to larify the relation between Ker(T')3The operator sending manifolds to their tangent manifolds and maps to their tangent maps is an endofuntor on Man,also alled the tangent funtor [38℄.



5. THE STRUCTURE OF QUOTIENT CONTROL SYSTEMS 37and Ker(T�). Sine ' is a �ber preserving lift of � the following diagram ommutes:
TM TN-T�TUM TUN-T'?T�UM ?T�UN(3.42)whih implies that: T�UM (Ker(T')) � Ker(T�)(3.43)However this only tell us that the redution on M due to � annot be \smaller" than the redution onthe base spae of UM due to '. This leads to the interesting phenomena whih ours when, for e.g. :T�UM (Ker(T')) = f0g � Ker(T�)(3.44)The above expression implies that the base spae of UM is not redued by '. However, UN is a �berbundle with base spae N and therefore the points redued by � must neessarily lift to the �bers ofUN . This will not happen if we an ensure the existene of a distribution D � Ker(T') suh thatT�UM (D) = Ker(T�). The existene of suh a distribution turns out to be related with projetability asasserted in the next proposition:Proposition 3.17. Let �M = (UM ; FM ) be a ontrol system over a manifold M , � :M �! N a surjetivesubmersion and ' : UM �! UN a �ber preserving lift of �. There exists a regular distribution D on UMsatisfying D � Ker(T') and T�UM (D) = Ker(T�) i� SM is projetable with respet to �.Proof. We start by showing that projetability implies the existene of D. If SM is projetable withrespet to � then for every x; x0 2M suh that �(x) = �(x0) we have that Tx�(SM (x)) = Tx0�(SM (x0)).This means that for any x 2M , u 2 ��1UM (x) and X 2 Ker(T�e) there exists a Y 2 0e suh that:T�UM ÆXt(u)�(FM ÆXt(u)) = Tx�(FM Æ Yt(u))(3.45)for all t 2 R suh that the ows Xt and Yt of X and Y are de�ned. Considering now T� as a mapbetween the manifolds TM and TN , the time derivative of T�(t)�(�(t)) for (�; �) : R �! TM providesT(�(t);�(t))T�(t)�(T�(t)). The same onsiderations applied to (3.45) at t = 0 give:T(x;FM (u))Tx� Æ TuFM (X(u)) = T(x;FM (u))Tx� Æ TuFM (Y (u))(3.46)whih we rewrite as: T(x;FM (u))Tx� Æ TuFM (X(u)� Y (u)) = 0(3.47)



38 3. A WALK THROUGH THE CONTINUOUS WORLDby linearity of the involved maps. Sine (3.47) is true for anyX 2 Ker(T�e) we an de�ne the distribution:D = [K2Ker(T�)fZ = X � Y : X 2 Ke ^ Y 2 0e is suh that (3.47) holdsg(3.48)This distribution learly satis�es:TT� Æ TFM (D) = f0g , D 2 Ker(T')(3.49)is regular sine dim(D) = dim(Ker(T�)) by onstrution, satis�es T�UM (D) = Ker(T�) also by on-strution and is therefore the desired distribution.The onverse is proved as follows. Assume the existene of the distribution D, then D � Ker(T') isequivalent to: TT� Æ TFM (D) = f0g(3.50)Let Z 2 D and denote by Zt the ow of Z. Expression (3.50) implies that:ddt ���t=0T�UM ÆZt(u)�(FM Æ Zt(u)) = 0 ) ddt ���t=0TZt(u)�e(FM Æ Zt(u)) = 0(3.51)for any FM 2 F eM and for all t 2 R suh that Zt is de�ned.Notiing that Z 2 D � Ker(T') implies ' = ' Æ Zt (sine ' is onstant on the leaves of the foliationindued by Ker(T')) and �UN Æ ' = � Æ �UM by ommutativity of diagram 4.29, we onlude that �e isalso Zt invariant: �e Æ Zt = (� Æ �UM ) Æ Zt = (�UN Æ ') Æ Zt = �UN Æ ' = � Æ �UM = �e(3.52)Proposition 3.12 now ensures that: TZt(u)�e = Tu�e Æ TZt(u)Z�t(3.53)and expression (3.53) allows to rewrite (3.51) as:ddt ���t=0TZt(u)�e(FM Æ Zt(u)) = 0 , ddt ���t=0Tu�e(TZt(u)Z�t Æ FM Æ Zt(u)) = 0, ddt ���t=0Tu�e(Zt(u)�FM ) = 0, Tu�e([Z(u); FM (u)℄) = 0(3.54)or equivalently [Z; FM ℄ 2 Ker(T�e). Sine Z is any vetor �eld inKer(T�e) it follows that [FM ;Ker(T�e)℄ �Ker(T�e) whih by Proposition 3.13 implies that SM is projetable with respet to � as desired.From the proof of the previous proposition it is lear that if D is loally of the form D = Ker(T�)l thenwe an replae projetability by the more restritive notion of invariane:Corollary 3.18. Let �M be a ontrol system over a manifold M , � :M �! N a surjetive submersionand ' : UM �! UN a �ber preserving lift of �. The loally de�ned distribution Ker(T�)l satis�es



5. THE STRUCTURE OF QUOTIENT CONTROL SYSTEMS 39Ker(T�)l � Ker(T') i� Ker(T�)l is invariant for F lM , that is, i�:[F lM (u);Ker(T�)l(u)℄ � Ker(T�)l(u)(3.55)for every u suh that Ker(T�)l is de�ned.Proposition 3.17 shows that projetability haraterizes the struture of the quotient ontrol system inthe sense that states lift to the �bers when the ontrol setion is not projetable. However we an be alittle more detailed in our analysis and try to determine if the �bers of UM are redued or if the �bers ofUM are in fat di�eomorphi to the �bers of UN and redution takes plae only on the base spae. Theanswer is given in the next proposition:Proposition 3.19. Let �M = (UM ; FM ) be a ontrol system over a manifold M , � :M �! N a surjetivesubmersion, ' : UM �! UN a �ber preserving lift of � and FM any vetor �eld in F eM . A regular andinvolutive distribution E on UM suh that T�UM (E) = f0g satis�es E � Ker(T') i�:[FM ; E ℄ � Ker(T�e)(3.56)Proof. Assume that the distribution E belongs to Ker(T'), then following an argument similar tothe proof of Proposition 3.17 shows that [FM ; E ℄ � Ker(T�e).Conversely assume that [FM ; E ℄ � Ker(T�e) and let X 2 E . Then, the equality:T�e([FM ; X ℄) = 0(3.57)holds. However this expression is equivalent to:Tu�e([FM (u); X(u)℄) = 0 , ddt ���t=0 Tu�e(Xt(u)�FM ) = 0, ddt ���t=0 TXt(u)�e(FM ÆXt(u))(3.58)where the last equality is a onsequene of �e ÆXt = �e and Proposition 3.12. Projetion on TM gives:ddt ���t=0 T�UM ÆXt(u)�(FM ÆXt(u)) = 0(3.59)whih also equals: T(x;FM (u))Tx� Æ TuFM (X(u)) = 0(3.60)therefore implying that X 2 Ker(T') and onsequently E � Ker(T').Colleting the results given by Propositions 3.17 and 3.19 we an now haraterize both ' and UN .Intuitively, we will use projetability to determine if the standard �ber of the quotient ontrol bundlewill reeive states from M and Proposition 3.19 to haraterize the amount of redution indued by '.Theorem 3.20 (Struture of Control Systems Quotients). Consider a ontrol system �M = (UM ; FM )over a manifold M , (f;�N ) = ((�; '); (UN ; FN )) a quotient of �M , and any vetor �eld FM in F eM . Let



40 3. A WALK THROUGH THE CONTINUOUS WORLDE be the involutive distribution de�ned by E = fX 2 0e : [FM ; X ℄ 2 Ker(T�e)g, whih we assume to beregular, and denote by RE the regular equivalene relation indued by E. Under these assumptions:1. Redution from states to states and no redution on inputsFiber bundle UN has base spae di�eomorphi to N , and standard �ber FN di�eomorphi to FMi�: � SM is projetable with respet to �;� E = f0g.2. Redution from states to states and from inputs to inputsFiber bundle UN has base spae di�eomorphi to N , and standard �ber FN di�eomorphi toFM=RE i�:� SM is projetable with respet to �;� E 6= f0g.3. Redution from states to inputs and no redution on inputsFiber bundle UN has base spae di�eomorphi to N , and standard �ber FN di�eomorphi to FM�Ki�: � [FM ;Ker(T�e)℄ \ �Ker(T�e) + [FM ; 0e℄� = f0g;� [FM ;Ker(T�e)℄ 6= f0g;� E = f0g.4. Redution from states to inputs and from inputs to inputsFiber bundle UN has base spae di�eomorphi to N , and standard �ber FN di�eomorphi to(FM=RE)�K i�:� [FM ;Ker(T�e)℄ \ �Ker(T�e) + [FM ; 0e℄� = f0g;� [FM ;Ker(T�e)℄ 6= f0g;� E 6= f0g.where K is any leaf of the foliation on M indued by the distribution Ker(T�).Proof. We will follow the enumeration of the theorem.1. By de�nition of �ber bundle the �bers of UN are di�eomorphi so that it suÆes to show thatthe �ber at some point y 2 N has the desired struture. Let x be a point in M , sine SMis projetable it follows from Theorem 3.16 the existene of an open set Ox in M , ontainingx and a loal isomorphism over the identity � : OxU �! OxU , with OxU = ��1UM (Ox), suh that[(FM Æ�)l;Ker(T�)l℄ � Ker(T�)l. Invoking Corollary 3.18 we see thatKer(T�)l � Ker(T ('Æ�))however, by assumption, E = f0g so that dimension ounting implies that Ker(T�)l = Ker(T ('Æ�)). We thus have the following loal situation, by shrinking Ox if neessary: OxU �= Ox�FM andKer(T ('Æ�)) = Ker(T�)�f0g. Sine 'Æ� is a submersion it follows that 'Æ�(OxU ) �= OxU=RK ,



5. THE STRUCTURE OF QUOTIENT CONTROL SYSTEMS 41where RK is the regular equivalene relation indued by Ker(T�) � f0g. However OxU beingdi�eomorphi to Ox � FM implies that OxU=RK �= (Ox � FM )=RK �= �(Ox) � FM , whih showsthat the standard �ber over every y 2 �(Ox) is di�eomorphi to FM .Conversely if FM is di�eomorphi to FN there does not exist a distribution E � Ker(T')suh that T�UM (E) = 0, whih by Proposition 3.19 implies that E = f0g. Sine no states lift intothe �bers of UN there exists a distribution D � Ker(T�) suh that T�UM (D) = Ker(T�) whihby Proposition 3.17 is equivalent to projetability of SM with respet to �.2. As in item 1 there exists a loal isomorphism � : OxU �! OxU suh that Ker(T�)l � Ker(T (� Æ�)). Sine � is an isomorphism over the identity all the vetor �elds X 2 Ker(T') suh thatT�UM (X) = 0 will satisfy T�UM (��X) = 0. This means that the distributionKer(T ('Æ�)) loallysplits as Ker(T (' Æ �)) = B � E with B = Ker(T�)l and E = fX 2 Ker(T') : T�UM (X) = 0g.By the same arguments as in item 1, this deomposition shows that the standard �ber of UNis di�eomorphi to FM fatored by the regular equivalene relation indued by E resulting inFM=RE .Conversely, sine FN is di�eomorphi to FM=RE , there exists a distribution E � Ker(T')suh that T�UM (E) = f0g and this implies the seond ondition by Proposition 3.19. The proofof projetability now follows the same arguments as in item 1.3. The �rst two onditions ombined with Proposition 3.17 and (3.43) show that for every X 2Ker(T'), T�UM (X) = 0. However sine E = f0g, by Proposition 3.19 there are no vetorsX 2 Ker(T') suh that T�UM (X) = 0. This implies dim(Ker(T')) = 0 or equivalently that ' isin fat a loal isomorphism between UM and UN regarded as manifolds without the �ber bundlestruture. Nevertheless UN possesses also a struture of �ber bundle over N indued by the map� Æ �UM : UM �! N , see [1℄ for details. This means that the standard �ber of UN is di�eomorphito (� Æ �UM )�1(y) = ��1UM Æ ��1(y) whih loally assumes the form FM �K.The onverse is proved by realizing that UM and UN are loally di�eomorphi as manifoldsvia '. The onditions in item 3 follow diretly from this observation.4. The �rst two onditions and Proposition 3.17 imply that T�UM (Ker(T')) = f0g. Thereforethe redued states by � on M , modeled by K will lift to the �bers. Sine E 6= f0g FN will bedi�eomorphi to FM=RE �F .The fat that M an be seen as a submanifold of UN and Proposition 3.17 imply the �rst twoonditions. Sine FM was redued by RE we must have E � Ker(T') and T�UM (E) = f0g whihby Proposition 3.19 implies E 6= f0g.It is useful to speialize the above results for the ase of ontrol aÆne systems due to their importanein real appliations:



42 3. A WALK THROUGH THE CONTINUOUS WORLDCorollary 3.21 (Struture of Control AÆne Quotients). Consider a ontrol system �M = (UM ; FM )over a manifold M , (f;�N ) = ((�; '); (UN ; FN )) a quotient of �M and any vetor �eld FM in F eM . LetE be the involutive distribution de�ned by E = fX 2 0e : [FM ; X ℄ 2 Ker(T�e)g, whih we assume to beregular and denote by RE the regular equivalene relation indued by E. Under these assumptions:1. Redution from states to states and no redution on inputsFiber bundle UN has base spae di�eomorphi to N , and standard �ber FN di�eomorphi to FMi�: � SM is projetable with respet to �;� E = f0g.2. Redution from states to states and from inputs to inputsFiber bundle UN has base spae di�eomorphi to N , and standard �ber FN di�eomorphi toFM=RE i�:� SM is projetable with respet to �;� E 6= f0g.3. Redution from states to inputs and no redution on inputsFiber bundle UN has base spae di�eomorphi to N , and standard �ber FN di�eomorphi to FM�Ki�: � [FM ;Ker(T�)℄ \ �Ker(T�) + �� = f0g;� [FM ;Ker(T�)℄ 6= f0g;� E = f0g.4. Redution from states to inputs and from inputs to inputsFiber bundle UN has base spae di�eomorphi to N , and standard �ber FN di�eomorphi to(FM=RE)�K i�:� [FM ;Ker(T�)℄ \ �Ker(T�) + �� = f0g;� [FM ;Ker(T�)℄ 6= f0g;� E 6= f0g.where K is any leave of the foliation on M indued by the distribution Ker(T�).We see that the notion of projetability is fundamentally related to the struture of the abstrated ontrolbundles. If the ontrol setion SM is projetable then the ontrol inputs of the abstrated system arethe same or a quotient of the original ontrol inputs. Projetability an therefore be seen as a struturalproperty of a ontrol system in the sense that it admits speial deompositions [33, 58℄ whenever it isprojetable. However, for general systems not admitting this speial struture, that is, for systems thatare not projetable, the proess of abstration is still possible and it onsists of lifting the negleted stateinformation to the �bers. The states of the original system that are abstrated away by � are regarded



6. EXAMPLES 43as ontrol inputs in the abstrated system. This shows that from a hierarhial synthesis point of view,ontrol systems that are not projetable are muh more appealing sine one an design ontrol laws forthe abstrated system, that when pulled-down to the original one are regarded as spei�ations for thedynamis on the negleted states.Between ases 1 and 2 of projetability and ases 3 and 4 of non projetability there are more intri-ate desriptions for the struture of the ontrol bundle related with the deompositionality of the Liesubalgebra de�ned by Ker(T'). A detailed aount of this situation will be given elsewhere.It is also important to mention that all the abstrating methodology is strongly rooted on the �berbundle model of ontrol systems. If one assumes a Cartesian produt between the state spae and theinput spae, then it is not possible to lift states to inputs sine produt respeting maps are of theform '(x; u) = ('1(x); '2(u)). We thus see that a hierarhial view of ontrol design simply meansinterhanging the role of state and input through the di�erent layers in a hierarhy. This presents aompelling reason to plae the distintion between states and inputs as a modeling question and not asa harateristi of physial systems. 6. ExamplesIn this setion we will provide simple examples to illustrate the haraterization of the abstrated ontrolbundles.Example 3.22. We start with a very simple but very harateristi example. Consider a simple mehan-ial system on the real line desribed as a double integrator. The ontrol bundle is given by UM = R2 �Rand the base spae M = R2 . Choosing as oordinates for M position x1 and veloity v1 we have thefollowing desription for FM : FM = f + gu = 24v10 35+ 240135u(3.61)We now introdue the abstrating map � : R2 �! R de�ned by �(x1; v1) = x1. Its tangent map is givenby T� = [1 0℄ and Ker(T�) = spanf240135g. Computing [FM ;Ker(T�)℄ one obtains:[FM ;Ker(T�)℄ = [24v035 ;240135℄ + [240135 ;240135℄ = 241035(3.62)and we see that [FM ;Ker(T�)℄ \ �Ker(T�) + spanfgg� = f0g and [FM ;Ker(T�)℄ 6= f0g whih tellus that all the negleted states will lift into the �bers of the abstrating system. This means thatthe integral manifold of the distribution Ker(T�) whih an be oordinatized by the variable v willbeome an input at the abstrated model. Let us see now what will happen to the input u. Computing



44 3. A WALK THROUGH THE CONTINUOUS WORLDKer(T�) \ spanfgg whih equals Ker(T�) we realize that the ontrol �ber FM = R will be fatoredby E . Theorem 3.20 tells us that the �bers of the ontrol bundle UN of the abstrated system will bedi�eomorphi to (R=RE ) Æ ��1(y) �= R.We now ompute the abstration of ontrol system (3.61) by the methods reviewed in Subsetion 2.2.The aÆne distribution SM is de�ned by:XM = 24v035 �M = spanf240135g(3.63)We now ompute LM as:LM = �M + [Ker(T�); XM ℄ = spanf240135g+ spanf241035g(3.64)and the abstrating aÆne bundle SN is given by:SN (y) = Tx�(SM (x))= Tx�(XM (x) + �M (x))= [1 0℄(24v035+ TxM)= v1(3.65)The last equality holds sine SN (y) is given by Tx�(SM (x)) for any x 2 ��1(y). From the aÆne bundleSN we easily obtain the abstration of (3.61) as:_y = _x1 = v1(3.66)where v is now a ontrol input. The �ber respeting map ' indued by � will then be de�ned as'((x; v); u) = (x; v) whih simply abstrats away the input u and lifts v from the base spae to the �bers,\promoting" it to a new ontrol input. This example is harateristi in the sense that it is probablythe simplest example of hierarhial ontrol. On the abstrated system a ontrol law is a spei�ation ofveloity as a funtion of position and this will orrespond on the original model as a spei�ation to beahieved by properly designing an aeleration ontrol law.Example 3.23. Next we onsider a simple example of a full nonlinear ontrol system where no stateinformation is lifted into the �bers. Consider the nonlinear ontrol system desribed by:_x1 = x2u1u2_x2 = x21u32where u1 and u2 are the ontrol inputs. The state spae is given by M = R2 and the ontrol bundle bythe trivial bundle UM = R2 �R2 . We now onsider the abstration of this ontrol system de�ned by themap � : R2 �! R, �(x1; x2) = x2. We take advantage of the fat that the bundle is trivial by hoosing



6. EXAMPLES 45FM = F lM and deomposing Ker(T�e) as Ker(T�e) = Ker(T�)l+0e. Projetability is now determinedby the inlusion: [F lM ;Ker(T�)l℄ + [F lM ; 0e℄ � Ker(T�e) + [F lM ; 0e℄(3.67)Computing: [F lM ;Ker(T�)l℄ = spanf[26666664x2u1u2x21u3200
37777775 ;266666641000

37777775℄g = spanf�26666664 02x1u3200
37777775g = spanfXg(3.68)

[F lM ; 0e℄ = spanf[F lM ;266666640010
37777775℄; [F lM ;266666640001

37777775℄g = spanf�26666664x2u2000
37777775 ;�26666664 x2u13x21u2200

37777775g(3.69)and de�ning: Y = �26666664x2u2000
37777775 Z = �26666664 x2u13x21u2200

37777775(3.70)we see that 32x1u2X = �u1Y +u2Z so that [F lM ;Ker(T�e)℄ � Ker(T�e)+[F lM ; 0e℄ and by Theorem 3.20no states will be lifted into the �bers. With respet to inputs we have [F lM ; 0e℄\Ker(T�)l 6= f0gwhih tellus that the �bers will be fatored by the regular equivalene relation RE indued by E = spanf[0 0 1 0℄Tg.Theorem 3.20 then asserts that the new ontrol bundle is di�eomorphi to R�R. Although the methodsproposed in [63, 64℄ to ompute abstrations only deal with ontrol aÆne systems we an ompute theabstration \manually" for this simple example. Let SM be the ontrol setion assoiated with FM , thenby omputing Tx�(X) for every X 2 SM (x) we obtain:Tx�(24x2u1u2x21u22 35) = x21u32(3.71)so that the ontrol setion SN is de�ned by SN = fx21u32 2 TR : x1 2 R ^ u2 2 Rg and an equivalentlybe desribed by SN = fu 2 TR : u 2 Rg. A ontrol parameterization for SN is then given by UN = R�Rand ontrol system FN de�ned by: _x = u(3.72)



46 3. A WALK THROUGH THE CONTINUOUS WORLDwhih agrees with the results given by Theorem 3.20



CHAPTER 4Abstrations of Hybrid Control Systems1. IntrodutionIn this hapter we develop a formal framework to introdue abstrations for hybrid ontrol systems andstudy their properties. Based on the insights obtained in the last hapter we use again simple ideas fromategory theory and introdue the ategory of abstrat ontrol systems. The objets will be abstratontrol systems apturing disrete, ontinuous and hybrid ontrol systems. To be able to work at suha general level we start from the hybrid automaton and extrat its mathematial struture by de�ningan hybrid ontrol system as a partial monoid ation. This haraterization of hybrid ontrol systemsemphasizes its similarity with labeled transition systems and smooth ontrol systems thereby suggestingthe general notion of abstrat ontrol systems. As morphisms, in the ategory of abstrat ontrol systems,we will onsider relations that preserve the partial monoid ation struture. There are two main reasonsto adopt relations instead of funtions. The �rst is that it allows to de�ne the onept of bisimulationthrough the use of the inverse relations. While for relations there always exist inverse relations, the sameis no longer true for funtions. Although this problem ould be solved by adopting other formulationsof bisimulation, of whih we mention [36℄ by its intuitive elegane, there is still a muh more ompellingreason to use relations. When aggregating ontinuous to disrete information we will fae the problemof abstrating ontinuous evolutions to disrete jumps. This, as we will see, will require to map pointsin the state spae of the original hybrid system to sets of points in the state spae of its abstration andrelations are exible enough to aommodate these requirements.As in the ontinuous ase we propose a notion of abstration based on simulations whih are apturedby the morphisms of the ategory, that is, system A is a simulation of system B if there is a morphismfrom B to A. However we will also provide a stronger notion of abstration, namely bisimulations. Wede�ne bisimulations as symmetri simulations, that is, system A is a bisimulation of system B if there isa morphism (whih is a relation is this ase) from B to A and the inverse relation is also a morphism fromA to B. Bisimulation de�nes a very speial equivalene relation of the lass of abstrat ontrol systemssine ardinality (or dimension, when we an talk about it) is not onstant on the equivalene lasses.This fat is the essene of omplexity redution sine analysis or synthesis tasks an be performed muhmore eÆiently on lower ardinality equivalent systems.47



48 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMSWe also introdue a omposition operator in the ategory of abstrat ontrol systems modeling theinteronnetion and synhronization of subsystems. This operator is based on the ategorial view ofonurreny desribed in [89℄ and is another powerful tool for omplexity redution. In fat, we showthat simulations are ompositional in the sense that omposing simulations of subsystems results in asimulation of the overall system. We also show that bisimulations are ompatible with omposition underertain onditions on the synhronization of the subsystems.All of these results are them speialized to hybrid ontrol systems where simpler versions of some resultsare given. We also provide an algorithm to ompute abstrations of hybrid ontrol systems and showthat under ertain assumptions the algorithm omputes bisimulations.2. Hybrid Automata: An operational perspetiveHybrid systems originally appeared as a model for systems omprising disrete and ontinuous evolution.Examples range from man engineered systems suh as omputer ontrolled physial proesses to severalexamples from nature like the motion of a bouning ball. To apture all of these similarly di�erentsystems in a ommon model, ideas from omputer siene and ontrol theory were merged into what isusually alled an hybrid automaton [26℄:Definition 4.1 (Hybrid Automata). An hybrid automaton is a tupleH = (Q;M; Init; Inv;Guard;Reset; F )onsisting of:� Q is a �nite set of disrete states.� M is a smooth manifold.� Init � Q�M is a set of initial states.� Inv : Q �! P(M) is a map assigning to eah q 2 Q a subset of M alled the invariant.� Guard : Q�Q �! P(M) is a map assigning to a pair of disrete states a subset of M alled theguard.� Reset : Q�Q�M �!M is a map suh that given a pair of disrete states, maps points in M toa set of points in M .� F : Q�M �! TM is a map assigning a vetor �eld F (�; x) 2 TM for eah q 2 Q.If F is not a vetor �eld, but a ontrol system, then we have an hybrid ontrol system as opposed to anhybrid dynamial system. The state spae assoiated with an hybrid system is given by Q �M and apoint is represented by the pair (q; x). The semantis assoiated with a trajetory of an hybrid automatonis the following: a trajetory originates in a state (q0; x0) 2 Init and onsists of onatenations of disretejumps and ontinuous ows. A ontinuous ow keeps the disrete part q of the state (q; x) onstant whilethe ontinuous part x evolves aording to ddtx(t) = F (q; x(t)) while x(t) belongs to Inv(q). When the



2. HYBRID AUTOMATA: AN OPERATIONAL PERSPECTIVE 49ontinuous part of the state attempts to leave the invariant either x 2 Guard(q; q0) for some q0 2 Q and adisrete jump from q to q0 is fored or the trajetory is not de�ned beyond that point and we say that thehybrid automaton has bloked or is bloking. If a disrete jump is fored, the state jumps instantaneouslyfrom (q; x) to (q0; x0) where x0 2 Reset(q; q0; x). A disrete jump may also happen in a ontrolled way asopposed to being fored. Whenever the ontinuous part of the state belongs to both the invariant andthe guard assoiated to some disrete transition, the jump an be taken, but is not fored to. A hoie isthen made between taking the disrete jump or ontinuing to ow ontinuously. After a disrete jump,if the ontinuous part of the state belongs to the invariant of the new disrete state another ontinuousevolution takes plae. The trajetory ontinues then evolving by ontinuous ows and disrete evolutionsor bloks at some state.An hybrid automaton is usually displayed graphially as a direted graph where the verties are repre-sented by irles ontaining the vetor �eld F and the invariant. The disrete transitions between statesare represented by arrows labeled by the guard and the reset assoiated with that transition. Consider,for example, an hybrid automaton modeling a thermostat as displayed in Figure 1. The thermostat hastwo modes of operation: OFF and ON . When the OFF mode is ative, the temperature dereasesaording to the law _x = �kx, where k is a onstant depending on the room harateristis. When in theON mode, the temperature evolution is desribed by _x = k(h � x), where h is a onstant modeling theheater performane. The goal of the thermostat is to keep the temperature between TMAX and TMINwhih ditates the swithing logi between the ON and OFF modes. This hybrid automaton is thereforede�ned by: Q = fON;OFFgM = RInit = Q�MInv(ON) =℄�1; TMAX ℄Inv(OFF ) = [TMIN ;+1[Guard(ON;OFF ) = fTMAXgGuard(OFF;ON) = fTMINgReset(ON;OFF; x) = fxgReset(OFF;ON; x) = fxgF (ON; x) = k(h� x)F (OFF; x) = �kx



50 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMS
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X �� XFigure 1. Hybrid automaton model of a thermostat.The hybrid automaton model provides an operational desription of hybrid systems in the sense that itprovides a way of omputing or implementing the trajetories of an hybrid system. However, it doesnot emphasize the struture of hybrid systems as a mathematial objet. It is towards this objetivethat we proeed in the next setion, where we will provide an alternative desription of hybrid systemsemphasizing their mathematial struture.3. Abstrat Control SystemsIn order to apture ontinuous, disrete, and hybrid systems under an uni�ed model, we need an abstratde�nition of ontrol systems. The essene of a ontrol system is reeted into two di�erent aspets: anotion of evolution, and the ability to ontrol the evolution. These two fundamental aspets are apturedin the following de�nition:Definition 4.2 (Abstrat Control System). Let S be a set, M a monoid and A a �bering relation onS �M with base spae S suh that As is a pre�x losed subset of M ontaining the identity for everys 2 S. An abstrat ontrol system over S is a map � : A �! S respeting the monoid struture, that is�s : As �! S veri�es:1. Identity: �s(") = s2. Semi-group: ��s(as)(as0) = �s(asas0)Intuitively, we an think of the set S as the state spae, and the �ber bundle A, also alled in this worka �bering monoid, as the set of possible ations, that depend on the base point. The map � assigns toeah point s 2 S a funtion from As to S representing all the input hoies that an be made at the points. Given an input hoie as 2 As, �S(as) returns the state reahed under the ation of the ontrol inputas.We adopt the following intuitive graphial notation to denote evolution from s ontrolled by a anddesribed by �, that is, �s(a) = s0 is represented by s a�! s0.



3. ABSTRACT CONTROL SYSTEMS 51We ould model abstrat ontrol systems in a more elegant way by de�ning them to be a generalizedmonoid, that is a small ategory. We would then have as objets the elements of S and every as 2 Aswould be onsidered a morphism from s to �(s; as). However, we will use the above de�nition sine it ismore easily assoiated and ompared with standard notions suh as monoid and group ations. To get abetter understanding of the above de�nition we will see how it applies to three lasses of systems.3.1. Disrete Control Systems as Abstrat Control Systems. The usual model for disreteontrol systems are automata however it will be enough to work with transition systems. Let (Q;�; Æ)be a disrete labeled transition system, where Q is a �nite set of states, � is a �nite set of input symbols,and Æ : Q�� �! Q is the next-state funtion. Usually, transitions are modeled by a transition relation�!2 Q���Q, but we will restrit to deterministi transition systems. Note also that Æ is in general apartial funtion. Let us denote by �� the set of all �nite strings obtained by onatenating elements in�. In partiular the empty string " also belongs to ��. With onatenation as a monoid operation, ��an be taken as the monoid M. The state spae is naturally S = Q. The transition funtion Æ de�nes aunique partial map from Q��� to Q whih is just an abstrat ontrol system � : (S �M)jR = A �! S,where R is the �bering monoid given by R = f(s;m) 2 S �M : �(s;m) is de�nedg.To larify the resemblanes to the ontinuous ase that we desribe next, we elaborate a little on thestruture of the monoid ��. This monoid has been de�ned as the set of all �nite sequenes of elementsin �. Alternatively we an regard �� as the disjoint union of the olletion of maps �? [ �f1;2;:::;tgwith t 2 f1; 2; : : : ; ng. Given any string s = m1m2m3m4 : : :mn 2 �� we an identify it with the mapu : f1; 2 : : : ; ng �! � de�ned by u(1) = m1, u(2) = m2, : : :, u(n) = mn. The empty string " is identi�edwith the map u : ? �! � and onatenation of strings an be seen as onatenation of maps de�ned asfollows: � : U1;2;:::;t1 � U1;2;:::;t2 �! U1;2;:::;t1+t2(u(t); v(t)) 7! (u � v)(t) =8<: u(t) if 1 � t � t1v(t� t1) if t1 + 1 � t � t1 + t2(4.1)The above operation only allows to onatenate maps suh that its domain ends in a �nite number, sineit is not possible to append the seond map at the end of the �rst one, if the end is a non-�nite1 number.This fores to work with the lass of maps de�ned on intervals with �nite end point, that is:�� = at2N0�t(4.2)whih is losed for onatenation of maps, posses identity " and therefore it is a monoid sine onatenationis an assoiative operation. Note that in this ase all the maps we are onsidering are de�ned on �nite1In fat this is possible but one would have to resort to !-monoids, see for example [65℄. This onstrution will be skethedwhen dealing with the Zeno phenomena.



52 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMSsubsets of the naturals and the ondition that the end point of the domain is �nite is equivalent to sayingthat the number of symbols in the string is �nite. This will not be the ase for ontinuous systems as wewill see shortly.3.2. Continuous Control Systems as Abstrat Control Systems. For simpliity of presen-tation, we onsider only time-invariant ontrol systems, although the onstrution to be presented isgeneralizable to time varying systems. Let U be the spae of admissible inputs. De�ne the set U t as:U t = fu : [0; t[�! U j [0; t[� R+0 g(4.3)An element of U t is denoted by ut, and represents a map from [0; t[ to U . Consider now the set U� whihis the disjoint union of all U t for t 2 R+0 : U� = at2R+0 U t(4.4)The set U� an be regarded as a monoid under the operation of onatenation, that is, if ut1 2 U t1 � U�and ut2 2 U t2 � U� then ut1ut2 = ut1+t2 2 U t1+t2 � U� with onatenation given by:ut1ut2(t) = 8<: ut1(t) if 0 � t < t1ut2(t� t1) if t1 � t < t1 + t2(4.5)The identity element is given by the empty input, that is " = u0. This onstrution parallels theonstrution that obtains �� from �, however in this ase the �niteness ondition on the end point ofthe domain of the map ut no longer implies that eah string has only a �nite number of elements. Wean have an in�nite number of onatenations as long as the sum of the duration times onverges.We now show how this monoid is used to desribe any smooth ontrol system as an abstrat ontrolsystem. Let _x = f(x; u) be a smooth ontrol system, where x 2 M , a smooth manifold and u 2 U , theset of admissible inputs. Choosing an admissible input trajetory ut, f(x; ut) is a well de�ned vetor �eldand as suh it indues a ow whih we denote by x : [0; t[�!M , suh that x(0) = x. We an then astany smooth ontrol system into our framework by de�ning:� : M � U� �! M(x; ut) 7! x(t)(4.6)It is not diÆult to see that � is in fat a well de�ned abstrat ontrol system sine �(x; ") = x(0) = xand �(x; ut1ut2) = x(t1 + t2) = x(t1)(t2) = �(�(x; ut1); ut2). In general the set of admissible ontrolinputs may hange with the point x so that the domain of � will be in fat a �ber bundle over M . It isalso interesting to note that when U is a singleton for every x 2M (there are no hoies to be made) theset U t an be identi�ed with the number t so that U� is given by U� = `t2R+0 t = R+0 and our abstrat



3. ABSTRACT CONTROL SYSTEMS 53ontrol system � degenerates into an ation of R+0 on M , that is, the solution of a di�erential equation(a degenerate ontrol system).3.3. Hybrid Control Systems as Abstrat Control Systems. Hybrid ontrol systems also �tin the abstrat ontrol system framework. The state spae of an hybrid ontrol system is usually desribedas Q�M , where Q is a �nite set of states and M a smooth manifold. However it will be onvenient torelax this onept and look at the state spae as a �ber bundle. Instead of onsidering the same manifoldM for every q 2 Q we onsider a set of smooth manifolds Xq parameterized by the disrete states anddenoted by X = fXqgq2Q. The disrete set Q is thought as the base spae, and for eah base point q 2 Qwe attah a �ber Xq. A point in X is represented by the pair (q; x).As ation monoid we will use the set: M = at2N0(U� [ ��)t(4.7)assuming that U� \ �� = f"g and regarding U� and �� simply as sets. Let us elaborate on the produtoperation onM. This operation is de�ned as the usual onatenation and therefore it requires �nite lengthstrings. To aommodate this requirement and still be able to have an in�nite number of onatenationsof elements in U� we proeed as follows. Suppose that we want to show that �1ut1ut2 : : : utn : : : �2 belongstoM, where tn is a onvergent sequene. Instead of regarding eah element in the string as an element inM, whih would not allow us to de�ne the last onatenation sine it would happen after 1, we regard�1 and �2 as elements of M and ut1ut2 : : : utn : : : = ut0 as an element of U� and onsequently as anelement of M, where t0 = limn�!1 tn. This string is then regarded as the map u : f1; 2; 3g �! M de�nedby u(1) = �1, u(2) = ut0 and u(3) = �3. The produt in M is then the usual onatenation on reduedstrings, that is, strings where all onsequent sequenes of elements of U� or �� have been replaed bytheir produt in U� or ��, respetively. The monoid M obtained by this onstrution is alled the freeprodut of U� and �� and is is fat the oprodut in the ategory of monoids. Furthermore we have thefollowing haraterization of M:Proposition 4.3 ([30℄). The monoid M is freely generated by the symbols U� [ ��.Sine the ontinuous ontrol systems will, in general, be di�erent at eah �ber Xq, U will be a �nite familyof admissible ontinuous ontrol input spaes parameterized by the disrete states, that is U = fUqgq2Q.Hybrid ontrol systems are now ast into the abstrat ontrol systems framework as:Definition 4.4 (Hybrid Control System). An hybrid ontrol system H = (X;AX ;�X) onsists of:� The state spae X = fXqgq2Q.� A �bering relation AX on X �M de�ned by:AX = f((q; x);m) 2 X �M : �X((q; x);m) is de�nedg.



54 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMS� A map �X : AX �! X respeting the monoid struture suh that for all q 2 Q, there is a setInv(q) � Xq and for all x 2 Inv(q), A(q;x) \ U� 6= f"g and �((q; x); ut0) 2 Inv(q) for every pre�xut0 of every ut 2 A(q;x).The semantis assoiated with the evolution from (q; x) governed by � and ontrolled by a 2 A(q;x) is thestandard transition semantis of hybrid automata [26℄. Suppose that a = ut1�1�2ut2 , then �((q; x); a) =(q0; x0) means that the system starting at (q; x) evolves during t1 units of time under ontinuous inputut1 , jumps under input �1 and them jumps again under �2. After the two onseutive jumps, the systemevolves under the ontinuous ontrol input ut2 reahing (q0; x0), t2 units of time after the last jump. Fromthe hybrid system onstrution we an learly extrat the purely disrete ase (Xq is a singleton andUq = ? for eah q 2 Q) as well as the purely ontinuous ase (Q is a singleton and � = ?).3.4. Control System Abstrations. Having haraterized the struture of hybrid systems we nowonsider simulation relations, and in partiular abstrations, between the general systems onsidered inDe�nition 4.2. These notions will be spei�ed by requiring that the struture is preserved between theoriginal system and its abstration. Although for disrete and smooth systems a notion of simulationbased on a map between �bering monoids is able to model the relevant onepts and onstrutions, thatwill not be the ase for hybrid ontrol systems. A map between �bering monoids turns out to be toorestritive and one is fored to look into more general notions of simulation. The link between the �beringmonoids will be provided by a relation2 whih is general enough for our purposes. A notion of simulationwill involve a relation between �bering monoids that respets the ontrol struture given by the map �.This is formalized as follows:Definition 4.5 (Simulations of Abstrat Control Systems). Let �X and �Y be two abstrat ontrol sys-tems over X and Y with �bering monoids AX and AY , respetively. Let R � AX � AY be a �beringmonoid respeting relation. Then �Y is a simulation of �X with respet to R or a R-simulation if andonly if: 8x2X (x; y) 2 RB ) 8(x;ax)2dom(R) 9(x;ax;y;ay)2R (�X(x; ax);�Y (y; ay)) 2 RB(4.8)This de�nition slightly generalizes the usual notions of morphisms between transition systems as in [89℄,sine we allow the ontrol inputs to depend on the state spae and sine we use relations instead offuntions. It is not diÆult to see that abstrat ontrol systems and relations satisfying ondition (4.8)form a ategory, that we all the abstrat ontrol systems ategory. It is also lear that the ategory ofdisrete ontrol systems and also the ategory of smooth ontrol systems are subategories of this largerategory.2In fat it was by means of a relation that the notion of bisimulation was introdued in [52℄



3. ABSTRACT CONTROL SYSTEMS 55It may seem that heking if R is �bering monoid preserving might be a diÆult task in onrete examples.We will see, however, that for hybrid systems the relations we will onsider are �bering monoid respetingby onstrution.If we regard an abstrat ontrol system as a small ategory, then a simulation is a funtor betweenategories that may be multi-valued on both objets and morphisms.We now propose the following notion of abstration based on simulations:Definition 4.6 (Abstrations of Abstrat Control Systems). Let �X and �Y be abstrat ontrol sys-tems over X and Y with �bering monoids AX and AY , respetively. If R � AX �AY is a �ber respetingrelation we say that �Y is an R-abstration of �X i� �Y is an R-simulation of �X and R is a surjetiverelation with domain AX .The notion of bisimulation also follows naturally:Definition 4.7 (Bisimulations of Abstrat Control Systems). Let �X and �Y be abstrat ontrol sys-tems over X and Y with �bering monoids AX and AY respetively. If R � AX �AY is a �ber respetingrelation we say that �X is R-bisimilar to �Y i� �Y is a R-simulation of �X and �X is a R�1-simulationof �Y .The approah taken to de�ne bisimulation is similar in spirit to the one in [52℄, however instead ofpreserving labels of the abstrat ontrol systems, we relate them through the relation. Several otherapproahes to bisimulation are reported in the literature and we point the reader to the omparativestudy in [73℄ and the referenes therein. How this notion relates with the others is an important issuethat will be disussed elsewhere.The importane of simulations lies on the fat that simulations apture all trajetories of the simulatedabstrat ontrol system. We now make this fat preise. Instead of trying to de�ne trajetories of abstratontrol systems (whih would be as diÆult as de�ning trajetories of hybrid ontrol systems, see thedi�erent approahes in [35, 53, 67, 85℄) we will restrit our attention to the orbits of abstrat ontrolsystems.Definition 4.8. Let �X be an abstrat ontrol system over X with �bering monoid AX . The set Ox isan orbit from the point x 2 X i�:9ax2Ax suh that Ox = fx0 2 X : x0 = �X(x; a0x) for every pre�x a0x of axg(4.9)Intuitively, the orbit Ox through x is the set of all the points visited by �X while being ontrolled by ax.We an now relate the orbits of abstrat ontrol systems to the orbits of the orresponding simulations:



56 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMSProposition 4.9. Let �X and �Y be abstrat ontrol systems over X and Y with �bering monoids AXand AY , respetively. If �Y is a R-simulation of �X with respet to a �bering monoid respeting relationR indued by a map ' : AX �! AY then:�(Ox) = O�(x) 8x2X 8Ox(4.10)where � : X �! Y is the map indued by RB.Proof. Assume that �Y is a R-simulation of �X and let x 2 X be RB related to y 2 Y . Forany (x; ax) 2 dom(R) there exists a pair ((x; ax); (y; ay)) 2 R suh that � Æ �X(x; ax) = �Y (y; ay) =�Y ('(x; ax)) by de�nition of simulation and the fat that R is indued by '. Therefore:�(Ox) = [a0x pre�x of ax �(�X (x; a0x))= [a0x pre�x of ax�Y ('(x; a0x))Sine ' maps pre�xes of ax to pre�xes of ay (as it is a �bering monoid respeting map) for (y; ay) ='(x; ax) the previous expression an also be written as:[a0x pre�x of ax�Y ('(x; a0x)) = [a0y pre�x of ay �Y (y; a0y)= Oy= O�(x)and the proof is �nished.If the �bering monoids are related by a relation that is not indued by a funtion, then we only have aweaker version of Proposition 4.9 as illustrated in the next example.
AY�

AY�

Y� Y�

Y� Y�

X� X� X�

AX�
AX�Figure 2. An abstrat ontrol system and one possible simulation.Example 4.10. Consider the abstrat ontrol system HX displayed in the lower part of Figure 2, wherethe " transitions are not displayed. The abstrat ontrol system displayed in the top part of the �gure is



3. ABSTRACT CONTROL SYSTEMS 57a simulation of HX with respet to the relation:R = f((x1; ax1); (y1; ay1)); ((x1; "); (y1; ")); ((x3; ax3); (y3; ay3))((x3; "); (y3; ")); ((x3; "); (y2; ")); ((x4; "); (y4; "))g(4.11)We then see that the evolution x1 ax1�! x3 is simulated by y1 ay1�! y2 while the evolution x3 ax3�! x4is simulated by y3 ay3�! y4. However, y2 6= y3 as a onsequene of the nondeterminism imposed byRB(x3) = fy2; y3g. Nevertheless, relations will be play an important role in desribing simulations forhybrid ontrol systems.We have already seen that abstrations preserve orbits but in the next setion we will see in detail thatabstrations may preserve other properties as well.3.5. Preservation of Properties. In this setion we will study preservation of properties that willbeome important for the later study of hybrid systems.3.5.1. Reahability.Definition 4.11 (Reahable Spae). Let �X be an abstrat ontrol system overX . The reahable spaefrom a point x 2 X , and denoted by Reahx(�X ) is given by:Reahx(�X) = [a2Ax�X(x; a)(4.12)The reahable spae from a set X 0 � X is denoted by ReahX0(�X) and is de�ned as:ReahX0(�X) = [x2X0Reahx(�X)(4.13)Simulations preserve reahable sets in the sense that given an initial ondition x0 2 X there exists a hoiefuntion � : X �! Y relating the reahable spae of and abstrat ontrol system with the reahable spaeof its simulation:Proposition 4.12. Let �X and �Y be two abstrat ontrol systems on X and Y , respetively. If �Y isa R-simulation of �X for a relation R with domain AX , then for every x0 2 X there exists a map � : X�! Y suh that (x; �(x)) 2 RB and �(Reahx0(�X)) � Reah�(x0)(�Y )Proof. Let us de�ne �. For x0, �(x) is any y0 2 Y suh that (x0; y0) 2 RB . For any x 2Reahx0(�X ), �(x) = �Y (�(x0); a�(x0)), where ((x0; ax0); (�(x0); a�(x0))) 2 R and x = �X(x0; ax0). Notethat (�(x0); a�(x0)) exists sine the domain ofR isX and by de�nition of simulation (x;�Y (�(x0); a�(x0))) 2RB . This allow us to onlude that for any x 2 Reahx0(�X), �(x) = �Y (�(x0); a�(x0)) 2 Reah�(x0)(�Y )as desired. We have already shown the desired inlusion so that the de�nition of � for points not belongingto Reahx0(�X) is arbitrary.



58 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMSThis result is in fat a natural onsequene of the fat that simulations preserve trajetories. Safetyproperties expressed in several temporal logis an also be shown to be preserved based on the notion ofsimulation, however, we shall not explore further this aspet.3.5.2. Bloking. Another important property is the absene of dead-loks on the system being mod-eled by a disrete or hybrid ontrol system. The analogue for ontinuous systems is the non-existene of�nite explosion times. This property is usually alled non-bloking and is de�ned as:Definition 4.13. Let �X be an abstrat ontrol system. �X is said to be non-bloking from S � X i�for every x 2 ReahS(�X ), Ax 6= f"g.In general simulations do not preserve non-bloking, however this an be ahieved under the properassumptions:Proposition 4.14. Let �X be an abstrat ontrol system and �Y a R-abstration of �X . If:� �X is non-bloking from S� for any (x; y) 2 RB suh that:{ x 2 ReahS(�X){ y 2 ReahRB(S)(�Y ){ (x0; y) 2 RB for every x0 2 Reahx(�X)there exists an ation ax 2 [x2R�1B (y)Ax suh that R(x; ax) 6= f(y; ")gthen �Y is non-bloking.Proof. We will proeed by ontradition. Assume that �Y is bloking from RB(S) and that theproposition onditions hold. Sine �Y is bloking from RB(S) there is a y 2 ReahRB(S)(�Y ) suh thatAy = f"g. By surjetivity of R there is a (x; ax) 2 AX that is R-related to (y; "). Let W be the setof all (x; ax) 2 AX R-related to (y; "). This set satis�es Reahx(�X) � �X(W ) for every x 2 �X(W )sine from dom(R) = AX it follows that for any ax 2 Ax, (x; ax) 2 W and this in turn implies that(�X(x; ax); y) 2 RB by (4.8). It follows that �X(x; ax) 2 �X (W ) and therefore Reahx(�X) � �X(W ).However, we know that there is an ation ax 2 [x2�X(W )Ax suh that ((x; ax); (y; ay)) 2 R with ay 6= "whih ontradits the fat that �Y is bloking at y.This ondition is also neessary as we now show:Proposition 4.15. Let �X be an abstrat ontrol system and �Y a R-abstration of �X . If �X isnon-bloking from S and �Y is non-bloking from RB(S) then for any (x; y) 2 RB suh that:� x 2 Reah(�X)� y 2 Reah(�Y )



3. ABSTRACT CONTROL SYSTEMS 59� (x0; y) 2 RB for every x0 2 Reahx(�X)there exists an ation ax 2 [x2R�1B (y)Ax suh that R(x; ax) 6= f(y; ")g.Proof. Admit that �Y is nonbloking from RB(S). Let W be the set of all elements from X thatare RB-related to some y 2 ReahRB(S)(�Y ). If Reahx(�X ) * W for any x 2 W then the result isvauously true. If Reahx(�X) � W for some x 2 W then sine �Y is nonbloking from y there is anation ay 2 Ay, ay 6= " suh that the pair (y; ay) is R-related to (x; ax) with ax 2 [x2WAx by surjetivityof R.This result is learly unpratial sine it involves onditions that are not possible to hek in pratie.However it is diÆult to give hekable onditions at this level of generality. When dealing spei�allywith hybrid ontrol systems at Setion 4 we will be able to take advantage of the struture of hybridontrol systems to be able to give results based on more easily veri�able onditions.3.6. When are two abstrat ontrol systems bisimilar? When synthesis (and not analysis) isthe important issue one is interested in ensuring that every trajetory of the abstration has a feasibleimplementation on the original, more detailed model. This allows to design ontrollers for the abstrationand then re�ne them on the original system by inorporating the modeling details not present on theabstration. Feasibility of implementations or re�nements asks for the original model to be a simulation ofthe abstration, emphasizing the role of bisimulations. They allow analysis as well as synthesis proessesto be performed more eÆiently sine they render both models equivalent, although one of the modelshas preferably lower omplexity than the other. Furthermore when dealing with hybrid ontrol systemswe will provide a onstrutive algorithm to ompute simulations of hybrid ontrol systems. Ideally, onewould like to produe bisimulations through the algorithm and therefore we need to develop alternativeharaterizations of bisimilar systems to determine when we are in fat omputing bisimulations. Toaomplish this we will restrit attention to �bering monoids AX freely generated by �ber bundles ofgeneratorsGX . This means that any element ax in the �ber Ax over x 2 X an be obtained by multiplyingelements g1x; g2x; : : : on the �ber Gx over x 2 X . This assumption is justi�ed by the fat that in the hybridase the monoid M is free on the set �� [ U�. Furthermore �� is free on the set � and U� is also freeon a set of in�nitesimal generators. We restrit our attention to abstrat ontrol systems fatored byequivalene relations on the state spae, sine they apture the essene of the abstration methodologywe will later propose for hybrid ontrol systems. Let � : X �! Y be a surjetive map and de�ne theequivalene relation �� X�X by x1 � x2 i� �(x1) = �(x2). Based on this relation we an quotient �Xobtaining �Y = �X= �. To de�ne the quotient abstrat ontrol system �Y we introdue the operatorRx�X returning the subset of X reahable from x 2 X by �X when ontrolled by elements in GX , that



60 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMSis: Rx�X = [gx2Gx�X(x; gx)(4.14)This operator allows to introdue the �ber bundle GY of the generators of AY de�ned as a �ber bundleover Y = �(X) with �ber over any y 2 Y isomorphi (as a set) to:[x2��1(y)� Æ Rx�X(4.15)The quotient ontrol system �Y an now be de�ned by:�Y (y; ay) = y0 i� 9ax2Ax �X(x; ax) = x0 ^ �(x) = y ^ �(x0) = y0 ^ '(x; ax) = (y; ay)(4.16)for a surjetive, �bering monoid respeting map ' : AX �! AY impliitly de�ned by the followingommutative diagram:
AX X-�XAY Y-�Y6' 6�(4.17)or equivalently, by the following equality:� Æ�X(x; ax) = �Y ('(x; ax))(4.18)To show that suh a map ' exists (and is uniquely de�ned) we note that it suÆes to de�ne it from GXto GY . For any ax 2 Gx, '(x; ax) is de�ned to be the unique element (y; ay) 2 GY suh that �(x) = yand �Y (y; ay) = ' Æ�X(x; ax). Suh an element ay always exists and is unique by de�nition of GY . Weemphasize that the map ' is uniquely determined by the hoie of the map �. This fat will be importantwhen dealing with hybrid ontrol systems where this onstrution will be used several times. We resumethe above disussion in the following result:Proposition 4.16. Let �X be an abstrat ontrol system over a set X with �bering monoid AX freelygenerated. Given a surjetive map � : X �! Y , there exists a unique �bering monoid preserving lift' : AX �! AY of � and a quotient abstrat ontrol system on Y with �bering monoid AY whih is a'-simulation of �X .Proof. The existene of �Y and ' has been shown in the previous paragraph as well as the unique-ness of '. We will only show that �Y is a '-simulation of �X , whih is a diret onsequene of theommutativity of (4.17).Assume that x ax�! x0 for some ax 2 AX . The element ax an be written as a produt of generators asax = g1xg2x : : : gnx and in partiular we have n = 1 if ax 2 GX . The evolution x ax�! x0 an then be written



3. ABSTRACT CONTROL SYSTEMS 61as x g1x�! x1 g2x�! x2 g3x�! : : : gnx�! x0. By onstrution of �Y we know that we have:� Æ�X(x; g1x) = �(x1) = y1 = �Y (y; g1y) = �Y ('(x; g1x))(4.19)But sine g2x 2 GX we also have:� Æ�X(x1; g2x) = �(x2) = y2 = �Y (y1; g2y) = �Y ('(x1; g2x))(4.20)so that by making use of the semi-group property of abstrat ontrol systems we onlude that:�Y (y; g1yg2y) = �Y (�Y (y; g1y); g2y)= �Y (y1; g2y)= y2= �(x2)(4.21)A �nite indution argument now shows that y ay�! y0 for (y; ay) = (y; g1yg2y : : : gny ) = '(x; g1xg2x : : : gnx ) ='(x; ax) and �(x0) = y0 implying that �Y '-simulates �X sine for any (x; y) 2 � and any (x; ax) 2dom(') the tuple ((x; ax); (y; ay)) 2 ' previously desribed satis�es (�X(x; ax);�Y (y; ay)) 2 �.The use of a �ber respeting map ' instead of a produt respeting map shows a di�erent perspetivefrom the omputer siene approahes as desribed in [89℄. This di�erent approah is a onsequeneof modeling abstrat ontrol systems as deterministi systems whih naturally requires extra exibilitywhen modeling state and input aggregation as illustrated in the next example.Example 4.17. Consider the following �bering monoidAX = f(x1; a); (x1; "); (x2; a); (x2; "); (x3; "); (x4; ")gand �X(x1; a) = x3, �X(x2; a) = x4. If we model the state and input aggregation by a produt respetingmap of the form ' = (�; �M) with � : X �! Y and �M :MX �!MY de�ned by:�(x1) = x1 �(x2) = x1 �(x3) = x3 �(x4) = x4�M(a) = a �M(") = "The abstration would satisfy: �Y (x1; a) = fx3; x4g(4.22)whih is learly nondeterministi. This modeling problem an be overome by using a �ber respetingmap ' : GX �! GY de�ned by:'(x1; ") = (x1; ") '(x1; a) = (x1; a) '(x2; ") = (x1; ")'(x2; a) = (x1; b) '(x3; ") = (x3; ") '(x4; ") = (x4; ")that assigns a di�erent generator for eah di�erent state reahable from x1.



62 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMSInspired by the results in [59℄ we haraterize bisimilar systems in terms of the reahable spae previouslyde�ned:Proposition 4.18. Let �X and �Y be two abstrat ontrol systems over X and Y respetively. Givenan equivalene relation �� X �X, �X is R�-bisimilar to �Y = �X= � i�:R�B�Rx�X� = R�B�RR�B�1ÆR�B(x)�X�(4.23)Proof. Assuming R�-bisimilarity we will show that R�B�RR�B�1ÆR�(x1)�X� � R�B�Rx1�X� sinethe other inlusion is obvious. Let x2 2 R�B�1 Æ R�B(x1) and x02 2 Rx2�X , that is x2 ax2�! x02 for someax2 2 Gx2 . By the fat that �Y is a R�-simulation of �X we get that R�B(x2) aR�B(x2)�! R�B(x02) for someaR�B(x2) 2 GR�B(x2). Using now the fat that �X is a R��1-simulation of �Y and x2 2 R�B�1 Æ R�B(x1)we onlude that x1 ax1�! x01 for some ax1 2 Ax1 and for a state x01 suh that (x01; x02) 2 RB . Howeverby onstrution of �Y , the preimages of aR�B(x2) under R� have non empty intersetion with GX andtherefore we an assume that ax1 2 GX implying that x01 2 Rx1�X . This allows to onlude that for anyx02 2 RR�B�1ÆR�B(x1) we have R�B(x02) = R�B�x01) 2 R�B(Rx1�X� thereby showing the desired inlusion.To show the onverse, we reall that by Proposition 4.16 the quotient system �Y is a simulation of �X sothat we only need to show that �X R��1-simulates �Y . Let y0 2 Reahy�Y , that is, there is a ay 2 Aysuh that y ay�! y0 and assume that �(x) = y and �(x0) = y0 (whih an always be done sine � is asurjetive map). The element ay an be written as a �nite multipliation of generators as ay = g1yg2y : : : gny ,where n equals 1 if ay 2 GY and the evolution y ay�! y0 deomposes as y g1y�! y1 g2y�! y2 g3y�! : : : gny�! y0.By onstrution of �X= � we have that g1y is the image under R� of some g1x 2 GX and the equality� Æ �X(x; g1x) = �Y (y; g1y) holds meaning that the evolution y g1y�! y1 is simulated by the evolutionx g1x�! x1. But by the same argument the evolution y1 g2y�! y2 is simulated by the evolution x1 g2y�! x2 andthe semi group property of abstrat ontrol systems allows to onlude that �Æ�X(x; g1xg2x) = �Y (y; g1yg2y).An indution argument now shows that the evolution y ay�! y0 is simulated by the evolution x ax�! x0with ax = g1xg2x : : : gnx thereby showing that �X R��1-simulates �Y sine R�(ax) = R�(g1xg2x : : : gnx) =R�(g1x)R�(g2x) : : : R�(gnx ) = g1yg2y : : : gny = ay.At this level of generality this haraterization of bisimulation is as unpratial as the de�nition sine wehave no means of omputing the relevant Reah sets. However for disrete systems the Reah sets an beomputed algorithmially and for ontinuous systems there are reasonable in�nitesimal haraterizations.When dealing spei�ally with hybrid ontrol systems we will be able to give suÆient onditions for thedesired equality between the relevant Reah sets.



3. ABSTRACT CONTROL SYSTEMS 633.7. Compositional Abstrations. In this setion, we follow the ategorial desription of tran-sition systems in [89℄, and introdue a notion of parallel omposition for abstrat ontrol systems, thenwe determine under what onditions does this notion of parallel omposition respet simulations andbisimulations.3.7.1. Parallel Composition with Synhronization. The �rst step of omposition ombines two ab-strat ontrol systems into a single one by forming their produt. Given two abstrat ontrol sys-tems �X : AX �! X and �Y : AY �! Y we de�ne their produt to be the abstrat ontrol system�X ��Y : (AX �AY ) �! (X�Y ), �X ��Y (ax; ay) = (�X (ax);�Y (ay)), where the �bers of (AX �AY )are subsets of the diret produt monoid MX 
MY . The trajetories of the produt ontrol systemonsist of all possible ombinations of the initial ontrol systems trajetories. The produt an also bede�ned in a ategorial manner.Definition 4.19 (Produt of abstrat ontrol systems). Let �X : AX �! X and �Y : AY �! Y be twoabstrat ontrol systems. The produt of these abstrat ontrol systems is a triple (�X � �Y ; �X ; �Y )where �X � �Y is an abstrat ontrol system and �X � (X � Y ) � X and �Y � (X � Y ) � Y areprojetion relations suh that �X is a �X -simulation of �X � �Y , �Y is a �Y -simulation of �X � �Y ,and for any other triple (�Z ; pX ; pY ) of this type there is one and only one relation � � Z � (X � Y )suh that �X ��Y is a �-simulation of �Z , and the following diagram ommutes:
�ZpX ������I

�X �X ��Y��X �Y-�Y6� pY�������(4.24)The relations �X and �Y are in fat those indued by the anonial projetion maps �X : X � Y �! X ,�Y : X�Y �! Y and the relation � is easily seen to be given by � = (pX ; pY ). This de�nition of produtmay seem unneessarily abstrat and ompliated at the �rst ontat, it will, however, render the proof ofthe main result on the ompatibility of parallel omposition with respet to simulations an almost trivialtask.Example 4.20. Consider the transition system inspired from [89℄ and displayed on the left of Figure 3where the " evolutions are not represented. The produt of these transitions systems will onsist of allpossible evolutions of both systems as displayed on the right of Figure 3.In the produt system we apture all possible trajetories of both systems and onsequently several nonphysially meaningful trajetories. One allows, for example, input trajetories of the form ("; ut) whereno time elapses in system �X and t units of time elapse in system �Y . These trajetories need to



64 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMS
�X�� Y�	 �X�� Y�	

�X�� Y�	

�X�� Y�	

��� B	

��� B	

�A� �	

�A� �	

��� C	

��� C	C
Y� Y�

X� X�

A

B

�A� B	

�A� C	

Figure 3. Two transition systems on the left and the orresponding produt transitionsystem on the right.be removed from the produt system in order to faithfully model a physial system. Another reason toremove transitions from the produt system omes from the fat that in the produt system, the behaviorof one system does not inuene the behavior of the other system. Sine in general the behavior of asystem omposed of several subsystems depends strongly on the interation between the subsystems, onetries to apture this interation by removing undesired evolutions from the produt system �X � �Ythrough the operation of restrition.Given a �bering submonoid3 AL � AW we de�ne the restrition of ontrol system �W : AW �! W toAL as a new ontrol system �W jAL : AL �! L whih is given by �W jAL(x; a) = �W (x; a) i� (x; a) 2 ALand �W (x; a0) belongs to L for any pre�x a0 of a. If the �bering submonoid AL has the same base spaeas AW but \smaller" �bers, then restrition is modeling synhronization of both systems on the ontrolinputs. If on the other hand the �bers are equal but the base spae of AL is \smaller" then the basespae of AW then both systems are being synhronized on the state spae. Synhronization on inputs andstates is also aptured by the operation of restrition by hoosing a �bering submonoid with \smaller"�bers and base spae. This operation also admits a ategorial haraterization.Definition 4.21 (Restrition of abstrat ontrol systems). Let �W : AW �! W be an abstrat ontrolsystem, AL a �bering submonoid of AW and g and h two simulation relations suh that AL = f(w; aw) 2AW j g(w; aw) = h(w; aw)g. The restrition of �W to AL is a pair (�W jAL ; iL) where �W jAL is anabstrat ontrol system and iL � L � W is an inlusion relation suh that �W is a iL-simulation of�W jAL satisfying g Æ iL = h Æ iL and for any other pair (�Z ; iZ) of this type suh that g Æ iZ = h Æ iZthere is one and only one relation � suh that �W jAL is a �-simulation of �Z , and the following diagram3A �bering submonoid A of a �bering monoid B is understood as a �bering monoid suh that the inlusion map i : A ,! Bis �bering monoid preserving.
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�A� B	 ��� C	Figure 4. Parallel omposition with synhronization of the transition systems displayedon the left of Figure 3.ommutes: �W jAL �W-iL�Z6� iZ����� �V-g -h(4.25)In general the domain of �W jAL , AL, may be stritly ontained in AL sine restriting the base spaeimplies also restriting the �bers to the ations that do not fore the abstrat ontrol system to leave therestrited base. In any ase the relation iL is simply the inlusion iL(al) = al 2 AW for every al 2 AL.With the notions of produts and restrition at hand, we an now de�ne a general operation of parallelomposition with synhronization.Definition 4.22 (Parallel Composition with synhronization). Let �X : AX �! X and �Y : AY �! Ybe two abstrat ontrol systems and onsider a �bering submonoid AL � AX � AY . The parallelomposition of �X and �Y with synhronization over AL is the abstrat ontrol system denoted by�X kAL �Y and de�ned as: �X kAL �Y = (�X ��Y )jAL(4.26)Example 4.23. Consider the transition system displayed on the left of Figure 3. By speifying thesubbundle: AL = f((x1; y1); (a; b)); ((x1; y1); ("; ")); ((x1; y1); (a; b));((x2; y1); ("; )); ((x2; y1); ("; ")); ((x2; y2); ("; "))g(4.27)it is possible to synhronize the event a with the event b on the parallel omposition of these systems.The resulting transition system is displayed in Figure 4. For purely ontinuous examples of parallelomposition with synhronization we defer the reader to Chapter 5 where the abstrations of diretedformations an be seen as the parallel omposition of the individual agents with synhronization onthe submanifold of the state spae de�ned by the formation onstraints. Note that ontrary to theonstrution desribed in this setion, in Chapter 5 only the ontrol system is the parallel ompositionof the individual ontrol systems, sine the state spae remains the produt state spae.



66 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMS3.7.2. Compositionality of Simulations. We now determine if omposition of subsystems is ompatiblewith abstration. A positive answer to this question is given by the next theorem whih desribes howthe proess of omputing abstrations an be rendered more eÆient by exploring the interonnetionstruture of hybrid systems.Theorem 4.24 (Compositionality of Simulations). Given abstrat ontrol systems �X , �Z (whih is aRX -simulation of �X), �Y , �W (whih is a RY -simulation of �Y ) and the �bering submonoid AL �AX �AY , the parallel omposition of the simulations �Z and �W with synhronization over RX�Y (AL)is a RX�Y jAL-simulation of the parallel omposition of �X and �Y with synhronization over AL, whereAL = dom(�X kAL �Y ).Proof. Consider the produt system (�Z��W ; �Z ; �W ) and the triple (�X��Y ; RX Æ�X ; RY Æ�Y ).By de�nition of produt we know that there is one and only one relation � suh that:
�X ��YRX Æ �X ������I

�Z �Z ��W� �Z �W-�W6� RY Æ �Y�������ommutes and this relation is given by � = (RX ; RY ) = RX�Y , meaning that �Z � �W is a RX�Y -simulation of �X ��Y . Consider now the following diagram:(�Z ��W )j�(AL) �Z ��W-i�(AL)
(�X ��Y )jAL � Æ iAL�������

��� �V-g -h
(4.28)where g and h are equal on the �bering submonoid �(AL). It is lear that g Æ � Æ iAL = h Æ � Æ iAL sineAL � AL implies � Æ iAL(AL) = �(AL) � �(AL). Therefore there exists one and only one simulationrelation � from �X kAL �Y to �Z k�(AL) �W whih is given by � = �ÆiAL = RX�Y ÆiAL = RX�Y jAL .The above result was stated for parallel omposition of two abstrat ontrol systems but it an be easilyextended to any �nite number of abstrat ontrol systems. The relevane of the result lies in the fat that,in general, it is muh easier to abstrat eah individual subsystem and by parallel omposition obtain anabstration of the overall system.



3. ABSTRACT CONTROL SYSTEMS 673.7.3. Compositionality of Bisimulations. We have already seen that bisimulation is a very powerfultool to deal with the omplexity of large sale systems. In this subsetion we will try to extend theprevious ompatibility results from simulations to bisimulations. We start with a very simple lemmastating that produt respets bisimulations:Lemma 4.25. Given abstrat ontrol systems �X , �Z (a RX -bisimulation of �X), �Y and �W (a RY -bisimulation of �Y ) the produt abstrat ontrol system �Z ��W is a RX�Y -bisimulation of �X ��Y .Proof. Consider the following ommutative diagrams:
�X �Y�X ��Y�X ����	 �Y����R�Z �W�Z ��W�Z ����I �W�����?RX ?RY

?
�1 �X �Y�X ��Y�X ����	 �Y����R�Z �W�Z ��W�Z ����I �W�����

6R�1X 6R�1Y
6�2

(4.29)By de�nition of produt there exists one and only one relation �1 and one and only one relation �2suh that both diagrams ommute. In fat, �1 is the relation �1 = (RX Æ �X ; RY Æ �Y ) = RX�Y and�2 = (R�1X Æ �Z ; R�1Y Æ �W ) = R�1X�Y meaning that �X ��Y is RX�Y -bisimilar to �Z ��W .Although the produt respets bisimulations the same does not happen with the operation of restrition.Consider the example displayed in Figure 5 where the abstrat ontrol system on top is bisimilar to the
AX�
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AX�

X� X�

X� X�

X� X� X�
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Figure 5. Bisimilar abstrat ontrol systems.system below with respet to the relation:



68 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMS
R = f((x1; "); (x1; ")); ((x1; ax1); (x1; ax1)); ((x2; "); (x3; "));((x2; ax2); (x3; ")); ((x3; "); (x3; ")); ((x3; ax3); (x3; ax3)); ((x4; "); (x4; "))g(4.30)If we now restrit the �bers of the system below to the set f"; ax1 ; ax3g through the �bering submonoid:AL = f(x1; "); (x1; ax1); (x2; "); (x3; "); (x3; ax3); (x4; ")g(4.31)and restrit the �bers of the bisimilar system on top to R(AL) the systems will ease to be bisimilar sinethe system on top an move from x3 to x4 by ax3 but the system below an not simulate that evolutionwhen on x2 2 R�1B (x3).Assuming some extra struture on the relation R we an overome this diÆulty as stated in the followingresult:Proposition 4.26. Let �X be an abstrat ontrol system, �Y a R-bisimulation of �X and AL a �beringsubmonoid of AX suh that R�1jR(AL)ÆRjAL = idAL and RjALÆRjAL�1 = idR(AL) for AL = dom(�X jAL)and R(AL) = dom(�Y jR(AL)). The restrition �X jAL is a RjAL-bisimulation of �Y jR(AL).Proof. A similar argument to the proof of Proposition 4.24 shows that �Y is a RjAL-simulation of�X so that we will only show that �X is a Rj�1AL-simulation of �Y . Consider the following diagram:

�X jAL �X-iALR�1 Æ iR(AL)
������R

�Y jR(AL)
�V-g -h(4.32)where g and h are equal on the �bering submonoid AL. We will show that (4.32) ommutes by proving theonly nontrivial equality, gÆR�1ÆiR(AL) = hÆR�1ÆiR(AL). Reall that the assumptions R�1jR(AL)ÆRjAL =idAL and RjAL Æ RjAL�1 = idR(AL) imply that R�1jR(AL) and RjAL�1 are right and left inverses ofRjAL , respetively. However, by assoiativity of omposition, inverses are unique and we must haveR�1jR(AL) = RjAL�1 and R(AL) = R(AL). This allows to onlude that:R�1 Æ iR(AL)(R(AL)) = R�1 Æ iR(AL) ÆR(AL)= R�1jR(AL) ÆRjAL(AL) = idAL(AL) = AL � AL(4.33)Sine (4.32) ommutes we an invoke the de�nition of restrition to ensure the existene of a uniquesimulation relation from �Y jR(AL) to �X jAL whih is given by � = R�1 Æ iR(AL) = R�1jR(AL) = RjAL�1thereby showing bisimilarity.



3. ABSTRACT CONTROL SYSTEMS 69The onditions R�1jR(AL) ÆRjAL = idAL and RjAL ÆRjAL�1 = idR(AL) are very strong sine they implythat RjAL indues a set isomorphism between AL and R(AL). However this ondition is in fat neessaryas we now show:Proposition 4.27. Let �X be an abstrat ontrol system, �Y a R-bisimulation of �X and AL a �beringsubmonoid of AX . If the restrition �X jAL is a RjAL-bisimulation of �Y jR(AL) then R�1jR(AL) ÆRjAL =idAL and RjAL ÆRjAL�1 = idR(AL), for AL = dom(�X jAL) and R(AL) = dom(�Y jR(AL)).Proof. Consider the following ommutative diagrams:�Y jR(AL) �Y-iR(AL)6RjAL ?R�1�X jAL �X-iAL �Y jR(AL) �Y-iR(AL)?RjAL�1 R ?�X jAL �X-iAL(4.34)From the left diagram we get the equality:iAL = R�1 Æ iR(AL) ÆRjALR�1jR(AL) ÆRjAL(4.35)whih gives R�1jR(AL) Æ RjAL = idAL by restriting the odomains to AL. A similar argument for thediagram on the right allows to obtain RjAL ÆRjAL�1 = idR(AL).The above propositions lead to the following result onerning the ompositionality of bisimulations:Theorem 4.28 (Compositionality of Bisimulations). Given abstrat ontrol systems �X , �Z (a RX-bisimulation of �X), �Y , �W (a RY -bisimulation of �Y ) and a �bering submonoid AL � AX � AY wehave that the parallel omposition of the bisimulations �Z and �W with synhronization over RX�Y (AL)is a RX�Y jAL-bisimulation of the parallel omposition of �X with �Y with synhronization over AL i�R�1X�Y jAL Æ RX�Y jAL = idAL and RX�Y jAL Æ RX�Y jAL�1 = idRX�Y (AL) for AL = dom(�X kAL �Y )and RX�Y (AL) = dom(�Z kR(AL) �W ).From the previous result we onlude that if we have a mean of omputing bisimulations and if wehoose the synhronization �bering submonoid arefully we an ompute bisimulations by exploring theinteronneting struture of large-sale systems. In the next setion we provide an algorithm to e�etivelyompute abstrations and in ertain situations bisimulations for hybrid ontrol systems. We thus seethat these results of ompositionality of simulations and bisimulations provide eÆient tools to handlethe omplexity of today's appliations.



70 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMS4. Hybrid Control Systems4.1. Abstrations. Simulations of hybrid ontrol systems are a simple instantiation of the pre-viously introdued notion of simulation for abstrat ontrol systems. However, hybrid ontrol systemsusually ome equipped with a set of initial onditions X0 � X whih must also be related with the set ofinitial onditions of its simulation. The proper relation is expressed as follows:Definition 4.29 (Simulations of Hybrid Control Systems). LetHX = (X0; X;AX ;�X) andHY = (Y0; Y; AY ;�Y )be two hybrid ontrol systems over X and Y respetively and let R � AX � AY be a �bering monoidrespeting relation. HY is a R-simulation of HX i�:1. RB(X0) � Y0.2. 8x2X (x; y) 2 RB ) 8(x;ax)2dom(R) 9(x;ax;y;ay)2R (�X(x; ax);�Y (y; ay)) 2 RB .The notion of abstration is an instantiation of abstrat ontrol systems abstrations:Definition 4.30 (Abstrations of Hybrid Control Systems). Let HX and HY be two hybrid ontrol sys-tems overX and Y respetively and let R � AX�AY be a �ber respeting relation. HY is a R-abstrationof HX i� R is a surjetive relation with domain AX and HY is a R-simulation of HX .as is the notion of bisimulation:Definition 4.31 (Bisimulation of Hybrid Control Systems). Let HX and HY be two hybrid ontrol sys-tems over X and Y respetively and let R � AX � AY be a �ber respeting relation. HY is R-bisimilarto HX or a R-bisimulation of HX i� HY is a R-simulation of HX and HX is a R�1-simulation of HY .4.2. Computing Abstrations. The goal of obtaining algorithmi proedures for omputing ab-strations guide us to more amenable haraterizations of hybrid ontrol systems. A �rst step in thisdiretion is given by haraterizing hybrid ontrol systems in terms of its generators. From this point onwe will simplify the notation by writing an element of A(q;x) as (q; x; a) instead of ((q; x); a).Proposition 4.32 (Hybrid Generators). A set of initial onditions X0 � X, a �nite set of symbols �X ,a family of smooth �ber bundles �qX : U qX �! Xq, a partially de�ned map ÆX : X��X �! X and a familyof smooth ontrol systems FX = fF qXgq2Q, F qX : U qX �! TXq de�ned on �ber bundle U qX over an opensubset of Xq for eah q 2 Q uniquely de�ne a hybrid ontrol system HX . The maps ÆX and FX are alledthe disrete and ontinuous generators of HX , respetively.



4. HYBRID CONTROL SYSTEMS 71Proof. We start by showing that ÆX extends uniquely to a partial map ÆX� : X ���X �! X . Thisation is obtained from ÆX by:ÆX�(q; x; ") = (q; x)(4.36) ÆX�(q; x; �1�) = ÆX�(ÆX�(q; x; �1); �) �1� 2 ��X ; �1 2 �X(4.37)de�ning ÆX� uniquely sine ��X is the monoid freely generated by �X .A similar onstrution is possible for FX . Denote by Cq the projetion under �qX : U qX �! Xq of the opensubset of Xq where eah F qX is de�ned. A unique ation F qX� : l(Cq) � U qX� �! l(Cq) an be obtainedfrom F qX , where we denote by l(Cq) the losure of Cq in the topology of Xq. This is aomplished byde�ning F qX� as: F qX�(x; ut0) = x(t0)(4.38)where x(t) is the integral urve of the vetor �eld F qX(x(t); ut) satisfying x(0) = x. By existene anduniqueness of integral urves of vetor �elds follows existene and uniqueness of the ation F qX� : Cq�U�q�! Cq sine F qX is smooth. Moreover, we an extend F qX� : Cq � U�q �! Cq to F qX� : l(Cq) � U qX��! l(Cq) in a unique way by ontinuity sine Cq is dense on l(Cq) and Xq is an Hausdor�, seondountable topologial spae.We an now ombine ÆX� and F qX� to get an hybrid ontrol system HX = (X0; X;AX ;�X) with AX �X �M and M =`t2N0(U�X [ ��X)t. Let a 2 U�X [ ��X and de�ne:�X(q; x; a) = 8>>><>>>: (q; x) if a = "ÆX�(q; x; a) if a 2 ��XF qX�(x; a) if a 2 U�X(4.39)For a general a 2 M, split a into a = a1a2 with a1 2 U�X [ ��X , then �X is given by:�X (q; x; a) = �X(q; x; a1a2) = �X(�X(q; x; a1); a2)(4.40)and �X(q; x; ") = (q; x). This onstrution always provides a unique abstrat ontrol system �X sinewe are using as monoid, the monoid freely generated by U�X [��X as asserted in Proposition 4.3.This result tells us that it is enough to work with vetor �elds and single event jumps, whih is howhybrid automata are usually de�ned in the literature [27℄. In the light of this result we will also denote anhybrid ontrol system by the tuple HX = (X;X0;�X ; UX ; ÆX ; FX). This representation of hybrid ontrolsystems will allow onstrutive methods to generate abstrations by ombining disrete and ontinuousabstration methodologies.In order to bene�t from the ontinuous abstration methodology developed in [60, 63, 64℄ we will onsiderabstrations of hybrid ontrol systems de�ned by equivalene relations on the state spae. Other possible



72 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMSalternatives would onsider equivalene relations on the inputs or on states and inputs. However, froma systems engineering point of view, it seems more natural to speify whih state information should beignored sine the inputs are regarded as a means of obtaining the desired state behavior. This ontrastswith the omputer siene approahes where the emphasis is put on the inputs whih desribe the behaviorof the systems being analyzed through the language aepted by some automaton [29℄.In this spirit, we start with a surjetive map � : X �! Y whih spei�es the state aggregation. It will beuseful to deompose � into its disrete and ontinuous omponents. We shall denote by �D : X �! P thedisrete omponent of �. Note that sine we allow ontinuous to disrete aggregation the map �D doesdepend onXq as well as onQ. Spei�ally, we assume that there is a �nite overing of �qX (dom(F qX )) � Xqfor every q 2 Q denoted by �q = f�iqgi2I suh that �iq \ �jq = ? for i 6= j. We denote the set overingthe point (q; x) by �q(x) and we all �q(x) adjaent to �q(x0) i� l(�q(x)) \ l(�q(x0)) 6= ?, where ldenotes the losure in the topology of Xq . Note that �D when restrited to the sets �q(x) simply givesthe disrete state assoiated with the overing sets �q(x). We also introdue the set � � Q� P for lateruse. It ontains all the pairs of points (q; p) for whih there exists a x 2 Xq suh that �D(q; x) = p. Theontinuous omponent of � will be denoted by �C and onsists of a family of smooth surjetive submersions�C = f�qpg(q;p)2� with �qp : Xq �! Yp. Having de�ned the state aggregation to be performed in theabstration proess we have also impliitly de�ned the surjetive map ' : AX �! AY relating the �beringmonoids of the original system and its abstration. This map is determined by the methods desribed inSubsetion 3.6 and one again it is useful to have notation for its ontinuous and disrete omponents.The ontinuous part of ', will be a family of smooth surjetive �ber respeting maps 'C = f'qpg(q;p)2�,'qp : U qX �! UpY whih an be omputed by the methods desribed in [78℄ and Chapter 3. The disreteomponent of ', will be denoted by 'D = (�D ; '�).Another important point to mention, and whih is a onsequene of the di�erene between ontinuousand disrete systems, is that although we have partitioned the sets �qX(dom(F qX )) into a �nite number ofsubsets, the ontinuous ows generated by F qX an ross an in�nite number of adjaent overings sets in�nite time. This will ause diÆulties in the urrent framework sine we are using as monoid the monoidfree on the set ��X [ U�X whih onsists of �nite length strings. We will, therefore, assume that theovering of �qX(dom(F qX )) is suh that the ows generated by F qX only ross adjaent overing sets a �nitenumber of times in any �nite time interval. Any overing satisfying this assumption will be alled �nitelyompatible with F qX . SuÆient onditions for �nite ompatibility, involving subanalyti strati�ationsfor example, are given in [41℄. This assumption an be dropped in two di�erent senarios:
� If there is no ontinuous to disrete aggregation,� or if one extends the monoidM to a !-monoid whih an aommodate non �nite length strings.



4. HYBRID CONTROL SYSTEMS 73We now show how it is possible to speify a �bering monoid respeting relation based on the above maps.We start by de�ning several relations that will indue a unique �bering monoid respeting relation.Definition 4.33. Given a hybrid ontrol system HX and:� A �nite overing �q = f�iqgi2I by pairwise disjoint sets of �qX (dom(F qX )) �nitely ompatible withF qX for every q 2 Q.� A family of smooth surjetive �ber preserving submersions 'C = f'qpg(q;p)2�, 'qp : U qX �! UpYindued by a family of smooth surjetive submersions �C = f�qpg(q;p)2�, �qp : Xq �! Yp.� A partial map '� : X � ��X �! ��Y , indued by a surjetive map � : X �! Y .we de�ne the following relations:� Rj � AX �AY for j 2 �, apturing ontinuous ows remaining inside a single overing set:�(q; x; utx); (�D(q; x); 'q�D(q;x)(x; utx)� 2 Rj i� 9i2I 80<t0<t �X(q; x; ut0x ) 2 �iq ^ (q; x; utx) 2 AX(4.41)� R" � AX �AY , apturing the disrete jumps indued by the rossing of adjaent overing sets:�(q; x; "); (pj ; yj ; ")� 2 R" 8j2J(4.42)�(q; x; "); (pj ; yj ; �pjpk )� 2 R" 8j2J;j 6=k where �pjpk 2 �Y and �Y (pj ; qj ; �pjpk ) = (pk; yk)(4.43)i� the following holds:9J�I (q; x) 2 \j2J l(�jq) ^ 9k2J; t>0; utx2U�X �X(q; x; ut0x ) 2 �kq for all t0 2℄0; t℄(4.44) ^ �D j�jq = pj ^ �qpj (x) = yj 8j2J(4.45)� R� � AX �AY , apturing all disrete jumps of HX :�(q; x; �); (�D(q; x); �q�D(q;x)(x); '�(q; x; �))� 2 R� i� � 2 ��X ^ (q; x; �) 2 AX(4.46)These relations apture di�erent aspets of an hybrid ontrol system dynamis. We now show that thereis a unique way of ombining these di�erent relations to determine a unique �bering monoid respetingrelation with domain AX .Proposition 4.34. Under the assumptions of De�nition 4.33 we have that Aj = dom(Rj), A" =dom(R") and A� = dom(R�) are �bering submonoids of AX . Furthermore, given �bering monoid pre-serving relations f j � Aj � AY , f" � A" � AY and f� � A� � AY with domains Aj, A" and A�,



74 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMSrespetively, there is one and only one �bering monoid preserving relation � � AX �AY with domain AXsuh that the following diagrams ommute:Aj AX-ijf j����RAY?� A" AX-i"f"����RAY?� A� AX-i�f�����RAY?�(4.47)for ij � Aj �AX , i" � A" �AX and i� � A� �AX the inlusion relations and any �bering monoid AY .
Proof. We start by showing that Aj, A" and A� are �bering submonoids of AX . Consider Aj �rst.If (q; x) 2 \j2Jl(�jq) then �X (q; x; u0x) satis�es (4.41) and onsequently (q; x; ") 2 Aj. Consider now any(x; utx) 2 Aj. By de�nition of Rj, utx satis�es:�X(q; x; ut0x ) 2 �jq for all t0 2℄0; t℄(4.48)but this implies that (x; ut0x ) also belongs to Aj for any t0 2℄0; t℄, that is any pre�x of utx also belongs to Ajsine for t0 = 0 we have u0x = ". Aj is therefore a �bering monoid sine its �bers ontain the identity andare pre�x losed. The inlusion relation ij � Aj �AX taking (q; x; a) 2 Aj to ij(q; x; a) = (q; x; a) 2 AXrenders Aj a �bering submonoid of AX .Consider now A" by de�nition of R" we have that for any (q; x) 2 dom(R"B), the triple (q; x; ") belongsto dom(R") = A". Consider now any (q; x; a) 2 A". Then a 2 �X and any pre�x of a is a it self or "whih both belong to A" making A" a �bering monoid and a �bering submonoid of AX by the inlusionrelation i" � A" �AX .Finally (q; x; ") 2 A� by (4.46) and the fat that " 2 ��X . If (q; x; �) belongs to A� then any pre�x �0 of� also satis�es (q; x; �0) 2 A� sine �0 2 ��X and AX has pre�x losed �bers. One again the inlusionrelation makes A� a �bering submonoid of AX .We now show the existene of the relation � � AX�AY with domain AX by de�ning it. Let (q; x; a) 2 AX ,then a = a1a2 : : : an where the elements ai belong to U�X and ��X in a alternate fashion. Without loss ofgenerality we an assume that a1 2 U�X and therefore every a2i�1 for i = 1; 2; : : : ; n an be deomposedas a �nite onatenation of elements of the form:(q; x; a2i�1) = (q; x; a2i�11 )(q2; x2; ")(q2; x2; a2i�12 )(q3; x3; ") : : : (qm; xm; a2i�1m )(4.49)where eah (qj ; xj ; a2i�1j ) 2 Aj and (qj+1; xj+1) = �X(qj ; xj ; a2i�1j ). Replaing eah element a2i�1 ina1a2 : : : an by its string (4.49) still results in a �nite string whih we denote by:(q1; x1; �1)(q2; x2; �2) : : : (qk; xk; �k)(4.50)



4. HYBRID CONTROL SYSTEMS 75Note that this deomposition is unique and will allow to de�ne � as follows:((q; x; a); (p; y; a0)) 2 � i� ((q; x; a); (p; y; a0)) 2 Aj_ ((q; x; a); (p; y; a0)) 2 A"_ ((q; x; a); (p; y; a0)) 2 A�_ (q; x; a) 2 AX ^ a = (q1; x1; �1)(q2; x2; �2) : : : (qk; xk; �k)^ a0 = (p1; y1; �1)(p2; y2; �2) : : : (pk; yk; �k)^ h((qr ; xr; �r); (pr; yr; �r)) 2 Rj _ ((qr ; xr; �r); (pr; yr; �r)) 2 R"_ ((qr; xr; �r); (pr; yr; �r)) 2 R� for r = 1; : : : ; ki(4.51)We now show that � is �bering monoid preserving. Let ((q; x); (p; y)) 2 �B then ((q; x; "); (p; y; ")) 2 A� sothat ((q; x; "); (p; y; ")) 2 �. Consider now the triples (q; x; a); (q0; x0; a0) 2 AX suh that (q; x; aa0) 2 AXand let ((q; x; a); (p; y; b)); ((q0; x0; a0); (p0; y0; b0)) 2 �. Sine (q; x; aa0) 2 AX and � is de�ned for everyelement in AX we know that (q; x; aa0) 2 dom(�). Deomposing aa0 in its unique string desribed in (4.50)we get: ((q; x; �1�2 : : : �n�01�02 : : : �0n0); (p; y; �1�2 : : : �n�01�02 : : : �0n0)) 2 �(4.52)However, by de�nition of � we onlude:((q; x; �1�2 : : : �n�01�02 : : : �0n0); (p; y; �1�2 : : : �n�01�02 : : : �0n0)) = ((q; x; aa0); (p; y; bb0))(4.53)whih shows that � is �bering monoid preserving.To show uniqueness assume the existene of another relation �0 satisfying all the proposition onditions.Then for any (q; x; a) 2 AX we have ((q; x; a); (p; y; b)) 2 �0. If (q; x; a) 2 dom(Aj [ A" [ A�) then�0(q; x; a) = �(q; x; a) by ommutativity of diagrams (4.47). If (q; x; a) =2 dom(Aj [ A" [ A�) then wean write a and b in its unique deompositions and sine �0 is �bering monoid respeting we have that�0(q; x; a) = �0(q; x; �1)�0(q2; x2; �2) : : : �0(qk; xk; �k) where eah (qi; xi; �i) 2 dom(Aj [ A" [ A�) andonsequently �0(qi; xi; �i) = �(qi; xi; �i) so that we onlude equality between �0 and � and the proof is�nished.The unique relation indued by the relations Rj, R" and R� will be denoted by R and alled an admissiblerelation for the remaining of this paper.The reason why relations are neessary, and in partiular the relation R", an now be explained throughan example.Example 4.35. Consider a smooth ontrol system (an hybrid ontrol system with a single disrete stateq) with state spae overed by �1q and �2q and assume that the abstrating maps are given by �D j�1q = p1,�D j�2q = p2, �qp1 = id�1q and �qp2 = id�2q . Suppose now that �1q is open. Then a ontinuous ow



76 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMSontrolled by utx = ut1x ut2x leaving �1q and entering �2q should be simulated by the abstration as displayedin Figure 6, where ontinuous ows are represented by straight arrows and disrete jumps by an ar ofirle arrows. The evolution on the abstration is ontrolled by ontinuous ow ut1y on p1 followed by adisrete jump from p1 to p2 and followed by another ontinuous ow ut2y on p2. But sine �1q is open weannot speify the point in Yp1 = �1q where the jump will take plae. If one would attempt to de�ne �Cso as to send l(�1q) \ l(�2q) to Yp1 and not to Yp2 then the same problem would our to a ow leaving�2q and entering �1q . The natural way of overoming these diÆulties is by using a relation whih sendsl(�1q) \ l(�2q) to both Yp1 and Yp2 . Assoiated with this \nondeterminism" on the boundary points wealso introdue \nondeterminism" at the level of ontrol inputs. The relation R" sends " at the boundarypoints to ", but also sends " to the disrete input �p1p2 ontrolling a jump from p1 to p2. This allows tosimulate the ontinuous ow on X ontrolled by utx by the evolution on Y ontrolled by ut1y �p1p2ut2y .
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Figure 6. A ontinuous ow simulated by an hybrid abstration.



4. HYBRID CONTROL SYSTEMS 77Admissible relations allow us to e�etively ompute abstrations of hybrid ontrol systems. A oneptualalgorithm may be formulated as follows:Algorithm 4.36 (Abstrating Algorithm).Input data: HX = (X0; X;�X ; UX ; ÆX ; FX), R � AX �AYBody:1. Y := RB(X)2. Y0 := RB(X0)3. �Y := '�(X ��X) [ f� : 9 ((q; x; "); (p; y; �)) 2 Rg4. UY := fUpY gp2P , UpY = 'pq(UqX)5. J = f(p; y; �pp0 ; p0; y0) : 9(q; x) 2 \k2Kl(�kq ) 9u 2 U qX(x) suh that F qX (u) is transversal tothe boundary of �iq , points to �iq, �(q; x); (p; y)� 2 RB , p 6= �Dj�iq and �(q; x); (p0; y0)� 2 RB ,p0 = �D j�iqg6. ÆY := (�D ; �q�D ; '�; �D ; �q�D )(ÆX ) [ J where ÆX is regarded as the set ÆX � X ��X �X .7. F pY := is the 'qp-abstration of F qX for every (q; p) 2 �.Output data: HY = (Y0; Y;�Y ; UY ; ÆY ; FY )Intuitively the above algorithm an be desribed as follows. Steps 1 and 2 simply de�ne Y and Y0 asthe image under RB of X and X0, respetively. In step 3 the set of labels �Y is omputed as theimage under '� of X � �X and all the symbols �pp0 reated when the ontinuous ows rosses theboundary between adjaent overing sets. In step 4 the ontinuous ontrol bundle is omputed as theimage of U qX under eah map 'qp. In step 5 the set J is omputed to be used on the next step. Step 6determines ÆY in a way that an be desribed as follows: for every transition (q; x) ��! (q0; x0) de�nedby ÆX there will be a transition (�D(q; x); �q�D(q;x)(x)) '�(q;x;�)�! (�D(q0; x0); �q0�D(q0;x0)(x0)) expressed bythe set (�D ; �q�D ; '�; �D; �q�D )(ÆX), where ÆX is regarded as a subset of X � �X � X . Furthermore,every time a ontinuous ow rosses the boundary between adjaent overing sets, the required disretetransitions are aptured by the set J . Finally in the last step the ontinuous generator of HY is obtainedfrom the ontinuous generator of HX by the methods desribed in [60, 64℄ and reviewed in Chapter 3.The above algorithm does ompute a simulation of HX as asserted in the next theorem:Theorem 4.37. Let HX be an hybrid ontrol system over X and R � AX � AY an admissible relation.Then hybrid ontrol system HY obtained through Algorithm 4.36 is a R-abstration of HX .Proof. We will split the proof into four distint parts. We start by showing that HY simulatesevery disrete jump of HX , next we show that HY also simulates every ontinuous ow of HX thatremains inside a single overing set. On the third part we show that ontinuous ows rossing adjaent



78 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMSovering sets are also simulated by HY and �nally we will use the preeding results to show that any�nite sequene of ontinuous ows and disrete jumps is also simulated by HY .Disrete JumpsBy onstrution, ÆY simulates ÆX so that every disrete jump of HX is simulated by HY .Continuous ows inside a single overing set and starting on a interior pointIf the ow of F qX remains inside a single overing set and starts on a interior point, then the smoothabstration results in [60, 64℄ show that F pY generates a ontinuous ow that simulates the ow generatedby F qX .Continuous ows inside a single overing set and starting on a boundary pointLet (q; x) 2 \k2Kl(�kq ) and assume that �X((q; x); ut0x ) 2 �iq for all 0 < t0 < t. This implies thatthere exists a u 2 U qX(x) suh that F qX(u) is transversal to the boundary of �iq and points to �iq .Consequently, steps 5 and 6 of Algorithm 4.36 ensure that for any point (p; y) RB-related to (q; x), thereis a a(p;y) 2 A(p;y) suh that (p; y) a(p;y)�! (pi; yi), where ((q; x); (pi; yi)) 2 RB and pi = �Dj�iq . If x 2 �iq ,then by the previous paragraph �X(q; x; utx) is simulated by �Y (pi; yi; uty) with uty = 'qpi(utx). If x =2 �iq ,then x 2 �jq for some j 6= i and j 2 K. Also by the previous paragraph we have that �X(q; x; utx) issimulated by �Y (pj ; yj ; a(pj ;yj)uty).Continuous ows rossing adjaent overing setsLet utx be a ontinuous input suh that �X(q; x; utx) rosses the boundary between adjaent overing setsone at t = t1. We deompose utx into utx = ut1x ut2x with t2 = t� t1. Sine �X(q; x; ut1x ) remains on the in-terior of a single overing set we have (�X(q; x; ut1x );�Y (p; y; ut1y )) 2 RB . Now let (q0; x0) = �X(q; x; ut1x ).It is not diÆult to see that (q0; x0) belongs to the boundary between adjaent overing sets. By theprevious paragraph �X(q0; x0; ut2x ) is simulated by �Y (�D(q0; x0); �q0�D(q0;x0); a(�D(q0;x0);�q0�D(q0 ;x0))ut2y ) sothat �X(q; x; utx) = �X(q; x; ut1x ut2x ) is simulated by �Y (�D(q; x); �q�D (q;x); ut1y a(�D(q0;x0);�q0�D(q0 ;x0))ut2y ).Sine a ontinuous input making �X ross adjaent overing sets several times an be deomposed into a�nite produt of several ontinuous inputs making �X ross adjaent overing sets only one, the previousargument extends to all ontinuous inputs by indution.Any �nite sequene of disrete jumps and ontinuous owsConsider a a 2 AX . This element an be deomposed into a �nite onatenation of elements belongingto ��X and U�X . Sine every suh element an be simulated by HY we an extend in a unique way �Yde�ned for U�X [ ��X to �nite length sequenes, sine M is the monoid freely generated by U�X [ ��X asasserted in Proposition 4.3.



4. HYBRID CONTROL SYSTEMS 79Example 4.38. As an illustration of the onstrution given by Algorithm 4.36 we present a simpleexample adapted from [37, 23℄. Consider a simple model of a six legged mehanial inset as displayedin Figure 7.
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Figure 7. Six legged mehanial inset.The ontrol system assoiated with this mehanial system an be desribed by:_x1 = os �(�(h1)u1 + �(h2)u2)_x2 = sin �(�(h1)u1 + �(h2)u2)_� = l�(h1)u1 � l�(h2)u2_�1 = u1_�2 = u2_h1 = u3_h2 = u4where the funtions � and � are de�ned as:�(h1) = 8<: 1 ( h1 = 00 ( h1 > 0 �(h2) =8<: 1 ( h2 = 00 ( h2 > 0(4.54)The variables in the above ontrol system have the following interpretation:x1 and x2 position of the inset enter of mass.� inset orientation with respet to some �xed referene frame.�1 angle of the legs 1, 4 and 5 with respet to the inset entral body.�1 angle of the legs 2, 3 and 6 with respet to the inset entral body.h1 height of the legs 1, 4 and 5 with respet to the oor.h2 height of the legs 2, 3 and 6 with respet to the oor.u1; u2; u3 and u4 ontrol inputs.



80 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMSIt is assumed that the robot moves the legs in a alternate fashion, that is legs 1,4 and 5 move together andthen legs 2,3 and 6 move together and this pattern is repeated to ahieve inset motion. It is furthermoreassumed that the legs exeute synhronous motions so that they an be desribed by their equal heighthi and angle �i. When all legs are in ontat with the oor, that is h1 = 0 = h2, all ontribute to themotion of the inset through inputs u1 and u2. If h1 > 0 and h2 = 0 only the legs 2,3 and 6 are on theoor inuening the inset motion. On the other hand, when only legs 1,4 and 5 are on the oor onlyinput u2 inuenes the inset motion. Finally there is still an uninteresting ase whih orresponds toall the legs being on the air whih we shall not onsider. If we denote by q1 the state where all legs areon the oor and by f q1X the orresponding ontrol system in loal oordinates, q2 the state where onlylegs 1,4 and 5 are in ontat with the oor and f q2X the orresponding ontrol system and q3 the statewhere legs 2,3 and 6 are on the oor and by f q3X the assoiated ontrol system we an model the insetontrolled kinematis by the hybrid ontrol system displayed in Figure 8.
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Figure 8. Hybrid ontrol system model of the mehanial inset displayed in Figure 7.Suppose now that there is a team of several mehanial insets that needs to be olletively ontrolled toperform some task. If the number of insets is large it beomes unfeasible to oordinate the motion of allthe legs among the whole team. The advoated solution to overome the omplexity of suh a problemis to perform an abstration of the inset model so as to design the oordination in a more eÆient way.A natural hoie is to retain on the abstrated model only information about the inset position and toabstrat away the swithing poliy neessary for the inset motion. This leads to the following hoie forthe state aggregation maps where by x we denote a point in Xq :�D(q1; x) = p �D(q2; x) = p �D(q3; x) = p(4.55)



4. HYBRID CONTROL SYSTEMS 81and �q1p(x) = 24x1x235 �q2p(x) = 24x1x235 �q3p(x) = 24x1x235(4.56)This hoie implies that the abstration will be a hybrid ontrol system with a single disrete state p andonly two ontinuous variables x1 and x2 modeling the inset position. Assuming that the initial stateof the hybrid ontrol system is X sine the inset an start in any disrete and ontinuous loation, wefollow the steps of Algorithm 4.36 to obtain:Y := fpg � R2 = RB(X)Y0 := Y = RB(X) = RB(X0)�Y := f"g = '�(X � f"; �q1q2 ; �q2q1 ; �q1q3 ; �q3q1g) = '�(X ��X) [?The ontrol bundle UpY is omputed by the methods in [78℄ and Chapter 3 and equals Y �R2 . On step 5J is omputed to be the empty set sine there is only one overing set for eah set �qX(dom(F qX )). Step6 determines the map ÆY whih is simply given by:ÆY (y; ") = y(4.57)sine �Y = f"g. Finally the ontinuous abstration of eah F qX is omputed by the methods desribedin [64℄ and is given by: _y1 = v1_y2 = v2(4.58)where v1 and v2 are ontrol inputs. This simple example shows the power of the abstration methodologyby reduing the hybrid automaton in Figure 8 to two integrators. The abstration is learly a muh simplerand useful model to design the oordinated motion of a team of suh roboti insets.4.3. From hybrid abstrations to hybrid bisimulations. In this setion we try to determinewhen an we use Algorithm 4.36 to ompute a bisimulation. By taking advantage of the speial strutureof admissible relations we will be able to provide hekable suÆient onditions for bisimilarity. We startby relating simulation with respet to relations de�ned only for Aj, A" and A� with relations de�ned forAX .Proposition 4.39. Let HX and HY be hybrid ontrol systems and assume that HY is a Rj-simulation,a R"-simulation and a R�-simulation of HX . Then HY is also a R-simulation of HX , where R is theunique relation with domain AX de�ned by Rj, R" and R�. Furthermore, if one replaes eah relationwith its inverse relation the result still holds.



82 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMSProof. We only need to show that for any (q; x; a) 2 AX suh that (q; x; a) =2 dom(Rj [ R" [ R�)there is a pair ((q; x; a); (p; y; b)) 2 R suh that ((q; x); (p; y)) 2 RB and (�X(q; x; a);�Y (p; y; b)) 2 RB .Deompose a in the unique sequene (q; x; a) = (q1; x1; �1)(q2; x2; �2) : : : (qn; xn; �n) with (qi+1; pi+1) =�X(qi; pi; �i) and �i 2 dom(Rj [R" [R�) for i = 1; : : : ; n as desribed in the proof of Proposition 4.34.Sine eah (qi; pi; �i) belongs to dom(Rj [ R" [ R�) we have that (�X(q1; x1; �1);�Y (p1; y1; �1)) 2 R,(�X(q2; x2; �2);�Y (p2; y2; �2)) 2 R but �X (q1; pi; �1) = (q2; x2) so that by the semi group property ofabstrat ontrol systems we have:(�X(q1; x1; �1�2);�Y (p1; y1; �1�2)) 2 RB(4.59)By indution we onlude that (�X(q1; x1; �1�2 : : : �n);�Y (p1; y1; �1�2 : : : �n)) 2 RB showing that forany (q; x; a) 2 AX there is a ((q; x; a); (p; y; b)) 2 R suh that ((�X (q; x; a);�Y (p; y; b)) 2 RB andonluding that HY is a R-simulation of HX .The same argument also shows that the result still holds if the relations are replaed by the orrespondinginverse relations.The previous result allows to give a suÆient ondition for bisimilarity whih is based on the onditionsgiven for abstrat ontrol systems:Proposition 4.40. LetHX be an hybrid ontrol system, R an admissible relation and HY a R-abstrationobtained through Algorithm 4.36. If the equality:RB(R(q;x)HX) = RB(RR�1B ÆRB(q;x)HX)(4.60)holds then HY is R-bisimilar to HX .Proof. We reall that HY is a R-simulation of HX by Theorem 4.37 so that we need only to showthat HX R�1-simulates HY . The proof will be done by showing that under the proposition hypothesesHX is a Rj�1-simulation and a R�1" -simulation and a R�1� - simulation of HY so that by Proposition 4.39HX will also be a R�1-simulation of HY .We start by analyzing Rj using Proposition 4.16 with the restrition of HX to Aj denoted by HX jAj .This is aomplished by noting that HX is a ij-simulation of HX jAj where ij is the inlusion morphismfrom HX jAj to HX . The set Rj(s) is a singleton for every s 2 dom(Rj) so that the relation Rj induesthe �bering monoid preserving map fRj : Aj �! AY . This map is in fat indued by the base mapf jB (de�ned by the base relation RjB) through the methods desribed in Setion 3.6 and we an applyProposition 4.16 to HX jAj to onlude that if:f j (R(q;x)HX jAj) = f j (RfBj ÆfjB�1(q;x)HX jAj)(4.61)



4. HYBRID CONTROL SYSTEMS 83holds then HX jAj is a f j�1-simulation of HY . However, the assumptions of the theorem imply (4.61)therefore HX jAj is in fat a f j�1-simulation of HY . By omposing f j�1 with the inlusion morphism ij,we onlude that ij Æ f�1sj = Rj�1 is a morphism from HX to HY showing that HX is a Rj�1-simulationof HY .The argument for the relation R� is similar to the one for the relations Rj.Finally we need to show that HX is a R�1" -simulation of HY . We reall that the relation R" apturesthe disrete jumps on HY introdued to model the swithing between disrete states aused by therossing of adjaent overing sets on �qX(dom(F qX )) by ontinuous ows. Let ((q; x); (p; y)) 2 R"B and let(p; y; a) 2 Range(R"). Then a = �pp0 , ((q; x); (�Y (p; y; a)) 2 R"B by onstrution of R and de�nition ofR". Furthermore ((q; x; "); (p; y; �pp0 )) 2 R" also by onstrution of R", but then for every ((q; x); (p; y)) 2R"B we have �X(q; x; ") = (q; x) showing (�X(q; x; ");�Y (p; y; �pp0)) 2 R"B and implying that HX is aR�1" -simulation of HY . The proof is now �nished.We now replae the ondition of the previous result by onditions that are hekable in onrete examples.Theorem 4.41. Let HX be an hybrid ontrol system, R an admissible relation and HY a R-abstrationobtained through Algorithm 4.36. If:� the guards interseting �qX (dom(F qX )) are invariant for Ker(T�qp);� the reset maps satisfy �q0p0(Resetqq0(��1qp Æ �qp(x))) = �q0p0(Resetqq0(x)) for all q; q0 2 Q and(q; p); (q0; p0) 2 �.� F qX is ontrolled invariant for Ker(T�qp)� There is only one overing set for eah set �qX(dom(F qX )).then HY is a R-bisimulation of HXProof. The �rst ondition ensures that every point belonging to preimage of y 2 Yp by �qp has thesame jumping apabilities sine the guards are enabled or disabled for all those points. This ensures thatthe disrete part of the states reahable by the system HX , when ontrolled by an element in �X , is thesame for every point in R�1B Æ RB(q; x). To ensure that the ontinuous part is also the same, we invokethe seond ondition that ensures RB(Resetqq0(x)) = RB(Resetqq0(R�1B ÆRB(x))). We have thus shownthat we have: RB(HX (q; x; �)) = RB(HX(R�1B ÆRB(q; x); �)) 8�2�Y(4.62)Sine ��X is freely generated by �X we only need to show that for every ut 2 U�X we also haveRB(HX(q; x; ut)) = RB(HX (R�1B Æ RB(q; x); ut)). From Theorem 3.16 in Chapter 3 we know that on-trolled invariane is equivalent to projetabilty of the ontrol setion and this implies that for every



84 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMS(q; x) 2 R�1B ÆRB(q; x) the ontrol setion is the same modulo Ker(T�qp). This is simply the in�nitesi-mal statement of:�qp Æ �Xq (HX (q; x; ut)) = �qp Æ �Xq (HX(R�1B ÆRB(q; x); ut)) 8ut2Uq�X(4.63)where we have denoted by �Xq the natural projetion from X to Xq taking (q; x) 2 X to x 2 Xq. By anargument similar to Theorem 3.7 in [60℄ it an be shown that ontrolled invariane implies (4.63).We now use the last assumption of the theorem to ensure that:�D(HX (q; x; ut)) = �D(HX(R�1B ÆRB(q; x); ut)) 8ut2Uq�X(4.64)whih follows from the fat that all the states (q; x) 2 R�1B Æ RB(q; x) are mapped to the same disretestate sine there is only one overing set for eah set �qX(dom(F qX )). Equation (4.63) together with (4.64)in turn imply that: RB(HX (q; x; ut)) = RB(HX(R�1B ÆRB(q; x); ut)) 8ut2Uq�X(4.65)The desired equality: RB(R(q;x)HX) = RB(RR�1B ÆRB(q;x)HX)(4.66)now follows from the fat that M is freely generated by �X and U�X and the result is a onsequene ofProposition 4.40.This result provides easily hekable onditions for bisimilarity, however ontrolled invariane is a strongrequirement. Weaker onditions for bisimilarity between hybrid ontrol systems an be ahieved if oneuses weaker notions of bisimulation suh as weak bisimulation [52℄, however those results rely on aomplete and thorough understanding of bisimilarity for ontinuous ontrol systems whih is still an areaof urrent researh.4.4. Preservation and Reetion of Properties. In this setion we will speialize the results ofSubsetion 3.5 to hybrid ontrol systems and onsider properties that are spei� of hybrid systems suhas the Zeno phenomena.4.4.1. Bloking. Bloking was already disussed in Subsetion 3.5 where a neessary and suÆientresult for preservation of non-bloking was given. We now provide a suÆient ondition that is easier tohek:Proposition 4.42. LetHX be an hybrid ontrol system, R an admissible relation and HY a R-abstrationof HX . If HX is non-bloking and� For all p 2 P , Np satis�es dim(Np) > 0.� Proposition 4.14 holds for the �nite automaton underlying HX



4. HYBRID CONTROL SYSTEMS 85then HY is non-bloking.Proof. The �rst ondition ensures that for any y 2 �pY (dom(F pY )), Ay 6= f"g by de�nition of hybridontrol system and the ontinuous abstrating methodology [60, 64℄. This means that bloking an onlyour by removing disrete transitions. However the seond assumption implies that bloking is notreated on the abstrating proess by removing disrete transitions.This result reveals that while we have ontinuous dynamis we only need to hek what happens to the�nite automaton underlying the hybrid ontrol system to infer non-bloking. This is in priniple a simpletask sine the number of disrete states is �nite and Proposition 4.42 an be heked algorithmiallyOne ould also attempt to determine when non-bloking is reeted by R. However heking the ondi-tions to determine if the reetion holds would be as expensive as determining if the original system isnon-bloking.4.4.2. Zeno. Next we examine a phenomena that has no ounterpart in the disrete neither in theontinuous world, the Zeno phenomena. Intuitively we say that a trajetory of an hybrid system isZeno if there is an in�nite number of jumps in �nite time. This is in fat a modeling problem sine nophysial system is able of generating suh a trajetory. On a more mathematial level existene of Zenotrajetories is equally a problem. First, one needs to deal with ardinals greater than the ardinal of thenatural numbers if one attempts to de�ne or even to refer to the states visited by the trajetory after theourrene of in�nitely many jumps in �nite time. Seond, Zeno trajetories make impossible to proveresults using �nite indution. We will have to slightly extend our setting to be able to talk about Zenosine the elements of M are �nite length strings, therefore not apturing an in�nite number of jumps.We thus need to move from �nite monoids to !-monoids. We will just briey explain how one an extendM = at2N0(U� [ ��)t(4.67)to aommodate in�nite strings without entering the tehnial de�nitions. The interested reader isdeferred to [65℄ for more details regarding automata, in�nite strings and semigroups. First we add toMthe set of in�nite strings of elements in U� [ �� de�ned as:M! = (U� [ ��)N(4.68)to get M1 = M [M!. Then we extend the produt operation (onatenation in this ase) to thefollowing situations: (a; b) 7! ab for (a; b) 2M�M! and ab 2M!(4.69) (a1; a2; : : : ; an; : : :)n2N 7! (a1a2 : : : an : : :)n2N for an 2 M and (a1a2 : : : an : : :)n2N 2M!(4.70)



86 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMSIn this setting we an talk about Zeno sequenes. Let us denote by jmjt the time duration of an element ofM1. This duration is de�ned as the sum of the durations of all the elements of U� that were onatenatedto obtain m. A Zeno sequene is therefore de�ned as follows:Definition 4.43 (Zeno Sequene). Letm 2M! be an input sequene. We say thatm is a Zeno sequenei� we have jmjt <1.A Zeno hybrid ontrol system is an hybrid ontrol system suh that its ation is de�ned for Zeno inputsequenes:Definition 4.44 (Zeno Hybrid Control Systems). Let HX be an hybrid ontrol system. HX is a Zenohybrid ontrol system i� �X is de�ned for Zeno input sequenes.First we will show how one an ensure that non-Zeno trajetories are abstrated to non-Zeno trajetories.This will ensure that these non-physially meaningful sequenes are not reated by the abstration proess.Proposition 4.45 (Preservation of Non-Zeno). Let HX be an hybrid ontrol system over X, R an admis-sible relation and HY a R-abstration of HX . If there is only one overing set for eah set �qX(dom(F qX ))or if the overing �q is �nitely ompatible with F qX for every q 2 Q then non-Zeno input sequenes areabstrated to non-Zeno input sequenes.Proof. Let a(q;x) be an input sequene of HX and a(p;y) the orresponding abstrated input se-quene. If a(q;x) is non-Zeno then the abstrated input sequene �Y will be Zeno only if additional jumpsare introdued by the abstrating proess, that is, only if the ontinuous state spae is abstrated intodisrete omponents. We have therefore that if eah set �qX (dom(F qX )) is overed by a single set nojumps are reated and the input sequene remains non-Zeno. When there are several overing sets, thejumps reated by rossing these sets will not indue Zeno sequenes sine the overing and the ow ofF qX de�ne a Zeno-free transition system. In details, we have that the number of elements from �Y ina(p;y) is given by the sum of number of elements of �X in a(q;x) not abstrated to " plus the number ofjumps indue by the rossing of adjaent overing set by the trajetories of F qX . Sine a(q;x) is non-Zenoand the trajetories of F qX ross the boundaries of adjaent overing sets a �nite number of times in �nitetime we have that the total number of elements of �Y in a(p;y) is �nite for �nite time. This implies thatevery input sequene of HY is non-Zeno by surjetivity of R.Note that a suÆient ondition to ensure that the partition de�nes a Zeno-free transition system is givenby the use of sub-analyti strati�ations as desribed in [41℄.The previous result formally shows that Zeno phenomena is introdued in hybrid models of physialsystems by inorret abstrations. When one models by disrete jumps, ontinuous evolutions that our



4. HYBRID CONTROL SYSTEMS 87in a time sale muh faster then the remaining proess one may introdue non-physially meaningfultrajetories suh as Zeno sequenes. This alls for the need to understand approximate abstrationswhere the abstrating systems need only to simulate the original systems approximately.Having shown that it is not diÆult to guarantee that non-Zeno trajetories propagate up in the hierarhywe ame to a more interesting question. When an we ensure that a non-Zeno trajetory has non-Zenore�nements? We will only partially answer this question by determining when every re�nement of anon-Zeno trajetory is non-Zeno. This amounts to ensuring that Zeno trajetories are abstrated to Zenotrajetories so that the trajetories are always divided into disjoint lasses and the abstration does notmix these lasses.Proposition 4.46 (Preservation of Zeno). Let HX be an hybrid ontrol system over X, R an admissiblerelation and HY a R-abstration of HX . Every re�nement in HX of a non-Zeno input sequene of HYis non-Zeno if R preserves non-Zeno and for any state (q; x) 2 X and any disrete input � 2 A(q;x) suhthat RB(q; x) \ RB(�X((q; x); �)) 6= ? we have �X (R(q; x; a)) = f(p; y)g and R(q; x; a) 6= f(p; y; ")g.Proof. We want to that non-Zeno sequenes are abstrated to non-Zeno sequenes and that Zenosequenes are abstrated to Zeno sequenes. The �rst part is ensured if R propagates non-Zeno while theseond part will now be proved. If a(q;x) is a Zeno input sequene of HX and a(p;y) (the orrespondingabstrated input sequene of HY ) is non-Zeno, then an in�nite number of jumps has been removed froma(q;x). This an only be aomplished if the disrete inputs assoiated with these jumps are abstratedto ". However (4.8) implies that if � 2 A(q;x) is abstrated to " then RB(q; x) \ RB(�X ((q; x); �)) 6= ?but by assumption all suh events � are not abstrated to ".We have only provided a super�ial treatment of the Zeno phenomena whih is however enough to providesome guarantees in real appliations. We believe that a full understanding of this kind of behavior anonly be ahieved through the mathematial formalization of the operation that takes a disrete and aontinuous ontrol system and ombines them into an hybrid system. We are, in fat, onvined thatZeno phenomena will be the result of that operation on singular (in some sense) ases.4.5. Compositional Hybrid Abstrations. The results presented for ompositionality of abstratontrol systems in Subsetion 3.7 also arry over to hybrid ontrol systems. In this subsetion we presenttwo examples of how modularity an be exploited to simplify abstration tasks.Example 4.47. Consider a rubber ball bouning on the oor under the ation of gravity. Its dynamisan be desribed by the automaton displayed on the left of Figure 9. The state of the ball is desribedby the variables x and y modeling the ball position and vx and vy the veloity. The ball hits the oorat y = 0 triggering a jump whih resets the veloity on y with the new value �e vy, where e 2℄0; 1[ is aparameter modeling the elastiity of the ball. To model two balls synhronized on the x position we start
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Figure 9. Hybrid automaton modeling a bouning ball on the left and the ompositionwith synhronization of two automata modeling a bouning ball.
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Figure 10. Left: abstration of the hybrid automaton displayed on the right of Figure 9;Right: abstration of the hybrid automaton on the left of Figure 9.by omputing the produt automaton whih is restrited to the set L = f((x; y; vx; vy); (z; w; vz; vw)) 2R4 � R4 : x = z ^ vx = vzg resulting in the automaton displayed on the right of Figure 9. Anabstration an now be performed to retain only height information. The new state oordinates arenaturally given by h1 = y; h2 = w; vh1 = vy and vh2 = vw and the abstration omputed by Algorithm 4.36is displayed on the left of Figure 10. However, the abstration proess an be simpli�ed by making useof Theorem 4.24. This is ahieved by �rst abstrating the hybrid automaton modeling eah individualball whih results in the hybrid automaton displayed on the right of Figure 10. The next step is toperform the parallel omposition with synhronization of these hybrid automata. Note that this produt isalready simpler to perform than the produt of the unabstrated systems. Furthermore the synhronizingset given by (�1; �2)(L) equals the state spae of the produt system sine �1(x; y; vx; vy) = (h1; vh1),�1(z; w; vz; vw) = (h2; vh2) and L = f((x; y; vx; vy); (z; w; vz; vw)) : y = w ^ vy = vwg. We thensee that no synhronization step needs to be performed and the resulting hybrid automaton is simplythe produt of two opies of the automaton displayed on the right of Figure 10. As expeted the �nalhybrid automaton is the same as in the previous ase, but the omplexity of the proess was onsiderablyredued by taking advantage to ompositionality.



4. HYBRID CONTROL SYSTEMS 89Example 4.48. In this example we illustrate the use of Theorem 4.24 with the elebrated water tanksystem from [2℄. Consider two water tanks that an be �lled by water oming from a pipe as displayedon the left of Figure 11. The water level at tank A is measured by x1 while the water level at tank B is
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V�V�Figure 11. Water tank system: Physial setup on the left and hybrid model on the right.measured by x2. Eah tank has also an outow that auses a derease in the water level. The outow rateat tank A is v1 while at tank B is v2. This outow an be ompensated by a water inow oming fromthe pipe on top of the tanks. This pipe has an inow rate of w whih an be direted to tank A or to tankB by means of a valve loated in the pipe. Contrary to [2℄ we expliitly inorporate a �rst order modelof the pump in the hybrid automaton desribing this hybrid ontrol system, displayed on the right ofFigure 11. We now seek to abstrat away the pump dynamis to obtain the usual model that onsiders theommutation of the inow from one tank to the other instantaneous4. Instead of omputing an abstrationdiretly from this hybrid automaton we start by realizing that this automaton an be obtained by parallelomposition of hybrid ontrol systemsHX andHY modeling the pipe and the tanks, respetively, as shownin Figure 12. This omposition is synhronized on the �bering submonoid AL � AX �AY de�ned by the
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Figure 12. Hybrid model of the pipe and water tanks on the left and right, respetively.points of the form �((q1; w); (x1; x2)); ("; ut)�, �((q1; w); (x1; x2)); (�1; ")�, �((q2; w); (x1; x2)); ("; ut)� and�((q2; w); (x1; x2)); (�2; ")�, where the ontinuous inputs satisfy ut = (w(t); w�w(t)). We now abstrat the4We remark that onsidering the water ommutation instantaneous leads to Zeno trajetories [35℄. However, in our per-spetive, the hybrid model of the water tank system already allows in�nite swithes between disrete states q1 and q2 in�nite time.



90 4. ABSTRACTIONS OF HYBRID CONTROL SYSTEMSpipe model by aggregating all the ontinuous states in disrete state q1 to 0 and all the ontinuous statesin disrete state q2 to w. Theorem 4.24 ensures that omposing HY with this abstration will result inan abstration of hybrid ontrol system HX kAL HY . The new synhronizing �bering monoid is obtainedfrom AL by replaing w by 0 on the ontinuous inputs in state q1, replaing w by w in the ontinuousinputs at disrete state q2 and identifying (q1; w) and (q2; w) with q1 and q2, respetively. The resultinghybrid ontrol system is displayed in Figure 13. This example illustrates the lear advantage of exploring
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z�Figure 13. Abstrated hybrid model of the water tank system.ompositionality in omputing hybrid abstrations. We have only omputed ontinuous abstrations ofone-dimensional ontrol systems (for the pipe automaton), whereas if one would have proeeded diretlyfrom hybrid ontrol system HX kAL HY without exploring the ompositional struture, one would haveomputed ontinuous abstrations of the three-dimensional ontinuous ontrol systems at eah disreteloation.



CHAPTER 5Formations and Abstrations of Multi-Agent Systems1. IntrodutionAdvanes in ommuniation and omputation have enabled the distributed ontrol of multi-agent systems.This philosophy has resulted in next generation automated highway systems [86℄, oordination of airraftin future air traÆ management systems [82℄, as well as formation ying airraft, satellites, and multiplemobile robots [7, 10, 80, 19℄. The ontrol of multi-agent systems is greatly simpli�ed when the agent'smission an be exeuted by means of a formation. In several appliations, maintaining a formation is evenfundamental as in multiple airraft where the formation is used to explore aerodynami e�ets [51, 11℄or in roboti exploration of large areas with restrited sensor apabilities [17℄.The several approahes to formation ontrol of a group of agents an roughly be divided into three ate-gories: Behavior-based, Leader-Follower and Virtual Strutures or Rigid-Body type formations. Behaviorbased approahes [7, 42, 90, 47℄ start by designing simple and intuitive behaviors or motion primitives foreah individual agent. Then, by a weighted sum of these simple primitives more omplex motion patternsare generated through the interation of several agents. These motion patterns are usually alled thegroup behavior that is said to emerge from the individual ones. Although this approah is haraterizedby being diÆult to analyze in a rigorous and formal way, there have been some attempts to formallyde�ne and model behavior-based ontrol shemes [20℄. In leader-follower approahes [87, 19℄ one agent isdesignated the leader and is responsible for guiding the formation. The remaining agents are required tofollow the leader with a prede�ned o�set. This approah ontrasts with rigid-body type formations [80℄where rigidity allows to speify a trajetory for eah agent requiring a entralized ontrol arhiteture.See also [75℄ for a di�erent entralized approah.Despite the large ativity in the area of formation ontrol there are still fundamental questions unan-swered. The ontrol of a formation requires individual agents to satisfy their kinematis while onstantlysatisfying inter-agent onstraints. In typial leader-follower formations, the leader has the responsibilityof guiding the group, while the followers have the responsibility of maintaining the inter-agent formation.Distributing the group ontrol tasks to individual agents must be ompatible with the ontrol and sensingapabilities of the individual agents. As the inter-agent dependenies get more ompliated, a systematiframework for ontrolling formations is vital. 91



92 5. FORMATIONS AND ABSTRACTIONS OF MULTI-AGENT SYSTEMSIn this hapter, we propose a framework to study formation feasibility of multi-agent systems. Forma-tions are modeled using formation graphs whih are graphs whose nodes apture the individual agentkinematis, and whose edges represent inter-agent onstraints that must be satis�ed. A similar approahhas been proposed in [19℄. In [21℄ graphs are also used in the ontext of formation ontrol, but theemphasis in on the ommuniation ow and not on formation onstraints. We assume kinemati modelsfor eah agent desribed by drift free ontrol systems. This lass of systems is rih enough to aptureholonomi, nonholonomi, or underatuated agents. Two distint types of formations are onsidered :undireted formations and direted formations.In undireted formations eah agent is equally responsible for maintaining the formation. For eah edgeonstraining two agents of the formation graph, both agents ooperate in order to satisfy the onstraint.Undireted formations therefore present a more entralized approah to the formation ontrol problem asommuniation between agents is, in general, neessary. In direted formations, for eah edge onstrainingtwo agents, only one of the agents (the follower) is responsible for maintaining the onstraint. Diretedformations, therefore, represent a more deentralized solution to the formation ontrol problem.In this hapter, we fous on the feasibility problem: Given the kinematis of several agents along with theinter-agent onstraints, determine whether there exist agent trajetories that maintain the onstraints.For both direted and undireted formations we obtain di�erential-geometri onditions that determineformation feasibility. When suh onditions are veri�ed, the group abstration problem is then onsid-ered: Given a feasible formation, extrat a smaller ontrol system that maintains formations along itstrajetories. The extrated ontrol system allows to ontrol the formation as a single entity, thereforebeing well suited for higher levels of ontrol. In the ase of undireted formations, the entralized natureof the problem allows us to determine feasibility using a single mathematial objet. An uni�ed approahthat aptures both the agent kinematis as well as the formation onstraints is o�ered by di�erentialforms and exterior di�erential systems [61℄. In both the undireted and the direted ases the proposedframework allows for the extration of a formation ontrol abstration. Sine the abstration an alsobe represented by di�erential forms, non-holonomi motion generation tehniques based on exterior dif-ferential systems [81, 46℄ an readily be used to plan paths for the abstration. The onstrution ofthese abstrations an be seen as a purely ontinuous example of the notion of parallel omposition withsynhronization introdued in Chapter 4. A preliminary version of the results presented in this hapterappeared in [79℄.



2. FORMATION GRAPHS 932. Formation GraphsConsider n heterogeneous agents with states xi(t) 2 Mi, i = 1; : : : ; n whose kinematis are de�ned bydrift free ontrolled distributions on manifolds Mi as:�i : Mi � Ui �! TMi�i = Xj Xjuj(5.1)where Ui is the ontrol spae, and the vetor �elds Xj form a basis for the distribution. The ontrolleddistributions are general enough to model nonholonomy and underatuation.The formation of a set of agents is de�ned by the formation graph whih ompletely desribes individualagent kinematis and global inter-agent onstrains.Definition 5.1 (Formation Graph). A formation graph F = (V;E;C) onsists of:� A �nite set V of verties whose ardinality is equal to the number of agents. Eah vertex vi :Mi�Ui�! TMi is a distribution �i modeling the kinematis of eah individual agent as desribed in (5.1).� A binary relation E � V � V representing a link between agents.� A family of onstraints C indexed by the set E, C = fege2E . For eah edge e = (vi; vj), e is apossibly time varying funtion e(xi; xj ; t) = 0 desribing the �(e) independent onstraints betweenverties vi and vj . For a generi edge e = (vi; vj), e is mathematially de�ned as e :Mi�Mj�R�! R�(e) , �(e) 2 N 8e2E.Two di�erent types of formation graphs will be onsidered: undireted formations where (V;E) will be anundireted graph and direted formations where (V;E) will be a direted graph. In undireted formations,for eah edge e = (vi; vj) both agents are equally responsible for maintaining the assoiated onstraint e.Undireted formations are represented by the underlying undireted graph (V;E) as displayed in Figure 1for a formation with two agents and an edge between them. In direted formations the onstraint e
Figure 1. Undireted graph representing an undireted formation onsisting of 2 agentsand a onstraint between them.assoiated with the edge e must only be guaranteed by agent i. Direted formations are represented bythe underlying direted graph as in Figure 2. At this point no further struture is assumed on the set E.Additional struture will be expliitly mentioned when needed.We fous on the formation feasibility problem, more preisely:



94 5. FORMATIONS AND ABSTRACTIONS OF MULTI-AGENT SYSTEMS
Figure 2. Direted graph representing a direted formation onsisting of 2 agents anda onstraint between themProblem 5.2. Feasibility Given a formation graph F = (V;E;C) determine whether there are solutionsxi(t) of all agent kinematis (5.1) that maintain the onstraints e for all e 2 E and for all t 2 R.We will solve Problem 5.2 for both undireted and direted formations. In ase the formation is feasible, anew problem immediately emerges, the extration of a formation ontrol abstration whih haraterizesthe solution spae of Problem 5.2 :Problem 5.3 (Group Abstration). Given a feasible formation graph F = (V;E;C), extrat a smallerontrol system that maintains formation for all values of its ontrol inputs.Problem 5.3 will also be solved for both the undireted and the direted ases.3. Undireted Formations3.1. Feasibility. In undireted formations eah agent is equally responsible for maintaining on-straints. Beause of this property it will be useful to ollet all agent kinematis and onstraints on asingle manifold: M = nYi=1Mi(5.2). Given an element x of M the anonial projetion on the ith agent,�i :M �!Mi(5.3)allows us to denote the state of the individual agents by xi = �i(x). The formation kinematis is obtainedby appending individual kinematis through diret sum, that is:� :M � U �! TM� = �ni=1�i(5.4)where U is taken to be U = Qni=1 Ui. This new ontrol system � on M desribes the kinematis ofall formation agents, however it does not model any interation between them. This interation will beindued by the formation onstraints that we now lift to the group manifold M . Eah onstraint e



3. UNDIRECTED FORMATIONS 95linking agent i to agent j indues a onstraint Ce on M � R de�ned by:Ce : M � R �! R�(e)Ce(x; t) = e(�i(x); �j(x); t)(5.5)All of these onstraints an now be grouped in a single map from M � R to Rd with d = Pe2E �(e).This onstraint map C is obtained by staking all individual onstraints as follows:C = 26666664C1C2...Cm
37777775(5.6)where we have onsidered an enumeration f1; 2; : : : ;mg of the edges set E. Sine the onstraints areindependent the set C�1(0) = f(x; t) 2M �R j C(x; t) = 0g de�nes a submanifold1 P of M �R. Theprojetion of P on M (whih is also a submanifold of M), denoted by N , haraterizes the interationbetween the agents sine the state variables of eah agent are restrited to live on this submanifold.Formation feasibility requires that the onstraints are satis�ed along the formation trajetories, that is,that the submanifold N is invariant under � trajetories:ddtC = LXC + �C�t = 0 8X 2 �(5.7)Note that sine C is vetor valued we onsider that the Lie derivate of C along X is given by:LXC = 26666664LXC1LXC2...LXCm
37777775(5.8)To develop a single mathematial objet that will allow us to hek for feasibility we will adopt a di�eren-tial forms approah instead of working diretly with the vetor �elds. By de�ning the exterior derivativeof C as: dC = 26666664dC1dC2...dCm

37777775(5.9)
1Although the map C depends on the hosen enumeration, the submanifold it de�nes does not.



96 5. FORMATIONS AND ABSTRACTIONS OF MULTI-AGENT SYSTEMSequation (5.7) an be written as dCjt(X) = � ��tC, where we have denoted by dCjt the exterior derivativeof C for �xed t. If we now de�ne the following vetor valued forms:!F = 26666664dC1jtdC2jt...dCmjt
37777775 TF = �26666664 �C1�t�C2�t...�Cm�t

37777775(5.10)we an express equation (5.7) as: !F (X) = TF(5.11)The kinematis an also be modeled as di�erential forms by using the annihilating odistributions. Thislead us to de�ne a single odistribution !K modeling the kinematis of all formation agents as:!K(X) = 26666664!K1(X1)!K2(X2)...!Kn(Xn)
37777775 = 0(5.12)Solutions of equation (5.11) represent vetor �elds that maintain formation while solutions of equation(5.12) satisfy the kinematis. Therefore by merging both objets into:
 = 24!F!K35 T = 24TF0 35(5.13)we an hek for formation feasibility in a single equation:
x(X) = T 8x 2 N(5.14)Note that this equation only needs to hold for points belonging to N , sine outside N the agents are nolonger in formation. The previous disussion leads to the following solution of Problem 5.2:Proposition 5.4. An undireted formation is feasible i� equation (5.14) has solutions, equivalently i�T belongs to the range of 
 for all x 2 N .Corollary 5.5 (Time-Invariant Case). If the formation onstraints C are time-invariant then the undi-reted formation is feasible i� 
x is not of full rank at every x 2 NA solution of equation 
x(X) = T spei�es the in�nitesimal motion of eah individual agent. Whenmore than one independent solution exists, a hange in the diretion of a single agent may require thatall other agents also hange their ations to maintain formation. This shows that, in general, solutions forundireted formations are entralized and require inter-agent ommuniation for their implementation.



3. UNDIRECTED FORMATIONS 97Example 5.6. As an example of the methodology developed so far we onsider an undireted formationonsisting of three mobile robots of the uniyle type as displayed in Figure 3. The kinematis of eah
Figure 3. Undireted 3 agents formation.

agent is given by odistributions of the form (2.22). To ompletely speify the formation graph we needto de�ne the onstraints between the agents. Denoting by e1 the edge between agent 1 and 2 we de�nethe assoiated onstraint as: e1 = 26664x1 � x2 � Æxy1 � y2 � Æy�1 � �2 37775(5.15)where Æx and Æy are positive onstants. The edge between agents 1 and 3 is denoted by e2 and theassoiated onstraint is given by:e2 = h 12 (x1 � x3)2 + 12 (y1 � y3)2 � 12 (�1 � �3)2 � Æi(5.16)where Æ is a positive onstant. The onstraint between agents 1 and 2 requires them to perform the sametrajetories with an o�set between their position oordinates given by Æx and Æy. It is intuitive that it isalways possible to do so. However the onstraint between agents 1 and 3 states that the distane betweentheir positions should always equal Æ + 12 (�1 � �3)2. This is learly a non-intuitive onstraint and no apriori answer an be given regarding feasibility. We will now study feasibility of this formation aordingto the methods developed so far. First we ompute !K whih is given by:!K = 26664� sin �1dx1 + os �1dy1� sin �2dx2 + os �2dy2� sin �3dx3 + os �3dy337775(5.17)Sine C is given by: C = 26666664 x1 � x2 � Æxy1 � y2 � Æy�1 � �212 (x1 � x3)2 + 12 (y1 � y3)2 � 12 (�1 � �3)2 � Æ
37777775(5.18)



98 5. FORMATIONS AND ABSTRACTIONS OF MULTI-AGENT SYSTEMSthe form !F will be given by:
!F = 26666664 dx1 � dx2dy1 � dy2d�1 � d�2(x1 � x3)dx1 + (y1 � y3)dy1 + (�3 � �1)d�1 + (x3 � x1)dx3 + (y3 � y1)dy3 + (�1 � �3)d�3

37777775
(5.19)
Combining !F and !K into 
 one easily veri�es that 
 is not of full rank for every x 2 N . This meansthat the formation is indeed feasible, that is, there are trajetories for eah agent satisfying the formationonstraints as well as its kinematis.In the next setion we will see how one an ontrol the individual agents while maintaining the formationand gain some insight into the group trajetories.

3.2. Group Abstration. Whenever more than one independent solution exists, the solution spaeof equation 
(X) = T an be used to extrat a smaller ontrol system that will preserve the formationalong its trajetories. This new ontrol system is an abstration that hides away low-level ontrol ne-essary to maintain the formation and an be used in higher levels of ontrol. Sine the solution spae isin general an aÆne spae the new ontrol system will also be aÆne in the ontrol. If KP is a partiularsolution of equation (5.14), we an solve Problem 5.3 with the new ontrol system:�G = KP +Ker(
)(5.20)By making use of a basis fK1;K2; : : : ;Kkg for the kernel of 
, we an rewrite (5.20) in a more usualform as: �G = KP + kXj=1Kjuj(5.21)In the time-independent ase we reover linearity of the abstrated ontrol system sine we an hoseKP = 0. The entralized nature of the problem is also reeted on the ontrol abstration. When oneor more of the ontrol inputs ui are used, inter-agent ooperation is neessary to implement the newdiretion of motion sine eah vetor Kj spei�es the motion for all formation agents.Example 5.7. Continuing with the previous example we will extrat an abstration representing theformation as a whole. Straightforward omputations provide the following basis for the kernel of 
:
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K1 = (�3 � �1) os �1 ��x1 + (�3 � �1) sin �1 ��y1 + (�3 � �1) os �1 ��x2 + (�3 � �1) os �1 ��y2+ �(x1 � x3) os �1 + (y1 � y3) sin �1� ���3K2 = �(x1 � x3) os �3 + (y1 � y3) sin �3� os �1 ��x1 + �(x1 � x3) os �3 + (y1 � y3) sin �3� sin �1 ��y1+ �(x1 � x3) os �3 + (y1 � y3) sin �3� os �1 ��x2 + �(x1 � x3) os �3 + (y1 � y3) sin �3� sin �1 ��y2+ �(x1 � x3) os �1 + (y1 � y3) sin �1� os �3 ��x3 + �(x1 � x3) os �1 + (y1 � y3) sin �1� sin �3 ��y3K3 = (�1 � �3) os �1 ��x1 + (�1 � �3) sin �1 ��y1 + �(x1 � x3) os �1 + (y1 � y3) sin �1� ���1+ (�1 � �3) os �1 ��x2 + (�1 � �3) sin �1 ��y2 + �(x1 � x3) os �1 + (y1 � y3) sin �1� ���2These vetor �elds de�ne the abstration through the ontrol system:�G = K1u1 +K2u2 +K3u3(5.22)To gain some insight on the abstration ontrol system and the formation trajetories we display inFigure 4 the formation evolution when the open loop ontrol u1 = 1, u2 = 0 and u3 = 0 is used. Agent
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Figure 4. Formation ow along vetor �eld K1 orresponding to u1 = 1, u2 = 0 andu3 = 0.1 is represented by a trapezoid, agent 2 by a square and agent 3 by retangle. The formation evolutionis haraterized by agent 3 rotating around the same point while agent 1 and 2 perform straight linemotions. When the formation ows along vetor �eld K2 orresponding to the open loop ontrol u1 = 0,u2 = 1 and u3 = 0 all the agents in the formation move along parallel trajetories as displayed in Figure 5.This was ahieved sine their initial orientations where idential. When this is not the ase, more omplexmotions haraterize the ow along K2. However it is always possible to ahieve idential orientationsby owing along K1 or K3. The formation ow along basis vetor K3 is somewhat dual to K1. Insteadof agent 1 rotating around itself to ahieve di�erent on�guration errors regarding agent 1, agent 3 is
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Figure 5. Formation ow along vetor �eld K2 orresponding to u1 = 0, u2 = 1 andu3 = 0.
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Figure 6. Formation ow along vetor �eld K3 orresponding to u1 = 0, u2 = 0 andu3 = 1.now stopped and the remaining agents revolve around it as suggested in Figure 6. To generate moreomplex motions for the formation other open or losed loops ontrol laws an be used with the groupabstration (5.22).3.3. Formation Guidane. In addition to using the above abstrated system to ontrol the forma-tion, one an also guide the formation by appending a virtual vertex v0 de�ning the referene trajetoryand several edges speifying how the referene should be followed by the formation. In partiular on-sider a feasible formation graph F = (V;E;C) and let V 0 be a singleton ontaining the vertex v0 : R�! TM0, v0 = ddtx0(t). This vertex is onneted to the remaining formation by the additional edgeset E0 = [i2If(v0; vi)g, where I � V is a subset of all the verties indies. Assoiated with eahvertex we have the onstraints C 0 = f0ege02E0 and we an de�ne a new formation graph given by



4. DIRECTED FORMATIONS 101F 0 = (V 0 [ V;E0 [E;C 0 [C). One again it is neessary to ensure that the feasible formation is apableof maintaining the referene onstraints by applying Proposition 5.4 to formation graph F 0.Note that this onstrution is general enough to enompass traditional formations suh as: leader-followerby superimposing the virtual vertex onto an existing vertex or plaing referenes on the formation entroid.It also allows some other interesting possibilities suh as onneting a disonneted feasible formationgraph by the referene onstraints, i.e. , several independent formations following a single referene.
4. Direted FormationsAnother important lass of formations an be modeled by direted graphs. A direted graph assignsresponsibilities to the formation members in an asymmetri way. For eah edge e = (vi; vj) agent i isresponsible for maintaining the onstraints e, while agent j is not a�eted by the onstraint of the edge.One agent j determines its motion, agent i is always apable of loally omputing a ontrol strategyenforing the formation onstraint. From an implementation point of view direted formations simplifythe synthesis of the low level ontrol laws responsible for maintaining the agents in formation. Theseontrol laws require only loal information and are therefore easier to synthesize. The information owis also simpli�ed sine eah agent determines its motion without the need of oordination/ooperationwith other agents.We will assume through the remaining setion that a direted formation graph is a direted ayligraph. As a onsequene all direted formations will have at least one leader. This assumption will allowreursive proedures to start on the leaders and to terminate sine there are no yles. Cyli formationgraphs, although important, will not be onsidered in this thesis. We will also onsider that the formationonstraints are time independent for simpliity of presentation although the results an easily be extendedto time-varying onstraints.4.1. Feasibility. Although in the undireted ase we were able to lift the onstraints and individualagents kinematis to a larger manifold M , we will adopt a di�erent approah for the direted ase. Givenan edge e = (vi; vj) the time derivative of its assoiated onstraints e an be deomposed as:dedt = LXie + LXj e(5.23)Feasibility requires that dedt = 0, however only Xi an be hosen to ensure feasibility. In view of this wewill follow a similar approah to the undireted ase, but in a reursive formulation. This requires thefollowing operators:



102 5. FORMATIONS AND ABSTRACTIONS OF MULTI-AGENT SYSTEMSDefinition 5.8 (Post and Pre). Let F = (V;E;C) be a direted formation graph. The Post operator isde�ned by: Post : V �! 2Vvi 7! fvj 2 V : (vi; vj) 2 Eg(5.24)Similarly, the Pre operator is de�ned as:Pre : V �! 2Vvi 7! fvj 2 V : (vj ; vi) 2 Eg(5.25)Intuitively, Post(vi) will return the agents that are leading agent i, while Pre(vi) will return all theagents that are following agent i. Post and Pre extend to sets of verties in the natural way, Post(P ) =[p2P Post(p) and Pre(P ) = [p2P Pre(p). A vertex vi is alled a leader i� Post(vi) = ?. By assumptionthe graph underlying the formation is ayli implying that there will be at least a leader in the formationgraph.We shall abuse notation by representing the distribution �i de�ning the kinematis of agent vi as �(vi)and for the set of agents Post(vi), �(Post(vi)) = �v2Post(vi)�(v) de�ned over �v2Post(vi)Mv. Similarlyto the undireted ase we de�ne the following objets for eah agent i:!iF = 26666664 d1jxjd2jxj...dmjxj
37777775 !jF = �26666664d1jxid2jxi...dmjxi

37777775 i 6= j(5.26)where f1; 2; : : :mg is an enumeration of the edges set between agent i and its leaders (Post(vi)). Thesevetor valued di�erential forms allow us to write equation (5.23) as:!iF (Xi) = !jF (XJ)(5.27)whih is to be onsidered only for Xi 2 �(vi) and XJ 2 �(Post(vi)). Instead of restriting the Xi's to�(vi) we an inorporate the kinemati restritions diretly into equation (5.27) by de�ning:
i = 24!iF!iK35 
j = 24!jF0 35(5.28)where !iK is the vetor valued form annihilating agent i kinemati distribution �(vi). The equalityddte = 0 an now be further modi�ed to the following form:
i(Xi) = 
j(XJ) 8XJ 2 �(Post(vi))(5.29)This motivates the following result analogous to the undireted ase:



4. DIRECTED FORMATIONS 103Proposition 5.9. A direted formation is feasible i� equation (5.29) has solutions for eah agent i inthe formation. Equivalently i� the range of 
j j�(Post(vi)) is ontained in the range of 
i for eah agenti.Sine Proposition 5.9 must be true for eah agent, an algorithm an be onstruted to determine feasibility.Let L � V be a set of leaders and denote by F the operator returning the feasible diretions of an agent iand de�ned by F (vi) = (
i)�1(R(
j j�(Post(vi)))), where (
i)�1(S) denotes the set of preimages of eahs 2 S under 
i.Algorithm 1 (Direted Feasibility)initialization: V := Lwhile Pre(V ) 6= ? doV := Pre(V )for all vi 2 V do�(vi) := 0if R(
j j�(Post(vi)) * R(
i)return UNFEASIBLESTOPelse �(vi) := �(vi) + F (vi)end ifendendAll the omputations in the algorithm an be performed using basis vetor �elds for the distributions, inpartiular the inlusion R(
j j�(Post(vi))) � R(
i) needs to be tested only for the basis vetors and theinverse (
i)�1 an be omputed using pseudo-inverse tehniques. The ayli nature of the graph ensureus that the algorithm will terminate so that the following result naturally follows:Theorem 5.10 (Direted Formation Feasibility). Let F = (V;E;C) be an ayli, direted formationgraph. Algorithm 1 terminates in a �nite number of steps and returns:� Unfeasible if the formation is not feasible.� A distribution per agent speifying the available diretions to maintain formation if the formationis feasible.Example 5.11. An example of direted feasibility motivated by the transportation of an hazardous loadby a group of robots, esorted by another group of robots an be given by a 6 agent formation as depited



104 5. FORMATIONS AND ABSTRACTIONS OF MULTI-AGENT SYSTEMSin Figure 7. Agents 1,2 and 3 move as a rigid body to olletive transport the load. The remaining
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Figure 7. Direted graph representing a 6 agents formation.agents serve as an esort to avoid attempts from external agents to approah the load, simultaneouslyproteting them from the possible hazards indued by the load. We will onsider that agent 2 is ofuniyle type being modeled by a distribution of the form (2.22) and all the remaining agents have nokinemati onstraints, being therefore modeled by:�i = X i1ui1 +X i2ui2 +X i3ui3 i = 1; 3; 4; 5; 6(5.30)The onstraints assoiated with edges e4, e5 and e6 are simply given by:ei = (xi�3 � xi)2 + (yi�3 � yi)2 � Æ2 i = 4; 5; 6(5.31)Intuitively the onstraints model the fat that eah agent belonging to the esort should keep a �xeddistane of Æ to a given robot transporting the load. The remaining onstraints model in a direted waya rigid-body type formation with respet to the agents positions and are given by:e1 = 26664x1 � x2 � Æxy1 � y2 � Æy�1 � �2 37775 e2 = 26664x2 � x3 + Æxy2 � y3�2 � �3 37775(5.32)Following the steps of feasibility algorithm we start by analyzing the edge between agent 1 and 2. Thisrequires the omputation of: !1F = 26664dx1dy1d�137775 !2F = 26664dx2dy2d�237775(5.33)



4. DIRECTED FORMATIONS 105and: 
1 = 26666664dx1dy1d�10
37777775 
2 = 26666664 dx2dy2d�2sin �2dx2 � os �2dy2

37777775(5.34)From these expressions we immediately see that R(
1) * R(
2) sine [sin � � os � 0 0℄T belongs toR(
1) but it does not belong to R(
2). The formation is therefore not feasible. However if the edge e1is replaed by a new edge with the same assoiated onstraint but with a reversed diretion as displayedin Figure 8 feasibility is ensured. In this ase we have that:
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Figure 8. Direted graph representing a 6 agents formation with a new edge e1.
1 = 26664dx1dy1d�137775 
2 = 26664dx2dy2d�237775(5.35)and inlusion R(
1) � R(
2) is true. The next vertex to analyze is v3, but R(
2) � R(
3) sine thekinematis of agents 1 and 3 are equal as well as the exterior derivative of the onstraints linking themto agent 2. To analyze edge e4 one omputes:
1 = [2(x1 � x4)dx1 + 2(y1 � y4)dy1℄
4 = [2(x1 � x4)dx4 + 2(y1 � y4)dy4℄(5.36)and sine agent 4 has no kinemati onstraints the inlusion R(
1j�(Post(v4))) � R(
4) holds indepen-dently of �(Post(v4)). A similar reasoning shows that the orresponding inlusions also hold for agents5 and 6. We onlude that the formations is feasible meaning that independently of agent 2 motion the



106 5. FORMATIONS AND ABSTRACTIONS OF MULTI-AGENT SYSTEMSremaining agents are always apable of loally determine a ontrol strategy that will enfore the formationonstraints.4.2. Group Abstration. When a direted formation is feasible the formation ontrol abstrationis trivially taken as the ontrol systems of the leaders. In the previous example the abstration is simplygiven by the ontrol system of agent 2. Contrary to the undireted ase this abstration does not allowdiret ontrol over eah individual agent. Control is exerted on the leaders that indiretly ontrol theformation through inter-agents links. Note that any attempt to ontrol a non-leader agent in a abstrationwould violate the semantis of a direted edge. On the other hand regarding the leaders as an abstrationof the formation is already impliit when the formation is spei�ed by plaing only ingoing arrows inthese agents.



CHAPTER 6ConlusionsHybrid systems have been used to model multi-agent, networked and embedded systems among otherkinds of omplex large-sale systems. The inreasing omplexity of nowadays appliations ask for anal-ysis and synthesis methods that sale well with dimension and omplexity. One approah is to adopt ahierarhial perspetive by modeling hybrid systems through a hierarhy of di�erent layers of abstrationrepresenting di�erent aspets of the same system. Analysis tasks are then performed on simpler, ab-strated models that are equivalent with respet to the relevant properties. Synthesis tasks also bene�tfrom this approah sine the design starts as the top of the hierarhy on a simple model and is thensuessively re�ned by inorporating the modeling details of eah layer of abstration. A omplementaryapproah to hierarhies of abstrations is to take advantage of the ompositional struture of embeddedsystems. These systems are usually onstruted through the interonnetion of smaller omponents orsubsystems. This should be regarded as struture that must be exploited to deal with the inherent om-plexity of these systems. One possible approah is to take advantage of this ompositional struture ofhybrid systems to simplify the omputation of abstrations. This simpli�ation omes from the fat thatit is, usually, muh simpler to abstrat subsystems individually and then interonnet them to obtainan abstration, than to extrat the abstration of the system as a whole. In order to aomplish this,ompositional operators need to be ompatible with abstration operators.In this thesis we introdued a general methodology for ompositional abstrations of hybrid ontrol sys-tems. To aomplish this goal we also made several ontributions to related areas suh as abstrationsof smooth ontrol systems and formation ontrol of multi-agent systems. In Chapter 3 we extended theontinuous abstration methodology proposed in [60, 63, 64℄ to model expliitly ontrol inputs. We haveharaterized the struture of the abstrated ontrol bundles in a hierarhy of abstrations indued byequivalene relations on the state spae. These results were obtained by resorting to simple ideas fromategory theory that allowed to expose and understand the struture of smooth ontrol systems. In Chap-ter 4 we proposed a methodology for ompositional abstrations of hybrid ontrol systems. An abstratframework apturing disrete, ontinuous and hybrid ontrol systems was proposed as a ategory. Inthis ategory we introdued a notion of abstration based on simulations and also the notion of bisimu-lation. We also introdued a omposition operator modeling the interonnetion and synhronization ofsubsystems. This operator was shown to be ompatible with simulations and, under ertain onditionson the synhronization, with bisimulations. All of these results were then speialized for hybrid ontrol107



108 6. CONCLUSIONSsystems where an algorithm was proposed for the omputations of abstrations. It was also shown thatthis algorithm also omputes bisimulations under ertain assumptions. All of these results onstitute im-portant tools to e�etively deal with the omplexity or large-sale, omplex, embedded systems. Finally,in Chapter 5 we addressed and solved the formation feasibility problem for both direted and undiretedformations. Furthermore we also provided a way of obtaining a group abstration that maintains theformation along its trajetories. This abstration an be regarded as a purely ontinuous example of theompositional abstration methodology introdued in Chapter 4.The researh arried out under this Ph.D. program also lead to many interesting open questions that wemention only a few:� In the ase of purely ontinuous ontrol systems it is not yet well understood when an abstrationis in fat a bisimulation. Determining hekable onditions for bisimilarity of smooth ontrolsystems is an extremely important problem not only from the appliations perspetive as well asfrom a theoretial point of view. Bisimilar ontrol systems allow to design ontrollers hierarhiallysine we are assured that any spei�ation for an abstrat model has a feasible implementationor re�nement in a more detailed level. Besides this perspetive of a hierarhial ontrol theorybisimilarity is also provides a major ontribution to the lassi�ation of ontrol systems. In thisrespet it would also be very rewarding to understand the relation between the symmetries ofontrol systems and its bisimulations. It is lear that partial-symmetries as desribed in [57℄ leadto bisimilar quotient systems but is this always the ase?� With respet to hybrid ontrol systems, it is fundamental to render the results developed in thiswork omputational. In this respet it matters to identify speial lasses of hybrid ontrol systemsfor whih the proposed abstrating algorithm an be fully automated. Also some of the givenresults may be diÆult to hek in real examples, and again the identi�ation of speial lassesof hybrid systems ould be extremely helpful to overome these diÆulties. It is also importantto stress that sine large-sale, embedded systems are beoming inreasingly distributed and net-worked an extension of the proposed methodology toward the expliit modeling of ommuniationhannels would be another valuable tool for the analysis and synthesis or real world appliations.� Finally, although we are able of determining if a given direted formation is feasible or not, itis important to onsider the problem of determining if there are other inter-agents onstraintsde�ning a formation with the same trajetories as an unfeasible direted formation. A relatedproblem is to extrat the largest feasible direted formation from an unfeasible direted formation,sine this would have diret impat in ontrol and ommuniation design.
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