
Universidade de Lisboa

Instituto Superior Técnico

Decision-Making under Uncertainty

for Real Robot Teams

João Vicente Teixeira de Sousa Messias

Supervisor: Doctor Pedro Manuel Urbano de Almeida Lima

Co-Supervisor: Doctor Matthijs Theodor Jan Spaan

Thesis approved in public session to obtain the PhD Degree in

Electrical and Computer Engineering

Jury final classification: Pass with Distinction

Jury

Chairperson: Chairman of the IST Scientific Board

Members of the Committee:

Doctor Pedro Manuel Urbano de Almeida Lima

Doctor Matthijs Theodor Jan Spaan

Doctor Carlos Filipe Gomes Bispo

Doctor Francisco António Chaves Saraiva de Melo

Doctor Florent Teichteil-Königsbuch

Doctor Eric DeWitt

2014

Universidade de Lisboa

Instituto Superior Técnico

Decision-Making under Uncertainty for Real Robot Teams

João Vicente Teixeira de Sousa Messias

Supervisor: Doctor Pedro Manuel Urbano de Almeida Lima
Co-Supervisor: Doctor Matthijs Theodor Jan Spaan

Thesis approved in public session to obtain the PhD Degree in
Electrical and Computer Engineering

Jury final classification: Pass with Distinction

Jury

Chairperson: Chairman of the IST Scientific Board

Members of the Committee:

Doctor Pedro Manuel Urbano de Almeida Lima, Professor Associado (com
Agregação) do Instituto Superior Técnico, da Universidade de Lisboa

Doctor Matthijs Theodor Jan Spaan, Assistant Professor, Delft University of
Technology, The Netherlands

Doctor Carlos Filipe Gomes Bispo, Professor Auxiliar do Instituto Superior
Técnico, da Universidade de Lisboa

Doctor Francisco António Chaves Saraiva de Melo, Professor Auxiliar do
Instituto Superior Técnico, da Universidade de Lisboa

Doctor Florent Teichteil-Königsbuch, Researcher, ONERA, Touluse, France

Doctor Eric DeWitt, Postdoctoral Fellow, Mainen Lab/Systems Neuroscience
Lab, Fundação Champalimaud, individualidade reconhecida na área científica em
que se insere a tese

Funding Institutions
Fundação para a Ciência e Tecnologia,through the PhD Student Scholarship
SFRH/BD/44661/2008, through ISR/IST pluriannual funding (PIDDAC program
funds), reference PEst-OE/EEI/LA0009/2013, and by a research grant (Bolsa de

Investigação para Mestre) at INESC-ID in the MAIS+S project, part of the Carnegie
Mellon - Portugal Program (reference CMU-PT/SIA/0023/2009).

2014

Título: Tomada de Decisão sob Incerteza para Equipas de Robôs Reais

Nome: João Vicente Teixeira de Sousa Messias

Doutoramento em: Engenharia Electrotécnica e de Computadores

Orientador: Prof. Doutor Pedro M. U. A. Lima

Co-orientador: Doutor Matthijs T. J. Spaan

Resumo:

Este trabalho está focado na aplicação de métodos de Teoria de Decisão (TD) em cenários

de Robótica Cooperativa. São abordados problemas teóricos e práticos envolvidos na modelação

de processos de tomada de decisão sob incerteza para agentes físicos.

A família existente de métodos de TD é revista, e as respectivas limitações, relativas à

modelação de sistemas multi-robô, são identificadas. São propostas novas metodologias, e é

investigada a aplicação de técnicas actuais, para superar essas limitações.

Como abordagem ao problema da minimização de comunicação multi-agente, apresenta-se

um método novo para obter políticas de comunicação para Processos de Decisão de Markov

Multi-agente Parcialmente Observáveis (MPOMDPs), que pode ser usado antes da execução do

sistema.

Demonstra-se como a tomada de decisão multi-robô pode ser descrita como um processo

controlado por eventos, discutindo as vantagens dessa interpretação. Investiga-se a aplicação de

Processos de Decisão Semi-Markov Generalizados (GSMDPs) em equipas de robôs reais.

Aborda-se também o problema de observabilidade parcial para sistemas multiagente contro-

lados por eventos. Introduz-se a classe de MPOMDPs Controladas por Eventos, apresentam-se

resultados teóricos e empíricos da mesma, e consideram-se domínios Semi-Markov.

Por fim, descreve-se a implementação dos métodos propostos num sistema real de vigilância

multi-robô, e documenta-se o software desenvolvido como parte deste trabalho.

Palavras-chave: Planeamento sob Incerteza; Processos de Decisão de Markov; Sistemas Mul-

tiagente; Sistemas de Eventos Discretos; Robótica Cooperativa; Redes de Robôs; Comunicação

Multi-Robô; Observabilidade Parcial; Vigilância Multiagente; Robôs Futebolistas.

Title: Decision-Making under Uncertainty for Real Robot Teams

Abstract:

This work focuses on the application of Decision-Theoretic (DT) frameworks to scenarios in

Cooperative Robotics. We address both theoretical and practical issues involved in modeling

decision-making under uncertainty for physical agents.

We review the family of different existing DT approaches, and identify their limitations

regarding the modeling of multi-robot systems. We then propose novel methodologies, and

investigate the applicability of current methods and frameworks, to address those limitations.

To address the problem of minimizing multiagent communication, we present a novel method

to determine efficient communication policies for Multiagent Partially Observable Markov De-

cision Processes (MPOMDPs), that operates prior to system execution.

We show how multi-robot decision-making can be described as an event-driven process, and

discuss the practical advantages of that interpretation. We investigate the practical application

of the Generalized Semi-Markov Decision Process (GSMDP) framework to a team of real robots.

We also address the problem of partial observability for event-driven multiagent systems.

We introduce the Event-Driven MPOMDP framework, provide both theoretical and empirical

results related to its application, and extend it to Semi-Markov domains.

Finally, we describe the implementation of our methods to a real multi-robot surveillance

system, and document the software tools that were developed as part of this work.

Key-words: Planning under Uncertainty; Markov Decision Processes; Multiagent Systems;

Discrete Event Systems; Cooperative Robotics; Networked Robot Systems; Multi-Robot Com-

munication; Partial Observability; Multiagent Surveillance; Soccer Robots.

Acknowledgements

Funding Acknowledgments

This work was funded by Fundação para a Ciência e a Tecnologia (FCT), through

the PhD Student Scholarship SFRH/BD/44661/2008, through ISR/IST pluriannual

funding (PIDDAC program funds), reference PEst-OE/EEI/LA0009/2013, and by a

research grant (Bolsa de Investigação para Mestre) at INESC-ID in the MAIS+S project,

part of the Carnegie Mellon - Portugal Program (reference CMU-PT/SIA/0023/2009).

Personal Acknowledgments

Four years ago, I was on the threshold of a great change in my life. I knew it, as

I was embarking to my first RoboCup experience, but I could only imagine what was

still to come. Looking back on this journey now, on all that I’ve seen, and all that I’ve

learned, I can say that it has far exceeded my imagination.

I owe this invaluable opportunity to Professor Pedro Lima, and I am sincerely thank-

ful for it. I hope that the contributions of my work, and what comes after it, can ever

live up to all that I’ve been given.

I must also extend my special thanks to my co-advisor Matthijs Spaan, for his

guidance and ideas; his patience in helping out with our papers and experiments, even

in the long hours before the tough deadlines; and all his help and companionship during

my short adventure in the Netherlands. This work would not have been possible without

his contribution.

In a thesis about robot teams, I wonder if I can thank a team of robots. The SocRob

MSL robots and I went through so much, that at times I felt that I knew the quirks

and the “personality” of each of them. I’ve learned virtually all of what I know of

Robotics and Artificial Intelligence while working on those robots in some way. But,

of course, I wasn’t alone, and the most valuable members of the team were not playing

in the soccer field, but worrying on the sidelines. Thanks to João Reis, Aamir Ahmad,

Miguel Serafim and all the older (and newer!) members of the SocRob team. There’s a

bond between us that comes from the special kind of panic that only a RoboCup (and

Robótica) competition can instill. We might not have scored many goals, but in all that

we have learned to do with the little that we had, we have won the greatest prize of all.

I’d also like to thank all the members of the MAIS+S project, especially José Carlos

Castillo and Stefan Witwicki, for their help. We did a lot of work in a very short time,

and a large part of this thesis depended on it.

To all of my family, and in particular my mother, and my father, I leave my special

thanks, for supporting my life in its most chaotic moments. I hope you can be proud

of this work, which is also yours.

And, finally, to my better half, the love that I’ve found, and that grew, during all

these years. Thanks Ana. We’re on the threshold of another great change, and we’ll be

crossing it together.

Contents

List of Figures ix

List of Tables xv

1 Introduction 1

1.1 Motivation:

Planning Under Uncertainty in the Real World 1

1.2 Related Approaches to Multiagent (and Multi-Robot) Decision-Making . 4

1.3 Objectives . 5

1.4 Thesis Outline and Contributions . 6

1.5 Publications . 7

2 Background 9

2.1 Markov Decision Processes . 11

2.1.1 Planning and Learning for MDPs 12

2.2 Extensions for Continuous-Time Problems 16

2.2.1 Semi-Markov Decision Processes 17

2.2.2 Continuous-Time Markov Decision Processes 20

2.2.3 Generalized Semi-Markov Decision Processes 20

2.3 Extensions for Partially Observable Domains 25

2.3.1 Partially Observable Markov Decision Processes 26

2.3.1.1 Planning Algorithms for POMDPs 26

2.3.1.2 Continuous-Domain POMDPs 29

2.3.2 Partially Observable Semi-Markov Decision Processes 29

2.4 Extensions for Multiagent Decision-Making Problems 30

2.4.1 Decentralized Partially Observable Markov Decision Processes . . 31

iii

CONTENTS

2.4.2 Modeling Communication . 33

2.4.3 Factored Models . 35

3 On the Practical Implementation of MDPs and Related Models 39

3.1 A Review of MDP-Based Applications 40

3.2 POMDPs for Real Teams of Robots . 44

3.2.1 A Case Study in Robotic Soccer: Overview 45

3.2.2 Identifying an Appropriate DT Framework 46

3.2.3 Modeling States, Actions, and Observations 48

3.2.3.1 States . 54

3.2.3.2 Observations . 54

3.2.3.3 Actions . 55

3.2.4 Real-Time Execution Strategies 56

3.2.5 Obtaining the Stochastic Models 58

3.2.6 Defining the Reward Model . 62

3.2.7 Implementation and Results of the Robotic Soccer Case-Study . 63

3.2.7.1 Communication . 63

3.2.7.2 Solving the MPOMDP 65

3.2.7.3 Experimental Setup . 65

3.2.7.4 Results . 66

3.3 Summary . 69

4 Efficient Communication in Partially Observable Domains 71

4.1 Exploiting Sparse Dependencies in MPOMDPs 72

4.2 Decision-Making with Factored Beliefs 73

4.3 An illustrative example: the Relay-Small problem 76

4.4 Formal model . 78

4.4.1 Value Bounds Over Local Belief Space 79

4.4.2 Dealing With Locally Ambiguous Actions 81

4.4.3 Mapping Local Belief Points to Communication Decisions 84

4.5 Experiments . 86

4.6 Summary . 89

iv

CONTENTS

5 Continuous-Time Execution and Planning for Teams of Robots 91

5.1 Event-Driven Multi-Robot Systems: Beyond SMDPs 93

5.2 GSMDPs as a Framework for Multi-Robot Decision-Making 97

5.2.1 From DES to GSMDPs . 97

5.2.2 Modeling and Solving a GSMDP 103

5.2.3 Tracking Phase Variables . 106

5.2.4 Effects on Communication . 107

5.3 Results: Revisiting the Robotic Soccer Case Study 108

5.3.1 Experimental Setup . 109

5.3.2 Simulation Results . 110

5.3.3 Real Robot Results . 110

5.4 Summary . 113

6 Asynchronous Multiagent Decision-Making under Partial Observabil-

ity 115

6.1 Introduction . 115

6.2 Event-Driven MPOMDPs . 116

6.2.1 Synchronous vs. Asynchronous Execution in Multiagent Systems

with Partial Observability and Free Communication 117

6.2.2 Formal Definition . 118

6.2.3 Decision-Making with Partially Observable Events 121

6.2.4 Jointly Observed Events . 124

6.2.5 Factored Graphical Representations 126

6.3 Solving Event-Driven MPOMDPs . 127

6.3.1 Dynamic Programming . 127

6.3.2 A Randomized Point-Based Algorithm 130

6.3.3 Execution-Time Belief Updates 132

6.4 Experiments . 134

6.5 Extension to Generalized Semi-Markovian Domains 137

6.6 Summary . 142

v

CONTENTS

7 A Case Study in Multiagent Surveillance 143

7.1 Introduction . 143

7.2 The MAIS+S Testbed . 143

7.2.1 Hardware . 144

7.2.2 Decision-Making . 146

7.2.3 Software Organization . 150

7.3 The Markov Decision-Making (MDM) Library 151

7.3.1 Terminology . 153

7.3.2 MDM Overview . 154

7.3.2.1 The State Layer . 154

7.3.2.2 The Observation Layer 156

7.3.2.3 The Control Layer . 158

7.3.2.4 The Action Layer . 159

7.3.3 Deploying MDM: Considerations for Specialized Scenarios 161

7.3.3.1 POMDPs with External Belief States 161

7.3.3.2 Multiagent Decision-Making with Managed Communi-

cation . 163

7.4 Results . 166

7.4.1 Realistic Simulations . 168

7.5 Summary . 171

8 Conclusions 173

8.1 Contributions . 173

8.2 Future Work . 175

A Supporting Material 179

A.1 Robotic Soccer Case-Study . 179

A.1.1 Partially Observable Formulation (Chapter 3) 179

A.1.2 Fully Observable Formulation (Chapter 5) 180

A.2 Synchronous MPOMDP Case-Studies (Chapter 4) 181

A.3 Multiagent Surveillance Case-Study (Chapter 7) 183

A.3.1 Event-Driven (M)POMDP Descriptions 183

A.3.1.1 Coordinative (Top-Level) Event-Driven MPOMDP . . . 183

A.3.1.2 Patrol Task Event-Driven POMDP 185

vi

CONTENTS

A.3.2 Finite State Machines . 186

B Implementation Examples for the MDM Library 189

B.1 Implementing a State Layer . 189

B.2 Implementing an Observation Layer . 191

B.3 Implementing a Control Layer . 193

B.4 Implementing an Action Layer . 196

B.5 Software Location and Documentation 200

References 201

vii

CONTENTS

viii

List of Figures

2.1 An overview of the topological relationships between relevant MDP-based

model classes, according to their descriptive capabilities. 10

2.2 A 2-DBN representing an MDP. 11

2.3 A simple scenario which showcases the limitations of SMDPs, and illus-

trates our definition of “events”. 21

2.4 A DBN representing a GSMDP. 24

2.5 A 2-DBN representing a POMDP. 25

2.6 The linear supports of a value function as a convex partition of B. . . . 28

2.7 A 2-DBN representing an example of a two-agent (d = 2) Dec-POMDP. 32

2.8 A 2-DBN representing an example of a factored two-agent Dec-POMDP. 36

3.1 A typical in-game situation in RoboCup Middle-Size League Robotic

Soccer, showing cooperation between two robots. 45

3.2 The contrast between the physical operation of a mobile robot and its

decision-theoretic interpretation. 48

3.3 Two possible state discretizations for a robotic soccer environment. . . . 52

3.4 Synchronization timeline with instantaneous communication. 63

3.5 Synchronization timeline with delayed communication of observations. . 64

3.6 Convergence of the Perseus algorithm for the proposed MPOMDP. . . . 65

3.7 The simulated environment where our case-study was deployed. 66

3.8 A histogram of accrued discounted reward for 500 simulated runs of the

proposed task. 66

3.9 Behavior of the robots when no obstacles are present in the field. 67

3.10 Behavior of the robots when passing the ball to avoid obstacles. 68

ix

LIST OF FIGURES

4.1 The Relay-Small problem. 76

4.2 Defining the marginalization matrix MX
XL

for the Relay-Small problem.

This matrix carries out the marginalization of the joint belief onto the

belief factor bXL
. 76

4.3 The linear supports of the optimal stationary joint value function for the

Relay-Small problem. 78

4.4 The projections of the linear supports of the joint value function onto the

belief factor over the left room. 79

4.5 (a) Layout of the Relay-Small problem. (b) Layout of the Relay-Large

problem. 86

4.6 Communication map for agent D1 in the Relay-Small problem. 87

4.7 Value bounds for the Relay-Small problem. 87

4.8 Representation of the OneDoor scenario. 88

5.1 Action selection in synchronous and asynchronous execution of a multi-

robot system. 93

5.2 An example of an environment in which persistently enabled events are

an issue. 96

5.3 An example of the practical difference in the definition of events, in the

context of modeling a dice throw. 100

5.4 Approximating non-Markovian events through Phase-Type distributions. 104

5.5 (a) Temporal distribution of the event of switching agent roles after a

pass, in our experimental domain. (b) Two modeling approaches. 106

5.6 A timeline of asynchronous communication with delays, in a fully observ-

able setting. 108

5.7 Simulated results. Distance from the ball to the goal (blue, solid) and

accrued joint reward (red, dashed) over time. 111

5.8 Performance of GSMDP / MDP models. 112

5.9 Sequence showing two robots cooperating in order to avoid an obstacle

and score a goal (from left to right, top to bottom), in our experimental

setup. 113

6.1 A graphical representation of the dynamics of a synchronous MPOMDP

(a) and of an Event-Driven MPOMDP (b). 118

x

LIST OF FIGURES

6.2 The effect of false negative detections on the transition dynamics of a

decision-making process. 122

6.3 Modeling the joint detection of events. 125

6.4 An example of a Dynamic Bayesian Network for the state space depen-

dencies of an event-driven model. 127

6.5 Left: A layout of the Access2 problem; Right: Size of the model compo-

nents for the tested scenarios, using event-driven (E) and synchronous (S)

approaches. 134

6.6 (a), (c) Residual difference between successive value function approxima-

tions, maxB{Vn(b)−Vn+1(b)} (b), (d) Size of the value function, |Υn|, as

a function of n. 135

6.7 (a) Reward accumulated at run-time for Access2, as a comparative his-

togram for 100 runs of 25 steps. (b) Respective mean/deviation, and

mean error between collected reward and expected value (δ̄V). (c) Evolu-

tion of maxB Vn(b) in real time for the various models/solvers in Access3,

showing similar final results, but faster convergence in the event-driven

case. 136

7.1 The environment of our surveillance framework. 144

7.2 (a): Our robot team, Duke (left) and Orwell (right); (b): Examples of

the network cameras used in our surveillance system; (c): Typical view

from (some of) our surveillance cameras. 145

7.3 The various levels of decision-making involved in our two-robot autonomous

surveillance scenario. 146

7.4 An overview of the structure of our surveillance system, and the respec-

tive functional distribution. 150

7.5 The design and implementation of an Event-Driven MPOMDP model. . 151

7.6 An example of the integration of an MDP-based control policy to a

robotic agent. 152

7.7 The control loop for an MDP-based agent using MDM. 155

7.8 The basic control loop for a POMDP-based agent using MDM. 157

7.9 An example of the organization of a hierarchical MDP, as seen by MDM. 160

7.10 An MPOMDP implemented by a single MDM ensemble. 162

xi

LIST OF FIGURES

7.11 A deployment scheme for a POMDP-based agent where belief updates

are carried out outside of MDM. 164

7.12 A multiagent MDM deployment scheme with multiple ROS Masters, and

managed multimaster communication. 165

7.13 A timeline of actions and events in a trial run of our autonomous surveil-

lance system. 166

7.14 The paths traversed by the robots during a trial run, overlaid on the

floor-plan of their environment at ISR. 167

7.15 The behavior of our robot team when patrolling their environment coop-

eratively. 169

7.16 Results for a realistically simulated “visitor assistance” experiment. . . . 170

A.1 State space description for the MPOMDP instantiation of our robotic

soccer case study. 180

A.2 Action space description, left, and observation space description, right,

for the MPOMDP instantiation of our robotic soccer case study. 180

A.3 State space description for the GSMDP instantiation of our robotic soccer

case study. 181

A.4 Action space description for the GSMDP and MMDP instantiations of

our robotic soccer case study. 181

A.5 State space description for the Relay-Small MPOMDP. 182

A.6 Action space description, left, and observation space description, right,

for the Relay-Small MPOMDP. 182

A.7 State space description for the Relay-Large MPOMDP. 182

A.8 Action space description, left, and observation space description, right,

for the Relay-Large MPOMDP. 182

A.9 State, action, and observation space description for OneDoor. 183

A.10 The 2-DBN for our Coordinative Event-Driven MPOMDP, which assigns

tasks to each robot. 184

A.11 State space description for our Coordinative Event-Driven MPOMDP. . 184

A.12 Action space description, left, and observation space description, right,

for the Coordinative Event-Driven MPOMDP. 185

xii

LIST OF FIGURES

A.13 (a): The 2-DBN for the “Patrol” Event-Driven POMDP. (b): The labels

associated to our topological abstraction of the area of operation. 185

A.14 State space description for our “Patrol” task Event-Driven POMDP. See

Figure A.13b for the semantic grounding of these labels. 186

A.15 Action space description, left, and observation space description, right,

for the “Patrol” task Event-Driven POMDP. 186

A.17 The FSM for the “Surveillance Incident Response” task. 187

A.16 The FSM for the “Emergency Response” task. 187

A.18 The FSM for the “Assistance Response” task. 188

xiii

LIST OF FIGURES

xiv

List of Tables

4.1 Results of the proposed method for various environments. 87

4.2 Running time (in seconds) of the proposed method in comparison to the

Perseus point-based POMDP solver. 88

8.1 A summary of the contributions of this work, their respective chapters,

and resulting international publications. 176

xv

LIST OF TABLES

xvi

Chapter 1

Introduction

1.1 Motivation:

Planning Under Uncertainty in the Real World

Planning and decision-making are fundamental processes in many human activities. The

field of Operations Research (OR) provides the mathematical basis to quantitatively

evaluate decisions, allowing the best plans to be identified, in terms of their perceived

utility or efficiency in accomplishing given goals. Many of the techniques developed in

this field are therefore applicable to the domain of Artificial Intelligence (AI), in that

they may provide decision-making capabilities to autonomous agents. One of the areas

of research common to both AI and OR is that of Decision Theory (DT), in which the

problem of decision-making under uncertainty is included. Although DT has a wide

scope that is not limited to decision-making in probabilistic settings, in this work, we

will refer to DT in that context.

DT techniques address the problem of decision-making in environments in which it

is necessary to take into account uncertainty in the actions and/or observations of an

agent, as is the case in many real world scenarios. A Markov Decision Process (MDP)

is a widely known and well-studied mathematical framework to model problems where

the outcome of an agent’s actions is probabilistic, but full knowledge of the state of

the agent is assumed (Bellman, 1957a). For this class of problems, several efficient

algorithms exist that provide optimal and approximate solutions to MDPs.

When the knowledge of the agent is insufficient to directly determine its state, as

it happens with a mobile robot with noisy sensors, the uncertainty of its observations

1

1. INTRODUCTION

must also be considered. Such problems are within the domain of application of the

Partially Observable Markov Decision Process (POMDP) framework. Efficient planning

algorithms for POMDPs have been subject to active research for over four decades

(Sondik, 1971). While solving a POMDP optimally in its general case is a difficult

problem, several algorithms exist to compute approximate solutions to those models,

which allows them to be scaled up to the point that they can be applied to the control

of robotic agents (Kurniawati et al., 2008; Pineau et al., 2003; Spaan and Vlassis, 2005).

In certain applications, however, a single agent model is not enough to model the

full scale of the problem. Such is the case, for example, in cooperative robotics, where

multiple agents must work together to achieve a common goal. For that reason, there

has been an increasing interest in the topic of multiagent systems, both from the per-

spective of Robotics (Asama, 2009; Lima and Custódio, 2005) as well as that of AI

(Shoham and Leyton-Brown, 2009). Various generalizations of the MDP framework to

the problem of multiagent decision-making under uncertainty have also been proposed,

for example: Decentralized MDPs (Dec-MDPs) and Decentralized Partially Observable

MDPs (Dec-POMDPs) (Bernstein et al., 2002) which assume cooperative agents, but

are intractable to solve optimally without communication (NEXP-Complete1 optimal

finite-horizon solutions); Network Distributed POMDPs (ND-POMDPs) (Nair et al.,

2005) which are scalable to many agents, but assume transition and observation inde-

pendence; Interactive POMDPs, which include models of each agent in the state space

(Gmytrasiewicz and Doshi, 2005); and the simpler, fully centralized Multiagent MDPs

(MMDPs) / POMDPs (MPOMDPs), in which free communication between agents is

assumed (Boutilier, 1996; Pynadath and Tambe, 2002), but where the planning problem

is of equivalent complexity to that of solving a single-agent problem defined over the

whole team (Pynadath and Tambe, 2002).

Despite the proliferation of the theoretical advances in multiagent MDPs and related

models, there have been very few reported applications of these methods to the decision-

making of teams of robots. Notable exceptions do exist, for fully observable settings

(Bowling and Veloso, 2003; Matarić, 1997), and also for partially observable domains

(Capitán et al., 2013; Emery-Montemerlo et al., 2005).

1Also referred to as NEXPTIME: a non-deterministic Turing machine requires an exponen-
tial number of operations to solve such problems. Recent approximate solution methods for
Dec-POMDPs include (Kumar and Zilberstein, 2010; Oliehoek et al., 2008a, 2013; Pajarinen
and Peltonen, 2011a).

2

1.1 Motivation:
Planning Under Uncertainty in the Real World

Nevertheless, this apparent lack of applications of established DT methods to multi-

robot systems is not only endemic of MDP-based approaches; it is a commonplace

problem in the field of AI. Although research on multi-robot systems has been active

for at least the past two decades, it has mostly focused on the problems of multi-robot

cooperative perception and navigation (Asama, 2009). In contrast, there has been

relatively little exploration of the theoretical aspects of decision-making that are char-

acteristic of multi-robot systems, from an AI perspective. The problem of multi-robot

decision-making has been typically interpreted as a problem of task allocation (Gerkey

and Matarić, 2003; Lemaire et al., 2004), or behavior scheduling and coordination (Dias

et al., 2006), and addressed through formalisms that incorporate few of the insights of

state-of-the-art AI methodologies.

The fact that most multi-robot systems are inherently partially observable (at least

from the perspective of each individual agent), coupled with the so-called “curse of

dimensionality”, are the most frequently evoked explanation for this difficulty of ap-

proaching those domains from the perspective of AI (and of DT, in particular). Solving

a general, unstructured multiagent version of a POMDP, for example, is exponentially

harder than solving its single-agent instantiations. Another important issue is that

many of these methods operate over symbolic representations of the multiagent system

(such as abstract states, actions, and observations), and the problems involved in defin-

ing these abstract representations, and in mapping between them and the quantities

involved in physical multiagent systems, are often overlooked.

This work addresses the problems of modeling and implementing multi-robot decision-

making through techniques grounded on the theory of MDPs. By doing so, it will at-

tempt to bridge the apparent gap between theory and practice in this field of study, and

draw further interest into the real-world application of decision-theoretic frameworks.

Although the applications that will act as case studies concern networked robot sys-

tems, other scenarios involving multiple physical agents may provide suitable domains

for the application of the techniques which are here discussed.

3

1. INTRODUCTION

1.2 Related Approaches to Multiagent (and Multi-Robot)

Decision-Making

As a long-standing line of research in Artificial Intelligence and Operations Research,

the problem of multiagent decision-making has been approached in several different

ways.

Game Theoretic (GT) approaches are very closely related to the DT methodologies

that are discussed in this work. GT methods can model not only cooperative, but also

competitive agent problems, but they are typically concerned with one-shot (static)

decision-making (Shoham and Leyton-Brown, 2009). Nevertheless, DT systems can be

viewed as sequences of stochastic games, and the synergy between these two formalisms

has been recently explored in the context of multiagent planning (Emery-Montemerlo

et al., 2005; Hansen et al., 2004; Oliehoek et al., 2008a; Spaan and Melo, 2008).

Another popular approach to the problem of multiagent planning is through Dis-

tributed Constraint Optimization (DCOP) techniques (Maheswaran et al., 2004). Al-

though DCOP methods are particularly efficient when taking into account scheduling

constraints or interdependencies between the actions of various agents, they do not con-

sider stochasticity, either in the environment itself or in the perception of each agent.

Some of the successful modeling formalisms for single and multi-robot decision-

making belong to the theory of Discrete Event Systems (DES) (Cassandras and Lafor-

tune, 1999; Costelha and Lima, 2007; Damas and Lima, 2004; Quottrup et al., 2004).

DES models, such as those provided by Finite State Automata (FSAs) or Petri Nets

(PNs), are specifically suited to model asynchronous, or event-driven systems. As we

will see in Chapters 5 and 6, multi-robot decision-making is often included in that class

of systems. However, the qualitative view of DES formalisms is typically not applicable

to the problem of obtaining an optimal decision-making plan, per se. Rather, it is useful

in analyzing the properties of a given plan and in providing theoretical guarantees of its

functionality (for example, by verifying if the system will not enter deadlock states from

which it cannot recover). At most, the methods for Supervisory Control of DES theory

can be used to drive an event-driven system to a desired set of states. In this work,

we will explore the synergy between the qualities of DES formalisms for the high-level

description of robot behaviors and tasks, and the theoretical support for planning under

uncertainty of DT frameworks.

4

1.3 Objectives

The implementation of multiagent systems has itself been subject to an appreciable

amount of research. Various software architectures have been developed specifically for

this purpose, for example, JADE (Bellifemine et al., 2007) and INGENIAS (Pavón and

Gómez-Sanz, 2003). Such architectures streamline the process of deploying control so-

lutions for multiagent systems, not only by providing a framework that transparently

handles inter-agent communication, but also by providing the designer with program-

ming languages, or interfaces, with which to specify the behavior of each agent. However,

the type of plans that are produced by DT methods cannot be directly implemented

through this schema. DT plans are meant to account for all possible contingencies that

may arise during execution, and, as such, for realistically sized problems, they cannot

be manually specified.

The reason why we propose to use DT to model multi-robot systems is that, from

the available formalisms for multiagent decision-making, it is the most versatile, in that

it can model stochasticity in sensing and actuation; it can account for the effects of

continuous time; and it has extensive theoretical support both for planning and also for

machine learning methods, in multiagent settings. Due to these qualities, DT methods

have a strong potential for application in cooperative robotics scenarios.

1.3 Objectives

The work presented in this thesis follows a broad, but well-defined purpose: to identify

and address some of the problems that render existing Decision-Theoretic

approaches impractical for teams of robots.

More concretely, the objectives of this work are:

• The identification and / or development of a cohesive set of DT frameworks and

methods that are applicable, in practice, to cooperative robotics problems, and

which explicitly address the perceived limitations of currently existing approaches;

• A clear procedure to systematically deploy those methodologies in real robotics

applications, and the development of the necessary tools to support that process;

• The demonstration of the proposed methods in scenarios involving real teams of

robots.

5

1. INTRODUCTION

1.4 Thesis Outline and Contributions

We will now overview the organization of this document, and provide a brief summary

of the contributions that are made in each chapter:

• Chapter 2 introduces the necessary theoretical background on Markov Decision

Processes and associated models, which will act as a basis for the remainder of

the work;

• In Chapter 3, we review relevant past work in this field, with particular emphasis

on real-world applications of decision-theoretic frameworks. We then present a

thorough “walkthrough” of the modeling process of a cooperative robotics task

through DT frameworks. We explore the limitations of these frameworks, and

identify the main issues to be addressed when considering real teams of robots.

While in this context, we introduce and test a case study in cooperative robotics

in a realistically simulated environment;

• The issue of efficient communication, which is one of the obstacles involved in the

application of DT methods to teams of robots, is studied in Chapter 4. There, we

present a method to obtain offline communication policies in partially observable

multiagent problems, and show that we are able to significantly reduce the amount

of communication that is necessary for the coordination of a team of agents under

those conditions;

• In Chapter 5, we approach the problem of multi-robot decision-making as an

event-driven process. We study the applicability of the Generalized Semi-Markov

Decision Process framework to this problem, and highlight its respective advan-

tages and limitations with respect to standard multiagent MDPs. We present the

first documented application, to our knowledge, of that framework to the control

of a team of real robots;

• In Chapter 6, we focus on the problem of partial observability in event-driven

multiagent systems. We introduce the Event-Driven MPOMDP framework as a

means of modeling such systems. We show that our proposed framework retains

theoretical properties that are essential for its applicability. In particular, we

prove that Value Functions for Event-Driven MPOMDPs are Piecewise Linear

6

1.5 Publications

Convex (PWLC) functions, which allows them to be solved efficiently through

existing POMDP solution algorithms, with minor modifications; and we derive

a procedure that allows agents to update their information regarding the envi-

ronment, in the presence of possible false negative observations. We discuss the

practical application of our framework, and present empirical results in simulated

environments that showcase its advantages over synchronous alternatives. Fur-

thermore, we also extend the framework to Semi-Markovian domains, resulting

in a framework that is specifically suited to model decision-making for teams of

robots;

• In Chapter 7, we demonstrate the application of our Event-Driven MPOMDP

framework, to solve a problem of task assignment in a real networked robot system.

We will discuss the steps involved in the deployment of our methods to that

scenario, and describe the software tools that were developed for that purpose, as

part of this work;

• Finally, in Chapter 8, we conclude this thesis and present potential directions for

future research.

1.5 Publications

The following chapters of this thesis are based on international publications:

Chapter 4:

J. Messias, M. T. J. Spaan, and P. U. Lima. Efficient offline communication

policies for factored multiagent POMDPs. In Proceedings of the 25th An-

nual Conference on Neural Information Processing Systems (NIPS-11), pages

1917–1925, 2011.

Chapter 5:

J. Messias, M. T. J. Spaan, and P. U. Lima. GSMDPs for multi-robot sequential

decision-making. In Proceedings of the 27th AAAI Conference on Artificial

Intelligence (AAAI-13), 2013.

7

1. INTRODUCTION

Chapter 6:

J. Messias, M. T. J. Spaan, and P. U. Lima. Multiagent POMDPs with asyn-

chronous execution. In Proceedings of the 12th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS-13) - Extended Ab-

stract, pages 1273-1274, 2013.

J. Messias, M. T. J. Spaan, and P. U. Lima. Asynchronous Execution in Mul-

tiagent POMDPs: Reasoning over Partially-Observable Events. Artificial

Intelligence (Special Issue on AI and Robotics) Submitted. Pending Re-

view.

8

Chapter 2

Background

The work developed in this thesis is based on the theory of Markov Decision Processes

(MDPs) (Bellman, 1957a). This well-studied mathematical framework provides a wide

array of tools for the formulation, and solution, of decision-making problems in stochas-

tic environments. In their original form, MDPs can model single agent decision-making

processes1, where full knowledge of the state of the associated environment is assumed,

and where the system is thought to evolve in discrete time. To address these limitations,

various important extensions to the MDP framework have been introduced, which, as

a whole, allow a broad class of realistic multiagent problems to be modeled. A given

task may be categorized as belonging to one of these model classes depending on its

particular requirements, and the different simplifying assumptions which are made on

the nature of the problem.

In Figure 2.1, we show the relationship between several relevant DT frameworks

that extend MDPs according to each of three fundamental properties that will later be

exploited in this work, for our purposes of modeling multi-robot systems: the ability to

model time-driven dynamics; partial observability; and multiagent decision-making.

In this chapter, and in order to make the necessary definitions clear, we briefly

review the MDP framework, and the associated extensions that are most relevant for

this work.

The notation used in this chapter is mostly consistent with that of basic probability

theory (Jazwinski, 1970). The sets used in the various modeling frameworks are as-

1Or centralized multiagent decision-making processes, in which agents can communicate
perfectly.

9

2. BACKGROUND

Continuous Time Modeling Partial Observability

Multiagent Support

MDP

SM
D
P

C
T
M

D
P

G
SM

D
P

P
O

SM
D
P

P
O

M
D
P

M
O

M
D
P

TD-POMDP

D
ec-M

D
P

D
ec-P

O
M

D
P

Figure 2.1: An overview of the topological relationships between relevant MDP-based
model classes, according to their descriptive capabilities.

sumed to be representable as countable unions of singleton elements, unless otherwise

stated, and to be equipped with the appropriate discrete topology. For any set X over

which a probability measure is required, an adequate probability space ⟨X,Σ,Pr⟩ is

assumed to exist in which X is the default space of possible outcomes, Σ is the Borel

algebra generated by the discrete topology on X, and Pr(A) is the probability measure

of event A ∈ Σ. Under this terminology, Ξ(X) refers to the family of all possible prob-

ability distributions over X. The power set of X will be represented as PS(X), and its

cardinality as |X|. The cartesian product of sets X and Y will be shown as X×Y , and

as
∏n

i=1Xi for the n-ary case.

Additionally, throughout this work, we will use integer subscripts in order to index

elements within ordered sets, and also to refer to instantiations of variables at discrete

steps of a decision-making process. If both of these indices are simultaneously necessary

in context, then the innermost subscript will refer to the element index, while the

10

2.1 Markov Decision Processes

sn sn+1

an

Figure 2.2: A 2-DBN representing an MDP.

outermost subscript will refer to its “step” index. That is, if x = ⟨x1, x2⟩, then x1,n will

refer to the value of x1 at step n. Furthermore, in the theoretical analysis of decision-

making processes, we consider that n also represents the number of decisions taken up

to a certain point. Execution begins at n = 01.

2.1 Markov Decision Processes

The MDP framework is particularly suited to modeling problems where the outcome

of the actions of an agent is probabilistic, but the state of the process can be known,

without uncertainty, at any given time. MDPs were introduced in the context of Oper-

ations Research (Bellman, 1957a), and have since found their way into diverse practical

single-agent applications (further discussed in Section 3.1). The framework forms a

basis for many reinforcement learning techniques (Kaelbling et al., 1996; Sutton and

Barto, 1998). Formally, an MDP is defined as follows:

Definition 2.1.1. A Markov Decision Process (MDP) is a tuple ⟨S,A, T, R⟩, where:

S is the state space, a discrete set of possibilities for the state s of the process;

A is the action space, the set of actions that the agent can perform;

T : S × A × S → [0, 1] is a transition function, such that T (s, a, s′) = Pr (s′ | s, a). It

models the transition dynamics associated with the actions of the agent;

R : S × A → R represents the “reward” that an agent receives for performing action a

in state s, representing either its utility or cost.

The reward function is sometimes represented as R(s, a, s′), making it depend also

on the resulting state s′, but an equivalent formulation R(s, a) is always possible (by

taking R(s, a) =
∑

s′∈S T (s, a, s′)R(s, a, s′)).

1Note that many authors commonly represent n as the number of decisions left to take (e.g.
(Kaelbling et al., 1998)). Both options are equally valid from a theoretical standpoint.

11

2. BACKGROUND

Given this definition, and in looser terms, a Markov Decision Process represents a

system in which, at each discrete step of its execution, an action a is taken by an agent,

which causes the state of the system to change stochastically from s to s′, according

to T (s, a, s′). This behavior can be graphically represented as a two-slice Dynamic

Bayesian Network (2-DBN), which captures the probabilistic dependency between vari-

ables at different steps in the process, as shown in Figure 2.2. For an introduction

to Dynamic Bayesian Networks, the reader is referred to (Murphy, 2002). In such a

system, the Markov property is held, i.e., the distribution over the future state of the

system depends only upon the present state and action, at any given decision step.

Equivalently:

Pr(sn+1 | s0, a0, . . . , sn−1, an−1, sn, an) = Pr(sn+1|sn, an) , (2.1)

Although less common, there are also variations of this type of model which consider

continuous state and/or action spaces (Bertsekas and Shreve, 1978; Puterman, 1994).

2.1.1 Planning and Learning for MDPs

The objective of any decision-making agent in an MDP-based model is to perform a

sequence of actions that attempts to maximize a function of the accumulated reward

over a given number of steps. The limit on the number of steps is referred to as the

horizon for the decision-making problem, h. In the case of a standard MDP, this

typically amounts to the problem of obtaining a set of decision rules δn : S → A for

each decision step n ∈ {0, . . . , h − 1}, or in other words, a map of system states to

reward-maximizing actions. The set π = {δ0, δ1, . . . , δh−1} of decision rules for each

step of the process constitutes an h-horizon policy for the agent. If h is infinite, then

there is typically a single stationary (or time-invariant) decision rule δ (and π = {δ})1.

Policies can also be stochastic, if decision rules instead map to probability distribu-

tions over actions, i.e. δn : S → Ξ(A). In this case, an agent draws an action from

δn(s) at step n. Although stochastic policies are of instrumental importance in some

domains (such as in reinforcement learning settings, which will be revisited later), it

can be shown that, within the set of stochastic policies for an MDP, there is always

1There may also be non-stationary policies for infinite-horizon problems (for example, see
(Pajarinen and Peltonen, 2011b)). We will focus on stationary policies for the infinite-horizon
case, as it is simple to define at least one such policy that is optimal, as it will be shown shortly.

12

2.1 Markov Decision Processes

at least one deterministic policy that provides maximum expected reward (Puterman,

1994). Most methods presented in this chapter assume policies to be deterministic, since

this is the prevalent case in existing MDP theory, and since it simplifies the theoretical

treatment of these models.

There is a wide amount of well-established literature on the problem of obtaining

optimal, as well as approximate, policies for MDPs (Feinberg and Shwartz, 2002; Put-

erman, 1994). The most well-known of these will be outlined in this section, which will

provide an insight into the necessary differences, and eventual similarities, between solu-

tion methods for MDPs and those of its associated extensions which will be introduced

throughout this chapter.

Since the future states of an MDP cannot be predicted with full certainty, a common

measure of the quality of a solution, which most solvers try to optimize, is the expected

discounted reward over future states:

Eπ

{
h−1
∑

n=0

γnR(sn, δn(sn))

}

, (2.2)

where Eπ {·} is the expectation operator, considering that the agent is following policy π.

The discount factor γ ∈ [0, 1) allows the series to converge in the case of an infinite-

horizon problem, and is usually 1 for a finite-horizon case. The above quantity is

referred to as the h-horizon value of a given state according to π. At decision step

n ∈ {0, . . . , h− 1}, the complete mapping V π
n : S → R constitutes a value function for

the problem.

If the policy π is given, and for n < h− 1, the value function V π
n can be recursively

computed as:

V π
n (s) = R(s, δn(s)) + γ

∑

s′∈S

T (s, δn(s), s
′)V π

n+1(s
′) (2.3)

Note that the value at the last decision step is simply the immediate reward at that

point, that is, V π
h−1(s) = R(s, δh−1(s)).

For infinite-horizon problems, the value function becomes independent of the deci-

sion step:

V π(s) = R(s, δ(s)) + γ
∑

s′∈S

T (s, δ(s), s′)V π(s′) (2.4)

The most ubiquitous solution methods for discrete MDPs belong to the class of

13

2. BACKGROUND

Dynamic Programming (DP) algorithms (Bellman, 1957b). These algorithms are based

on the Bellman backup equation, which allows the optimal value function to be found

as (for the finite-horizon case):

V ∗
n (s) = max

a∈A

{

R(s, a) + γ
∑

s′∈S

T (s, a, s′)V ∗
n+1(s

′)

}

(2.5)

Optimality in this context means that, starting from state s at step n, there exists

no sequence of actions of length h − n with expected reward higher than V ∗
n (s). Note

that, in Equation (2.5), π is not given. The optimal policy π∗ can be easily extracted

from the problem’s optimal value function, by simply choosing, in each state, the action

associated with the highest expected value:

δ∗n(s) = argmax
a∈A

{

R(s, a) + γ
∑

s′∈S

T (s, a, s′)V ∗
n+1(s

′)

}

(2.6)

The repeated application of Equation (2.5) is commonly known as the Value Iter-

ation algorithm. As n → ∞, it is guaranteed to converge to a single invariant point,

which corresponds to the optimal value function for the problem according to an optimal

stationary policy (Puterman, 1994):

V ∗(s) = max
a∈A

{

R(s, a) + γ
∑

s′∈S

T (s, a, s′)V ∗(s′)

}

(2.7)

For finite horizon problems, h backups are needed to obtain the optimal value func-

tion, but each intermediate result must be stored. If h is infinite, only the final result

is necessary.

A different approach to this problem, known as Policy Iteration, operates instead

in the space of possible policies. It alternates between the calculation of the expected

value associated with a given (possibly non-optimal) policy, through Eqs. (2.3) and

(2.4), and the improvement of that policy by changing its first action, when possible

(Puterman, 1994). This method is also guaranteed to converge towards the optimal

policy.

Even though the state of the system is available to the agent at run-time, if the

system dynamics are known (i.e. the matrix T), then the reward R(s, a) received for

a given state-action pair does not need to be observed during execution, since there is

14

2.1 Markov Decision Processes

enough information in these models to calculate the expected reward for a given policy.

The solution to the MDP is then said to be obtained “offline”, symbolizing that policy

execution is not required in order to solve the decision-making problem. This is also

ubiquitously referred to as the planning problem for decision-theoretic models.

In contrast, an agent can also improve its policy during execution, if the collected

reward as it interacts with the environment is also observed at run-time, or “online”,

either immediately associated with a given state and action, or after the episodic execu-

tion of a given policy. In the associated literature, this is known as the learning problem

for decision-theoretic agents. A common way of addressing this problem is through the

use of temporal difference learning (or TD-learning) methods and its closely related

adaptations, which estimate the value function and improve the associated policy ac-

cordingly, using the immediately collected reward as an input. The most basic form of

temporal difference learning is implemented through the so-called TD(0) equation:

V π(s) = (1− αk)V
π(s) + αk

(

R(s, δ(s)) + γV π(s′)
)

, (2.8)

where αk ∈ (0, 1) is the learning rate or step-size after k ∈ N0 iterations, which in

practice acts an exponential smoothing over estimated values, and π is a given behavior

policy. These methods rely on the property that R(s, δ(s))+γV π(s′) approaches V π(s)

as the value function converges towards its invariant point. They are in fact instantia-

tions of a more general stochastic approximation algorithm (Robbins and Monro, 1951).

For these methods to learn V π, sufficient exploration of state-action pairs is assumed

(i.e. each pair must be visited a number of times). To this end, reinforcement learning

methods enforce some level of stochasticity in the resulting agent policy (i.e. π be-

comes a stochastic policy), which leads the agent to select random actions if the state

space must be further explored. To ensure convergence, the learning rate αk should also

satisfy that
∑∞

k=0 αk =∞ and
∑∞

k=0 α
2
k <∞.

TD-learning methods can be classified as being on-policy, if they learn the value

of the behavior policy (as above), or as off-policy methods, in which the estimated

value converges, instead, to that of the optimal policy V ∗. A very common off-policy

reinforcement learning method based on temporal differences is Q-learning (Watkins,

15

2. BACKGROUND

1989), which updates the optimal value of state-action pairs (s, a) as follows:

Q(s, a) = (1− α)Q(s, a) + α

(

R(s, a) + γmax
a′∈A

Q(s′, a′)

)

. (2.9)

Common on-policy algorithms include TD(λ), SARSA, and actor-critic methods

(Kaelbling et al., 1996; Sutton, 1984; Sutton and Barto, 1998).

A note on terminology: throughout this work, we will often focus on the problem

of modeling real systems through MDP-based frameworks, but we will intentionally

leave our considerations unbound to any specific solution methodology (i.e. planning

or learning) whenever that distinction is not relevant. To this end, and to be able to

characterize a given DT model with respect to the practicality of its solution, we define

the term operational complexity to mean the computational complexity of a planning

algorithm, or the sample complexity of a learning algorithm, over an MDP-based model.

2.2 Extensions for Continuous-Time Problems

The concept of time in an MDP is abstract from the perspective of the planning prob-

lem. In an MDP, a decision is taken whenever an action is considered to have finished,

or equivalently when a state transition is known to have occurred. The “time” index

in much of the associated theory more accurately represents the number of sequential

decision “epochs”, or steps, which have elapsed, or the remaining number of such deci-

sions left to take. It should then be made clear that decisions are not actually bound

to any specific time instant, or interval, associated with the execution of the underlying

system, and rather with state transitions which are triggered by actions.

In many real-world scenarios, the physical time that elapses in the system is relevant

to the decision-making process. This is the case, for example, of queueing and mainte-

nance systems (Puterman, 1994), control of epidemic processes and population modeling

(Guo and Hernández-Lerma, 2009), dynamic power management systems (Rong and Pe-

dram, 2003), and also in robotics problems (Mahadevan and Khaleeli, 1999), which are

of special interest to this work.

16

2.2 Extensions for Continuous-Time Problems

2.2.1 Semi-Markov Decision Processes

A Semi-Markov Decision Process (SMDP) (de Cani, 1964; Howard, 1963; Jewell, 1963)

extends the basic MDP framework by allowing the underlying system dynamics to also

depend on the time since the last decision was carried out. Since the model dynamics

will then require memory of the instant in which a particular state was entered, the

system does not strictly maintain the Markov property within each state. However,

after a state transition takes place, all memory is discarded, and the future state of the

system can still be predicted based only on present information. This is why such a

system is said to be Semi-Markov.

In an SMDP, decisions are still taken in sequential steps, but the particular instant

at which each step occurs is also relevant to the decision-making process, and so its

stochasticity is modeled accordingly. A SMDP can describe, for every state and action,

and possibly depending on the resulting future state, a probability density function over

the specific time instant of the next decision.

State transitions are a necessary, but not sufficient, condition for a decision to be

taken by an SMDP agent (Puterman, 1994). The system state can in fact change

multiple times between decisions. This work will restrict its focus to SMDPs in which

decisions are taken upon the occurrence of any state transition, which will allow a later

correspondence between decision steps and events.

For SMDPs in these conditions, and considering infinite-horizon problems, the ex-

pected discounted reward becomes:

V π(s0) = Eπ

{
∞
∑

n=0

e−λTn

(

R(sn, δ(sn)) +

∫ Tn+1

Tn

C(sn, δ(sn))e
−λ(t−Tn)dt

)
}

, (2.10)

where Tn ∈ R
+
0 is the random instant at which decision n occurs, with respect to the

time at which the first action was taken (naturally T0 = 0); C(sn, an) is a cumulative

reward rate that is accrued throughout each step; and the discount factor, λ, which is

here limited to the interval (0,∞), serves the same purpose as γ in a discounted MDP.

The formal definition of an SMDP is as follows:

Definition 2.2.1.

A Semi-Markov Decision Process (SMDP) is a tuple ⟨S,A, T,F , R, C⟩, where:

S,A, T, R have the same definition as in a Markov Decision Process (see Definition 2.1.1);

17

2. BACKGROUND

F =
{

fa
s,s′ : R

+
0 → R |

∫ β
α fa

s,s′(τ)dτ = Pr(α ≤ t′ ≤ β | s′, s, a) , ∀s, s′ ∈ S, a ∈ A
}

is the

time model. Each fa
s,s′ is a probability density function over the remaining time until

the next decision step, t′, given that transition ⟨s, s′⟩ occurs, and action a is applied1.

F a
s,s′(τ) = Pr(t′ ≤ τ | s′, s, a) represents the respective cumulative distribution function

for each of these transition-action tuples. Each fa
s,s′ is assumed to admit a Laplace

transform;

C : S × A → R is the cumulative reward rate which, in addition to the instantaneous

reward model R, allows the modeling of an utility or cost associated with the sojourn

time at s while executing a.

With this definition, the total reward for a state-action pair in an SMDP is:

U(s, a) = R(s, a) + Eτ

{∫ τ

0
e−λtC(s, a)dt

}

(2.11)

= R(s, a) +
∑

s′∈S

∫ ∞

0
p(τ, s′ | s, a)

(∫ τ

0
e−λtC(s, a)dt

)

dτ , (2.12)

where p(τ, s′ | s, a) represents the mixed continuous-discrete joint distribution over re-

sulting states and decision instants2. The last term in (2.11) corresponds to the expec-

tation of the reward accumulated through C, over the time τ between decision instants,

and discounted over time by λ. This joint distribution can be factored by conditioning

τ on the occurrence of the transition ⟨s, s′⟩:

p(τ, s′ | s, a) = p(τ | s′, s, a)Pr(s′ | s, a) = fa
s,s′(τ)T (s, a, s

′) (2.13)

This implies that, in an SMDP, T (s, a, s′) represents the state transition probabilities

only at decision instants, and is not influenced by time. It can be thought of as describing

an “embedded” discrete-time MDP at these instants (Puterman, 1994). The total reward

1Equivalently, t′ is the random time that is needed for the system to move between s and s′

while executing a. Note that this is a relative measure between successive steps — it is not the
total time elapsed in the system. Moreover, each fa

s,s′ is assumed to be invariant with respect
to decision steps.

2Throughout this work, we will use p(·), as opposed to Pr(·), when referring to continuous
probability distributions. Note that p(·) isn’t itself a probability (rather, p is a probability
density function).

18

2.2 Extensions for Continuous-Time Problems

can then be simplified as:

U(s, a) = R(s, a) +
∑

s′∈S

T (s, a, s′)

∫ ∞

0

(

fa
s,s′(τ)

∫ τ

0
e−λtC(s, a)dt

)

dτ (2.14)

= R(s, a) +
1

λ
C(s, a)

∑

s′∈S

T (s, a, s′)

(

1−

∫ ∞

0
fa
s,s′(τ)e

−λτdτ

)

(2.15)

= R(s, a) +
1

λ
C(s, a)

∑

s′∈S

T (s, a, s′)
(

1− L
{

fa
s,s′(τ)

})

, (2.16)

where L{f(t)} is the Laplace transform of f(t), as used in (de Cani, 1964; Jewell,

1963)1. Note that the independence of C(s, a) on time follows from the fact that we are

assuming that decision steps are triggered by every state transition – that is, the state

of the system cannot change between two decisions.

The value of executing a stationary policy in an SMDP is then, for each state:

V π(s) = U(s, δ(s)) +
∑

s′∈S

V π(s′)

∫ ∞

0
p(t, s′ | s, δ(s))e−λtdt (2.17)

= U(s, δ(s)) +
∑

s′∈S

T (s, δ(s), s′)V π(s′)

∫ ∞

0
f δ(s)
s,s′ (t)e

−λtdt (2.18)

= U(s, δ(s)) +
∑

s′∈S

L{f δ(s)
s,s′ (t)}T (s, δ(s), s

′)V π(s′) . (2.19)

Equation (2.17) allows an SMDP to be viewed as an equivalent discrete-time MDP

with state-action dependent discount rates γ(s, a) = L{fa
s,s′(t)} (Bradtke and Duff,

1995; Puterman, 1994). This, in turn, forms a very positive practical result for SMDPs,

since virtually all solution algorithms for discrete MDPs can also be applied to this

class of models. Well-established reinforcement learning algorithms, such as TD(λ) and

Q-learning, have been shown to work with SMDPs in (Bradtke and Duff, 1995). Note

that, even though our ultimate goal, when planning over an SMDP, is to reduce it to

a discrete MDP that is equivalent for decision-making purposes, it is not possible to

describe that equivalent MDP directly, in the general case, sidestepping the need to

explicitly model time. The values of γ(s, a) are not known a priori, and they cannot

be arbitrarily defined. Modeling the temporal distributions fa
s,s′(t), according to the

1We note that the Laplace-Stieltjes transform of the cumulative distribution function F a
s,s′

is most commonly used for this simplification, due to its relationship with probability generator
functions in continuous-time Markov chains. We will not make use of this relationship, and opt
to use the standard Laplace transform for clarity.

19

2. BACKGROUND

actual underlying physical system, is a fundamental step of this process. It is through

the knowledge of these distributions that an SMDP agent can evaluate sequences of

actions not only with respect to their total reward, but also considering the time that

is needed for their execution.

2.2.2 Continuous-Time Markov Decision Processes

Another class of models closely related to SMDPs is that of Continuous-Time Markov

Decision Processes (CTMDPs). CTMDPs are defined by the same constructs as a

SMDP, and can in fact be viewed as special cases of the latter class, in that they

assume that all distributions described in the time model fa
s,s′ (refer to Definition 2.2.1)

are exponential in nature. Due to the memoryless property of these distributions, in

this case, the system remains fully Markovian at any given point in time. In contrast,

SMDPs are only Markovian at decision instants.

CTMDPs are suitable, for example, for arrival-rate problems in queueing systems,

and population modeling with limited resources (Guo and Hernández-Lerma, 2009), in

which all events are assumed to be generated by underlying Poisson processes. Any

CTMDP can be transformed into an equivalent discrete-time MDP through a process

of uniformization (Puterman, 1994), which first provides an equivalent, oversampled

continuous time model with equal decay rates for every transition, and then calculates

an appropriate discount factor that accounts for the time in each transition. As in the

case of SMDPs, this allows CTMDPs to be solved through virtually any MDP solution

algorithm.

2.2.3 Generalized Semi-Markov Decision Processes

One limitation of SMDPs is that, even though the time between decision steps may be

governed by non-Markovian distributions, upon reaching a new state, all information

regarding the past execution of the system is assumed to be unnecessary in order to

predict its future states. The lower limit of the integral over time in (2.17) is always

0; otherwise, the process would not retain the Markovian property at decision instants.

In some systems, however, it may be necessary to maintain a non-Markovian temporal

model across decision steps, which in turn may require knowledge of the past execution

of the system. The following example illustrates this problem:

20

2.2 Extensions for Continuous-Time Problems

Example 2.2.1. The problem of persistently enabled events: Suppose that a

robot operates in an environment with two rooms, represented by states L and R, and

is able to move from one room to the other with fixed probability, according to a single

action a. The robot can run out of battery, at which point it will enter the absorbing state

N . The state space and possible transitions of this problem are shown in Figure 2.3.

In that context, we will here refer to “events” as labels for the state transitions ⟨s, s′⟩.

Three events can happen in this system: staying in the same room, estay; moving to the

other room, emove; and running out of battery, ebattery.

L R N

emove

emove

ebattery

ebattery

estay

estay

Figure 2.3: A simple scenario which showcases the limitations of SMDPs, and illustrates
our definition of “events”. Events, which are abstractions to transitions between states, are
represented by arrows and labeled as {estay, emove, ebattery}.

Assume that the battery life of the robot is a random variable TB governed by an

arbitrary positive probability distribution, g(tB). For example, Weibull distributions are

commonly used for this purpose. In an SMDP model of this system, this would mean

that fa
·,N = g(tB). Note that TB is measured with respect to a fixed clock, which is

external to the decision-making process. In other words, before each decision, the time

until the battery of the robot runs out is decremented by the sojourn time at the previous

state.

Suppose now that the robot experiences, with a fixed period ∆, either estay or emove.

Naturally, the robot will function while TB − k∆ > 0, for k ∈ N. At each step, the

expected remaining battery life is E{TB | TB > k∆} =
∫∞
k∆ p(tB | tB > k∆)tBdtB =

∫∞
k∆ h(tB)tBdtB where

h(τ) =

{
g(τ)∫∞

k∆
g(τ)dτ

ifτ > k∆

0 otherwise

The flaw of this model is that, at each iteration of (2.17), all of the information

regarding the past of an SMDP is lost, so it is impossible to describe p(tB | tB > k∆) at

step k, unless g(tB) is exponential (i.e. the process is actually a CTMDP), and therefore

memoryless; or unless k is included in the system state. That is to say, the perceived

21

2. BACKGROUND

probability of running out of battery in states L, R is the same regardless of how many

decision steps have elapsed. This would erroneously represent that the expected lifetime

of the battery of robot would remain constant throughout execution. The event ebattery

is said to be persistently enabled, in that it remains enabled despite the triggering of

other events.

In practice, this problem of modeling “persistently enabled events” appears in the

context of modeling multiagent system, or systems with otherwise asynchronous dynam-

ics. We will revisit this problem in Chapter 5, in the context of multi-robot systems.

Before proceeding, we will present the formal definition for what constitutes an

“event”, which will be used throughout this work:

Definition 2.2.2. Let E be a countable set. E is a set of events over a state space S if

there is a surjective mapping Φ : S × S → E such that, for all pairs of state transitions

⟨u, u′⟩, ⟨v, v′⟩ ∈ S × S:

• If Φ(u, u′) = Φ(v, v′), then T (u, a, u′) = T (v, a, v′) and fa
u,u′ = fa

v,v′ ,

∀a ∈ A (events abstract transitions with the same stochastic properties);

• Φ(u, u′) ̸= Φ(u, u′′) if u′ ̸= u′′ (events univocally identify transitions from each

state).

Furthermore, we will formally define the enabled, disabled, and persistently enabled

properties for events:

Definition 2.2.3. Let E be a set of events over a state space of an SMDP ⟨S,A, T,F , R, C⟩.

An event e ∈ E is said to be enabled at ⟨s, a⟩ if there exists s′ ∈ S such that e = Φ(s, s′)

and T (s, a, s′) > 0.

The set of all enabled events in these conditions will be represented as E(s, a). Any

event e′ ∈ E such that e′ /∈ E(s, a) is disabled at ⟨s, a⟩.

Definition 2.2.4. Let E be a set of events over a state space of an SMDP ⟨S,A, T,F , R, C⟩.

An event e ∈ E is persistently enabled from step n to n + 1 if e ∈ E(sn, an) and

e ∈ E(sn+1, an+1), but Φ(sn, sn+1) ̸= e (e did not trigger at step n).

We are now in a position to define Generalized Semi-Markov Decision Processes

(GSMDPs), which were first introduced by Younes and Simmons (2004), in an effort to

address the aforementioned limitations of SMDPs. GSMDPs are an extension of the ear-

lier Generalized Semi-Markov Process (GSMP) formalism, introduced in (Glynn, 1989)

22

2.2 Extensions for Continuous-Time Problems

to analyze Discrete Event Systems (DES). This establishes a close parallelism between

SMDPs and areas of the theory of Discrete-Event Systems (Cassandras and Lafortune,

1999) which explicitly model time, such as Stochastic Timed Automata (STA) (Glynn,

1989) and Generalized Stochastic Petri Nets (GSPNs) (Murata, 1989). In GSMDPs

(and GSMPs), the occurrence of an event in the system does not necessarily erase all

information of past events, actions, and triggering times. This makes it possible to infer

the time which has elapsed since each event became enabled, even if different events

have been meanwhile triggered. This information, in turn, allows for the accommo-

dation of general non-Markovian temporal distributions over state transitions, across

multiple decision instants. Note that, due to the possible non-Markovian dependen-

cies on the past history of the system, a GSMDP cannot be adequately described by a

2-DBN (see Figure 2.4).

Definition 2.2.5. A Generalized Semi-Markov Decision Process (GSMDP) is a tuple

⟨S,A, T,F , R, C, E⟩ where:

S,A, R, C have the same definition as in a Semi-Markov Decision Process (see Defini-

tion 2.2.1);

E is a set of events over S;

T : S × A × E → [0, 1] represents event probabilities, T (s, a, e) = Pr(e | s, a), for s ∈

S, a ∈ A, e ∈ E;

F holds the same meaning as in an SMDP, but it is instead mapped by events, and it

can depend on the execution history of the system since an event became

enabled. Formally, let tk ∈ R
+
0 represent the elapsed time between steps k − 1 and

k, for k > 0 (with t0 = 0); then, ϵ⃗0:n = {⟨s0, a0, t0⟩, ⟨s1, a1, t1⟩, . . . ⟨sn−1, an−1, tn−1⟩}

represents the execution history of the system up to (but not including) step n. If e

was enabled at step m < n, and remained enabled for all steps {m+ 1 . . . , n− 1}, then

fa
e (· | ϵ⃗m:n) is such that

∫ β
α fa

e (τ | ϵ⃗m:n)dτ = Pr(α ≤ te ≤ β | a, e, ϵ⃗m:n). Specifically,

fa
e (· | ϵ⃗m:n) represents the probability density over the remaining time te until event e

triggers, given that it has been enabled since step m.

It should be noted that our definition of “events”, and consequently, of GSMDPs, is

slightly different than that which is used in (Younes and Simmons, 2004). In Chapter 5,

we will compare both definitions, and show that GSMDP models can be converted

23

2. BACKGROUND

s0 s1

a0

e0

a1

e1

sn

an

en

t0 t1 tn

Figure 2.4: A DBN representing a GSMDP. Since the system is non-Markovian, it cannot
be described through a 2-DBN. Some connections are dash-dotted for better visibility.

between them; consequently, the validity of the methodologies which we will discuss in

this work, with respect to the GSMDP framework, is not affected by this dissimilarity.

It follows from Definition 2.2.5 that, in a GSMDP, the actions of the agent may also

depend on execution histories, instead of simply on states. Let ti represent, as above,

the relative time between decisions i− 1 and i. Then, Tn =
∑n

i=0 ti represents the total

time elapsed in the system until step n. Ultimately, the goal of the planning problem

is to optimize the value function over the complete execution history:

V π(ϵ) =
∞
∑

n=0

e−λTn

(

R(sn, δ(⃗ϵ0:n)) +

∫ tn

0
e−λtC(sn, δ(⃗ϵ0:n))dt

)

(2.20)

The maximization of (2.20) is a difficult problem, since the underlying dynamics are

non-Markovian, and typical DP approaches cannot be directly applied in such a case.

Younes and Simmons (2004) proposed a method to solve a GSMDP by first approximat-

ing each non-exponential component of F with a Phase-Type distribution. Phase-Type

distributions describe the time that is needed for a continuous-time Markov chain (that

is, a CTMDP without decision inputs) to evolve from an initial state to an absorb-

ing state. It is well-known that Phase-Type distributions can be used to approximate

any general positive probability distribution. Using this technique implies an expan-

sion of the state space of the problem (via the introduction of virtual Markov chains

in the system to emulate a given non-Markovian transition), but allows the resulting

24

2.3 Extensions for Partially Observable Domains

approximate model to be representable by a CTMDP. Consequently, and through uni-

formization, typical discrete-time MDP methods can be applied. We will review this

method in greater detail in Chapter 5, in the context of multi-robot decision-making.

Alternatively, Rachelson et al. (2008) have recently proposed an approximate reinforce-

ment learning algorithm for GSMDPs based on policy iteration.

2.3 Extensions for Partially Observable Domains

In many practical scenarios to which MDPs can be applied, it is not unrealistic to as-

sume that the state of the environment can indeed be known by the agent. Such is

the case of various scenarios in Operations Research, where the state can comprise the

number of people in a queue, or the phase of a manufacturing process, for example; and

also for virtual scenarios (Little, 1955; Stidham and Weber, 1993; Tesauro, 1992). How-

ever, whenever a physical agent is required to actively sense its environment, through

whichever means are available to it, this assumption may quickly be violated, since

typically only an estimate of the actual state of the system can be obtained. In other

scenarios, even if the agent can sense its surroundings with great accuracy, it may still

only be observing part of the complete state of the system. The term partial observabil-

ity refers to both of these situations, and establishes a contrast with the fully observable

scenarios so far described, in which the state is directly accessible at any time. The

field of Robotics provides evident examples of scenarios with partially observable envi-

ronments (Mahadevan and Khaleeli, 1999; Miller et al., 2009; Nourbakhsh et al., 1995;

Spaan and Vlassis, 2004; Sridharan et al., 2010). POMDPs can also be viewed as a

controllable form of Hidden Markov Models (HMMs), which are widely used in the field

of Bayesian Inference (Murphy, 2002).

sn sn+1

an

on on+1

Figure 2.5: A 2-DBN representing a POMDP.

25

2. BACKGROUND

2.3.1 Partially Observable Markov Decision Processes

The framework of Partially Observable Markov Decision Processes (POMDPs) consti-

tutes a conceptually straightforward extension of MDPs to situations in which the agent

is not only allowed to act upon the environment, but is also able to observe it at each

step of the process. These observations are generated by the environment itself, through

an associated stochastic model, as a response to a given state-action pair. The 2-DBN

representation of a POMDP is shown in Figure 2.5.

Definition 2.3.1. A Partially Observable Markov Decision Process (POMDP) is a

tuple ⟨S,A, T,O, O,R⟩, where:

S,A, T, R have the same definition as in a Markov Decision Process (see Definition

2.1.1);

O is a set of observations o which can be generated by the environment;

O : O × S ×A → [0, 1] is the observation function, such that O(a, s′, o) = Pr (o | s′, a)

for o ∈ O, s′ ∈ S, a ∈ A;

The central difference in the theoretical treatment of POMDPs, with respect to

MDPs, is that, since the state of the system is no longer directly accessible, POMDPs

must instead operate over elements of Ξ(S). These elements are often referred to as

belief states, and represented as b ∈ B, where B ≡ Ξ(S) and is likewise termed as belief

space. Each component bn(x) represents the belief of the agent that the true state of

the system at step n is x: that is, bn(x) = Pr(sn = x | b0, a0, o0, . . . , an−1, on−1, on),

where b0 is an initial belief state.

2.3.1.1 Planning Algorithms for POMDPs

As described through Equation (2.7), a value function of an MDP can be compactly

represented as a finite-dimensional quantity (specifically, a vector in R|S| representing

the values of the |S| states of the problem). In the POMDP case, since there are

infinitely many elements in B, this is no longer possible, and it is therefore necessary to

obtain an alternative representation for the expected total reward associated with any

policy π : B → A, over a decision-making horizon, h. This expectation, taken over the

26

2.3 Extensions for Partially Observable Domains

h steps of the process, takes the form:

Eπ

{
h−1
∑

n=0

γn
∑

s∈S

bn(s)R(s, δn(bn))

}

. (2.21)

In turn, the Bellman equation (2.5) applied to finite-horizon POMDPs becomes:

V ∗
n (b) = max

a∈A

{

∑

s∈S

b(s)

(

R(s, a) + γ
∑

s′∈S

∑

o∈O

T (s, a, s′)O(a, s′, o)V ∗
n+1(b

a,o))

)}

,

(2.22)

where ba,o is the updated belief, such that, ∀s ∈ S:

ba,o(s′) =

O(a, s′, o)
∑

s∈S
b(s)T (s, a, s′)

∑

u′∈S
O(a, u′, o)

∑

u∈S
b(u)T (u, a, u′)

. (2.23)

This function intuitively describes the process of incorporating information from the

actions and observations of an agent into its state estimate.

Equation (2.22) enables the application of the Value Iteration algorithm to POMDP

settings. It can provide an optimal (or in the infinite-horizon case, an approximately

optimal) policy for the agent for any given belief state, but it does not address the

problem of how to actually represent the respective solution as a finite-sized structure,

so that it can be accessed at run-time, and computed offline. It is well known, however,

that the function V ∗
n in (2.22) is a piecewise-linear convex function (Cheng, 1988; Sondik,

1971), and, as such, admits a compact representation as:

V ∗
n (b) = max

α∈Γn

{

∑

s∈S

b(s)α(s)

}

, (2.24)

where each α is a |S|-dimensional vector, often simply referred to as an α-vector, and

Γn is the set of all such vectors at step n. Furthermore, a mapping ν : Γn → A exists

which associates each α-vector with an action at that step. Intuitively, an α-vector

encodes, as a linear function of the belief state of the system, the expected reward of

taking action ν(α) and then following the optimal policy for the remaining steps. Using

representation (2.24) allows a value function to be represented at each step by simply

27

2. BACKGROUND

storing the sets Γn. The respective policy can easily be extracted:

δn(b) = ν

(

arg max
α∈Γn

{

∑

s∈S

b(s)α(s)

})

(2.25)

An important property of the value function when represented in this way, which will

later be used in this work (see Chapter 4), is that, due to its convexity, each α-vector

defines a convex region of B over which it is maximal. For a finite number of alpha

vectors (this number is bounded above by |A|
|O|h+1−1

|O|−1 (Cassandra, 1998a)), all regions

generated by Γn are convex polytopes. The region associated with a given α ∈ Γn is

defined by the following constraints:

∑

s∈S

b(s)
(

α′(s)− α(s)
)

≤ 0 , ∀α′ ∈ Γn |α
′ ̸= α (2.26)

∑

s∈S

b(s) = 1 (2.27)

b(s) ≥ 0 , ∀s ∈ S (2.28)

These regions are referred to as the linear support of each α ∈ Γn, or L(α) (Cheng,

1988). This concept is exemplified in Figure 2.6. The linear support of a given α is

non-empty if and only if there is some point b ∈ B for which δn(b) ≡ ν(α), according to

(2.25)1. All vectors which do not verify this condition may be discarded, since they do

not contribute any information towards the policy of the agent (Cassandra, 1998a).

V

α1

α2 α3

α4

︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

L(α1) L(α2) L(α3) L(α4)
(0, 1) (1, 0)

Figure 2.6: The linear supports of a value function as a convex partition of B.

Attempting to optimally solve a finite-horizon POMDP is a PSPACE-hard problem

(Papadimitriou and Tsitsiklis, 1987). Classical POMDP algorithms attempt to deter-

mine the minimal set of α-vectors which make up the optimal value function, either

1Note that the extreme case in which the linear support for α ∈ Γn is a singleton set is
irrelevant, since this implies that there exists α′ ∈ Γn\α such that b · α = b · α′ for the only
point b ∈ L(α).

28

2.3 Extensions for Partially Observable Domains

by enumerating every such possible vector and pruning the result (Monahan, 1982), or

by exploring the structure of the induced linear supports over the belief space (Cas-

sandra, 1998a; Cheng, 1988). Many state-of-the-art POMDP solution algorithms forgo

strict optimality in favor of scalability. A particularly successful class of algorithms is

that of point-based solvers. These solvers optimize expected reward over a finite set of

samples taken from the belief space. This approach takes advantage of the fact that,

from a given initial belief, there is only a finite set of possible (or “reachable”) belief

states, given all possible observations, and the actions selected by the agent at those

points. Therefore, calculating the optimal value function over the complete belief space

often becomes unnecessary. The set of maximal α-vectors, over all belief state samples,

constitutes an approximation to the optimal value function. Examples of this type of

algorithm include PBVI (Pineau et al., 2003), SARSOP (Kurniawati et al., 2008) and

Perseus (Spaan and Vlassis, 2005).

2.3.1.2 Continuous-Domain POMDPs

When modeling physical problems with naturally continuous variables, one possible

approach is to consider continuous DT models for the environment from the onset,

sidestepping the need to perform any discretization of those variables.

This poses a complex theoretical obstacle, however, since belief distributions become

infinite-dimensional structures. In order to maintain analytical tractability, a possible

solution is to represent underlying belief distributions in a parametric form, either by

assuming system linearity (Porta et al., 2006), by approximating non-linear models

through switching-mode linear components (Brunskill et al., 2010), or by approximating

the true distribution within a family of known closed-form alternatives (Zhou et al.,

2008). Another popular approach is to use particle-filter techniques to approximate

non-parametric distributions (Porta et al., 2006; Thrun, 2000). It should also be noted

that most of these solutions focus on continuous-state POMDPs, and few can also handle

continuous action and observation spaces (Porta et al., 2006).

2.3.2 Partially Observable Semi-Markov Decision Processes

The considerations which have been previously made regarding the limitations of the

MDP framework when dealing with time-dependent problems (Section 2.2), are also

applicable to POMDPs. Likewise, the extensions which have been formulated in order

29

2. BACKGROUND

to overcome these shortcomings, for the fully observable case (CTMDPs, SMDPs and

GSMDPs), provide a basis for the definition of analogous counterparts for partially

observable domains. One such readily defined extension, introduced in (White, 1976),

and used in the context of mobile robot navigation (Mahadevan and Khaleeli, 1999),

is the class of Partially Observable Semi-Markov Decision Processes (POSMDPs). For

concreteness, a POSMDP incorporates a time model F , and cumulative reward structure

C (see Definition 2.2.1) into a commonly defined POMDP (see Definition 2.3.1).

A POSMDP can be reduced to its embedded POMDP if it is controlled only at tran-

sition instants (White, 1976), as described in Section 2.2.1 for the SMDP case. This

makes synchronous POSMDPs solvable through ordinary POMDP algorithms (Mahade-

van and Khaleeli, 1999), and implies that all considerations made with respect to partial

observability are equivalent between the two frameworks. However, POSMDPs are also

unable to model event concurrency, making them unsuitable for general multiagent

problems, in their original form.

2.4 Extensions for Multiagent Decision-Making Problems

While the various frameworks so far described already allow a broad class of realistic

problems to be modeled, all of them assume that there is a single agent, or a system

which can be viewed as a single agent, involved in the decision-making process. However,

there is a clear interest in being able to apply the aforementioned theory to decision-

making problems in multiagent systems. Multiagent DT methods are of particular

relevance to the field of Cooperative Robotics, which provides the main case-studies

for this work, and in which various practical applications of MDP-based models have

been reported (Capitán et al., 2013; Matarić, 1997; Miller et al., 2009; Oliehoek and

Visser, 2006). Other applications of multiagent decision-making include sensor networks

(Nair et al., 2005), and network routing problems in distributed systems (Pajarinen and

Peltonen, 2011a; Tao et al., 2001).

Adding multiple agents adds another layer of complexity to the decision-making

problem, since, in the general case, agents will then have to reason not only over their

own actions and observations, but also over those of other agents, taking into account

possible interdependencies.

30

2.4 Extensions for Multiagent Decision-Making Problems

2.4.1 Decentralized Partially Observable Markov Decision Processes

Decentralized POMDPs (Dec-POMDPs) constitute the most general MDP-based frame-

work with respect to the scope of multiagent scenarios it can model (refer to Figure 2.1).

Dec-POMDPs were introduced in (Bernstein et al., 2002) as a straightforward exten-

sion of POMDPs to scenarios where more than one agent may be acting upon the

environment, and observing some of its features with uncertainty.

In Dec-POMDPs and their respective multiagent-oriented subclasses, it is often

necessary to index model components (e.g. actions, observations) with respect to an

individual agent, and also with respect to the corresponding step in the decision-making

process. In the following discussion, the notation zi,n will be used to refer to a generic

element z of agent i at step n. For simplicity, the step index will be omitted if it is clear

or unspecified in a given context.

Definition 2.4.1. A Decentralized Partially Observable Markov Decision Process (Dec-

POMDP) is a tuple ⟨d,S,A, T,O, O,R⟩, where:

d is the number of agents;

A =
d∏

i=1
Ai is a set of joint actions. Ai contains the individual actions of agent i. Each

joint action a ∈ A is a tuple of individual actions ⟨a1, a2, . . . , ad⟩, where ai ∈ Ai;

O =
d∏

i=1
Oi is a set of joint observations o. Oi contains the individual observations of

agent i. As with actions, O := {⟨o1, o2, . . . , od⟩ | oi ∈ Oi};

S, T, O,R have the same definition as in a Partially Observable Markov Decision Process

(see Definition 2.3.1), and are mapped, where appropriate, by joint actions and joint

observations.

In this case, the goal of the decision-making problem is to maximize the reward

gathered by the team (since R maps from joint actions and states), so it is assumed that

all agents are cooperating towards a team-driven behavior. However, it is very important

to note that, in a general Dec-POMDP, observations are not necessarily shared amongst

the team: in general, each agent i receives only its respective observation oi (see Figure

2.7). This raises an important issue regarding inter-agent coordination, since agents

will have to take actions which jointly maximize collective reward, based only on locally

available information.

31

2. BACKGROUND

a2,n

o2,n+1o2,n

sn sn+1

o1,n+1o1,n

a1,n

Figure 2.7: A 2-DBN representing an example of a two-agent (d = 2) Dec-POMDP.

The amount of local information which is available to an agent is one of the fun-

damental features which are characteristic to each sub-class of this framework. As a

relevant example, if each agent is allowed to observe part of its environment, but the

composition of all individual observations allows the joint state of the system to be uni-

vocally identified, such that there is a surjective mapping G : O → S, then the system

is said to be jointly fully observable, also known as a Dec-MDP (Bernstein et al., 2002).

Note that for each agent, the problem may still be partially observable from a local

perspective. The presence of communication constitutes another characteristic feature

which further refines each of these model classes (see Section 2.4.2). However, in the

most general setting, nothing is assumed regarding any of these qualities.

If communication is unavailable, this makes it impossible to maintain a joint be-

lief over the global state of the process, since, through (2.23), the observations of all

agents would have to be shared at each time-step. Without such a sufficient statistic

to exploit the Markovian nature of the process, agents are forced to reason over tem-

poral sequences (histories) of actions and observations, each of which might have led

the system to a particular state. Joint policies, in this context, then become maps of

action-observation histories to actions. Furthermore, since, for each agent, both the

actions and observations of all other agents remain unknown, the number of all possible

such histories increases exponentially with the number of decision steps (in particular,

there are (|A||O|)n histories at step n).

Although optimal Q-value functions have been shown to exist for general Dec-

POMDPs by Oliehoek et al. (2008a), which allow a particular action-observation his-

32

2.4 Extensions for Multiagent Decision-Making Problems

tory to be valued with respect to the optimal joint policy, the same authors prove

that obtaining an optimal policy based on such a function through DP, as in the case

of (PO)MDPs, is intractable, except for very small-scale problems. Optimally solving

a non-communicative Dec-POMDP is a provably NEXP-complete problem (Bernstein

et al., 2002). However, optimal algorithms for finite-horizon Dec-POMDPs exist, and

act as a benchmark for small-scale problems (Hansen et al., 2004; Spaan et al., 2011).

In order to circumvent the inherent computational intractability of finding the op-

timal solution, common Dec-POMDP algorithms approximate the optimal result either

through point-based DP (Seuken and Zilberstein, 2007), a search in the space of pos-

sible joint policies (Szer and Charpillet, 2005), or by representing the problem as one

of Expectation-Maximization, over the parameters of Finite-State Controllers (FSCs)

which encode the joint policy (Kumar and Zilberstein, 2010; Pajarinen and Peltonen,

2011a).

Outside of the MDP framework, Dec-POMDPs can be viewed as a subset of a yet

more general mathematical framework developed in the scope of game theory, that of

Partially Observable Stochastic Games (POSGs) (Oliehoek, 2010). In that case, the

reward structure is generalized so that agents may be pursuing individually-defined

rewards and goals, as opposed to being restricted to cooperative behavior. This allows

adversarial decision-making problems to be modeled, which fall outside of the scope of

this work. However, some state-of-the-art solution methods for general Dec-POMDPs

draw upon game-theoretical concepts, such as representing the decision-making process

at any given time as a one-step Bayesian Game (Oliehoek et al., 2008a).

2.4.2 Modeling Communication

In practical multiagent applications, it is often reasonable to assume that some form of

communication can be established between different agents. This is particularly valid

in the domain of cooperative robotics.

The availability of communication raises three additional decision-making problems:

• What to communicate;

• When to communicate;

• Who to communicate with.

33

2. BACKGROUND

In order to address these issues, various extensions to the Dec-POMDP framework were

proposed, which introduce additional structures to explicitly model communication de-

cisions and costs, such as the COM-MTDP framework (Pynadath and Tambe, 2002).

However, obtaining a solution to these types of models remains NEXP-complete prob-

lem, since, even if agents are able to maintain a joint belief state through communication,

overcoming the need to reason over complete histories of actions and observations, the

number of possible communication decisions to be evaluated would once again increase

the complexity of deciding the joint policy (now both an action policy and a communi-

cation policy would be required) by an exponential factor. In the worst case, messages

can be too costly for any communication decision to be taken, and so the problem is

once again reduced to a non-communicative scenario.

Goldman and Zilberstein (2004) showed that exchanging observations between agents,

at each time-step, is at least as good as any other inter-agent communication language.

This fact allows problems in which free communication is assumed, and observations are

shared between agents, to be viewed as centralized versions of their respective model

classes. For example, under these circumstances, Dec-MDPs reduce to centralized MDPs

(this had already been presented by Boutilier (1996)), also known as Multiagent MDPs

(MMDPs). In contrast to the NEXP-complete complexity of solving a general Dec-

MDP, finding the solution to an MMDP is a P-complete problem (Papadimitriou and

Tsitsiklis, 1987), since it is the same problem as that of solving a single agent MDP,

with as many individual actions as there are joint actions in the Dec-MDP case.

This difference in computational complexity prompts a different approach to the

problem of modeling communication: if the agents are assumed to communicate freely

with each other, and exchange observations at each time step, the centralized model

may then be solved at a lower computational cost. Finally, communication usage can

be minimized a posteriori, by analyzing the resulting joint policy. This approach was

taken by Roth et al. (2007) for Dec-MDPs. However, when dealing with teams of

robotic agents, it is not often reasonable to assume that the state of the system is

jointly-fully observable. It is then more natural to apply this approach to the general

class of Dec-POMDPs, that is, to consider that through free communication, these

models can be regarded as centralized Multiagent POMDPs (MPOMDPs). By doing

so, solving the model becomes a PSPACE-complete problem. This is the approach

taken in (Roth et al., 2005b), and also in this work (see Section 3.2.7.1). The main

34

2.4 Extensions for Multiagent Decision-Making Problems

disadvantage of using model centralization is that implicit communication is disregarded

(Goldman and Zilberstein, 2004). This is the information which can be extracted from

the dependencies in the actions and observations of different agents. In turn, this

implies that the resulting communication policies may be of inferior quality than if an

explicit approach to communication is used instead. Another relevant issue is that fully

centralized models cannot easily describe communication failures or delays. Spaan et al.

(2008) describe a method to reason over stochastically delayed communication (with up

to one step of delay) in this setting, using Bayesian Games to solve the respective

planning problem.

When considering a centralized, team-wise model, it is advantageous to maintain it

in a factored format (discussed in the following section). Otherwise the dimensions of

the model components may grow exponentially in the number of agents.

2.4.3 Factored Models

All MDP-based frameworks described so far suffer from what has come to be known as

the “curse of dimensionality” - that is to say, the required space and time for the solu-

tion of these models grows exponentially with the cardinality of the model components

(Bellman, 1957b). Besides its effect on computational complexity, this exponential na-

ture of the total number of elements in each component of a stochastic model implies

that, for planning approaches, even the process of filling in their values quickly becomes

impractical if these conditional probability distributions (CPDs) are represented in a

tabular form (T and O have, respectively, (|S|2|A|) and (|S|2|A||O|) elements), and if

this process cannot be automated.

This greatly impacts the scalability of such models, and, as such, has led to the

development of alternative representations which aim to mitigate this effect. One such

alternative is to obtain a factored representation of the models, in which each of the

components of the system may be described as a combination of characteristic factors,

which are typically exponentially smaller in size (Boutilier and Poole, 1996; Hansen and

Feng, 2000; Poupart, 2005).

Factored models exploit the structure of a given problem to achieve representational

simplicity in two different ways: first, by considering that each state/action/observation

factor can be conditionally dependent on only a subset of other factors, which greatly

reduces the number of variables involved in the definition of each CPD; secondly, through

35

2. BACKGROUND

a2,n

x3,n x3,n+1

o2,n+1o2,n

x2,n x2,n+1

x1,n x1,n+1

o1,n+1o1,n

a1,n

Figure 2.8: A 2-DBN representing an example of a factored two-agent Dec-POMDP.
Note that the number of state factors (3) and the number of agents (2) is not necessarily
the same.

the use of decision diagrams or trees to represent the structure of each CPD, further

simplifying their description.

In this sense, the Dec-POMDP framework, as described in Definition 2.4.1, already

possesses naturally factored action and observation spaces (an agent-wise factorization).

A factored Dec-POMDP may further extend this property to the state of the system,

by introducing a set of k state factors X = {Xi : i ∈ {1, . . . , k}}, so that, in turn,

S =
∏k

i=1Xi. Each Xi is arbitrarily sized.

Although the Dec-POMDP example is here used, factorization can be applied to

any of the previously described frameworks, without any loss of generality. A graph-

ical structure such as the DBN presented in Figure 2.8 accompanies most factored

representations, which allows the conditional dependencies between the various model

components to be made clear. It also enables the compact representation of the tran-

sition and observation models of the system as sets of local Conditional Probability

Tables (CPTs) (Poupart, 2005), or as Algebraic Decision Diagrams (Hoey et al., 1999),

for further savings in the amount of space required to contain this information. Sev-

eral of the currently fastest, most scalable solution algorithms for (PO)MDPs use these

properties, such as SPUDD (Hoey et al., 1999) and Symbolic Perseus (Poupart, 2005).

The notions of conditional independence expressed by factored models are of par-

36

2.4 Extensions for Multiagent Decision-Making Problems

ticular relevance in multiagent scenarios. General Dec-POMDPs do not assume any

particular structure in the interaction between agents, but if a factored representation

is possible, it will often highlight the independency between the effects of the actions

of certain agents, or groups of agents, at a given step. This originates the concept of

locality of interaction in multiagent problems (Oliehoek et al., 2008b), which refers to

the fact that agents will typically influence others which are acting in the same “neigh-

borhood”1 but may act independently from distant or unrelated agents, and so will tend

to form local groups of cooperating agents, according to the structure of a particular

scenario. The reward model can also be factored, in this case, by considering the joint

reward gathered by the team, at a given step, as the summation of local reward terms

associated with different clusters of state factors and agents. This additive property

extends to the value function, and therefore the maximization of each of the involved

terms becomes a simpler problem involving an exponentially smaller number of vari-

ables. These considerations may greatly simplify the problem of calculating a joint

policy in cases where interactions between agents are sparse.

It is important to note, however, that the type of inter-agent (in)dependency so

far described is typically only valid instantaneously, or for very short horizons - as

the system evolves, its factors will rapidly correlate, unless they constitute strictly

independent subprocesses over all steps (Boyen and Koller, 1998). If strict independence

is indeed assumed, then the model can be classified as being Transition-Observation

Independent (TOI). A TOI subclass of Dec-POMDPs is that of Network-Distributed

POMDPs (ND-POMDPs) (Nair et al., 2005). In such a model, the decision problem

is only coupled through the factored reward model (in fact, if the reward model could

also be strictly decoupled across all agents, a TOI scenario could instead be modeled

as separate decision problems from the onset). This assumption allows for greatly

improved scalability, but in practice it often severely limits the modeling capabilities of

the framework. A more general approach is taken by Transition-Decoupled POMDPs

(TD-POMDPs) (Witwicki, 2012), which assumes that the problem can be decoupled for

a particular agent if the policies of other agents are assumed fixed. This allows different

agents to influence mutually shared state factors.

1“Neighboring” agents are commonly thought to be those with concurrent influence arcs in
the 2-DBN representing the problem, although this notion can be extended for any number of
steps. It often correlates with, but does not necessarily imply, a spatial relationship between
agents.

37

2. BACKGROUND

Another relevant property of factored models is that, in the general case, the de-

pendencies between the actions of different agents may change depending on certain

variable assignments (here state factors, actions), within a given decision step. If so,

the variables are said to exhibit context-specific independence (Boutilier et al., 1996),

which can be exploited to further reduce the amount of space required for the associated

stochastic models.

38

Chapter 3

On the Practical Implementation of

MDPs and Related Models

Although MDPs and their generalizations have been shown to form a set of powerful and

versatile decision-theoretic frameworks, which can model, and solve, a wide array of AI

applications, the practical implementation of these frameworks in real-world scenarios

is not as widespread as the existing amount of underlying theoretical development could

imply. A common criticism against the use of MDP-based extensions lies in the inherent

computational complexity of obtaining their respective solutions. Although this is not so

significant for classical discrete MDPs, which have been shown to be solvable in polyno-

mial time (Papadimitriou and Tsitsiklis, 1987), it is particularly valid for their partially

observable and decentralized extensions, which range from PSPACE-complete (finite-

horizon POMDPs) to being undecidable (infinite-horizon (Dec-)POMDPs) in terms of

complexity (Bernstein et al., 2002; Papadimitriou and Tsitsiklis, 1987). This ultimately

impairs the scalability of these models, unless significant structure is present, and it can

be exploited through techniques such as factorization (see Section 2.4.3).

This chapter will present a brief review of existing practical implementations of

MDP-based frameworks (Section 3.1). Section 3.2 explores the current practical limi-

tations of POMDPs, for teams of agents in realistic environments. A small-scale mul-

tiagent scenario, which was developed in the scope of this work as a means of exposing

these limitations, is also introduced and evaluated.

39

3. ON THE PRACTICAL IMPLEMENTATION OF MDPS AND
RELATED MODELS

3.1 A Review of MDP-Based Applications

The importance of documenting real-world applications of the MDP framework had

already been recognized as early as the work of White (1985), leading to subsequent

surveys on the topic by that author (White, 1988, 1993). An important distinction is

made in those works, between accounted implementations of MDPs based on real-world

data, which act as a proof-of-concept for the underlying theory, stimulating further

research, but that have gone no further in practice; and those which have provided

decision-making policies that have actually been implemented in industry, finance, or

other activities outside of the research environment, or have at least influenced relevant

decisions made therein. In the latter sense, and despite an early, apparent lack of

applications of the MDP framework, there was ample evidence of its versatility through

the diversity of areas in which its practical use, over time, had indeed been reported.

Notable examples include:

• The operation of hydroelectric power systems (Lindqvist, 1962; Little, 1955; Wang

and Adams, 1986). The objective of these applications is to control the amount of

water contained in a reservoir, which acts as a source to hydroelectric generators,

such as to optimize the economic efficiency of the plant. The state of the system

represents the level of water in the reservoir, and has an associated (economic)

cost. The inflow to the reservoir is uncertain, since it originates in a natural

water course. This domain of application for MDPs (and closely related stochastic

programming techniques) remains active to this date (Fleten and Kristoffersen,

2008; Pritchard et al., 2005);

• Financial applications, such as managing investments while maintaining an ex-

pected balance, taking into account uncertain expenses and returns (White and

Norman, 1965), or uncertain time to the next investment opportunity (Derman

et al., 1975). The reader is referred to the work of Bäuerle and Rieder (2011) for

recent developments in this field;

• Inventory management (Chao and Manne, 1983; Fabian et al., 1959), a classi-

cal problem in Operations Research. The level of resources in stock is modeled

as (part of) the state of the system, subject to changes through demand, and

40

3.1 A Review of MDP-Based Applications

decisions correspond to restocking operations associated with possibly uncertain

costs;

• Maintenance and repair scheduling (Dreyfus, 1957; Duncan and Scholnick, 1973),

where the age and condition of the respective equipments is taken as the state,

subject to random failures, and decisions correspond to repair operations, inspec-

tions, or the purchase of components;

• Queueing management (Ignall and Kolesar, 1974; Low, 1974). In these problems,

the number of elements in a queue, which has an uncertain arrival rate, is typically

modeled as the state of the system. Each element is assigned a utility for the

service, as well as a potential waiting cost. Decisions can consist of accepting or

rejecting new elements, or changing the utility of each element, thereby affecting

the arrival rate. This is a particularly appropriate field for the use of the CTMDP

and SMDP frameworks;

• Agriculture (Chades et al., 2012; Kristensen, 1994; Onstad and Rabbinge, 1985),

where the population level of a species can be modeled in the presence of limited

resources or epidemic events. Decisions can include disease treatment options, or

the introduction of new individuals.

The reader is referred to (Feinberg and Shwartz, 2002; White, 1993) for more thor-

ough surveys of real and potential MDP applications.

Another particularly relevant area of real-world probabilistic decision-making, in

which there is growing interest in the theory of Markov processes, is that of medical

prognosis and treatment (Ahn and Hornberger, 1996; Hauskrecht and Fraser, 2000;

Shechter et al., 2008). However, this field most often uses Markov models to perform a

posteriori analysis and inference over real data, and there are still few reported imple-

mentations of decision-making policies obtained through the solution of MDPs, as part

of the clinical process (Díez et al., 2011; Schaefer et al., 2005; Sonnenberg and Beck,

1993).

Due to pioneering works such as those of Witten (1977), Sutton (1984), and Watkins

(1989), MDPs became known as a fundamental framework for the study of Reinforce-

ment Learning (RL), triggering rapid development in that sub-field of AI. The increased

41

3. ON THE PRACTICAL IMPLEMENTATION OF MDPS AND
RELATED MODELS

availability of computational power, together with the advances in dynamic program-

ming, enabled the development of a wide number of successful game-playing agents, for

scenarios such as backgammon (Tesauro, 1992), Tetris (Tsitsiklis and Van Roy, 1996),

and chess (Thrun, 1995), among others (Kaelbling et al., 1996). MDP-based RL has

also become, since then, an increasingly popular option to address complex robotics ap-

plications (Kober et al., 2008; Mahadevan and Connell, 1992; Matarić, 1994; Ng et al.,

2006; Riedmiller et al., 2009), due to their performance and simplicity of implementation

when compared to model-based approaches.

In many real-world scenarios, the assumption of full observability is often impractical,

and standard MDP models cannot provide accurate representations of the underlying

systems. The POMDP framework provides the necessary tools to model such partially

observable problems, and so extends the domain of practical applications which can be

formally addressed through decision-theoretic approaches. Early documented applica-

tions of POMDPs to real-world settings were mainly related to inspection and mainte-

nance problems, similar to those described for the MDP case, but in which the condition

of an equipment can only be indirectly known through examination, and so the true

state of the system remains unknown (Eckles, 1968; Ellis et al., 1995; Ohnishi et al.,

1986). Since then, and accompanying the development of this framework, POMDPs

have been shown to be suitable models for a wide range of applications (Cassandra,

1998b), including:

• Population modeling and control, when considering an exact enumeration of in-

dividuals to be infeasible, such as in fisheries (Lane, 1989);

• Corporate decision-making, for problems such as determining whether or not to

perform an internal investigation of a given department, the status of which is

only known indirectly through periodic reports (Kaplan, 1969);

• Financial applications such as dynamic price allocation with unobservable demand

(Aviv and Pazgal, 2005) or stock portfolio management (Wang and Cao, 2011),

considering that stock values are volatile and subject to random changes;

• Spoken dialog management (Williams and Young, 2007; Young et al., 2010), con-

sidering that speech recognition is fallible, and so the “state” of a dialog can only

be observed with uncertainty;

42

3.1 A Review of MDP-Based Applications

• Medical decision-making (Hauskrecht and Fraser, 2000), extending similar MDP

applications to the more realistic setting in which the presence of an underlying

disease can only be tested through investigative actions. Real-world applications

of continuous-time POSMDPs in this domain have been reported by White et al.

(1982);

• Robotics problems, in which POMDPs often provide more realistic models than

their fully observable counterparts, since the sensing capabilities of the agents can

then be taken into account in the decision-making process. POMDPs have been

applied to mobile robot navigation (Koenig and Simmons, 1998; Simmons and

Koenig, 1995; Spaan and Vlassis, 2004; Thrun, 2000), object grasping (Grupen

and Coelho, 2002; Hsiao et al., 2007), target tracking, (Hsu et al., 2008), control

of unmanned aerial vehicles (Miller et al., 2009), and diverse other robotics appli-

cations (Paquet et al., 2005; Pineau and Thrun, 2002). The POSMDP framework

has also been briefly studied in these scenarios (Lim et al., 2004; Mahadevan and

Khaleeli, 1999);

However, of the reported potential applications of the POMDP framework, only a

small subset is known to have produced results affecting lasting, real-world decision-

making problems (of the above, (Eckles, 1968; Ellis et al., 1995; Ohnishi et al., 1986;

White et al., 1982)). It is fair to conclude that in real-world applications, system engi-

neers tend to compromise between model realism and computational/representational

complexity, opting for simpler, if not inaccurate, models such as MDPs in order to avoid

the inherent intractability of large-scale partially observable problems.

Although RL techniques have also been extended for POMDPs (Jaakkola et al., 1995;

Kaelbling et al., 1996), the necessary increase in the sample complexity of approximating

optimal policies through learning has stunted the application of these techniques beyond

those of academic examples. Recently, Vlassis et al. (2009) has reported the successful

application of a learning method for POMDPs, based on the EM algorithm, to the

control of a (single) robotic platform.

Research on multiagent decision-making has been increasingly active over the last

decade. MDP extensions for multiagent systems have been shown to be applicable, in

simulated environments, to the control of general distributed systems involving virtual

43

3. ON THE PRACTICAL IMPLEMENTATION OF MDPS AND
RELATED MODELS

agents (Becker et al., 2004; Oliehoek and Visser, 2006; Pajarinen and Peltonen, 2011a;

Paquet et al., 2005; Tao et al., 2001), specific game-playing scenarios (Wu and Chen,

2008), and sensor networks (Nair et al., 2005)1. However, we note that these applica-

tion examples concern virtual agents. In contrast with the appreciable success of MDP

theory on real single agent domains, there have been comparatively very few reported

applications of any of its derived frameworks to the control of real multiagent systems.

In the field of cooperative robotics, there are few, but noteworthy applications of multi-

agent MDP theory (Bowling and Veloso, 2003; Capitán et al., 2013; Emery-Montemerlo

et al., 2005; Matarić, 1997). These works have regarded cooperative robotics as an

appropriate case study for DT methods, but have not explicitly addressed the practical

problems involved in the application of those methods to physical agents, and ultimately

addressed those problems in an ad-hoc, unstructured manner. Providing an in-depth

look at the properties and requirements of multi-robot systems, from the perspective of

decision-making, constitutes one of the objectives of this thesis, since it may promote

wider acceptance of MDP theory to applications in cooperative robotics.

3.2 POMDPs for Real Teams of Robots

In this section, we will describe the steps involved in the process of modeling a real

team of robots as a POMDP. We will expose the most typical difficulties involved in

this procedure, and review the different techniques which have been proposed, in the

associated literature, to address some of those problems. We will also underline those

problems that remain largely unaddressed, and which will form the basis for the novel

work presented in the remaining chapters of this thesis.

Alongside this step-by-step exposition, we will also put these modeling methods

to practice in a cooperative robotics scenario, which will act as a running example

across the chapter. The case-study for this example is robotic soccer, a widely known

environment for cooperative robotics (Riedmiller et al., 2009; Spaan and Groen, 2003).

1Note that, since the decision-theoretic frameworks which are here being considered as-
sume a cooperative nature between agents, adversarial situations, such as common financial
applications, are not here considered (these scenarios fall typically in the domain of stochastic
game theory, although some MDP extensions have been shown to accommodate adversarial
representations (Ng et al., 2010)).

44

3.2 POMDPs for Real Teams of Robots

At the end of this section, our case-study is then tested in a realistic simulator, which

takes into account the physical properties of the agents.

3.2.1 A Case Study in Robotic Soccer: Overview

Robotic soccer is a particularly challenging environment for applied AI, in that it is

highly reactive and uncertain, but at the same time requires thorough cooperation

between agents.

A common task in robotic soccer is to have various robotic soccer players cooperating

in order to take the ball towards their opponent’s goal. Since this is a conceptual

exercise, the analysis will here be limited to a scenario with two cooperating robots,

although the same considerations could be made for a scenario with a larger team of

robots (assuming that at least one computationally tractable model for the problem

exists).

Figure 3.1: A typical in-game situation in RoboCup Middle-Size League Robotic Soccer,
showing cooperation between two robots.

A snapshot showing an example of cooperation between two robots in a real in-game

setting is shown in Figure 3.1. In this two-agent case, one of the players should carry the

ball forward, and the other should position itself so that it may receive a pass from its

partner, if necessary. The robots may choose to pass the ball in order to avoid imminent

obstacles, since it is difficult to avoid obstacles while carrying the ball. The robot that

carries the ball at any given time will be referred to in this case study as the “Attacker”,

and its partner the “Supporter”. Whenever a pass occurs, the roles of the robots should

switch, meaning that an Attacker becomes a Supporter and vice-versa. The Attacker

should then kick the ball to the goal as soon as it detects an opportunity to score. The

45

3. ON THE PRACTICAL IMPLEMENTATION OF MDPS AND
RELATED MODELS

initial position of the robots and of the ball in their field of play is unknown, and so is

their role. The team should then cooperatively decide which robot should carry the ball.

During the course of their task, the robots may encounter obstacles that they should

be able to avoid, although the position of these obstacles is not known beforehand. The

robots possess sensors to detect their own location, with uncertainty, the position of the

ball, and any surrounding obstacles.

3.2.2 Identifying an Appropriate DT Framework

The first step in modeling any system as a decision-theoretic problem is to select the

appropriate framework, from among the many existing alternatives (some of which have

been described in Chapter 2), which can account for its requirements.

The following queries act as a guideline to identify potential DT frameworks for

a given scenario, according to each of the fundamental qualities of a generic decision-

theoretic model, presented in Figure 2.1:

1. Is the state of the system fully observable?

2. Are there multiple agents involved, and is free communication reasonable?

3. Is the influence of continuous time relevant for the decision-making process?

These queries allow a problem designer to rule out those DT frameworks that should

not be used in a particular situation, if they assume system properties that are not verifi-

able in practice. In most cases, however, there can still be multiple frameworks, differing

in their generality, which can be used to model a given system. These frameworks can

still carry underlying assumptions that are acceptable in practice, making them easier

to model and solve (or train), but may come at the expense of system performance

during execution.

The designer is then faced with a trade-off between expected system performance,

and the operational complexity of the solution to a model. To make matters worse,

when the modeling process is complete, this selection typically becomes definitive, or at

least very difficult to revert – as we will still argue to a further extent, the amount of

work which is invested into the deployment of a particular DT framework in practice is

hard to reuse; if any of the assumptions regarding the properties of a real system were

46

3.2 POMDPs for Real Teams of Robots

to change, there is no guarantee that any of the prior modeling work would carry over

to a different DT framework.

A prime example of a real-world application that can be modeled through different

DT frameworks is that of medical decision aid: several reported solutions assume the

states of the system, directly related to the health of a patient, to be fully-observable

through laboratorial procedures or other forms of analysis (Schaefer et al., 2005); others

take into account the limited reliability of diagnostic procedures, treating the underlying

causes of symptoms as partially-observable (Hauskrecht and Fraser, 2000; White et al.,

1982). Conceptually, the latter approach is more realistic; however, since fully observ-

able models are easier to solve, they also allow for more complex state descriptions (e.g.

variables describing the physical condition of the patient), so their performance is not

necessarily worse. Ultimately, the best approach in practice is the one with the highest

rate of correct diagnostics.

In multiagent scenarios, which are the main focus of this work, this trade-off between

computational complexity and model realism also hinges on the availability of commu-

nication between agents: as it was pointed out in Section 2.4.1, scenarios in which

communication policies must be determined alongside action policies, or in which no

communication is possible, are subject to an exponential increase in computational com-

plexity when trying to obtain an approximately optimal policy. This problem, in itself,

constitutes one of the major obstacles to the practical implementation of decentralized

decision-theoretic models in real scenarios. This issue is here given additional relevance,

since it forms one of the topics in which this work will provide a novel solution.

Remark 3.2.1. Multiagent decision-theoretic frameworks which explicitly model

communication, or which consider non-communicative agents, are difficult to scale

up to realistically-sized problems.

Applying these aforementioned considerations to the presented robotic soccer case

study, it is clear that the specified environment is partially observable. This follows

from the perceptual limitations of the robots – the ball, and any obstacles in the playing

field, can be outside of the visual range of the robots; furthermore, even though the self-

localization of the robots is generally accurate, it can suffer from random failures. Even

through their union the full state of the system cannot be known. Our selection is

47

3. ON THE PRACTICAL IMPLEMENTATION OF MDPS AND
RELATED MODELS

x

y

pr = (xr, yr)

θi

di
vr

CTMDP

(a)

on = door

s0

s1

s2

s3

s4s5

s6

s7

s8

s9

an = move left

(b)

Figure 3.2: The contrast between the physical operation of a mobile robot and its decision-
theoretic interpretation. (a) For a typical mobile robot, the state (its position), controls
(velocity) and sensor data (here depicted as a set of range-and-bearing readings) are all con-
tinuous and multidimensional; (b) Most tractable DT models assume a discrete, symbolic
representation for states, actions, and observations. Mapping such symbolic representa-
tions to/from the actual physical system is a non-trivial problem.

then limited to the decentralized extensions of POMDPs. Of these, the simplest is the

MPOMDP class (which, as was described in 2.4.2, is equivalent to a team-wise single

agent POMDP) although it assumes free communication between agents. Since this is

not a limiting assumption in this particular situation, and it allows for a richer state

and action space description, this will be the chosen framework to model the problem.

3.2.3 Modeling States, Actions, and Observations

As physical systems, an exact description of the dynamics of a team of robots while

interacting with their environment would necessarily be defined over continuous-domain

variables. As we have reviewed in Chapter 2, while DT frameworks allow for continuous

state, action, and/or observation spaces, there have been few reported applications of

such models in multiagent settings, due to the analytical complexity of their description,

and consequently, of their operational complexity.

It then becomes necessary, for practical multiagent systems, to approximate physical

properties, control inputs, and available sensorial data through a set of suitably defined

48

3.2 POMDPs for Real Teams of Robots

discrete states, actions, and possibly observations. A depiction of this problem is shown

in Figure 3.2.

Modeling continuous physical variables into a discrete structure, however, is an

issue worth careful consideration. On one hand, the cardinality of the state, action,

and observation sets should be evidently kept to a minimum, since this will reduce

the overall operational complexity of the model; on the other, reducing the number of

possible values for these variables may aversely affect the performance of the agents,

since the system dynamics become less descriptive.

Let us first consider the problem of discretizing the system state. Existing method-

ologies to determine suitable discretizations of a generic continuous state space, given

a training set of interactions of physical agents with their environment, include vector

quantization and related clustering techniques (Fernández and Parker, 2001), neural

networks (Miller et al., 1990) and decision / regression trees (Uther and Veloso, 1998).

Despite being widely used in the context of robotics, there are notable drawbacks to

these techniques: they assume that the physical state of the system can be known with

certainty, at least for the purpose of collecting the training data; and they assume that

the action space of the model is already discrete and known a priori. When either

of these assumptions is not valid, the physical state space is discretized using prior

knowledge about the system, typically by considering each state to be an assignment of

discrete system features, as in tile coding (Sutton and Barto, 1998), or more generally

through factored representations, as described in Section 2.4.3 (Oliehoek et al., 2008b;

Poupart, 2005).

As for observations, similar arguments can be made. The model may consider char-

acteristic features of the environment which are observable in a given state (such as

landmarks, or characteristic patterns in sensor data, etc.), and map them to discrete,

symbolic values. The problem of classifying observations from sensorial data can be

approached with essentially the same methodologies as the problem of state discretiza-

tion. The simplest methodology is to manually design a set of decision rules that classify

raw sensor data into the desired set of features, as in the work of Nourbakhsh et al.

(1995). Other reported applications use neural network training methods to the raw

sensor data, as described by (Mahadevan and Khaleeli, 1999), or clustering techniques

(Duda et al., 2001) to produce |O| class representatives of the input data, subsequently

matching each new data point to its nearest representative vector. It is also possible

49

3. ON THE PRACTICAL IMPLEMENTATION OF MDPS AND
RELATED MODELS

to consider DT models with continuous observation spaces (Hoey and Poupart, 2005).

However, planning methods for such models have not been shown to be scalable to

multiagent problems.

An often overlooked difficulty in extracting symbolic observation data from sensorial

inputs is that the decision-making loop of a robotic agent is rarely operating at the same

frequency as its sensors. It is common, furthermore, for a robotic platform to have

multiple sensors producing different sets of data at different frequencies, and accepting

control inputs at yet another rate. It becomes necessary, then, to decide how much

data to use, when classifying it into symbolic observations, within a decision episode.

One simple heuristic is to perform classification over every incoming data set, as soon

as it arrives, and use the last returned “label”1 at the instant of each decision step as

its observation. This is essentially a zero-order hold2 of the output of the classifier.

Another approach, which is more robust to noise but more complex to implement, is

to model the classification process as an HMM which is synchronous with a stream of

sensor data, but not with the decision-making loop of the agent. At each decision step,

the most likely label (the most likely state in the HMM) at that time can be used as

the observation of that step.

It may also be assumed that sensor processing modules, operating in the robot in real

time independently from its decision-making, are able to produce not only an estimate

of the physical state of the robot, but also an associated belief distribution over its

configuration space. For example, this is typically the output of a dedicated localization

algorithm. If this belief distribution over the continuous state can be marginalized

over a discretized state structure, for example over a set of topological locations, then

the resulting “discrete” belief can be used directly for decision-making purposes. This

bypasses the need to classify observations at run-time, although they must still be

considered in the DT model.

Actions, in turn, are discretized by considering them as abstract processes which

control the autonomous agent(s) through a sequence of continuous inputs. These inputs,

for a robotic agent, typically correspond to actuator speeds or torques, and their domain

is either continuous or discrete with a high resolution (high enough that they allow the

1Common nomenclature for the symbolic output of classification methods.
2A zero-order hold is a simple and well-known mechanism to convert digital to continous

signals: at a fixed rate, it samples a value from its input and holds it constant at its output.

50

3.2 POMDPs for Real Teams of Robots

smooth acceleration / deceleration of the platform). In that case, an action can involve

the closed loop control of an agent at a lower level of abstraction (e.g. a navigation

action of a mobile robot to a given pose), or it can be a pre-determined sequence of real-

valued control inputs (e.g. motion in a given direction at a constant speed). In contrast

with states and observations, however, there are few systematic methods to abstract

continuous input spaces into symbolic actions. Recently, Konidaris et al. (2012) have

proposed a method of skill discovery, specifically for the case of robot navigation, that

learns (a hierarchy of) abstract representations of actions from demonstrations of robot

trajectories over its continuous configuration and input spaces. However, this has not

been demonstrated to be applicable to partially observable or multiagent scenarios.

More commonly, the actions of a robotic agent are explicitly identified by the prob-

lem designer, who constructs a minimal set of functionalities that allow the robot to

complete its intended tasks, considering the potential availability of lower-level con-

trol tools (e.g. “move-to-a-pose” navigation tasks can be rapidly implemented through

various traditional, non-DT control methods, and can be subsequently abstracted as

topological navigation actions for a higher-level DT model). In other cases, actions can

already have an inherently discrete, symbolic form to begin with. In human-robot inter-

action, for example, each step of a communication episode, involving the transmission

of text or sound to the user, can be considered as an action.

Having covered the typical discretization methodologies for states, actions, and ob-

servations, it is important to note that there is an implicit mutual dependency between

all model dimensions. The adequate level of abstraction for actions and observations,

for example, is dependent upon the particular form of the state space which is chosen for

the decision-making model. Of course, the same argument is valid for the definition of

the state space itself, if there is prior knowledge regarding the actions and observations

that should be in the model — none of these free variables can be discretized without

considering the correlation, at a semantic level, of the resulting discretized components.

As an example, Figure 3.3 depicts the interdependency between symbolic states

and actions, by comparing two different approaches to the problem of discretizing the

configuration space of each robot in our conceptual robotic soccer environment. Finer,

grid-like based discretizations, which can accurately describe the position of an agent

in the physical world (Figure 3.3a) are typically useful for problems of navigation under

uncertainty, and require an appropriate discretization of low-level motion controls (such

51

3. ON THE PRACTICAL IMPLEMENTATION OF MDPS AND
RELATED MODELS

TD-POMDP

(a)

1 2

3

a

a

(b)

Figure 3.3: Two possible state discretizations for a robotic soccer environment: (a) A
grid-like metric discretization, typical for navigation problems. The actions of a robot
may move it to adjacent cells; (b) A discretization based on logical predicates, useful for
high-level decision-making. Here, states take a more logical interpretation, such as “being
in either side of the field” (states 1 and 2), or “being near the goal” (state 3). Actions may
be seen as complex behaviors for a robot. The represented action attempts to move the
robot closer to the goal. However, the Markovian property of the system may be broken.

as moving in a given direction for a fixed amount of time/space). However, in partially

observable domains, the fan-out of possible belief states at the problem horizon h grows

exponentially (there are at most (|A||O|)h possible belief states at step h), which can

make these approaches quickly intractable. An alternative is to consider a state space

description such as the one depicted in Figure 3.3b, in which states are more closely

related with logical predicates (such as if the robot is near the goal, or in its own

side of the field), but carry less information about the particular configuration of the

agent in physical space. This is useful for high-level decision-making, since it allows for

descriptions of more complex actions, such as pushing a ball towards the goal, which

assume a greater level of autonomy for each robot. This topological description of the

system state is also characteristic of Discrete-Event Systems approaches (Neto et al.,

2004).

Following these considerations, the problem of modeling the environment through a

discrete DT framework can be viewed as one of selecting the “level” of abstraction over

which the decision-making should be carried out. This, of course, is not only a problem

dependent, often subjective decision in itself, but one which is left up to the problem

designer. The designer then requires in-depth knowledge of the system and also of the

selected decision-theoretic framework itself, in order to predict the performance of the

controlled system when its respective DT policy is deployed in the real world. This may

52

3.2 POMDPs for Real Teams of Robots

limit the acceptance of MDP-based frameworks in real-world activities where expert

knowledge of these matters is not readily available.

Remark 3.2.2. For physical systems, the number of states and actions (and possi-

bly observations) of an associated discrete DT model are correlated free parameters,

and the common criteria for their selection involve a trade-off between operational

complexity and predicted system performance. Discrete models constitute potentially

lossy approximations of continuous domains.

A popular approach in AI to model complex systems is to deal with simultaneous

decision-making at various levels of abstraction, modeling the problem hierarchically.

This approach has been successfully explored both for fully observable MDPs (Parr,

1998; Sutton et al., 1999) and for POMDPs (Pineau and Thrun, 2002; Theocharous

and Mahadevan, 2002; Theocharous et al., 2005). These approaches typically consider

semi-Markov high-level decision theoretic models in which the notion of state and action

is abstracted, and each such pair may encompass the execution of a lower-level task,

itself modeled as a potentially fully-Markovian problem. This allows, in some cases,

for a representation which is closer to decision-making processes carried out in realistic

applications, which may, at different times, fall into different levels of abstraction. It

can also provide very advantageous savings in terms of computational complexity for

planning in large-scale problems; and in terms of the amount of experience required in

reinforcement learning applications, since solutions for a particular low-level task can

potentially be applied in similar domains which share the same dynamics, through the

use of techniques such as reuse learning (Theocharous and Mahadevan, 2002).

Returning to the robotic soccer case study, and recalling that the focus of this exam-

ple is on conceptual clarity, a straightforward approach is taken regarding environment

modeling. The problem is considered to be one of high-level decision-making, in ac-

cordance with the description presented in Section 3.2.1, where it is assumed that the

robots are equipped with basic behaviors, and that the decision-making problem is one

of cooperatively deciding which of these behaviors should be performed by each of the

agents at any time.

53

3. ON THE PRACTICAL IMPLEMENTATION OF MDPS AND
RELATED MODELS

3.2.3.1 States

The robots are known to operate in a soccer field, which contains the agents themselves,

the ball, and an unknown number of opponents. Except for these obstacles, their

navigation is free inside the field. The state of the overall system can then be encoded

through the localization information of the robots, the position of the ball, and the

positions of possible obstacles:

• Regarding localization, the field of play is discretized into four different sections,

similar to the representation of Figure 3.3b. The agent may be located in its own

half-field, in the half-field of the opponent team, near the opponent team goal,

or in a shooting opportunity, which requires the robot to be near the goal while

carrying the ball, and also turned towards it. The robot may also use localization

information to sense if it is ready to receive a pass from its partner;

• The information regarding the presence of obstacles can be encoded in a logical

form, meaning that the robot is either blocked by obstacles or free to move in its

current direction;

• Finally, the robot is also able to detect whether or not it is in possession of the

ball, which constitutes an additional Boolean state variable.

The total number of states is |S| = 48. The full state space of the model, encoded

in factored form, can be found in Appendix A (as well as the action and observation

spaces for this problem).

Note that the robots share their localization information —they require this infor-

mation in order to be able to follow each other and to be able to sample their own

observations. This is accomplished through explicit communication, as described in the

Section 3.2.7.1.

3.2.3.2 Observations

The set of possible observations in our case study is described, for each agent, as follows:

• Ready —for an Attacker, this signals that the robot is in a shooting opportunity.

For a Supporter, this implies that the robot is able to receive a pass;

54

3.2 POMDPs for Real Teams of Robots

• Has Ball Near the Goal —Having possession of the ball near the goal of the

opposing team;

• Has Ball in Opponent’s Half —Having possession of the ball in the opposing team’s

half-field;

• Has Ball in Own Half —Having possession of the ball in the half-field belonging

to the agent’s team;

• Blocked —if the agent is blocked by obstacles;

• Closest —Symbolizes that the agent is closer to the ball than its partner, if neither

agent has the ball;

• Second Closest —Symbolizes that the agent is farther from the ball than its part-

ner, if neither agent has the ball.

The preceding signals abstract all of the available information about the environment,

resulting in 49 (7 × 7) possible joint observations. The construction of the associated

observation model may be further simplified by exploiting observation independence

between agents (Section 3.2.5).

Note that the observation set for each agent does not depend on its specific role

as either an Attacker or a Supporter. In some instances (the Ready and Not Ready

signals), it is possible to use the same representations implicitly for both cases, since

each agent will take its own observation into context through the observation function.

3.2.3.3 Actions

The remaining component of this model that must be described is the set of joint

actions, A. As with the observation set, this set is identical for both agents. For this

particular task, each agent is capable of:

• Dribbling the ball towards the goal;

• Shooting (or kicking) the ball;

• Passing the ball towards the other robot;

• Recovering the ball if it becomes lost;

55

3. ON THE PRACTICAL IMPLEMENTATION OF MDPS AND
RELATED MODELS

• Following the attacker;

• Finding a position where a pass can be received (finding clearance for the pass).

Logically, the first four actions described in this manner should be performed by the

Attacker robot, while the remaining actions should be taken by the Supporter. Note that

this action space is by no means the only possible instantiation that can be used to solve

this particular decision-making problem. As it was said above, the selection of these

particular actions as the inputs for our DT model establishes the level of abstraction

at which we wish to coordinate the team of agents. In this case, our action space is

composed of high-level behaviors, while still being sufficiently descriptive to contain the

problem of whether to pass the ball between the robots, in the presence of obstacles

and under the influence of uncertainty in the outcomes of these behaviors.

Each of these high-level actions is then interpreted by the software of the robotic

agents, and triggers a series of more basic behaviors, which may possess their own local

decision-making loops. When the robot decides to dribble towards the goal, for example,

these lower-level behaviors ensure that the robot is always turned towards the goal, and

supply the robot with the necessary controls so that it may drive the ball and try to

avoid any imminent obstacles.

3.2.4 Real-Time Execution Strategies

In Chapter 2, we have hinted at the influence of continuous time on the operation of

MDP-based physical agents. Evidently, physical systems experience continuous time

during execution, but discrete DT models, such as those we have been describing so far

in this chapter, assume that decisions are taken in an episodical, or step-like, fashion,

and abstract the temporal duration of each such decision episode. In fact, an issue that is

often overlooked in the application of discrete DT methods to real systems is specifying

how those step-like decisions should map to continuous time instants – describing not

only how, but also when should a physical system be controlled.

Consider a hypothetical system of non-communicative robots, acting in a real envi-

ronment according to a Dec-POMDP policy. Since agents are not allowed to exchange

observations, and they cannot locally observe all possible changes to the system state,

the only way to execute such a fully decentralized policy in real-time, and maintain

coherence between the actions of all agents, is to force agents to act at a fixed temporal

56

3.2 POMDPs for Real Teams of Robots

rate, or at predefined instants. Otherwise, different agents could be in different steps

of the decision-making process at any moment in time. We will refer to this fixed-time

approach as the synchronous execution strategy, since it assumes that all agents are

synchronized to a global clock, prior to execution.

Synchronous execution is the most commonly used approach for MDP-based phys-

ical agents, even in single agent scenarios, and not limited to robotics applications

(Lindqvist, 1962; Little, 1955; Matarić, 1997; Rong and Pedram, 2003). Besides the

simplicity of its implementation, the most important quality to this approach is that,

for sufficiently small rates, it allows the approximation of state transition probabilities

in complex systems as time-invariant measures1.

However, this approach also carries notable drawbacks. In the general case, there

is no clear, systematic methodology to determine an appropriate time-step (the time

between decision episodes) for a synchronous system. If this value is too small, i.e.

decisions are taken too frequently, then the decision problem becomes more complex,

both for planning and learning approaches. Agents would then have to select the same

decisions repeatedly (think, for example, of a navigation problem where a robot has to

repeatedly decide to move in the same direction before moving out of a state), which

could actually violate the Markov assumption, since the number of times that the action

would need to be re-applied in the same state would influence the probability of any

subsequent state transitions. Furthermore, for multiagent systems with communication

(such as systems controlled as MMDPs or MPOMDPs), this would imply a higher

communication frequency; on the other hand, if the time-step is too large, it may be

longer than the actual duration of a given action. In that case, agents would have to

idle for the rest of a decision episode, until they can select a new action. Not only does

this mean that tasks can take sub-optimal amounts of time to complete, but it also

implies that agents would no longer immediately react to sudden changes in the system

state. The latter feature may be important to the long-term outcome of the decision

problem, particularly in robotics applications.

1Naturally, what constitutes a “sufficiently small” rate depends on the particular system.

57

3. ON THE PRACTICAL IMPLEMENTATION OF MDPS AND
RELATED MODELS

Remark 3.2.3. Synchronous execution of discrete policies implies the loss of reac-

tivity of physical agents to sudden changes in their environment (if the associated

time-step is too large), or a higher operational complexity, higher use of communi-

cation, and/or loss of the Markovian property (if the time-step is too small).

An alternative execution strategy, which avoids the aforementioned problems, is to

take decisions whenever detectable events happen in the system, i.e. whenever there

is a state transition. We refer to this as an event-driven or asynchronous execution

strategy, since events can happen at random time instants. A very significant advantage

of asynchronous execution, and of event-driven systems in general, is that they are fully

reactive to relevant changes in the environment – there is no idle time between an

event and the response of an agent (or team of agents) to that occurrence. For a robotic

system, this property of “reactivity” can mean the difference between the success or the

failure of a task, and can therefore have a strong influence on the performance of the

decision-making process.

In asynchronous execution, since the temporal duration of each decision episode

is variable, the sojourn time of the system in a given state can affect its transition

probabilities. Therefore, DT models of asynchronous systems must explicitly account

for continuous-time. For that reason, applications using asynchronous execution of

DT methods are uncommon (notable exceptions include the work of Mahadevan and

Khaleeli (1999)). In the multiagent case, the dynamics of DT asynchronous systems

become even more complex, and research on the topic has been sparse. In Chapter 5,

we will explore the application of the only MDP-based framework, existing prior to

this work, which is known to be able to handle asynchronous multiagent systems: the

GSMDP framework.

For the moment, and with respect to our robotic soccer case study, we will assume

synchronous operation.

3.2.5 Obtaining the Stochastic Models

For model-based solution methods, given a set of states, actions, and observations, it is

then necessary to define the transition function T and observation function O1.

1We emphasize that, in model-free reinforcement learning methods, this step is naturally
extraneous.

58

3.2 POMDPs for Real Teams of Robots

In order to obtain these models in practice, it is necessary to estimate the respective

probability distributions by collecting experimental data. For fully observable prob-

lems, the methodology behind the estimation of T is straightforward: for each ⟨s,a, s′⟩,

T (s,a, s′) can be estimated as the relative frequency of the samples at ⟨s,a⟩ that re-

sulted in s′.

For partially observable problems, however, the problem is more complex, since the

state of the system is not directly accessible. The problem is essentially similar to

that of estimating the structure of a Hidden Markov Model from observation traces.

A systematic approach to this problem was reported by Koenig and Simmons (1998),

using the Baum-Welch algorithm to estimate the transition and observation models of

POMDPs.

One limitation to learning model structure from data, for teams of robots, is that

this is typically a time-consuming, iterative process: at least some (sub-optimal) policy

must be given to the agents a priori, or otherwise, the possible transitions / observations

would not be explored. After running the system with such a policy (for example, a

completely random policy), and identifying the respective (M)POMDP model, a better

policy can be obtained. This policy, in turn, further explores certain regions of the

system, causing the model to be re-estimated, and altering its respective solution. It is

often difficult to operate a team of robots for long enough to collect a significant number

of samples to complete this process. This also implies that, at any step of this process,

there is also uncertainty over the values of the stochastic model parameters themselves.

Some approaches to DT planning explicitly take this source of uncertainty into account

(Witwicki et al., 2013), and so they can provide solutions that perform better in practice

than alternatives that assume perfect knowledge of the stochastic models.

A common, pragmatical approach to the problem of modeling stochasticity is to

simulate the physical system. Many readily available robotics simulators can be used

for that purpose (to name a few, Gazebo1, V-REP2, or Webots3). In that case, a large

number of transition–observation samples can be efficiently collected. Furthermore,

since the exact (simulated) state of the system is accessible, the model can be identified

as if it were fully observable, greatly simplifying the estimation problem.

1http://gazebosim.org/
2http://www.coppeliarobotics.com/
3http://www.cyberbotics.com/

59

3. ON THE PRACTICAL IMPLEMENTATION OF MDPS AND
RELATED MODELS

Also note that all decision-theoretic frameworks presented so far assume that the

stochastic models for the problem are stationary (i.e. they are invariant to the steps

of the decision-making process). Although, from a theoretical standpoint, this would

not constitute a necessity, if that would not be the case, then the problem of obtaining

reliable time-varying stochastic models for large scale scenarios would be, in practice,

extremely complex.

An important practical issue regarding solution methods for MDPs and related mod-

els is that, if knowledge of accurate stochastic models for the environment is assumed,

then the sensitivity of the resulting policy to changes in these models is unspecified.

Since the solution can potentially be different, it must be calculated anew if any para-

maters are indeed changed, which may occur, for example, when more reliable data

regarding the system becomes available.

Remark 3.2.4. Decision-theoretic approaches which assume complete knowledge

of the stochastic models of the system are inflexible to change. Any modification to

these models implies a re-calculation of the associated policy.

This, in turn, represents a reason to advocate reinforcement learning approaches

which do not assume any knowledge (or assume imperfect knowledge (Sutton, 1991))

about the environment. However, note that reinforcement learning methods may be

slow to converge (or may not converge at all) if the parameters of the system are not

stationary.

We will now return to our running example in robotic soccer. In this context, we will

also show how it is advantageous to reduce the size of the transition and observation

models as much as possible, thereby reducing the number of parameters that should be

estimated (and also increasing memory efficiency at run-time).

As discussed in Section 2.4.3, agent-wise factorizations of model components are

typically available in situations where the interaction between agents is sparse. Consider

the problem of defining T . Ideally, if the local state of an agent was not influenced by

the actions of the other agent, there would be an independent transition function for

each agent, Ti, such that

T (s,a, s′) = T1(s, a1, s
′)T2(s, a2, s

′) (3.1)

60

3.2 POMDPs for Real Teams of Robots

for every s, s′ ∈ S, ⟨a1, a2⟩ ∈ A.

However, from the description of the action set for our robotic soccer agents, it is

evident that for some of the actions (namely, passing and shooting), this assumption

is not valid, since the execution of one of these actions by an agent may induce its

partner to switch its role. Nevertheless, it is valid for all of the remaining actions. This

constitutes a straightforward instance of context-specific independence.

The problem may still be further simplified by noting its symmetry. Since there

is no characteristic feature to distinguish one agent from the other, their transition

functions are identical, T1 = T2. This means that it is only necessary to consider the

effects of the four possible independent actions for each agent (which is a considerable

reduction from the thirty-six possible joint actions). Also, since only half of the states

correspond to a specific agent being Attacker or Supporter, this means that, in matrix

form, the transition function for each of the independent actions is block-diagonal (i.e.

it is impossible to transition from being an Attacker to a Supporter by applying these

actions). For the joint actions that are not conditional independent, their distribution

over all of the possible joint states must be obtained.

For the observation model, a similar rationale can be made, but in this case the

problem is further simplified by noting the full observation independence in this par-

ticular MPOMDP. At first sight, the passing and kicking actions could be understood

to also influence the observations of the respective partner robot, but this is indeed not

the case, since the observations have been defined independently for each agent in each

state, and the actions taken by the partner robot do not influence the ability of each

agent to perceive its respective information. The joint actions in this task can then be

said to be non-informative, in that they may influence the state of the system, but not

the information collected by the agents. This type of problem can also be appropriately

termed as Observation Independent (Goldman and Zilberstein, 2004). In practice, this

means that:

Pr(o|a, s′) = Pr(o1|a1, s
′)Pr(o2|a2, s

′) (3.2)

= O1(o1, a1, s
′)O2(o2, a2, s

′) , ∀o ∈ O,a ∈ A, s′ ∈ S (3.3)

It should also be noted that O1 = O2. Note that this property does not necessarily hold

for multi-robot applications. A robot carrying a flashlight in a low-light environment,

61

3. ON THE PRACTICAL IMPLEMENTATION OF MDPS AND
RELATED MODELS

for example, could influence the observations of other agents in its vicinity. We intend

to show, through our soccer robot example, that if this property does hold, it can be

exploited for representational simplicity.

After having factored the transition and observation models of our case study, we

have proceeded to estimate their values by simulating the system (as it will be further

discussed in Section 3.2.7), and sampling action and observation traces.

3.2.6 Defining the Reward Model

As it has been so far made clear, any solution method will attempt to maximize some

form of reward. However, with few exceptions, the concept of “reward” for a given

task has little semantic value. In the general case, there is no definitive criteria as

to how these rewards should be assigned. Even if there are well-defined, quantitative

performance measures for a real system, such as least expended energy, shortest traveled

distance, or shortest time for operation, these can only be loosely translated onto the

reward structure of a decision-theoretic model. This is because rewards are defined

over the abstract state and action spaces of a DT model, for which these quantitative

performance measures may be inapplicable or ill-defined. Furthermore, since discretized

models can only approximate the actual dynamics of a physical system, the notion of

“optimality” of a policy over such a model, with respect to the expected cumulated

reward, does not imply optimal performance of the controlled physical system.

There is often a process of trial-and-error until a reward model is obtained which

induces a policy with satisfactory practical quality. This is valid both for planning and

reinforcement learning methods. However, model-based solutions suffer from the same

problem of inflexibility with respect to reward as they do with stochastic models. This,

coupled with the fact that the reward model may be re-defined multiple times during

design, results in a overly lengthy process of planning.

Remark 3.2.5. Model-based solution methods are inflexible to changes in the re-

ward structure.

It is here argued that a solution method oriented towards real-world applications

should have some measure of adaptability, similar to the approach proposed by Sutton

(1991), to account for possible changes in the definitions of the various models, without

necessarily inducing a complete re-calculation of the respective solution.

62

3.2 POMDPs for Real Teams of Robots

In our robotic soccer case-study, the definition of the reward model was carried out

by assigning a high reward for kicking the ball in a shooting opportunity, and penalizing

every other step taken, in order to promote the fastest possible solutions.

3.2.7 Implementation and Results of the Robotic Soccer Case-Study

We will now discuss the steps that were taken in the practical implementation of our

robotic soccer case-study in realistic simulation. We will also analyze the results of this

case-study in practice.

3.2.7.1 Communication

Since we have opted to model this problem as an MPOMDP, we have assumed that

agents can communicate their observations freely to each other. However, in practice,

this communication must be managed explicitly, and some mechanism must be imple-

mented that exchanges and synchronizes the observations of each agent. Although our

implementation is here simulated, the communications between our agents were handled

as if they were running on different robotic platforms.

Observation and step data

Agent 1

Executes maximizing
joint action

Collects individual
observation

Updates joint belief

Shared localization data

Agent 2

Executes maximizing
joint action

Collects individual
observation

Updates joint belief

Step n begins

Step n ends

Step n+ 1 begins

F
ix
ed

tim
estep

,
T

va
ria

b
le

d
elay

Figure 3.4: Synchronization timeline with instantaneous communication.

The synchronization process and necessary explicit communication is performed

according to the diagram in Figure 3.4. Since this is a MPOMDP, each agent has access

to all observations, and it retrieves, locally, the maximizing joint action for the team at

63

3. ON THE PRACTICAL IMPLEMENTATION OF MDPS AND
RELATED MODELS

Agent 1

Executes maximizing
joint action

Collects individual
observation

Updates joint belief

Shared localization data

Agent 2

Executes maximizing
joint action

Collects individual
observation

Updates joint belief

Step n begins

F
ixed

tim
estep

,
T

Step n ends /
Step n+ 1
begins

Observation and step data

variab
le

d
elay

Figure 3.5: Synchronization timeline with delayed communication of observations.

each step, from where it extracts its own local action. Each agent is assumed to execute

that action for a fixed time step, τ . The observations of the agents at the next time

step are only available after the outcome of that action is known. Therefore, after τ

has passed, the agents sample their own observations and exchange it with that of their

partner. If one of the agents is delayed, then its partner will wait for this information

before proceeding. This step is where synchronization is enforced between both robots.

This information is then used to locally calculate the joint belief through (2.23). After

the joint belief is obtained, each agent computes a new maximizing joint action and

proceeds to the next step.

Here, the imposition of synchronous decision-making shows once more a potential

practical disadvantage. For large teams of agents, it might not be feasible to wait for

synchronization, or to assume perfectly reliable communications at each step. This

is often the case in robotic soccer, since the high number of agents quickly saturate

the communication medium. In such a setting, it can be advantageous not to wait

for synchronization between all involved agents. In this sense, the agent would select

an optimal action based on its own local observation, and receive its partners’ data

throughout the decision step (Figure 3.5). We will analyze the influence that the latter

approach to decision-making has on the performance of the system.

64

3.2 POMDPs for Real Teams of Robots

3.2.7.2 Solving the MPOMDP

The Perseus algorithm (Spaan and Vlassis, 2005) was selected to solve the MPOMDP,

due to its efficiency in handling moderately-sized problems. Perseus belongs to the

family of point-based POMDP solvers, but it is by no means the only one (Kurniawati

et al., 2008; Pineau et al., 2003). While it is true that often the algorithm to solve a

given POMDP model should be chosen according to the problem’s structure, this does

not create, in this case, a dependency on any particular algorithm.

The Perseus algorithm performed favorably, and converged in as few as 140 itera-

tions to a residual value of 10−4, as can be seen in Figure 3.6. Naturally, such a value

function is a good approximation of a stationary solution, i.e., a solution that assumes

an infinite horizon.

0 20 40 60 80 100 120 140
−250

−200

−150

−100

−50

0

50

100

Number of i terations

m
a
x b

∈
B

(b
)

V

Figure 3.6: Convergence of the Perseus algorithm for the proposed MPOMDP.

3.2.7.3 Experimental Setup

The execution of the task itself was carried out using the Webots robotics simulator.

The physical properties of our robotic agents were thoroughly modeled, including mass,

friction, and actuator constraints. The two agents were placed in arbitrary initial po-

sitions in the field of play, and the ball was initially placed in the center of the field,

which is the origin of the world frame for the robots. The time-step of the synchronous

decision-making loop was set to 3 seconds. The transition model allowed a considerable

(∼ 0.4) chance of performing a transition to a neighbor state when dribbling the ball

(estimated empirically). The observation model for these robots considered both the

possibility of having false positive and false negative detections of obstacles: a 0.1 prob-

ability of failing to detect an obstacle and a 0.05 probability of detecting an inexistent

65

3. ON THE PRACTICAL IMPLEMENTATION OF MDPS AND
RELATED MODELS

POSMDP

Figure 3.7: The simulated environment where our case-study was deployed.

−100 −50 0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

140

Ab
so

lu
te

 fr
eq

ue
nc

y

Cumulative discounted reward

M

Figure 3.8: A histogram of accrued discounted reward for 500 simulated runs of the
proposed task.

obstacle. The immediate reward for scoring a goal was set to 150. For successfully com-

pleting a pass whenever the Attacker robot became blocked, the team received a reward

of 60. Agents were also penalized for performing actions inconsistently with their role,

with rewards of −20 (e.g. a supporter trying to dribble the ball, or an attacker trying

to follow its partner). All other actions were associated with a −1 reward. The discount

factor was set to 0.9.

3.2.7.4 Results

A video of the execution of this policy in our realistic simulator is made available at at

http://users.isr.ist.utl.pt/~jmessias/PhDthesis, the online repository for the

auxiliary files to this work. The MPOMDP model that was used in our experiments can

66

http://users.isr.ist.utl.pt/~jmessias/PhDthesis

3.2 POMDPs for Real Teams of Robots

1 2 3

4 5 6

Figure 3.9: Behavior of the robots when no obstacles are present in the field.

also be found in that repository, in a file format that is compatible with the Multiagent

Decision Process (MADP) Toolbox (Spaan and Oliehoek, 2008).

The total discounted reward at run-time, using the value function obtained through

Perseus for 500 simulated runs, was 90.14±65.38. The large standard deviation results

from random failures when passing or dribbling the ball, which can prevent the team

from scoring any goals within a single test run. A histogram of this data is represented

in Figure 3.8.

We will now describe the observed behavior of our team of robots in two different

situations that showcase their performance.

In Figure 3.9, we represent, as a sequence of frames captured from our simulator

during execution, a timeline of a situation where robots were allowed to dribble freely

to the goal, without being hindered by obstacles. Both robots were covered in differ-

ent colors (cyan or magenta), so that they can be visually identified throughout the

sequence. In initial state (frame 1), the robot which was closest to the ball assumed the

role of Attacker (the cyan robot), while its partner maintained a fixed distance. The

Attacker robot proceeded to score a goal (frame 4). The ball was then reset by the

simulator back to the (0, 0) coordinate. Since the initial Supporter is now the closest

robot to the ball, it assumes the role of Attacker, and in frame 6 their roles have been

exchanged from their initial configurations. The process then repeats itself.

67

3. ON THE PRACTICAL IMPLEMENTATION OF MDPS AND
RELATED MODELS

1 2 3

4 5 6

SMDP

Figure 3.10: Behavior of the robots when passing the ball to avoid obstacles.

A second situation occurs in the presence of obstacles, and is depicted in Figure

3.10. An obstacle is placed in front of the initial Attacker. In frames 2− 3 it decides to

pass the ball to its partner. Their roles then switch, and the magenta robot carries the

ball until it scores a goal in frame 5. Note that, in this situation, the blocking robot

(the obstacle) was stationary. In the cases where this wasn’t true, the passing behavior

would fail randomly, due to the fact that the Attacker agent would be committed to

performing the same joint action (that is, dribbling) until the predefined time-step

expired; by that time, however, the robot could collide with the moving obstacle and

lose the ball. This exemplifies the problem of assuming a constant temporal duration

for each action, and the corresponding loss of reactivity. In dynamic environments,

a synchronously acting robot may not have enough time to select the optimal action

when facing a sudden change in its state. Ideally, then, the Attacker robot should have

reacted to the presence of the obstacle as soon as it was detected.

Another issue with this implementation is its indiscriminate use of communication.

The robots must communicate synchronously every 3 seconds in order to maintain

coherency in their actions, and it is assumed that all communication episodes are free

from failures or delays. If this wasn’t the case, the representation of the joint belief that

is maintained by each agent would acumulate irrecoverable errors, and the execution of

the task would be compromised.

68

3.3 Summary

3.3 Summary

This chapter presented a brief review of the application areas of the MDP framework

and its associated extensions.

With the goal of exploring the potential limitations of these frameworks when applied

to cooperative robotics scenarios, we presented a “walkthrough” of the steps involved

in modeling a decision-making problem with physical agents through an MDP-based

framework. A conceptual, albeit realistic, small-scale task in that domain was intro-

duced, serving as proof-of-concept. The following topics were perceived as the main

shortcomings of decision-theoretic models when dealing with cooperative robotics sce-

narios:

• Multiagent frameworks with explicit communication models, or in which no com-

munication is possible, are not generally applicable to real-world problems due to

their intractability. Approaches that assume free communication are susceptible

to considerable loss of quality in the event of communication delays or failures;

• States, actions, and observations in robotics domains are naturally defined over

continuous variables. When modeling these elements in a discrete DT framework,

the abstractions involved in that discretization are selected based on a trade-off

between operational complexity and system performance. Discrete DT approxi-

mations can affect the Markovian property of the system;

• The synchronous execution of discrete multiagent policies in real time carries

several negative drawbacks. Most notably, the loss of reactivity in dynamically

changing environments, excessive use of communication, and / or an unnecessary

increase in the horizon of the decision-making problem;

• Model based methods are inflexible to changes in any of their parameters. This

means that a new solution must be calculated in the event that new information

regarding the system is made available, or if the reward structure of the model

is tuned. Modeling a large-scale DT problem is a lengthy, time-consuming proce-

dure, and this fact delays the deployment of these techniques in real environments.

The simulations that were performed in our case study show that, even though our

team of robots could complete the proposed cooperative task in some conditions, its

69

3. ON THE PRACTICAL IMPLEMENTATION OF MDPS AND
RELATED MODELS

performance was evidently sub-optimal, given the idle time experienced by the robots

between decisions, which in turn induces a lack of reactivity to urgent occurrences

that impact the outcome of the task; its susceptibility to communication failures and

delays; and its reliance on perfect knowledge of the transition and observation model

parameters.

The remainder of this work will focus on addressing the issues which were here

identified, with the goal of applying DT methods to a full scale scenario in cooperative

robotics, motivated as a real-world application. We will also provide general guidelines

and tools for the implementation of these frameworks in other realistic scenarios.

70

Chapter 4

Efficient Communication in

Partially Observable Domains

As it has been previously mentioned, the computational complexity of decision-theoretic

planning in multiagent systems is strongly influenced by the type of communication

which is available in a given scenario. Most non-communicative problems, falling in

the general Dec-POMDP class, are NEXP-hard to solve for finite horizons1 (Pynadath

and Tambe, 2002). Adding costs to communication actions, and requiring an explicit

communication policy to be obtained offline, does not reduce this complexity, since non-

communicative policies must also be evaluated in the worst case. However, if agents

are able to share their observations at each step, without any associated cost, then the

complexity of the multiagent problem is the same as that of a centralized, team-wise

single agent model.

In many situations, however, communication is not free. A large team of agents may

need to control their communication usage in order to avoid saturating the communica-

tion medium. Communicating may also expend valuable energy in scenarios where agent

autonomy is the most important characteristic (such as space exploration). In military

applications, if other entities are attempting to intercept inter-agent communications,

then it also follows that communication should be kept to a minimum.

DT approaches in which communication between agents is possible have already been

explored for non-factored Dec-POMDP models (Pynadath and Tambe, 2002; Roth et al.,

1The only exceptions are unrealistic scenarios in which the environment is either individually
fully observable, or non-observable at all, by each agent, and in which communication makes
no difference.

71

4. EFFICIENT COMMUNICATION IN PARTIALLY OBSERVABLE
DOMAINS

2005a; Spaan et al., 2008; Wu et al., 2009) as well as for factored Dec-MDPs (Roth et al.,

2007). The work described in this chapter will focus on factored MPOMDP models.

We propose a novel method that exploits sparse dependencies in such a model, in order

to reduce the amount of inter-agent communication. To achieve this, we consider a

factored joint belief state. We obtain individual policies for each agent that map beliefs

over state factors to actions or communication decisions.

Maintaining an exact, factored belief state is typically not possible in cooperative

problems. While bounded approximations are possible for probabilistic inference (Boyen

and Koller, 1998), these results do not carry over directly to decision-making settings

(but see (McAllester and Singh, 1999)). Intuitively, even a small difference in belief can

lead to a different action being taken. However, when there are sparse dependencies

between the actions of the agents, often the belief over its local state factors is sufficient

for an agent to identify the action that it should take, and communication can be

avoided. We formalize these notions as convex optimization problems, extracting those

situations in which communication is superfluous. We present experimental results

showing the savings in communication that can be obtained, and the overall impact on

decision quality.

This chapter is organized as follows. Sections 4.1, 4.2, 4.3 introduce the relevant

motivation and background for the current work. Section 4.4 presents the formalization

of the proposed method to associate belief points over state factors to actions. Next,

Section 4.5 illustrates the concepts with experimental results, and Section 4.6 provides

a closing discussion.

4.1 Exploiting Sparse Dependencies in MPOMDPs

In the implementation of Multiagent POMDPs, an important practical issue is raised:

since the joint policy arising from the value function maps joint beliefs to joint actions,

all agents must maintain and update the joint belief equivalently for their decisions

to remain consistent. The amount of communication required to make this possible

can then become problematically large. Here, we will consider a fully-communicative

team of agents, for planning purposes, but we will minimize the communication that is

required to execute a given plan. Even if agents can communicate with each other freely,

they might not need to always do so in order to act independently, or even cooperatively.

72

4.2 Decision-Making with Factored Beliefs

The problem of when and what to communicate has been studied before for Dec-

MDPs (Roth et al., 2007), where part of the factored state space can be directly observed

by each agent, with no associated uncertainty. In this case, the rationale is that the

local information available to each agent typically maps to a set of possible local actions

(whereas in an MDP it would map directly to a single action). By requesting more

information regarding the system state from other agents, an agent can disambiguate

its possible actions. For MPOMDPs, a similar methodology had been introduced, which

operated at runtime. This means that the communication decisions could not be known

prior to execution; and it implied keeping track and reasoning over a rapidly-growing

number of possible joint belief points (Roth et al., 2005a).

We will here describe a method that maps a belief factor (or several factors) directly

to a local action, or to a communication decision, when applicable. The proposed

approach is the first to exploit, offline, the structure of the value function itself in order

to identify regions of belief space where an agent may act independently. This raises the

possibility of developing more flexible forms for joint policies which can be efficiently

decoupled whenever this is advantageous in terms of communication. Furthermore,

since this method runs offline, it is not mutually exclusive with online communication-

reduction techniques: it can be used as a basis for further computations at runtime,

thereby increasing their efficiency.

4.2 Decision-Making with Factored Beliefs

Recall from Section 2.3.1 that a joint belief state is a probability distribution over

the set of states S, and encodes all of the information gathered by all agents in the

MPOMDP up to a given step n. We consider a factored state model (see Section

2.4.3) with k state factors Xi, i = 1, . . . , k. Let θn represent the entire execution

history of the multiagent system (its actions and observations) up to step n, that is,

θn = ⟨b0,o1,a1,o2,a2, . . . ,on−1,an−1,on⟩. The joint belief is then:

bn(s) = Pr(sn |θn)

= Pr(x1,n, . . . , xk,n |θn) , (4.1)

where xi,n is the value of the state factor variable with domain Xi at step n. A factored

belief state is a representation of this very same joint belief as the product of F assumed

73

4. EFFICIENT COMMUNICATION IN PARTIALLY OBSERVABLE
DOMAINS

independent belief states, which will be referred to as belief factors. Each belief factor

bYi,n is defined over a subset Yi ⊆ X of state factors1. Then, for yi,n ∈ ΠY ∈Yi
Y at step

n:

bn(s) ≃ Pr(y1,n |θn)Pr(y2,n |θn) · · ·Pr(yF,n |θn) (4.2)

≃ bY1,n(y1,n)bY2,n(y2,n) · · · bYF,n
(yF,n) (4.3)

We also impose that these subsets of state factors are disjoint, i.e. Yi∩Yj = ∅ , ∀i ̸= j.

A belief point over factors L ⊆ X which are locally available to an agent is denoted bL.

Let neg(Y) = {ỹ : ỹ ∈ ΠY ∈X\YY } be the set of all possible assignments to all state

factors that are not in Y. The marginalization of b onto bY is then, for y ∈ Y:

bY,n(y) = Pr (y |θn)

=
∑

ỹ∈neg(Y)

Pr (ỹ,yn|θn) . (4.4)

Alternatively, this can be viewed as a projection of b onto the smaller subspace BY :

bY = MX
Y b (4.5)

where MX
Y is a matrix where MX

Y (u, v) = 1 if the assignments to all state factor variables

contained in the u-th element of ΠY ∈YY are the same as in the v-th element of ΠX∈XX

(or, equivalently, the v-th joint state), and 0 otherwise. This intuitively carries out the

marginalization of points in B onto BY . An example of such a “marginalization matrix”

is shown in Figure 4.2 for an illustrative scenario that will be introduced in the following

section.

Note that, as fully described in (Boyen and Koller, 1998), the factorization (4.2)

typically results in an approximation of the true joint belief, since it is seldom possible

to decouple the dynamics of an MDP into strictly independent subprocesses. The

dependencies between factors, induced by the transition and observation model of the

joint process, quickly develop correlations when the horizon of the decision problem

is increased, even if these dependencies are sparse. A significant result of (Boyen and

1Recall that, in this context, X represents the set of all state factors. Some authors instead
use X to represent the cartesian product of all state factors (e.g. (Hoey et al., 1999)). In our
case, then, an element of X is a state factor, not an assignment of state factor variables.

74

4.2 Decision-Making with Factored Beliefs

Koller, 1998), on which our method depends, is that, if some of these dependencies are

broken, the resulting error (measured as the KL-divergence) of the factored belief state,

with respect to the true joint belief, is bounded.

We must also take into account that a small error in the belief state can lead to

different actions being selected, which may significantly affect the decision quality of the

multiagent team in some settings (McAllester and Singh, 1999; Poupart and Boutilier,

2000). Therefore, it should be expected that, when using factored belief states, the

run-time performance of the agent team will be lower than when using the exact, joint

representation. In rapidly-mixing processes (i.e., models with transition functions which

quickly propagate uncertainty), the overall negative effect of using this approximation

is minimized.

Each belief factor’s dynamics can be described using a two-stage Dynamic Bayesian

Network (DBN). Note that the exact propagation of a belief factor across decision steps

(i.e. updating it after an action and observation) would require the marginalization

of the full joint belief state at all steps, in general. This is the case, for example,

when using the Junction Tree belief propagation algorithm (Lauritzen and Spiegelhalter,

1988). This would deny any saving in terms of communication during execution, since

agents would always need to communicate just to maintain their local belief factors up-

to-date. However, when using approximate propagation algorithms, such as Factored

Frontier (Murphy and Weiss, 2001), it is possible to maintain and update fully factored

belief states without requiring the marginalization of the joint belief. Instead, only

the direct dependencies of the locally acessible state factors (their parents in the 2-

DBN) are required in order to update the respective local belief factors. If locally

accessible state factors do not have any dependencies on non-local state factors (e.g.

in a Transition-Independent process), then the update process can be carried out using

only the local observations of the agent, and without requiring any communication.

Otherwise, the necessary information should be requested from other agents, and can

be determined by using the aformentioned propagation algorithms. The amount of data

to be communicated in this latter case, as well as its frequency, depends largely on the

factorization scheme that is selected for a particular problem.

The problem of obtaining a suitable partition scheme of the joint belief onto its

factors will not be addressed in this work. Such a partitioning is typically simple to

identify for multiagent teams which exhibit sparsity of interaction. Instead, we focus

75

4. EFFICIENT COMMUNICATION IN PARTIALLY OBSERVABLE
DOMAINS

R1

R2L2

L1

D

D

1

2

Figure 4.1: The Relay-Small problem.

L1 L2

⟨L1, R1⟩

⟨L1, R2⟩

⟨L2, R1⟩

⟨L2, R2⟩

1

1

1

1

0

0

0

0

xL
∈
XL

s
∈
S

MX
XL

=

⎡

⎢

⎢

⎣

1 0

1 0

0 1

0 1

⎤

⎥

⎥

⎦

Figure 4.2: Defining the marginalization matrix MX
XL

for the Relay-Small problem. This
matrix carries out the marginalization of the joint belief onto the belief factor bXL

.

on the amount of communication that is necessary for the joint decision-

making of the multiagent team. To that end, we will remain abstracted, throughout

the rest of this chapter, from the problem of propagating belief factors at run-time.

It should be expected that, in some situations in which we regard communication as

unnecessary in order to determine the actions of an agent, communication may still

be needed at run-time in order to update local belief factors. Conversely, in some

problems where communication is not needed in order to propagate local belief states

(for example, in ND-POMDPs), it may still be necessary to identify the action that

each agent should take.

4.3 An illustrative example: the Relay-Small problem

Consider the following small-scale factored MPOMDP, named Relay-Small, which will

be used as a conceptual example. In this environment, two agents operate inside a four-

state world, represented in Figure 4.1, in which each agent is confined to a two-state

76

4.3 An illustrative example: the Relay-Small problem

area. One of the agents possesses a package which it must hand over to the other agent.

The goal of these agents is then to “relay” this package between each other through the

opening between the rooms L1 and R1. The actions that each agent can perform are

to Shuffle, Exchange, or Sense. A Shuffle action moves the agent randomly, and with

equal probability, to either position in its local area. The Exchange action attempts to

perform the physical exchange of the package between the agents, and is only successful

if both agents are in the correct position (L1 for the first agent, R1 for the second one)

and if both agents perform this action at the same time. If it succeeds, the world is

reset to a random state with uniform probability. If this action is performed by only one

agent, or in any joint state other than ⟨L1, R1⟩, the team will incur a highly negative

reward. The Sense action is an informative action, which allows the agent to sense

whether it is in front of the opening or not, with probability of both false positives and

false negatives (0.1 probability of incorrectly detecting an opening or lack thereof). The

interesting feature of this small problem is its sparse dependency between the decision

processes of these agents. Evidently, the only cooperative action that the agents may

perform is a joint Exchange. Since this action can only succeed in a particular joint

state, it stands to reason that an agent which is sufficiently certain of not being in that

particular, corresponding local state should always attempt to move there first (via

Shuffle). In such a case, this decision can be taken regardless of the other agent’s state,

actions or observations (since the agents cannot observe each other).

Figure 4.3 represents the linear supports of the optimal infinite-horizon value func-

tion for this example, and the associated local actions of the first agent. Note that the

joint belief is four dimensional, but one of these dimensions may be omitted due to the

fact that
∑

s∈S b(s) = 1. The expected behavior can be inferred from this representa-

tion, noting that the Exchange action should only be performed if the agents are highly

certain of being both in the correct position (bL1,R1 is high), and the Shuffle action

should only be performed if the agent is sufficiently certain of not being in the correct

position.

In this scenario, an evident state space factorization is S = XL × XR, where XL =

{L1, L2} and XR = {R1, R2}. The projection of these linear supports onto the smaller

belief factor bXL
is shown in Figure 4.4. Here, an interesting result is already evident:

some regions of this belief space are covered only by a single linear support. In these

situations, there is no ambiguity as to what agent 1 should do. Its expected behavior

77

4. EFFICIENT COMMUNICATION IN PARTIALLY OBSERVABLE
DOMAINS

Shuffle

Exchange

Sense

Figure 4.3: The linear supports of the optimal stationary joint value function for the
Relay-Small problem, colored according to the respective local actions of agent 1.

is here still contained: if the agent has low probability of being in room L1, then the

optimal action is to Shuffle; if it is not certain enough of being in L1, it should Sense;

and Exchange is always an ambiguous action, since it depends on factor XR.

The key idea in the proposed approach is, that in some situations, the local informa-

tion of an agent is enough for it to take locally optimal decisions. If, furthermore, the

belief states over the local state factors are maintained independently, then the agents

might not need to communicate at all between two decisions. The explicit need to com-

municate would only arise in situations where one agent’s optimal action is dependent

upon the other agent’s information. In this example, this corresponds to the case where

one agent is fairly certain of being in the correct place for the exchange. It then needs

to reason over the other agent’s local belief to make sure that an Exchange action is

profitable in terms of expected reward.

4.4 Formal model

In the following section, and for simplicity of exposition, we will focus on infinite-

horizon problems. However, the method that is here proposed can also be applied to

finite-horizon problems, by repeating it for each n = 0, . . . , h− 1.

78

4.4 Formal model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
bXL

(L1)

Shuffle

Exchange

Sense

Figure 4.4: The projections of the linear supports of the joint value function onto the
belief factor over the left room.

4.4.1 Value Bounds Over Local Belief Space

Recall from Section 2.3.1 that, for a given vector α belonging to a PWLC value function,

ν(α) is the action associated with that vector. Let Vα(b) = α · b represent the expected

reward for selecting action ν(α). Ideally, if the value associated with an action could be

mapped from a local belief point bL, then it would be possible to select the best action

for an agent based only on its local information. This is typically not possible since the

projection (4.5) is non-invertible. However, as it will be shown, it is possible to obtain

bounds on the achievable value of any given vector, in local belief space.

The available information regarding Vα(b) in local space can be expressed in the

following system of linear equations:

Vα(b) = α · b

1T
n b = 1

MX
L b = bL

(4.6)

where 1n =
[

1 1 . . . 1
]T
∈ Rn. Let m be the size of the local belief factor which

contains bL. Reducing the matrix corresponding to this system of linear equations, it is

possible to associate Vα(b) with b and bL. The reduced matrix has at least n −m free

variables in its leading row, induced by the locally unavailable dimensions of b. The

resulting equation of the reduced leading row can be rewritten as:

Vα(b) = β · b+ γ · bL + δ , (4.7)

79

4. EFFICIENT COMMUNICATION IN PARTIALLY OBSERVABLE
DOMAINS

with β ∈ Rn, γ ∈ Rm and δ ∈ R. By maximizing (or minimizing) the terms associated

with the potentially free variables, this form can be used to establish the maximum

(and minimum) value that can be attained at bL.

Theorem 1. For a set of state factors L ⊆ X , let Iu =
{

v : MX
L (u, v) = 1

}

, β ∈

Rm : βi = maxj∈Ii βj , i = 1, . . . ,m and β ∈ Rm : βi = minj∈Ii βj , i = 1, . . . ,m.

The maximum achievable value for a local belief point, bL, according to α, is:

Vα(bL) =
(

β + γ
)

· bL + δ . (4.8)

Analogously, the minimum achievable value is

Vα(bL) =
(

β + γ
)

· bL + δ . (4.9)

Proof. First, it shall be established that Vα(bL) is an upper bound on Vα(b). The set

Ii contains the indices of the elements of b which marginalize onto [bL]i, and βi is the

maximum value of β for any of these indices. From the definition of β it follows that,

for all belief points b in the belief space B:

∑

j∈Ii

βibj ≥
∑

j∈Ii

βjbj , i = 1, . . . ,m ⇔

⇔ βi[bL]i ≥
∑

j∈Ii

βjbj , i = 1, . . . ,m ,

where the fact that
∑

j∈Ii

bj = [bL]i was used (marginalization). Summing over all i, this

implies that β · bL ≥ β · b. Using (4.7) and (4.8),

β · bL + γ · bL + δ ≥ β · b+ γ · bL + δ ⇔ Vα(bL) ≥ Vα(b)

Next, it needs to be shown that ∃b ∈ B : Vα(bL) = Vα(b). Since 1T
n b = 1 and bi ≥ 0 ∀i,

β · b is a convex combination of the elements in β. Consequently, max
b∈B

β · b = max
i

βi,

since a point b can always be taken such that [b]argmaxi β = 1, that is, it is equal to 1

for the same index as the maximum element of β. Then, following the same rationale,

max
i

βi = max
b∈B

β ·MX
L b .

80

4.4 Formal model

Therefore, for bm = argmax
b∈B

β · b, it results that Vα(MX
L bm) = Vα(bm).

The proof for the minimum achievable value Vα(bL) is analogous.

By obtaining the bounds (4.8) and (4.9), a step has been taken towards identifying

the correct action for an agent to take, based on the local information contained in bL.

From their evaluation, the following remarks can be made: if α and α′ are such that

Vα′(bL) ≤ Vα(bL), then α′ is surely not the maximizing vector at b; if this property holds

for all α′ such that (ν(α′))i ̸= (ν(α))i, then by following the action associated with α,

agent i will accrue at least as much value as with any other vector for all possible b

subject to (4.5). That action can be safely selected without needing to communicate.

The complexity of obtaining the local value bounds for a given value function is

basically that of reducing the system (4.6) for each vector. This is typically achieved

through Gaussian Elimination, with an associated complexity of O(n(m + 2)2) (Fang

and Havas, 1997). Note that the dominant term corresponds to the size of the local belief

factor, which is usually exponentially smaller than n. This is repeated for all vectors,

and if pruning is then done over the resulting set (the respective cost is O(|Γ|2)), the

total complexity is O(|Γ|n(m+ 2)2 + |Γ|2). The pruning process used here is the same

as what is typically done by POMDP solvers (White, 1991).

4.4.2 Dealing With Locally Ambiguous Actions

The definition of the value bounds (4.8) and (4.9) only allows an agent to act in atypical

situations in which an action is clearly dominant in terms of expected value. However,

this is often not the case, particularly when considering a large decision horizon, since

the present effects of any given action on the overall expected reward are typically

not pronounced enough for these considerations to be practical. In a situation where

multiple value bounds are conflicting (i.e. Vα(bL) > Vα′(bL) and Vα(bL) < Vα′(bL)), an

agent is forced to further reason about which of those actions is best.

In order to tackle this problem, assume that two actions a and a′ have conflicting

bounds at bL. Then, given Γa = {α ∈ Γ : (ν(α))i = a} and similarly defined Γa′ ,

the matrices A = [(Γa
i)j] (|Γ

a| × |S|) and A′ = [(Γa′

i)j] (|Γ
a′ | × |S|) are defined. Less

formally, the vectors in Γa and Γa′ are the rows of A and A′, respectively. Then, the

vectors v = Ab and v′ = A′b (in Rk and Rk′ respectively) contain all possible values

attainable at b through the vectors in Γa and Γa′ . Naturally, the maximum of these

81

4. EFFICIENT COMMUNICATION IN PARTIALLY OBSERVABLE
DOMAINS

values for each action will be sought. In particular, the goal is to determine if maxi vi

is greater than maxj v′
j for all possible b such that bL = MX

L b. If this is the case, then

a should be selected as the best action, since it is guaranteed to provide a higher value

at bL than a′.

The problem is then to find some b where a′ is the maximal action. It can be

described as the constrained optimization:

minimize max
i

vi −max
j

v′
j

subject to v = Ab b ≽ 0n

v′ = A′b 1Tn b = 1

MX
L b = bL

(4.10)

If the solution to this problem is negative, it follows that a′ is maximal at some point

b, which means that neither action can be taken without further information. Unfor-

tunately, the target function in this optimization is non-convex. Taking the epigraph

(i.e. a variable defined over the points above the graph) of the first term of the target

function, the problem becomes:

minimize s−max
j

v′
j

subject to Ab ≼ 1ks b ≽ 0n

v′ = A′b 1Tn b = 1

MX
L b = bL

(4.11)

Recall that bL is the belief factor that is locally available to the agent whose actions

are being considered, so it is a constant term in this problem – the only free variable is

b. If the vectors in |Γa′ | (rows of A′) are then taken individually, the problem trivially

becomes the LP:

∀i = 1, . . . , |Γa′ | maximize Γa′

i b− s

subject to Ab ≼ 1ks b ≽ 0n

MX
L b = bL 1Tn b = 1

(4.12)

If the solution bopt to each of these LPs is such that maxi(Abopt)i ≥ maxj(A′bopt)j ,

then action a can be safely selected based on bL. If this is not the case for any of the

solutions, then it is not possible to map the agent’s best action solely through bL. In

82

4.4 Formal model

order to disambiguate every possible action, this optimization needs to be carried out

for all conflicting pairs of actions.

An alternative is to introduce the slack variable ξ in the constraints of (4.11):

Ab ≼ 1ks b ≽ 0n

A′b = 1k′s+ ξ 1Tn b = 1

MX
L b = bL

(4.13)

If the maximum element of ξ is positive at some b, then it can be safely concluded

that maxi vi ≤ maxj v′
j and therefore the actions are undecidable. The problem of

maximizing the maximum element of ξ, however, is only solvable by splitting ξ into

its positive and negative components, ξ+ and ξ−, and requiring that (ξ+)T · ξ− = 0.

The latter constraint is itself non-convex, and at best it increases the complexity of the

optimization procedure beyond that of the exhaustive LP (4.12). The full optimization

problem which is here considered is reducible to that of L∞ error minimization, for which

there is no known method (Patrascu et al., 2002). In order to contain this problem as

an LP, these constraints can be relaxed, and the problem can be instead described as:

maximize 1Tk′ξ

subject to Ab ≼ 1ks b ≽ 0n

A′b = 1k′s+ ξ 1Tn b = 1

MX
L b = bL

(4.14)

The target function in this optimization is not the same as in the original problem (4.10),

since it instead seeks to find the point b with the highest average difference between

the maximum element of v and the values of A′ (highest mean value of ξ). While the

optimal solution to this problem is typically achieved at a point where ξ has positive

components, this is not necessarily so, and therefore this must be considered as an

approximate solution to the original problem. Since the vectors in A and A′ are arbitrary

as long as the full value function is convex, it is also difficult to establish a bound on

the quality of this approximation. In practice, for the examples which are here studied,

is was found that using (4.14) instead of (4.12) does not noticeably affect the quality

of the resulting communication map, and allows better scalability to larger domains.

83

4. EFFICIENT COMMUNICATION IN PARTIALLY OBSERVABLE
DOMAINS

4.4.3 Mapping Local Belief Points to Communication Decisions

For an environment with only two belief factors, the method described so far could

already incorporate an explicit communication policy: given the local belief bL of an

agent, if it is possible to unequivocally identify any action as being maximal, then

that action can be safely executed without any loss of expected value. Otherwise, the

remaining belief factor should be requested from other agents, in order to reconstruct b

through (4.2), and map that agent’s action through the joint policy. However, in most

scenarios, it is not sufficient to know whether or not to communicate: equally important

are the issues of what to communicate, and with whom.

Consider now the general problem with F belief factors contained in the set Y.

In this case there are 2|Y|−1 combinations of non-local factors which the agent can

request. Our goal is to identify one such combination which contains enough information

to disambiguate the agent’s actions. Central to this process is the ability to quickly

determine, for a given set of belief factors G ⊆ Y, if there are no points in bG with

non-decidable actions. The exact solution to this problem would require, in the worst

case, the solution of |Γa| × |Γa′ | LPs of the form (4.12) for every pair of actions with

conflicting value bounds. However, a modification of the approximate LP (4.14) allows

this problem to be tackled efficiently:

maximize 1T
k′ξ

′ + 1T
k ξ

subject to Ab ≼ 1ks A′b = 1k′s+ ξ MX
L b = bL

A′b′ ≼ 1k′s
′ Ab′ = 1ks

′ + ξ′ MX
L b′ = bL

b ≽ 0n b′ ≽ 0n MX
G b = MX

G b′

(4.15)

The rationale behind this formulation is that any solution to the LP, in which maxi ξi >

0 and maxj ξ′j > 0 simultaneously, identifies two different points b and b′ which map to

the same point bG in G, but share different maximizing actions a′ and a respectively.

This implies that, in order to select an action unambiguously from the belief over G, no

such solution may be possible.

Equipped with this result, it is now possible to formulate a general procedure that,

for a set of belief points in local space, returns the corresponding belief factors which

must be communicated in order for an agent to act unambiguously. This is referred

to as obtaining the communication map for the problem. This procedure, detailed in

84

4.4 Formal model

Algorithm 1, is as follows: begin by computing the value bounds of V over local factors

L, and sampling N reachable local belief points bL; for each of these points, if the

value bounds of the best action are not conflicting (see Section 4.4.1), or any conflicting

bounds are resolved by LP (4.14), mark bL as safe, add it to the communication map,

and continue on to the next point; otherwise, using LP (4.15), search for the minimum

set of non-local factors G which resolves all conflicts; then associate bL with G and

add it to the map. The inputs to the algorithm are the set of local factors, L, the set

of non-local factors Y, the value function V , and the number of desired samples N .

The output is a set of pairs ⟨bL,G⟩ of local belief points and associated communication

decisions.

Algorithm 1 CreateCommunicationMap(L,Y, V,N)

1: {Single_LP (bL, a, a′) refers to (4.14)}
2: {Full_LP (factors, bL, a′) refers to (4.15)}
3: Samples← sample N reachable local belief points bL;
4: bounds← obtain local value bounds of V ; Map← ∅;
5: for all bL ∈ Samples do
6: α′ ← argmaxα Vα(bL);
7: if Vα′(bL) ≥ Vα(bL) ∀α ̸= α′ or Single_LP (bL, a, a′) > 0 ∀α ̸= α′ then
8: Map←Map∪ ⟨bL, ∅⟩;
9: else

10: G ← ∅; H← Y/L;
11: while H is not empty do
12: temp← remove factor from H; factors← H∪G;
13: if Full_LP (factors, bL, a′) returns both negative solutions then
14: G ← temp;
15: end if
16: end while
17: Map←Map∪ ⟨bL,G⟩;
18: end if
19: end for
20: return Map

During execution, an agent updates its local information bL, finds the nearest neigh-

bor point in the communication map, and requests the corresponding factors from the

other agents. The agent then selects the action associated with the highest maximum

value bound given the resulting information.

85

4. EFFICIENT COMMUNICATION IN PARTIALLY OBSERVABLE
DOMAINS

R1

R2L2

L1

D

D

1

2

(a) Relay-
Small.

(b) Relay-Large.

Figure 4.5: (a) Layout of the Relay-Small problem. (b) Layout of the Relay-Large
problem.

4.5 Experiments

An analysis is now given to the results of applying the aforementioned offline com-

munication mapping process to three different MPOMDP environments, each with a

different degrees of interdependency between agents. The full state, action, and obser-

vation spaces of each of the following test problems can be found in Appendix A.

The first and smallest of the test problems is the Relay-Small problem introduced in

Section 4.3, and is mainly used for explanatory purposes. The fact that, in this problem,

each belief factor is two-dimensional (each factor spans one of the rooms) allows the

visualization of the results of the proposed method. In Figure 4.7, it can be seen that

some of the expected behavior of agent D1 is already contained in the value bounds over

its local factor: if the agent is certain of being in room L2 (i.e. (bXL
)1 = 0), then the

action with the highest-valued bound is Shuffle. Likewise, an Exchange should only be

carried out when the agent is certain of being in L1, but it is an ambiguous action since

the agent needs to be sure that its teammate can cooperate. Figure 4.6 represents the

communication map which was obtained offline through the proposed algorithm. Since

there are only two factors, the agent only needs to make a binary decision of whether

or not to communicate for a given local belief point. The belief points considered safe

are marked as 0, and those associated with a communication decision are marked as 1.

In terms of quantitative results, shown in Table 4.1, it can be seen that ∼ 30− 40% of

communication episodes are avoided in this simple example, without a significant loss

of collected reward.

Another test scenario is the OneDoor environment of (Oliehoek et al., 2007). In this

problem, two agents operate in a 49-state grid-like world, represented in Figure 4.8, and

86

4.5 Experiments

0 0.2 0.4 0.6 0.8 1
0

1

[bXL
]1

M
ap

((
b X

L
) 1
)

Figure 4.6: Communication map for agent D1 in the Relay-Small problem.

0 0.2 0.4 0.6 0.8 1
20

40

60

80

100

120

140

160
Value Bounds (Relay)

0 0.2 0.4 0.6 0.8 1
20

40

60

80

100

120

140

160
Pruned Value Bounds (Relay)

Shuffle

Exchange

Sense

VV

[bXL
]1[bXL

]1

artial Observ

Figure 4.7: Value bounds for agent D1 in the Relay-Small problem. The dashed lines
indicate the minimum value bounds, and the filled lines represent the maximum value
bounds, for each action. Left: the bounds for all vectors in the joint value function. Right:
pruned bounds.

may each be in one of 7 possible positions. One of the agents is known to be in positions

1, 2 or 3 (with uniform probability) and has the goal of reaching position 5. The other

starts in positions 5, 6 or 7 and must reach position 3. Each agent can move in any of the

four directions, with an associated probability of ending up in an unintended neighbor

state, and can observe positions 2, 4 and 6 with no noise. The remaining positions are

indistinguishable to the agent (a case of perceptual aliasing). Therefore |Oi| = 4. The

robots may share the same position, and they receive a severe penalty for being both in

Relay-Small OneDoor Relay-Large

h. Full Comm. Red. Comm. Full Comm. Red. Comm. Full Comm. Red. Comm.

6 15.4, 100% 14.8, 56.9% 0.35, 100% 0.30, 89.0% 27.4, 100% 25.8, 44.1%
10 39.8, 100% 38.7, 68.2% 1.47, 100% 1.38, 76.2% -19.7, 100% -21.6, 62,5%
∞ 77.5, 100% 73.9, 46.1% 2.31, 100% 2.02, 61.3% 134.0, 100% 129.7, 58.9%

Table 4.1: Results of the proposed method for various environments. For settings assum-
ing full and reduced communication, results show (average accumulated discounted reward,
online communication usage).

87

4. EFFICIENT COMMUNICATION IN PARTIALLY OBSERVABLE
DOMAINS

Relay-Small OneDoor Relay-Large
h 6 10 ∞ 6 10 ∞ 6 10 ∞

Perseus 1.1 4.3 0.1 7.3 33.3 5.3 239.5 643.0 31.5
Comm. Map 5.9 21.4 7.4 12.4 57.7 5.9 368.7 859.5 138.1

Table 4.2: Running time (in seconds) of the proposed method in comparison to the
Perseus point-based POMDP solver. The version of Perseus that was used for the
stationary case (h = ∞) was optimized to that setting, which explains its faster solution
times.

A B

CD

1

2

3

4

5

6

7

Figure 4.8: Representation of the OneDoor scenario.

position 4 (the door) at the same time. They receive a positive reward for reaching their

goal, and no reward otherwise. The agents are uncoupled except through the reward

function (i.e. this is a transition-observation independent version of the problem, in

which agents cannot physically collide). Even so, this means that an acceptable policy

in this problem must be such that one of the agents waits for the other to clear the

“door” in position 4 until it attempts to move there.

If a sufficiently large horizon is considered, this problem allows for a significant

reduction in communication, using the proposed method — up to 38.7% for h = ∞.

This is because a near-optimal joint policy defines wich agent should take priority, and

since that agent always moves first, it rarely needs to communicate (only when the

other agent has a sufficient probability of moving to position 4 due to the noise in

its actions). The other agent, in turn, must communicate until its partner clears the

door, and afterwards, its local actions can also be taken independently and so it ceases

communication. For horizons smaller than 10, however, the agents may not have enough

decisions left to gather any positive reward, and in these cases they both communicate

in order to avoid any possible collisions. For h = 6, communication is only avoided in

11% of all decision steps.

Note that this relationship between the problem’s horizon and the amount of com-

munication savings does not hold for all of the problems. The proposed method exploits

88

4.6 Summary

the invariance of local policies over subsets of the joint belief space, and this may arbi-

trarily change with the problem’s horizon.

A larger example is displayed in Figure 4.5b. This is an adaptation of the Relay-

Small problem (named Relay-Large) to a setting in which each room has four different

states, and each agent may be carrying a package at a given time. Agent D1 may

retrieve new packages from position L1, and D2 can deliver them to L2, receiving for

that a positive reward. There are a total of 64 possible states for the environment.

Here, the agents can act independently for a larger number of steps, since they must

first collect a package, move to the correct position for their interaction, and only then

cooperate. The communication savings are more pronounced, as shown in Table 4.1,

with up to 41.1% reduction for h =∞.

Finally, it is here argued that the running time of the proposed algorithm is com-

parable to that of general POMDP solvers for these same environments. Even though

both the solver and the mapper algorithms must be executed in sequence, the results

in Table 4.2 show that they are typically both in the same order of magnitude, for all

of the tested scenarios, and regardless of the horizon that is selected for the respective

decision-making problem.

4.6 Summary

Traditional multiagent planning on partially observable environments mostly deals with

fully-communicative or non-communicative situations. For a more realistic scenario

where communication should be used only when necessary, state-of-the-art methods are

only capable of approximating the optimal policy at run-time (Roth et al., 2005a; Wu

et al., 2009). The properties of MPOMDP models which can be exploited in order

to increase the efficiency of communication between agents were here analyzed. It was

shown that these properties hold, for various MPOMDP scenarios, and that the decision

quality can be maintained while significantly reducing the amount of communication,

as long as the dependencies within the model are sparse.

89

4. EFFICIENT COMMUNICATION IN PARTIALLY OBSERVABLE
DOMAINS

90

Chapter 5

Continuous-Time Execution and

Planning for Teams of Robots

As we have briefly discussed in Section 3.2.4, one of the fundamental steps involved in

modeling of real-world systems through DT frameworks is the selection of an appropri-

ate execution strategy for the decision-making agent(s). Tractable classes of DT models

assume that the underlying process evolves according to discrete-time sequential deci-

sions, but for physical agents acting on the real world, the underlying process operates

over continuous time. We have also seen that synchronous execution strategies, while

conceptually simple, exhibit undesirable characteristics, such as the loss of reactivity

to occurrences that can be relevant to the decison-making process, or the induction of

superflous actions, resulting in unnecessarily large planning horizons.

In contrast, the system modeling formalisms which are most ubiquitous in robotics

applications, which stem from the theory of Discrete-Event Systems, assume by default

that the decision-making process is driven by asynchronous, randomly occurring events.

This is the case, most notably, for robotic controllers based on Finite State Automata

(Damas and Lima, 2004; Quottrup et al., 2004), or Petri Nets (Costelha and Lima, 2007;

Herrero-Perez and Martinez-Barbera, 2008; Rosell et al., 2003). By themselves, DES

frameworks do not address the problem of automated planning or learning; instead,

they assume that a plan is available beforehand, and they can be used to represent that

plan and to exeucte it, formally analyzing its relevant properties.

It is a reasonable hypothesis, then, that there is a strong potential for real-world

applicability, particularly in the domain of robotics, in the common ground between DT

91

5. CONTINUOUS-TIME EXECUTION AND PLANNING FOR TEAMS
OF ROBOTS

and DES modeling formalisms. This is one of the central claims of this thesis. In this

and in the following chapters, we will evaluate existing approaches, and propose novel

methodologies, that exploit the synergy between the real-world descriptive capabilities

of DES theory, and the automated planning and learning methodologies of decision

theory. The distinctive feature to these approaches is that they are simultaneously

multiagent and event-driven.

Existing approaches that combine DT and DES include the recent works of Neto

(2010) and Yamasaki and Ushio (2005), although the topic remains otherwise largely

unexplored. These approaches consider the problem of obtaining a supervisor for a DES

as one of reinforcement learning over an embedded (PO)MDP. That is, they start from

DES representations, and later obtain equivalent DT models for learning / planning

purposes. In the approaches which we present in this thesis, the system models are

wholly within the domain of DT to begin with, but at the same time they subscribe to

the DES event-driven paradigm.

Other related work on event-driven MDPs deals with such events without explicitly

modeling the effect of continuous time: by keeping track of event histories in the system

state (Becker et al., 2004), or by considering the occurrence of non-Markovian events

as being unpredictable (Witwicki et al., 2013).

In the current chapter, we will describe the requirements to the modeling of multi-

robot decision-making as an event-driven process. We will then evaluate the per-

formance of the DT framework that best fits the aforementioned requirements – the

GSMDP framework. GSMDPs are explicitly event-driven, and will be shown to have

several advantages over synchronous MDP models. First, by explicitly modeling the

temporal occurrence of events, the non-Markovian effects of state and action space

discretization can be minimized, increasing solution quality. Second, since events are

allowed to occur at any time, the system is fully reactive to sudden changes. And finally,

communication between agents will only be required upon the occurrence of an event,

as opposed to having a fixed rate.

Despite their suitability, there haven’t been any reported applications of GSMDPs to

real-world multiagent systems. This constitutes the central contribution of this chap-

ter. We will revisit the robotic soccer case study introduced in Chapter 3 from an

event driven perspective, and comparatively analyze synchronous (standard MDP) and

asynchronous (GSMDP) modeling approaches with respect to real time performance.

92

5.1 Event-Driven Multi-Robot Systems: Beyond SMDPs

0 ∆ 2∆ 3∆ 4∆

Agent 1

Agent 2

Agent 1

Agent 2

a1, 0 a1, 1

s0 s1 s2 s3

s0 s1 s2 s3

A
sy
n
ch
ro
n
ou
s

S
yn
ch
ro
n
ou
s ∆+ δ

a1, 2 a1, 3

a2, 3a2, 2a2, 1a2, 0

a2, 0 a2, 1 a2, 2 a2, 3

a1, 0 a1, 1 a1, 2 a1, 3

Multiagen

Figure 5.1: Action selection in synchronous and asynchronous execution of a multi-robot
system. In these conceptual examples, the solid arrows represent the temporal duration of
the actions of each agent a{1,2},n, and the underlying shaded regions represent the sojourn
time of the system in states s0,...,3. In synchronous operation, actions are jointly taken
at positive multiples of ∆. During the gaps between the end of a given local action and
the beginning of the next decision step, agents are forced to idle (red patterned intervals).
Dashed arrows between agents represent communication instances, where δ is a commu-
nication delay; In asynchronous execution, a new decision step starts immediately after a
transition is detected, so there is no idle time. Furthermore, only the agent that detects
an event needs to communicate.

Finally, we note that, for this analysis to be possible, we will here assume that our

multi-robot system is jointly fully observable – the partially observable extension to

these methods will be discussed in Chapter 6; and that, for planning purposes, commu-

nication is free, following the arguments presented in Chapter 4.

5.1 Event-Driven Multi-Robot Systems: Beyond SMDPs

We have discussed the properties of synchronous execution of discrete-time policies for

physical agents, and, in particular, we saw that it carries notable drawbacks. The

natural alternative to this execution strategy is an “asynchronous”, or event-driven

scheme, where agents can be required to act at any given point in time, as a response to

changes in their enveloping environment. An illustration comparing synchronous and

93

5. CONTINUOUS-TIME EXECUTION AND PLANNING FOR TEAMS
OF ROBOTS

event-driven (asynchronous) execution strategies in a multi-robot system is shown in

Figure 5.1. We will now show, however, that multi-robot systems with asynchronous

dynamics cannot be easily modeled as Markovian or semi-Markovian decision processes,

and that a generalization to the latter is indeed necessary under these circumstances.

The most important difference in the dynamics of synchronous and event-driven

systems concerns the relationship between decision instants and state transitions in

real time. In either case, state transitions are a property of the physical system, so the

time of their occurence not necessarily dependent on the execution strategy selected

for its respective agents. For generality, let us assume that the state transitions of our

physical system occur at random points in time. Then:

• In a synchronous execution strategy, decisions are taken at predetermined instants,

for example at t = k∆ for some period ∆ > 0 and k ∈ {0, . . . , h − 1}. That is,

decision instants are not simultaneous with state transitions1;

• In an event-driven decision-making process, decisions are taken only at state tran-

sition instants. In other words, a state transition is a necessary, but not sufficient,

condition for a decision to be taken2. Note that the termination of an action can

also be considered an “event”, according to the interpretation used in this work.

In practice, this implies that, while a discrete-time model evolves between decision

instants according to the time-invariant distribution Pr(s′ | s,a), an event-driven model

should account for the fact that state transitions may take variable amounts of time,

i.e., the system dynamics should be defined as p(t, s′ | s,a).

In the single agent case, an event-driven system can be modeled by an SMDP with

a non-factored state space (Puterman, 1994), where p(t, s′ | s,a) = fa

s,s′(t)T (s,a, s
′), as

per Definition 2.2.1. In that case, the time for the state transition ⟨s, a, s′⟩ to resolve is

a random variable following an arbitrary distribution fa

s,s′ .

1Note that discrete-time models are usually defined, for analytical tractability, over equiva-
lent systems with the same stochastic properties, in which the state is only allowed to change at
t = k∆ (Puterman, 1994). In that sense, decisions can be seen as simultaneous with state tran-
sitions. While this may be equivalent from an analytical standpoint, it is merely a simplifying
assumption. It is typically not true that a physical system only changes at periodic instants.

2This is the most general interpretation (Puterman, 1994), but note that, as we had un-
derlined in Section 2.2.1, we are restricting our attention, in this work, to systems in which
decisions are always taken at state transitions.

94

5.1 Event-Driven Multi-Robot Systems: Beyond SMDPs

For factored state spaces, which are typical of multiagent systems, this analysis is

slightly more complex. Consider a model with a factored state space description ⟨S,X ⟩

with two state factors, X = {X1,X2}. In particular, assume that the dynamics of

each state factor variable are naturally independent of one another, representing, for

example, the position of two mobile robots moving in parallel, such as in the condi-

tions of Figure 5.2. In synchronous execution, we could exploit this independence to

decompose the joint state transition probabilities, that is, for s = ⟨x1, x2⟩ and s′ =

⟨x′1, x
′
2⟩, Pr(s

′ | s,a) = Pr(x′1 |x1,a)Pr(x
′
2 |x2,a). However, in an event-driven perspec-

tive, if these state factor variables represent subprocesses which experience transitions

asynchronously and independently from one another, then transitions ⟨x1,a, x′1⟩ and

⟨x2,a, x′2⟩ will never happen simultaneously1. In other words, if these transitions trig-

ger at times T1 ∼ fa

x1,x′
1

and T2 ∼ fa

x2,x′
2
, then naturally Pr(T1 = T2) = 0. Furthermore,

recall that any state transition can trigger a new decision step. This raises two impor-

tant issues: first, in this case, we cannot factor joint transition probabilities Pr(s′ | s,a),

since only one of the state factor variables is allowed to change between any two decision

steps (we must actually reason over the joint p(t, s′ | s,a)); and since fa

x1,x′
1
,fa

x1,x′
1

are not

necessarily memoryless, then if, for example, transition ⟨x1,a, x′1⟩ fires first at time T1,

we have that in the general case Pr(t > δ , x′2 |x2,a) ̸= Pr(t > T1 + δ , x′2 |x2,a, t > T1)

for any δ > 0. This implies that we must keep track of the triggering time T1 in order

to predict T2, which violates the Markovian assumption. This constitutes a problem of

concurrent, persistently enabled events, as per Definition 2.2.4.

Note that this would not be a problem if all fa

s,s′ are exponential, since, in that

case, Pr(t > δ , s′ | s,a) = Pr(t > T1 + δ , s′ | s,a, t > T1), through the memoryless

property of that distribution. That is, even if exponential events are enabled across

multiple decision steps, there is never the need to maintain the time at which they

became enabled in order to predict their triggering time. This means that multiagent,

event-driven systems with fully exponential transitions could be modeled as CTMDPs

(Section 2.2.2). However, CTMDPs cannot model non-Markovian temporal

distributions (Howard, 1960).

1Note that this result only applies to asynchronous subprocesses. We could also model, with
event-driven dynamics, two or more state factors that are correlated in such a way that they
always experience transitions simultaneously.

95

5. CONTINUOUS-TIME EXECUTION AND PLANNING FOR TEAMS
OF ROBOTS

L

t = 0

Agent 1

Agent 2

R

Ga

a

Dec-MDP

(a)

L

t = T

Agent 1

Agent 2

R

G

a

a

(b)

Figure 5.2: An example of an environment in which persistently enabled events are an
issue: (a) At time T1, two agents attempt to move from state L to G through a simple
navigation action a. (b) At T2 > T1, agent 1 detects that it has changed its local state
factor (x1), triggering a new joint decision. For agent 2, Pr(x′

2 = R |x2 = L, a) is now
intuitively higher, given the time that it has been moving so far. However, a memoryless
discrete MDP cannot use this information. The system is not strictly Markovian.

Many of the physical processes involved in the operation of a robotic platform do

not have exponential duration. For example:

• The battery life of a mobile robot, which can be modeled as a Weibull distribution;

• The time taken by a mobile robot to traverse an arbitrary path to a desired pose,

which is multi-modal or infeasible to parametrize, in the general case;

• Fixed-time operations, such as timeout signals, or deliberately induced pauses in

the control of a robot, which are, theoretically, Dirac delta probability density

functions.

To model the above temporal distributions, or at least those of the above with

well-defined Laplace transforms, we could describe the system dynamics as those of an

SMDP (Section 2.2.1). But SMDPs cannot model persistently enabled transi-

tions. After any transition, an SMDP loses all memory of the past execution of the

system. Therefore, SMDPs cannot model, exactly and in the general case, asynchronous

multiagent decision-making problems.

We see, therefore, that neither CTMDPs or SMDPs can model event-driven multi-

robot systems. For this reason, we need to resort to a generalization of those frameworks.

96

5.2 GSMDPs as a Framework for Multi-Robot Decision-Making

5.2 GSMDPs as a Framework for Multi-Robot Decision-

Making

The framework of Generalized Semi-Markov Decision Processes (GSMDPs), proposed

by Younes and Simmons (2004) is ideally suited for the requirements of this work.

It allows generic temporal probability distributions over events, while maintaining the

possibility of modeling persistently enabled (concurrent) events, which is essential in

multi-robot domains.

However, to our knowledge, this framework has never been applied in a realistic

multi-robot context. We show that, by allowing event-driven plan execution, the appli-

cation of the GSMDP framework to multi-robot planning problems allows us to avoid

the negative effects of its synchronous alternatives, resulting in greater performance.

GSMDP models can be solved by commonly used discrete-time MDP algorithms,

by first obtaining an approximate Markovian model through the use of Phase-Type

temporal distributions (Younes, 2005; Younes and Simmons, 2004). Here, we also take

into account the fact that some events which are characteristic of robotic systems are

not amenable to Phase-Type approximations, and that, if so, the resulting approximate

systems remain semi-Markovian.

This section discusses the methodology involved in applying GSMDPs to a generic

multi-robot problem, and in obtaining a useful plan from a given GSMDP model. It also

describes the aspects of this work which contribute to the practical use of the theory of

GSMDPs in real multi-robot scenarios.

5.2.1 From DES to GSMDPs

The similarities between the event-driven dynamics of GSMDPs (which we have re-

viewed in Section 2.2.3), and those considered in the theory of DES, are owed to the

earlier work of Glynn (1989), who introduced the underlying Generalized Semi-Markov

Process (GSMP) formalism with the purpose of analyzing stochastic discrete-event sys-

tems. In particular, GSMPs were introduced as a way of modeling the dynamics of

Stochastic Timed Automata (STAs), which experience uncertainty both in the out-

come of their transitions and in the timing of the events which drive said transitions.

GSMDPs are an extension to GSMPs which add a dimension of decision-making to the

dynamics of the latter.

97

5. CONTINUOUS-TIME EXECUTION AND PLANNING FOR TEAMS
OF ROBOTS

In the theory of DES, decision-making is typically modeled through the inclusion of

a suitably defined “supervisor” to the system (Cassandras and Lafortune, 1999). This

supervisor, which is itself an accessory subsystem to the actual process model, interacts

with the rest of the system by “controlling” certain events, i.e. by enabling or disabling

certain transitions, in order to maintain the system in a desired set of states, or to drive

it there from some arbitrary initial configuration.

This interpretation of decision-making as system supervision was also taken by

Younes and Simmons (2004) in the original formulation of the GSMDP framework.

In that work, “actions” are considered to be controllable events; the respective defini-

tion of “events”, on the other hand, is that of Glynn (1989), who had considered them

as semantically independent from states. Events were seen as the signals driving the

transitions of a (possibly stochastic) state machine. There may be uncertainty in the

resulting state of the system, if an event is known to happen.

However, we note that this definition departs from the interpretation taken in other

modeling languages for the description of DES, such as Deterministic Finite State Au-

tomata, where sequences (strings) of events unambiguously identify paths in the state

space of a fully observable system (Cassandras and Lafortune, 1999); or Petri Nets (or

Generalized Stochastic Petri Nets), where events are seen as semantically equivalent to

transitions between markings. In these examples, if the system is fully observable, then

knowing that a certain “event” has happened not only informs the decision-maker that

the state has changed but also how it changed. If, instead, by observing an event, the

decision-maker can only have partial knowledge over the resulting states of the system

(as in the GSMP framework), then that system would be more aptly described as par-

tially observable – in this case, the distinction between uncertainty in state transitions

and uncertainty in observations becomes muddled.

In Section 2.2.3, we have noted that our interpretation of a decision-theoretic discrete

event-driven system is different from that of Younes and Simmons (2004). According

to Definition 2.2.2, events are regarded as abstractions of state transition pairs, which

in turn may be enabled (made possible) at certain states by certain actions. Since

state transitions are stochastic, then so are events; but knowing that an event has

happened in a given state gives agents full knowledge of the resulting state of the

system. This means that such a system can be controlled equivalently by observing

either states or events. Drawing a parallel to the theory of DES, we note that our

98

5.2 GSMDPs as a Framework for Multi-Robot Decision-Making

interpretation is closest to that of Garg (1992) and Lawford and Wonham (1993), in

their definition of Probabilistic Discrete Event Systems (PDES), where events have a

well-defined probability of occurring in a state; although we restrict our attention to

systems in which, given the occurrence of an event, the induced state transition is

deterministic.

In Chapter 6, we will show how this interpretation can also be extended to handle

partial observability over events. Using our interpretation, there is a clear distinction

between what constitutes a fully or partially observable event-driven system, in a way

that is consistent with the decision-theoretic concepts of full or partial observability.

Finally, we also consider that our interpretation allows for a clearer description of the

GSMDP model dynamics in multiagent scenarios, consistently with other multiagent

MDP-based frameworks. In (Younes, 2005), the author suggests that a multiagent

GSMDP can be modeled by selecting a set of events at every decision, rather than

just selecting one controllable event at a time. Each enabled event in this set would

correspond to a local action of one of the agents. However, even if a set of events is

enabled at a given decision step, only one of them may fire at a given time. If only

one event can influence the next-state probabilities at any decision step, and actions

are equated to events, then this contrasts with the typical dynamics of multiagent DT

models, where the input of all agents can affect state transitions. The execution of

particular joint (simultaneous) actions can be crucial to the evolution of a multiagent

decision-making process. Specific joint actions could be modeled explicitly as single

events, but in that case, the model would be centralized, and undistinguishable from a

single agent system1.

The following example illustrates the practical differences, when modeling event-

driven stochastic systems, between the set of definitions introduced in this work, and

those used by Younes and Simmons (2004) in the original formulation of GSMDPs.

Example 5.2.1. Modeling a dice throw as an event-driven process: Consider

the throw of a fair dice, modeled as a stochastic process with S = {I, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’}.

The initial state of the process is s0 = I, and S\I is the space of possible outcomes at

step 1.

1Another solution to obtain equivalent behavior is to add more intermediate states to the
system, adding further to its complexity

99

5. CONTINUOUS-TIME EXECUTION AND PLANNING FOR TEAMS
OF ROBOTS

‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’

I step 0

step 1

Pr
(‘1
’ |
I,
e)

P
r(
‘2
’ |
I,
e)

P
r(
‘3
’ |
I
, e
) P

r(‘4’ | I
, e)

P
r(‘5’ | I, e)

Pr(‘6’ | I, e)

e = ‘Roll Dice’

Dec-MDP

(a) Original definition.

‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’

I step 0

step 1

Pr
(e1

| I
, a
)

P
r(
e 2
| I
, a
)

P
r(
e 3

| I
, a
) P

r(e
4
| I
, a)

P
r(e

5 | I, a)

Pr(e
6 | I, a)

a = ‘Roll Dice’

abilit

(b) Definition 2.2.5.

‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’

M

step 0

step 1

Pr
(e
′
1
|M

)

P
r(
e
′

2
|M

)

P
r(
e
′ 3
|M

)

P
r(
e
′4
|
M

)
P
r(e ′

5 |M
)

Pr(e ′
6 |M

)

e = ‘Roll Dice’

I

e′1,...,6 = ‘Outcome 1,. . . ,6’

step 2

(uncontrollable)

(controllable,
instantaneous)

︷︷

︷︷

(c) Using an intermediate state (as in (Neto, 2010)).

Figure 5.3: An example of the practical difference in the definition of events, in the
context of modeling a dice throw. (a) the original GSMDP formulation of Younes and
Simmons (2004); (b) Through Definition 2.2.5 used in this work; (c) The interpretation of
controllable events as instantaneous transitions of Neto (2010).

Using the definitions of Younes and Simmons (2004) and Glynn (1989), this problem

can be modeled as a GSMDP, by considering that it evolves from step 0 to step 1 following

the occurrence of a single controllable event, e = ‘Roll Dice’. As the agent enables

e, the instant of the next decision step is sampled from p(t | e). At that instant, the

system experiences a transition into s1 ∈ S\I, according to the transition probabilities

100

5.2 GSMDPs as a Framework for Multi-Robot Decision-Making

Pr(s1 | I, e) =
1
6 . This process is depicted in Figure 5.3a.

According to Definition 2.2.5, which we introduce in this work, each of the possible

outcomes of this stochastic process is itself an “event”. Our interpretation of the process

is shown in Figure 5.3b. At step 0, the agent performs action a = ‘Roll Dice’; at which

point, one of the six possible events ei=1,...,6 is sampled from the uniform distribution

p(e|s, a) (that is, from T (s, a, e)). The instant of the next decision step is then sampled

from fa
ei
(t) = p(t|a, ei). Events are here seen as possible consequences of actions, rather

than considering actions to be special cases of events.

Another way of modeling this problem as a GSMDP, through the definitions of

Younes and Simmons (2004), but with comparable dynamics to those of the process

shown in Figure 5.3b, is shown in Figure 5.3c, and considers an additional intermediate

state, M , between the initial state of the system and the possible outcomes. If M is

reached immediately, and deterministically, after the controllable event is enabled, then,

at step 3, each of the different outcomes of the process could be reached by a distinct

exogenous event e′i, such that Pr(e′i |M) = 1
6 . For these events (and in this simplified

case), Pr(sj |M, e′i) = 1 if and only if i = j, and is 0 otherwise. This approach of

considering controllable events as instantaneous transitions into intermediate states is

taken by Neto (2010) to model discrete event systems. However, from a DT perspective,

this approach is not useful, not only because it adds, unnecessarily, to the operational

complexity of the model (by adding more states), but also because it artificially inflates

the horizon of the decision-making problem (since more steps are considered).

We will now show that GSMDP models can be converted across both sets of defi-

nitions, to show that the differences in our interpretation of event-driven dynamics are

not analytically restrictive, and so they do not result in any loss of generality in the dis-

cussion and methodologies that are presented in this work with respect to event-driven

systems.

Proposition 5.2.1. A GSMDP G = ⟨S,A, T,F , R, C, E⟩, which satisfies Definition

2.2.5, can be converted to a single-agent GSMDP G = ⟨S, T ,F , R, C, E⟩ which satisfies

the definition of Younes and Simmons (2004), namely, where: S is a set of states; E is

a set of events, of which some are controllable; T : E ×S ×S → [0, 1] models transition

probabilities; F contains temporal distributions for events; R : S × E × S → R contains

immediate rewards; and C : S × E → R contains cumulative reward rates.

Proof. Let E be composed entirely of controllable events, and let Ψ : A → E be a

bijection between the actions of G and the set of events of G. Ψ identifies the event

101

5. CONTINUOUS-TIME EXECUTION AND PLANNING FOR TEAMS
OF ROBOTS

in E that should be enabled, given an action a ∈ A. Note that, since G is explicitly

single agent, as per Younes (2005), one (and only one) event in E must be enabled at

any decision step. Also, from Definition 2.2.2, Φ : S × S → E is implicitly defined, and

maps state transitions in G to events in G. Then, we can define S, T , F , R and C such

that:

1. S = S (same state space);

2. T (Ψ(a), s, s′) = T (s, a,Φ(s, s′)), ∀a ∈ A, ⟨s, s′⟩ ∈ S ×S (the events and actions of

G are converted, respectively, to state transitions and events in G);

3. f
Ψ(a)
s,s′ (t) = fa

Φ(s,s′)(t), ∀a ∈ A, ⟨s, s′⟩ ∈ S × S and F =
⋃

⟨s,s′⟩∈S×S,e∈E

f
e
s,s′(t)

(same rationale as in Point 2);

4. R(s,Ψ(a), s′) = R(s, a, s′), ∀a ∈ A, ⟨s, s′⟩ ∈ S ×S1 (actions in G are converted to

events in G);

5. C(s,Ψ(a)) = C(s, a), ∀a ∈ A, s ∈ S (same rationale as in Point 4).

Proposition 5.2.2. A single-agent GSMDP G = ⟨S, T ,F , R, C, E⟩ which satisfies

the definition of Younes and Simmons (2004), can be converted to a GSMDP G =

⟨S,A, T,F , R, C, E⟩, which satisfies Definition 2.2.5.

Proof. Let Ec ⊆ E represent the controllable events in G. Define A so that |A| = |Ec|

and so that there is a bijection Ψ : A→ Ec. Then, we can define S, T , F , R, C and E

so that:

1. S = S (same state space);

2. E is arbitrary, as long it satisfies Definition 2.2.2 over S;

3. T (s,Ψ−1(e),Φ(s, s′)) = T (e, s, s′), ∀e ∈ Ec, ⟨s, s′⟩ ∈ S × S, and, for each action

a ∈ A, T (s, a,Φ(s, s′)) = T (e, s, s′), ∀e ∈ E\Ec, ⟨s, s′⟩ ∈ S×S (controllable events

in G are converted to actions in G, and transitions depending on uncontrollable

events are converted to transitions that are independent from actions);

1Recall from Chapter 2 that R(s, a, s′) models can be reduced to R(s, a) form. We have
used the latter in Definition 2.2.5, but this is not a limiting assumption.

102

5.2 GSMDPs as a Framework for Multi-Robot Decision-Making

4. fΨ−1(e)
Φ(s,s′) (t) = f

e
s,s′(t), ∀e ∈ Ec, ⟨s, s′⟩ ∈ S × S, and, for each action a ∈ A,

fa
Φ(s,s′)(t) = f

e
s,s′(t), ∀e ∈ E\Ec, ⟨s, s′⟩ ∈ S × S (same rationale as in Point 3);

5. R(s,Ψ−1(e), s′) = R(s, e, s′), ∀e ∈ Ec, (s, s′) ∈ S × S, and, for each action a ∈ A,

R(s, a, s′) = R(s, e, s′), ∀e ∈ E\Ec, ⟨s, s′⟩ ∈ S × S (same rationale as in Point 3);

6. C(s,Ψ−1(e)) = C(s, e), ∀e ∈ Ec, s ∈ S and, for each action a ∈ A, C(s, a) =

C(s, e), ∀e ∈ E\Ec, s ∈ S (same rationale as in Point 3).

5.2.2 Modeling and Solving a GSMDP

In Section 3.2.3 we saw that, if we intend to use model-based planning or learning

methods for DT frameworks applied to physical systems, an important practical step is

the estimation of the involved stochastic models. In the GSMDP case, in this step, we

need to identify the stochastic models T and F .

For every event in E , the identification procedure for T and F is technically simple:

as before, since the system is fully observable, T can be estimated through the relative

frequency of the occurrence of each transition; and by timing this transition data, it is

straightforward to fit a probabilistic model over the resulting data to obtain F1. The

family of that distribution is, however, unknown a priori, in the general case.

Since events abstract state transitions, a representation of T and F over events

naturally exploits the structure of the process, reducing the number of parameters that

should be estimated. For example, for a set of identical robots, each with a state

factor representing battery level, the same event (running low on battery, for example)

would be mapped by the same change in any of those factors, and so only one temporal

distribution and state transition probability would need to be specified.

As we have discussed in Section 2.2.3, the direct solution of a general GSMDP is

a difficult problem, since typical dynamic programming approaches cannot be directly

applied under its non-Markovian dynamics. Younes and Simmons (2004) proposed

to approximate each non-exponential fa

s,s′ in F as a Phase-Type distribution. These

1Although in practice, as discussed in Chapter 3, a large amount of data may be required
for this estimation to be accurate. This problem can be mitigated through realistic simulation
of the physical system.

103

5. CONTINUOUS-TIME EXECUTION AND PLANNING FOR TEAMS
OF ROBOTS

x1 x′1

x2 x′2

0 t

e2

e1

0 t

λ2

POSMDP

(a)

x1 p1

x2 x′2

0 t

e2

p2 x′1

0 t

0 t 0 t 0 t

λ2

(1− ρ)λ1 λ1 λ1

ρλ1

(b)

Figure 5.4: Approximating non-Markovian events through Phase-Type distributions. The
topmost temporal distribution in Figure 5.4a is approximated through the Markov chain
shown in its place, in Figure 5.4b. The newly added Markov chain models a Generalized
Erlang distribution with three phases, which matches the first two moments of the original
distribution. The parameters that govern the decay rate of each of the corresponding expo-
nential distributions (ρ and λ1) are a function of the coefficient of variation of the original
temporal distribution of e1. Note that event e2 is already governed by an exponential
distribution (with decay rate λ2), so it remains unchanged by this process. The system in
Figure 5.4b is fully Markovian.

distributions govern the total time required for a continuous-time Markov chain to

enter an absorbing state (a state with no outgoing transitions). Several methods exist

that can generate approximate, arbitrarily good Phase-Type representations of general

distributions (Osogami and Harchol-Balter, 2006).

Using such approximation methods, we can essentially replace a given non-Markovian

event e = Φ(s, s′) in the system with a continuous-time Markov chain with initial state

s, Np intermediate states, and absorbing state s′. This process is represented in Figure

5.4. Each of the Np states of this Markov chain is regarded as a phase of the ap-

proximate distribution, and every transition in the chain is governed by an exponential

distribution. The respective phases are then added as variables in the factored state

space of the original model. If this replacement is possible for every event, then the

approximate system is fully Markovian, allowing it to be solved as an MDP.

There are, however, limitations to this approach. An arbitrary non-Markovian dis-

tribution, with a coefficient of variation cv = σ/µ, where µ is its mean and σ2 its

variance, requires the ⌈ 1
cv2
⌉ phases to be approximated as a Generalized Erlang dis-

104

5.2 GSMDPs as a Framework for Multi-Robot Decision-Making

tribution (one such Phase-Type distribution), if cv2 < 0.5. This number can quickly

become unreasonably large for many processes which are characteristic of robotic sys-

tems. In particular, this affects actions with a clear minimum time to their outcome,

dictated by the physical restrictions of a robot (e.g., navigation actions given known

initial positions), since µ can be arbitrarily large. This is also especially true of de-

terministically timed transitions, which, as we saw in Section 5.1, are commonplace in

robotics applications.

Another relevant issue regarding the introduction of phase variables into the state

space of a GSMDP model concerns the resulting exponential increase in the total number

of states. If a system has Ne non-Markovian events, and each of them is to be replaced

by a Markov chain with Np phases, then there is an increase by a factor of NNe
p on

the size of the resulting inflated state space S ′. This can quickly become impractical

for planning and learning over the approximate system. This problem can, however, be

mitigated. Younes (2005) proposed the use of a “filtering” technique, which essentially

forces a value of 0 for inconsistent assignments of phase variables (for example, any

phase different than 0 for a disabled event). For planning algorithms that make explicit

use of decision trees or Algebraic Decision Diagrams (ADDs) when representing and

computing value functions, this effectively avoids much of the computational pitfall

associated with the exponential increase in the state space. An alternative method,

which we here propose, is to simply re-use the same state variables to model the phases

of multiple, mutually exclusive non-Markovian events (that is, events that are never

enabled simultaneously).

Systems with non-Markovian events which do not admit Phase-Type approximations

can still be analyzed as semi-Markovian Decision Processes (SMDPs), but only if those

events are never persistently enabled, since memory between transitions cannot

be kept. We propose a pragmatical alternative, for situations in which this is not a valid

assumption, and which can be used to model events with minimum triggering times:

such an event can be decomposed into a sequence of deterministically timed transitions,

followed by a positive distribution (typically a “lifetime” distribution, see Figure 5.5b).

The latter can then be better approximated by a Phase-Type distribution with a small

number of phases. This requires the addition of intermediate observable states to the

system, similar in purpose to the phases of a Phase-Type approximation, which act

as “memory” for the original non-Markovian event. The length of this deterministic

105

5. CONTINUOUS-TIME EXECUTION AND PLANNING FOR TEAMS
OF ROBOTS

300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

time, t (ms)

re
l.

fre
qu

en
cy

ort

(a)

400 600 800 1000
0

0.2

0.4

re
l.

fre
qu

en
cy

400 600 800 1000
0

0.005

0.01

pr
ob

ab
ili

ty

400 600 800 1000
0

0.2

0.4

time, t(ms)
re

l.
fre

qu
en

cy

400 600 800 1000
0

0.005

0.01

time, t (ms)

pr
ob

ab
ili

ty

N(µ,!)

W(", k)

#

#/N#/N#/N

(b)

Figure 5.5: (a) Temporal distribution of the event of switching agent roles after a pass, in
our experimental domain. (b) Two modeling approaches. Top: As a (truncated) normal
distribution. Would require 238 phases for a direct Generalized Erlang approximation;
Bottom: A sequence of deterministically timed events, followed by a Weibull distribution
(2 phases). 8 states are required, in total, for the approximation. Right-tailed probability
mass is discarded.

sequence can be adjusted to increase the quality of the approximation. Note that

deterministically timed transitions are non-Markovian themselves, so the system is still

an SMDP.

A GSMDP which can be formulated approximately as an SMDP, either by applying

the above methodology or by keeping non-Markovian events in their original form (if

they are not persistently enabled), can then be solved using Equation (2.19). This, in

turn, forms a very positive practical result, since virtually all solution algorithms for

MDPs can also be applied to an SMDP in this way.

5.2.3 Tracking Phase Variables

If Phase-Type approximations are used to replace non-Markovian events, by following

the methodology of the preceding section, then it is important to note that any “phase”

variables added to the system state are not observable variables. That is, each of

106

5.2 GSMDPs as a Framework for Multi-Robot Decision-Making

the states in an acyclic Markov chain describing a Phase-Type distribution bears no

physical meaning. During execution, the agent will only be able to observe this “virtual”

subsystem at its initial and absorbing states. However, the approximate SMDP policy

may depend on these virtual phase variables, so an agent acting according to that policy

must maintain an estimate of which phase is being occupied at any given point in time.

Younes (2005) addresses this problem by propagating a belief state over phase vari-

ables in continuous-time, and using the most likely state (MLS) as a heuristic. We note,

however, that agents are only supposed to act following events; and transitions between

virtual phase variables do not constitute events in the original model of the system. For

that reason, in practice, we only evaluate phase variables whenever an observable event

occurs, and not continuously over time.

5.2.4 Effects on Communication

In Section 3.2.7.1, we have presented an example of how to implement communication in

real-time while performing synchronous decision-making, in order to maintain coherency

between the actions of different agents.

The differences in the communication processes required for synchronous and asyn-

chronous decision-making can be seen in Figure 5.1. The most important of these is

that, in asynchronous multiagent decision-making, we no longer need to delay decision-

making until a consensus is reached on the joint state of the system. This is because,

since multiple events cannot happen simultaneously, the necessary communication of

their respective information is implicitly one-directional: the agent that detects an event

is assumed to send that information immediately to its partners. On the receiving end,

agents only have to update their joint state information with the events that they

receive and proceed immediately with a new decision step. Besides eliminating extrane-

ous delays in the decision-making process, asynchronous communication has the added

advantage of effectively minimizing the number of communication episodes across the

team.

We emphasize that we’re assuming joint full observability of the system. As before,

that means that none of the agents has access to all of the state variables, but also

that the joint state can be inferred from the local information of each agent. In the

case of asynchronous decision-making, this implies that any event in the system must

be observed by at least one agent.

107

5. CONTINUOUS-TIME EXECUTION AND PLANNING FOR TEAMS
OF ROBOTS

{e
1 , T

1}

{e2
, T2

}

T1

T2

Agent 1
timeline

Agent 2
timeline

Step 0 Step 0

Step 1

Step 2

(s0, e2)

(s0, e1, e2)

Step 1
(s0, e1)

Step 2
(s0, e1, e2)

Figure 5.6: A timeline of asynchronous communication with delays, in a fully observable
setting. At time T1 agent 1 observes event e1, and at time T2 > T1 agent 2 observes e2. At
each of these instants, the respective agent sends to its partner its event information paired
with a timestamp. At each decision step, each agent infers the present joint state from
the sequence (s0, e1, . . . , en). Agent 2, however, only receives the information regarding e1
after it has taken a possibly erroneous decision at T2. However, the timestamp information
allows the agent to reconstruct the correct joint state, and at decision step 2, both agents
are acting on the same information.

If delays are present in the communication of events, then the decision-making pro-

cess is not permanently affected. If events are paired with the time at which they are

detected, when they are transmitted, then any agent can ultimately reconstruct the

correct joint state, even if events are detected or received out of order. This process is

exemplified in Figure 5.6.

5.3 Results: Revisiting the Robotic Soccer Case Study

We will now revisit the robotic soccer case study that we have originally introduced in

Chapter 3, with the purpose of comparing the performance of synchronous and event-

driven approaches to decision-making in that problem. We have modeled the scenario

both as a GSMDP and as a standard, synchronous MDP with configurable time-step.

The resulting policies are tested both in our realistic simulator and also on the actual

soccer robots.

108

5.3 Results: Revisiting the Robotic Soccer Case Study

5.3.1 Experimental Setup

The multi-robot task that we will evaluate in this section is, essentially, a fully observable

version of the Attacker-Supporter problem that was described in Section 3.2.7. We

emphasize that the assumption of full observability is here made solely for the purpose

of modeling the problem as a GSMDP. Strictly speaking, as we have previously noted,

there are several sources of perceptual uncertainty in this problem. We expect, then,

for the performance of the resulting fully-observable policy to be consequently affected

by this assumption (but not to a point where it is no longer functional). However, the

hypothesis that we aim to test, at this point, is that event-driven DT policies can have

better performance than comparable synchronous alternatives, for teams of physical

agents. For this comparison to be fair, we re-cast the original MPOMDP model of

Section 3.2.7 as a multiagent MDP, which will serve as a synchronous baseline.

Given the physical restrictions of our robotic soccer testbed, slight modifications

were made to the state space of our models with respect to the earlier MPOMDP

formulation. The updated state space only considers half of the soccer field as the

admissible playing area for the robots, as that is the layout of their physical environment

(see Figure 5.9). Note that, in the GSMDP case, this description includes a state factor

that describes the phase of a non-Markovian event. The resulting model has 126 states

across 4 state factors. In the MDP case, that state factor is extraneous, so the model

has only 42 possible states. The full state space description can be found in Appendix A

(Figure A.3).

In both the GSMDP and MDP cases, each agent has access to only a subset of the

possible state factors. Namely, the Attacker robot can observe the role assignments,

phase variables, and its own attacker state; the supporter robot can also observe the

role assignment variable (hence, it is a globally observable factor) and its local state as

a supporter. The robots communicate events over local state factors.

As in the MPOMDP of Chapter 3, there are 36 joint actions. Agents are rewarded for

scoring a goal (150) and for successfully switching roles whenever obstacles are blocking

the attacker (60).

Every transition was timed and modeled, either according to exponential distribu-

tions, where possible; through uniform distributions — the time of entry of the dribbling

robot into one of the field partitions; or through normal distributions — the time to a

109

5. CONTINUOUS-TIME EXECUTION AND PLANNING FOR TEAMS
OF ROBOTS

role switch after a pass occurs, represented in Figure 5.5a. The latter was kept in its nor-

mal parameterization, since no concurrent events can trigger in that situation, and so it

can be modeled as an ordinary semi-Markovian transition. The model was then reduced

to an SMDP by replacing all uniform distributions with Phase-Type approximations.

Uniform distributions can be approximated by a Generalized Erlang distribution with

3 phases (Younes and Simmons, 2004). In order to minimize the state space size, the

same phase variable (i.e. the same state factor) was used to model all Phase-Type dis-

tributions, depending on the context. As discussed in Section 5.2.3, phase variables are

not observable. Although this means that a belief state must be maintained over the

set of phase variables, in order to act according to an SMDP policy (which assumes full

observability), we take the most likely assignment of phase variables at each decision

episode as the “true” state of the system. This is known as the QMDP heuristic for par-

tially observable problems. In this case, the most likely assignment of phase variables

depends on the time that their respective events have been enabled.

The value iteration algorithm was used to solve the approximate SMDP.

5.3.2 Simulation Results

Part of our experimental results were gathered using our realistic robotics simulator. In

an initial analysis, the abilities of the simulated robots were extended in order to allow

them to more efficiently dribble and kick the ball, so that their reactivity to events is not

affected by their physical limitations when acting. Figure 5.7 compares real-time profiles

of the system, under these conditions, when executing an event-driven GSMDP solution

and a discrete-time multiagent MDP solution with a fixed time-step. These execution

profiles are characterized by the distance between the ball and the goal, alongside the

reward associated with the joint state and action, accrued at decision instants. While

the MDP system is committed to performing the same action throughout the duration

of the time-step, the GSMDP reacts asynchronously to events, which eliminates any

idle time in the actions of the robots, resulting in more frequently scored goals.

5.3.3 Real Robot Results

The performance of the synchronous (fixed time-step) and event-driven (GSMDP) ap-

proaches to this problem in the real team of robots was quantitatively evaluated by

testing a synchronous MDP solution with a series of different fixed time-steps, as well

110

5.3 Results: Revisiting the Robotic Soccer Case Study

0 50 100 150
0

5

10

15

time, t (s)D
is

ta
nc

e
to

 th
e

G
oa

l,
d

(m
)

0 50 100 150
!100

0

100

200

Jo
in

t R
ew

ar
d

0 50 100 150
0

5

10

15

time, t (s)D
is

ta
nc

e
to

 th
e

G
oa

l,
d

(m
)

0 50 100 150
!100

0

100

200

Jo
in

t R
ew

ar
d

uous

Figure 5.7: Simulated results. Distance from the ball to the goal (blue, solid) and accrued
joint reward (red, dashed) over time. Top: using an MDP model with fixed time-step
∆ = 4 s; Bottom: using the GSMDP formulation of the same problem. Jumps in reward
correspond to new decision steps. Rewards of 150 correspond to a shooting actions, and
those equal to 60 correspond to passing instances in which robots switch roles. Whenever
a goal is scored (the distance tends to 0), the ball is reset to its original position. Here,
the robots could control and kick the ball efficiently.

as the GSMDP solution. The performance metric for this comparison is the time be-

tween consecutive goals using each model. The results are shown in Figure 5.8. The

amount of trials that could be run on the real robots was limited by total time: the

average sample size is 5 scored goals for each model (9 for the GSMDP and the best

performing MDP). In order to provide further statistical validity for these real robot

results, simulated trials were run under equivalent conditions (considering all actuation

limitations), in runs of 120 seconds each, to a total of 50 goals per model (box plot in

Figure 5.8a).

The average and median time between goals was shorter with the GSMDP solution

than with any of the synchronous MDPs. The time-step of the synchronous models

was shown to have a significant, non-monotonic effect on performance. The best MDP

model, with a time-step of 0.4 seconds, underperformed the GSMDP model both in the

111

5. CONTINUOUS-TIME EXECUTION AND PLANNING FOR TEAMS
OF ROBOTS

0

10

20

30

40

50

60

Ti
m

e
be

tw
ee

n
go

al
s (

s)

GSMDP MDP!0.1 MDP!0.2 MDP!0.4 MDP!0.6 MDP!0.8 MDP!2 MDP!4 MDP!6

POSMDP

(a)

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

Number of goals (120 sec. runs)

Fr
eq

ue
nc

y

GSMDP
MDP!0.4
MDP!4

(0

(b)

Figure 5.8: Performance of GSMDP / MDP models. Synchronous models are labeled as
MDP-T , with T the decision period (seconds). (a) Median time difference between goals,
on the real robot trials (diamond markers). Equivalent simulated trials are represented in
the underlying box plot. (b) Frequency of goals per each trial, for the GSMDP, and the
best and worst MDP models (0.4s, 4s, respectively). Trials with 0 goals are indicative of
random system failures.

real robot trials (one-way ANOVA1, p = 0.063), and in the corresponding simulated

trials (p = 0.079). For time-steps below this value, agents acted on outdated infor-

mation, due to communication/processing delays, and had difficulty in switching roles

(note from Figure 5.5b that the minimum time for a role switch during a pass is also

∼ 0.4s). For larger time-steps, loss of reactivity and the corresponding idle time in the

system also lowered the resulting performance. The average duration of decision steps

1Analysis of Variance, a common statistical hypothesis test, used in this context to test the
hypothesis of whether or not the distributions of the data generated by the MDP and GSMDP
models have the same mean

112

5.4 Summary

obstacle

attacker

supporter

supporter

attacker

3

6

1 2

4 5

MOMDP

Figure 5.9: Sequence showing two robots cooperating in order to avoid an obstacle and
score a goal (from left to right, top to bottom), in our experimental setup. The team was
executing an event-driven GSMDP policy. The ability of the robots to handle the ball
individually is very limited, which makes this type of cooperation necessary. In image 4 a
role switch has occurred, after the successful passing of the ball. A video of this experiment
can be seen at: http://users.isr.ist.utl.pt/~jmessias/PhDthesis.

(and communication period) with the GSMDP model was 1.09s. Since the frequency of

communication episodes for synchronous MDP models is 2/T (Figure 5.1), this implies

a reduction in communication usage of 81.7% with respect to the best MDP model.

Random system failures, occurring mostly due to robot navigation problems, or

unmodeled spurious effects, were independent of the modeling approach (Figure 5.8b).

Figure 5.9 shows an image sequence of a typical trial. A video containing this trial,

and showcasing the differences in behavior between the synchronous MDP and GSMDP

approaches to this problem, both in the real and simulated environments, can be found

at: http://users.isr.ist.utl.pt/~jmessias/PhDthesis.

5.4 Summary

There are non-trivial and often overlooked problems involved in the application of inher-

ently discrete models such as MDPs to dynamic, physical systems which are naturally

continuous.

In this chapter, we showed how discrete models of multi-robot systems are not fully

Markovian, and how the most common work-around (which is to assume synchronous

operation) impacts the performance of the system. We discussed how the GSMDP

framework fits the requirements for a more efficient, event-driven solution, and the

methodologies required for GSMDPs to be implemented in practice. We have noted

113

http://users.isr.ist.utl.pt/~jmessias/PhDthesis
http://users.isr.ist.utl.pt/~jmessias/PhDthesis

5. CONTINUOUS-TIME EXECUTION AND PLANNING FOR TEAMS
OF ROBOTS

that robotics systems typically experience events that are governed by temporal distri-

butions that are not amenable to Phase-Type approximations, and we have presented

pragmatical alternatives. We have shown how communication can be implemented

in practice, in an event-driven multiagent system. Ultimately, the application of the

methods described in this chapter has resulted in the first successful application of the

GSMDP framework to a decision-making problem in a team of real robots.

We have also presented and discussed a novel definition for the dynamics of decision-

theoretic, event-driven systems, which shares a closer relationship to DES formalisms,

without losing generality. In the next chapter, we will describe how that definition can

be exploited to extend event-driven multiagent decision-making to partially observable

domains.

114

Chapter 6

Asynchronous Multiagent

Decision-Making under Partial

Observability

6.1 Introduction

In the preceding chapter, we began to explore the problem of event-driven decision-

making for teams of physical agents. To that end, we have studied and applied the

DT frameworks which are most appropriate to that domain. In particular, we saw that

the GSMDP framework performs well in practice, but that it does not account for the

problem of partial observability.

On the other hand, as we saw in Chapter 3, physical agents are commonly subject

to uncertainty in their observations. Mobile robots, in particular, are subject to partial

observability, not only due to the limited coverage of their sensors, but also due to noise

in their respective measurements. It stands to reason, then, that being able to deal

with perceptual uncertainty should be a requirement for any DT approach that aims at

being applicable to general decision-making problems in the domain of robotics.

These considerations establish the motivation for the work presented in this chapter:

to extend the DT frameworks and methodologies described so far, enabling them to

model event-driven physical multiagent systems with uncertain observations.

To do so, at first, we isolate this problem from that of modeling the effect of continu-

ous time, which was studied in Chapter 5. Even in discrete-time scenarios, the existing

115

6. ASYNCHRONOUS MULTIAGENT DECISION-MAKING UNDER
PARTIAL OBSERVABILITY

DT frameworks that that take into account partial observability are not completely

appropriate to model multiagent asynchronous systems.

To address this problem, we propose Event-Driven MPOMDPs, as an extension

to the dynamics of discrete multiagent POMDPs which is specifically suited to asyn-

chronous operation. Our framework explicitly models uncertainty over event detections,

and considers the possibility of false positive and false negative detections, both during

planning and also during execution.

In our approach, agents must react to events, which are detected locally, and asyn-

chronously, by each agent. Through the assumption of free communication, each local

event triggers an observation that is shared by the team. Since multiple events cannot

occur simultaneously, this means that the total number of observations in this model

grows linearly in the number of agents, instead of exponentially. This positive result

allows these methods to scale better to larger scenarios, while retaining MPOMDP

functionality.

We prove that the optimal value function is piecewise linear and convex, allowing

us to extend a point-based solver to the event-driven setting. We also show how belief

states can be updated in run-time, while considering the possibility of false negative

event detections. Moreover, on a practical note, we provide a methodology to represent

Event-Driven MPOMDPs in a factored, graphical format, which simplifies the practical

implementation of these methods in large multiagent systems. We then consolidate

the proposed methods through simulated results, comparing the performance of our

event-driven models to that of equivalent synchronous MPOMDPs.

Having established the functionality of our framework in discrete time, we will de-

scribe how it can be extended to continuous-time domains, drawing from the methodolo-

gies that were analyzed in Chapter 5. The end result of this effort is a single, coherent

framework that satisfies the most important requirements for decision-making under

uncertainty for teams of real robots.

6.2 Event-Driven MPOMDPs

In this section we propose a novel modeling approach to multiagent decision-making

under partial observability. We will first provide an overview of the operation of our

116

6.2 Event-Driven MPOMDPs

proposed asynchronous MPOMDPs for multi-robot systems, and discuss the advan-

tages that it provides with respect to synchronous formulations. We then formalize our

proposed approach, and discuss practical issues related to its implementation.

6.2.1 Synchronous vs. Asynchronous Execution in Multiagent Sys-

tems with Partial Observability and Free Communication

In MPOMDPs, by definition, each agent is expected to know the observations of all of

its teammates, before taking a new action. In practice, as we saw in Section 3.2.7.1, this

implies that agents must only communicate their observations to each other at the end

of each step, so as not to exclude any potential information. However, these observation

dynamics are implicitly synchronous – a communication step cannot be unilaterally car-

ried out by any single agent, since it must wait for all other agents to respond back with

their own information. The communication of observations, therefore, is typically exe-

cuted at a fixed frequency. One of the well-known consequences of this schema, which

is often overlooked as being inevitable, is that exponentially many possible combina-

tions of individual observations can be shared amongst the team, which is an evident

computational drawback to any planning algorithm which iterates over possible joint

observations. This constitutes one of the most significant (if not the most significant)

hindrances to the scalability of MPOMDPs. The operation of a synchronous MPOMDP

is illustrated in Figure 6.1a.

In contrast, we see that event-driven execution, represented in Figure 6.1b, is once

again more intuitive. As we have seen in Chapter 5, in this case, decisions are triggered

by changes in the state of the system. In the partially observable case, observations

represent events, and are, therefore, also asynchronous. This means that, when an ob-

servation is detected locally by an agent, it can be promptly communicated to the rest of

the team. The detecting agent can select an appropriate action immediately, and other

agents may do so as soon as they receive that information. This communication strat-

egy is essentially what we had proposed in Section 5.2.4, but exchanging observations

of events instead of the events themselves, since these are not directly accessible. Since

observations are not synchronized, the concept of joint observation is no longer applica-

ble; all observations are jointly experienced, even if they originate from a single agent.

Local observation spaces are still definable, and represent the set of events that each

agent can detect (see Figure 6.1b, right). An important implication of this approach is

117

6. ASYNCHRONOUS MULTIAGENT DECISION-MAKING UNDER
PARTIAL OBSERVABILITY

a1 = Idle
o1 = No Fire 1

a2 = Idle
o2 = No Fire 4

a1 = Move
o1 = No Fire 1

a2 = Spray
o2 = Fire 4

t = T1 t < T2 t = T2
Tree #1 Tree #2 Tree #3 Tree #4

o = ⟨ No Fire 1, Fire 4 ⟩

Observations:

O1 :

{

Fire 1, . . . , 4
No Fire 1, . . . , 4

O2 :

{

Fire 1, . . . , 4
No Fire 1, . . . , 4

O = O1 × O2

|O| = 64

(a) Synchronous

a1 = Idle a2 = Idle a1 = Spray a2 = Spray

t = Te1 t = Te2

o = Fire 4

a2 = Spraya1 = Move

o = R1 Arrived at Tree #4

t = 0
Tree #1 Tree #2 Tree #3 Tree #4

GSMDP

Observations:

O1 :

⎧

⎨

⎩

Fire 1, . . . , 4
Fire Out 1, . . . , 4

R1 at Tree 1, . . . , 4

O2 :

⎧

⎨

⎩

Fire 1, . . . , 4
Fire Out 1, . . . , 4

R2 at Tree 1, . . . , 4

O = O1 ∪ O2

|O| = 16

(b) Asynchronous

Figure 6.1: A graphical representation of the dynamics of a synchronous MPOMDP
(a) and of an Event-Driven MPOMDP (b). Two agents must extinguish forest fires. In
(a), decisions are taken periodically, and agents receive simultaneous observations. Agents
cannot react instantaneously when a fire breaks out between instants t = T1 and t = T2;
In (b), at instants t = Te1 and t = Te2 , agents 1 and 2 respectively detect events, and
share that information with their partner, triggering new decision episodes for the team.
To the right of each example, we describe the corresponding observation space. In the
event-driven case, this is the union of local observation spaces, so common elements (Fire
1,...,4, Fire Out 1,...,4) are counted only once (therefore |O| = 4 + 4 + 2× 4 = 16).

that the observation space for the team is now the union of all local observation spaces.

As a function of the number of agents, then, there are at most linearly many possible

observations to be considered, corresponding to the sum of the possible detections of

each of them. This replicates a well known result in the theory of DES, that set of

possible events for the composition of multiple, concurrently operating automata is also

the union of their respective, local event sets (Cassandras and Lafortune, 1999). This

event-driven interpretation of MPOMDP dynamics forms the core of our approach.

6.2.2 Formal Definition

Before formally defining a model which operates according to the requirements stated

above, we will need to slightly extend our earlier definition of “events” (Definition 2.2.2),

to account for the presence of uncertainty over observations.

118

6.2 Event-Driven MPOMDPs

Definition 6.2.1. A partially observable event is an event e ∈ E over S, as per Defi-

nition 2.2.2, which also verifies:

• If Φ(u, u′) = Φ(v, v′) = e, then O(u,a, u′,o) = O(v,a, v′,o), ∀a ∈ A, o ∈ O.

Note that this definition, as in Definition 2.2.2, also considers the possibility of mod-

eling continuous-time distributions over transition instants. We will use this property

in Section 6.5; for now, in order to remain focused on the problem of partial observ-

ability, we assume that fa
e (t) = λe−λt for all e ∈ E ,a ∈ A and for some λ ∈ R+.

That is, all transitions are governed by exponential distributions with the same rate.

As we saw in Sections 2.2.1 and 2.2.2, this allows us to analyze the operation of this

event-driven system in discrete time, and with fully Markovian dynamics, which only

describe the system at event instants. Therefore, we can omit the influence of fa
e (t),

and consider that it is implicitly included in the discrete discount factor γ (which is

actually a function of λ). This does not assume that events are synchronous.

In contrast to standard POMDP models, we include both s and s′ in O as we are

interested in observing characteristics of state transitions, as opposed to characteristics

of states. As such, we have O(s,a, s′,o) = Pr(o | s,a, s′), allowing the observation model

to be indexed through events, as O(a, e,o).

Noisy event detection processes are typically characterized through their suscepti-

bility to false negative and false positive errors. False negative detections, by definition,

are not observable, but their incidence is clearly relevant to the decision-making pro-

cess. In order to describe their stochasticity, we will model false negative detections as

a virtual, symbolic observation1. This virtual detection will be represented as of ∈ O,

and its probability of occurrence for ⟨a, e⟩ as O(a, e, of). We emphasize that this ob-

servation is never received by an agent during plan execution; it is merely a theoretical

construct that will facilitate the definition and analysis of our framework.

False positive detections, on the other hand, can be modeled as the emission of

event detections when the system actually remains in the same state. If an observation

o ∈ O\of is considered a false positive detection, then O(a, e, o) > 0 with e = Φ(s, s)

for some s ∈ S. Notice that the converse is not necessarily true, since we might want

to model the true positive observation of same state transitions (for example, if a robot

1This is a similar idea to labeling unobservable events in DES with empty strings (Cassan-
dras and Lafortune, 1999).

119

6. ASYNCHRONOUS MULTIAGENT DECISION-MAKING UNDER
PARTIAL OBSERVABILITY

executes a self-diagnostic procedure to check for hardware problems, but no errors are

found). The underlying event to a false positive detection can also be considered as

a “virtual”, idle event (as opposed to the virtual observation of for the false negative

case), but won’t require any special treatment from a formal standpoint.

If an actual event is detected, there can also be uncertainty over the label that is

associated to it by the detection mechanism. That is, a true event may be incorrectly

classified, informing agents that the state of the system has changed, but misleading

them as to how it changed (e.g. a facial recognition program signaling that a person

has been detected, but identifying that person incorrectly). These observations can also

be modeled in our framework, in which case, the joint observation function, in tabular

form, resembles a “confusion” matrix over the events occurring in the system and their

associated label in O1.

We will now formally introduce our framework:

Definition 6.2.2. An Event-Driven Multiagent POMDP is a tuple

⟨d,S,A,O, E , T, O,R⟩ where:

d is the number of agents;

S = X1 × X2 × . . .× Xk is the (factored) state space;

A = A1 ×A2 × . . .×Ad is the set of joint actions;

O = O1 ∪O2 ∪ . . . ∪Od ∪ of is the space of observations (or event detections) for the

team, where Oi is the space of possible observations of each agent, and of represents

false negative event detections;

E is a set of events over S (Definition 2.2.2);

T : S ×A× E → [0, 1] is the transition function, such that T (s,a, e) = Pr (e | s,a) for

e ∈ E , s ∈ S, a ∈ A. This represents the probability that e will trigger while a is being

executed in s, thereby changing the state to s′ ∈ S such that Φ(s, s′) = e, and starting

a new decision step;

1In this case, there can also be “false positive” and “false negative” identifications of each
event due to the association with incorrect labels. In this work, we reserve those terms to mean,
exclusively and respectively, detection of inexistant events, and inability to detect occurring
events.

120

6.2 Event-Driven MPOMDPs

O : A × E × O → [0, 1] is the observation function, such that O(a, e, o) = Pr (o |a, e)

for o ∈ O, e ∈ E , a ∈ A. This is the probability that o will be received by the agent team

as a consequence of the firing of event e while a is being executed1;

This definition is equally valid for single agent models, setting d = 1. We note

that the most important distinction of an Event-Driven MPOMDP, with respect to a

"synchronous" MPOMDP, resides in the form of its observation space, which is taken

as the union of all local observations; and explicitly accounts for uninformative, false

negative detections. In the subsequent section, we will see how this latter property

affects decision-making.

6.2.3 Decision-Making with Partially Observable Events

An event-driven system subject to uncertainty in the detection of its events raises a

fundamental problem for decision-making – if all agents fail to detect the occurrence of

an event, agents will not be able to change their actions accordingly. Nevertheless, if

the system experiences a state transition, any consequent instantaneous reward must

be accounted for, even if the agents are not able to perceive that transition. Otherwise,

the system could jump through an arbitrary number of intermediate states between any

two detected events, unknowingly to the agents, and potentially without affecting the

transition probabilities between the initial and final states (the states at the instants

of the detected events). Therefore, these intermediate states would be irrelevant to the

decision-making process. For robotic systems, this means that undesirable or potentially

harmful ⟨s,a⟩ could be visited2.

Given a probabilistic description of false negatives, a straightforward approach to

account for their effect is to consider that decision episodes only occur when an event is

detected (see Figure 6.2a), i.e. when any o ∈ O\of is received. False negative detections

of events, and their respective intermediate transitions, could then be folded into the

1We emphasize that events that should be triggered upon the completion of an action can
also be modeled in this framework. For an "action-completion" event e, T (s,a, e) represents
the probability of successfully completing a while at s, without the interruption of other events,
and O(a, e, o) = 1 for some o ∈ O representing the "completion" signal.

2In some continuous-time models, such as in SMDPs (White, 1976), intermediate state tran-
sitions are also allowed. However, a continuous reward rate can then be assigned to intermediate
states. Furthermore, in that case, since all transitions are observable, decisions can be skipped
by design. In our case, decisions are missed due to the limitations of the agents.

121

6. ASYNCHRONOUS MULTIAGENT DECISION-MAKING UNDER
PARTIAL OBSERVABILITY

St
at
es

O
bs
er
v.

R
ew

ar
d

s0

s1

s2

o3

R(s3, a′)

t

t

t
r = R(s0, a) +
γ

∑

u∈S
R(u, a)Pr(u | s0, a)Pr(of | s0, a, u) {1+

γ
∑

v∈S
R(v, a)Pr(v | a, u)Pr(of | u, a, v)[1 + ...]}

Step 0 Step 1
(Event e2) (Event e3)(Event e1)

s3

CTMDP

(a) Driven by event detections

St
at
es

O
bs
er
v.

R
ew

ar
d

s0

s1

s2

o3

R(s1, a)
R(s0, a)

Step 0 Step 1 Step 2 Step 3

t

t

t

R(s2, a)

R(s3, a′)

of

(Event e1) (Event e2) (Event e3)
s3

of

(b) Driven by events

Figure 6.2: The effect of false negative detections on the transition dynamics of a decision-
making process. In this example, action a is selected at step 0; events e{1,2,3} occur, but
agents fail to detect e1 and e2. The resulting timelines of states, observations, and rewards
are shown, according to different interpretations: (a) If the steps of the process are driven
by detected events, then the only transition that occurs in this timeline and that is modeled
in T , is from s0 to s3 (represented by an arc). The probabilities of intermediate unobserved
events can be collapsed into T (s0,a, s3), and their reward into R(s0,a); (b) If, instead, we
consider that any event results in a new step of the decision-making process, then the
virtual observation of is emitted by e1 and e2, and agents are unable to change their
actions at the corresponding steps. Since all transitions map to events, rewards R(s1,a),
R(s2,a) are still accounted for.

“apparent” transition model of the system as per the infinite series:

T (s,a, s′) = Pr(s′ |a, s) +
∑

u∈S

Pr(u |a, s)Pr(of | s,a, u)Pr(s
′ |a, u) +

∑

u∈S

Pr(u |a, s)Pr(of | s,a, u)
∑

v∈S

Pr(v |a, u)Pr(of |u,a, v)Pr(s
′ |a, v) + . . .

This explicitly considers all possible sequences of intermediate states (u, v, . . .) that may

be visited unknowingly due to of . The reward for each ⟨s,a⟩ can also be adjusted as:

R′(s,a) =R(s,a) +

γ
∑

u∈S

R(u,a)Pr(u | s,a)Pr(of | s,a, u)
{

1 +

γ
∑

v∈S

R(v,a)Pr(v |a, u)Pr(of |u,a, v)
[

1 + ...
]}

122

6.2 Event-Driven MPOMDPs

However, this approach is not extendable to the continuous-time considerations of

Chapter 51, and it is only practical for infinite-horizon policies, otherwise the transition

and reward models would not be time-homogeneous.

An alternative approach is to consider that all events, and not their detections,

trigger decision episodes (see Figure 6.2b). If agents experience false negative detec-

tions, then they are forced to select the same actions in consecutive steps, which can

be interpreted as having “missed” an opportunity to change actions2. From a planning

perspective, this means that all state changes in the system, even those that are un-

oberved, are evaluated in separate dynamic programming steps. This approach is useful

because it allows us to consider finite-length sequences of unobserved transitions when

planning, which is fundamental if we wish to apply planning algorithms that approx-

imate stationary solutions through a finite number of dynamic programming backups

(as we will see in Section 6.3.1). This is the approach that we take in this work.

We can formalize this mechanism of action persistence by defining an “action con-

straint” function C : A × O → PS(A)\∅, where PS(A) is the power set of A, which

returns, for each pair ⟨a, o⟩, a constrained action set C(a, o) ⊆ A. This set represents

the joint actions that are available to the agents at the onset of a decision episode, given

that the observation of the team at that step is o, and that at the previous step, the

team executed a. That is, at each step n, agents select the best available action from

the set C(an−1, on), instead of selecting actions from A. Then, in order to model the

effect of false negative detections on decision-making, we will be interested in C(a, o)

with the following form:

C(a, o) =

{

{a} if o = of
A if o ∈ O\of

(6.1)

Finally, we note that, for planning purposes, false positive detections can be trivially

handled in the same way as true positives, since their underlying events are essentially

observable (albeit the event itself does not change the system). In this way, we explicitly

reward actions that are elicited by false positive detections (typically with negative

1The inclusion of probability density functions over the firing time of each transition would
imply that these infinite series would contain nested integrals, which would become analytically
intractable in the general case.

2For actions with fixed temporal durations, forcing the same action to be re-selected con-
stitutes an instance of a persistently enabled event (the action completion event).

123

6. ASYNCHRONOUS MULTIAGENT DECISION-MAKING UNDER
PARTIAL OBSERVABILITY

values). This implicitly promotes policies that minimize the susceptibility of the agents

to false positive detections.

6.2.4 Jointly Observed Events

In some multi-robot applications, more than one robot may contribute to the observation

of the same relevant features of the environment (for example, in problems of active

cooperative perception). For those scenarios, our definition of the joint observation

space of an Event-Driven MPOMDP as the union of the possible individual observations

for each agent may seem restrictive. In our framework, since all observations are jointly

experienced, if more than one agent can broadcast the same event detection (that is,

if Oi ∩ Oj ̸= ∅ for i ̸= j), then the number of agents that simultaneously emit that

observation, and their respective identity, is indifferent to the decision-making process.

This would not be an accurate representation of the distributed sensing process, since,

from a Bayesian perspective, the simultaneous observation of an event by more than one

agent should reduce the amount of uncertainty that is associated with that detection.

We note, however, that this comes as a consequence of having assumed asynchronous

dynamics, not only with respect to events, but also to their associated detections. Even

though they may be arbitrarily close in time, different observations of the same event

by more than one agent will never be strictly simultaneous, unless agents are explic-

itly synchronized (and, for those cases, the use of our event-driven framework is not

appropriate). Consequently, under our framework, a jointly detected event should be

represented as a sequence, rather than as a combination, of individual observations (see

Figure 6.3a). For each such event, the state of the system only changes once, which

results in the first element of its sequence of detections. Subsequent observations can

be associated with idle events (the event that preserves the state of the system). This,

however, considers that each agent can observe the same event multiple times. When

this is unrealistic, additional states can be included in S, that encode whether or not

each agent has already observed the given event.

Since each event detection implies a new decision episode, modeling joint, near-

simultaneous event detections as sequences of observations naturally increases the prob-

lem horizon when compared to a synchronous solution. The trade-off is that, at each

step of the decision-making process up to the problem horizon, there is a much smaller

number of possible observations to consider, in an asynchronous setting.

124

6.2 Event-Driven MPOMDPs

S
ta
te
s

O
b
se
rv
.

s

s′

o3
time

time

o1

o2

1 2 3

e

1 2 3

o1 o3
o2

eidle eidle

(a)

S
ta
te
s

O
b
se
rv
.

s

s
′

o

time

time

1 2

e

1 2

o

∆t

(b)

Figure 6.3: Modeling the joint detection of events. A set of three cameras jointly detect
the presence of a person (an event e = Φ(s, s′)). We show the respective timelines of
states and observations. (a) Joint detections can be modeled as a sequence of individual
observations. The first detection, o1, is associated with the occurrence of e. Subsequent
observations o2, o3 are associated with the idle event eidle = Φ(s′, s′). (b) Alternatively,
if the data from different cameras is fused outside of the decision-making loop, then, after
a communication and processing delay ∆t, a single observation o is emitted, representing
the consensus of different sensors over the occurrence of the event.

A different approach to the problem of joint event detection is as follows: if during

execution, the data from multiple distributed sensors is fused into a single coherent

estimate, by any mechanism that is external to the decision-making process, then an

observation in an Event-Driven MPOMDP can actually represent the consensus of mul-

tiple agents as to the occurrence of an event. This implies the explicit modeling of

overlapping observation spaces for the agents involved in this process. That is, the set

Oi,j = Oi ∩Oj contains the observations for which agents i and j are jointly responsi-

ble. For example, if multiple cameras with overlapping fields-of-view detect an object

of interest, then, before broadcasting this detection to all other agents, the cameras can

consolidate their observations with their neighbors through a suitable filtering mecha-

nism, in order to determine if it is the same object, and only then broadcast this fused

information for decision-making purposes (we use this approach in our implementation

of a multiagent surveillance system, described in Chapter 7). This, however, introduces

a delay between the occurrence of an event and the selection of an appropriate action,

which should be expected during execution.

125

6. ASYNCHRONOUS MULTIAGENT DECISION-MAKING UNDER
PARTIAL OBSERVABILITY

6.2.5 Factored Graphical Representations

In Section 2.4.3, we have reviewed the use of factored models in MDPs and their re-

lated frameworks, which has proven itself to be often indispensable when approaching

large-scale problems. However, a factored 2-DBN assumes that all variables evolve si-

multaneously when a state transition is experienced. This is not necessarily true for

an asynchronous system, since events may be local, in the sense that they only elicit

transitions in a subset of state factors.

To clarify, we will now return to our simple scenario in Figure 6.1b. Suppose that

we have a factored state space S = X1× . . .×X4 (one for each tree) where each xi ∈ Xi

can take on binary values (indicating fire), and that each tree is sufficiently spread apart

that it is reasonable to assume that the probability of it catching fire depends only on

its own previous state. If s = ⟨x1, . . . , x4⟩ and s′ = ⟨x′1, . . . , x
′
4⟩, we would then like to

have:

Pr(s′|s) = Pr(x′1|x1)Pr(x
′
2|x2)Pr(x

′
3|x3)Pr(x

′
4|x4),

since that would greatly simplify the problem of defining the transition model, as one

of defining 2 × 2 probability tables. We can quickly see that the above expression

is not valid for an event-driven model, since the event of “catching fire” is local to

each of the state factors — there is 0 probability of more than one tree catching fire

simultaneously. There is, therefore, an underlying dependency between all state factors

due to their mutual exclusivity, since a change in one factor must explicitly inhibit

undesired changes in other factors. When representing an event-driven model in a

factored format, all factor variables are coupled in a single step.

In order to mitigate this problem, and take advantage of the representational tools

which are available to factored models, we can isolate the inherent dependencies between

all variables due to possible mutual exclusivity, through the addition of a new state

factor into the state space description. This factor allows us to represent the probability

that each other factor will change, given the current state. This process is shown in

Figure 6.4.

This step, together with the ability to write a trivial decision diagram as those

shown in Figure 6.4, enables us to write the CPDs for each of our trees as if they were

independent. This extraneous factor can then be marginalized out (see (Pearl, 1988)

126

6.3 Solving Event-Driven MPOMDPs

xe

x
′

1

x
′

2
x2

xe

Pr(x′

2 | x2, xe) :

x
′

2 = x2Pr(x′

2|x2)

xe

Pr(x′

1 | x1, xe) :

x
′

1 = x1

xe = 2xe = 1

Pr(x′

1|x1)
x1

xe = 1xe = 2

Figure 6.4: An example of a Dynamic Bayesian Network for the state space dependencies
of an event-driven model. These state factors are conditionally independent of each other
given xe ∈ Xe, a virtual factor which models their mutual exclusivity. The values that this
factor can take are labels (“1”, “2”) that identify one of the remaining state factors in the
problem (x1, x2), allowing it to change after an event. This factor will be marginalized out
when computing the full transition model. Examples of decision diagrams for the CPD of
either state factor are also shown. Note their dependency on xe ∈ Xe: if xe = i, the CPD
of factor xi is Pr(x′

i|xi), the same as if it were independent; if xe ̸= i, the factor keeps the
same value (x′

i = xi). Pr(xe |x1, x2) is the prior probability that each factor will change in
the next event.

for the detailed process), and we recover our full transition model, without altering the

size of the problem.

6.3 Solving Event-Driven MPOMDPs

Having defined a framework for Event-Driven MPOMDPs, we will show in this section

that these models retain the necessary properties that allow them to be solved through

dynamic programming approaches. We will then present an example of how to modify

a typical POMDP solution algorithm to allow it to provide (optimal or approximate)

policies for our proposed framework.

6.3.1 Dynamic Programming

We can show that a value function for an Event-Driven MPOMDP in the presence of

action constraints is still PWLC, which enables the use of dynamic programming tech-

niques to calculate (or approximate) an optimal policy. We consider the optimization

criterion to be the expected discounted reward (see (2.21)).

127

6. ASYNCHRONOUS MULTIAGENT DECISION-MAKING UNDER
PARTIAL OBSERVABILITY

Theorem 2. For an Event-Driven MPOMDP, and for finite n, the optimal value

function V ∗
n , with respect to the expected discounted reward, can be written as:

V ∗
n (b) = max

υn∈Υn

υn · b

where Υn is a set of |S|-dimensional vectors, and b is a sufficient statistic for the

execution history of the system up to step n (⟨b0,a0, o0, . . . , an−1, on−1, on⟩).

Proof. Given a constraint-generating function C, any policy in an Event-Driven MPOMDP

is subject to the following restrictions:

{

πn(bn) ∈ A if n = 0

πn(bn) ∈ C(πn−1(bn−1), on) if 0 < n ≤ h− 1
,

where bn and on are, respectively, the belief state and the observation received at the

n-th step1. Taking these restrictions into consideration, the Bellman backup for this

model can be written as:

V ∗
n (b) = max

a∈A

{∑

s∈S

b(s)R(s,a) +

γ
∑

s∈S,o∈O
e∈E(s,a),

b(s)O(a, e, o)T (s,a, e) max
a′∈C(a,o)

Q∗
n+1(b

a,o,a′)
}

, (6.2)

where ba,o is the updated belief state according to ⟨a, o⟩.

For a ∈ A, o ∈ O, let Ha,o be a |S|× |S| matrix with

[Ha,o]i,j = Pr(si|sj ,a)Pr(o| sj ,a, si)

= T (sj ,a,Φ(sj , si))O(a,Φ(sj , si), o) .

The Bellman backup is then, in vectorial form:

V ∗
n (b) = max

a∈A

{

ra · b+ γ
∑

o∈O

1THa,ob max
a′∈C(a,o)

Q∗
n+1(b

a,o,a′)
}

, (6.3)

where ra denotes the a−th column of R(s,a). Also in this notation, the belief update

1In the following analysis, and according to the definitions introduced in Chaper 2, the
variable n represents the number of decisions taken by the agent up to that point in the process.

128

6.3 Solving Event-Driven MPOMDPs

step is:

ba,o =
Ha,ob

1THa,ob
, (6.4)

where 1i = 1, i = {1 . . . |S|} (a vector of ones).

At the final decision step, h− 1, we have that:

V ∗
h−1(b) = max

a∈A
ra · b, (6.5)

And therefore V ∗
h−1 is clearly PWLC with Υh−1 = {ra |a ∈ A}. Inductively, at step

n+ 1:

V ∗
n+1(b

a,o) = max
υn+1∈Υn+1

υn+1 · b
a,o .

Also, since V ∗
n+1(b

a,o) is PWLC iff Q∗
n+1(b

a,o,a′) is PWLC:

Q∗
n+1(b

a,o,a′) = max
qa

′
n+1∈K

a
′

n+1

qa
′

n+1 · b
a,o , (6.6)

where Ka
n is a set of |S|−dimensional vectors. Taking this form for the Q-value, and

substituting (6.4):

Q∗
n+1(b

a,o,a′) = max
qa

′
n+1∈Kn+1

(qa
′

n+1)
THa,ob

1THa,ob
.

Let

q∗,a
′

n+1| b,a, o = argmax
qa

′
n+1∈Kn+1

{

(qa
′

n+1)
THa,ob

}

. (6.7)

Then,

Q∗
n+1(b

a,o,a′) =
(q∗,a

′

n+1)
THa,ob

1THa,ob
. (6.8)

Returning to (6.3), and reorganizing and simplifying terms:

V ∗
n (b) = max

a∈A

{(

ra · b+ γ
∑

o∈O

1THa,ob max
a′∈C(a,o)

(q∗,a
′

n+1)
THa,ob

1THa,ob

)}

= max
a∈A

{(

ra · b+ γ
∑

o∈O

max
a′∈C(a,o)

(q∗,a
′

n+1)
THa,ob

)}

(6.9)

129

6. ASYNCHRONOUS MULTIAGENT DECISION-MAKING UNDER
PARTIAL OBSERVABILITY

Therefore, V ∗
n (b) = max

υn∈Υn

υn · b, with

υn = ra +
(

γ
∑

o∈O

max
a′∈C(a,o)

(q∗,a
′

n+1)
THa,o

)T
. (6.10)

It should be noted that each vector υ is associated with a particular action a. This

concludes the proof that Event-Driven MPOMDPs have PWLC optimal value functions.

Next, we will show how this result can be used by most current POMDP planning

algorithms, with minor modifications, for Event-Driven MPOMDPs.

6.3.2 A Randomized Point-Based Algorithm

We now turn our attention to the problem of calculating approximately optimal poli-

cies for Event-Driven MPOMDPs. We here focus explicitly on approximately optimal

policies for computational reasons. However, that does not preclude the possibility of

adapting optimal algorithms as well.

As we have mentioned in Section 2.3.1.1, a particularly efficient family of approx-

imate POMDP solvers is that of point-based algorithms. We propose an adapta-

tion of the Perseus randomized point-based algorithm that can handle Event-Driven

MPOMDPs. The basic premise of any point-based algorithm is that, given a belief state

b ∈ Ξ(S), and a value function (or set of Q−value functions) at stage n+1, it is possible

to obtain the stage-n maximizing vector at that point at a relatively low computational

cost.

We are therefore interested in obtaining:

qa,bn = argmax
qan∈K

a

n

qan · b (6.11)

From (6.10), we have that:

qan = ra +
(

γ
∑

o∈O

max
a′∈C(a,o)

(q∗,a
′

n+1)
THa,o

)T
. (6.12)

Note that this already implicitly defines an optimal q∗,a
′

n+1 at a given point b for a par-

ticular ⟨a, o⟩ pair, see Eq. (6.7). If, instead of taking the maximum, we evaluate the

130

6.3 Solving Event-Driven MPOMDPs

expected future reward for each of the vectors qk,a
′

n+1 ∈ Ka′

n+1, and for a given ⟨a, o⟩:

qk,a
′,a,o

n =
(

(qk,a
′

n+1)
THa,o

)T
. (6.13)

Taking the action constraints into consideration, we can select from these vectors the

best at b:

qa,o,bn = argmax
q
k,a′,a,o
n |a′∈C(a,o)

qk,a
′,a,o

n · b . (6.14)

And finally, summing over observations and adding the immediate reward:

qa,bn = ra + γ
∑

o∈O

qa,o,bn . (6.15)

Equipped with this result, we can formulate our variant of the Perseus algorithm,

which we refer to as Constraint-Compliant Perseus (CC-Perseus). This algorithm

works by randomly selecting a point b from an appropriately selected set of belief points,

B (these can be obtained, for example, by sampling a number of trajectories in the

system) , at step n. The belief-backup (6.15) is applied to a subset of belief points

in a sampled set B (Spaan and Vlassis, 2005), for all possible actions. Any point B

whose value is improved by this backup is removed from the set, and another point

is randomly sampled, until B is empty. The resulting set of vectors for each action

is taken as an approximation of Q∗,a
n+1, and their union as V ∗

n+1. Our explicit use of

the Q−value functions stems from the fact that the sets Ka
n (c.f. (6.6)) must never be

empty. Otherwise, if an action had no previous-stage vectors associated to it, we would

not have an estimate of its expected value when “forced” by C. The pseudo-code for

CC-Perseus is detailed in Algorithm 2.

A note on complexity: since this algorithm is keeping track of all Q−value functions,

in the worst case, it has to perform |A| times as many evaluations over the set B as

the standard version of Perseus. It is expected, then, that it should underperform

Perseus when running over the same model. However, recall that the main advantage

of our formulation is that it allows considerably smaller representations (particularly in

|O|) of the same problem.

Finally, we emphasize that the considerations made in this section could be applied

to virtually any POMDP solution algorithm. The only requirements are that: Q−value

131

6. ASYNCHRONOUS MULTIAGENT DECISION-MAKING UNDER
PARTIAL OBSERVABILITY

functions must be maintained for all actions (so value functions can only be pruned

action-wise); and the constraints generated by C should be satisfied when performing

dynamic programming backups.

Algorithm 2 Constraint-Compliant Perseus

Require: Vn ̸= ∅,B ≠ ∅
Ensure: Vn+1(b) ≥ Vn(b), ∀b ∈ B
1: B′ ← B;
2: Split Vn into Qa1

n , . . . , Q
a|A|
n ;

3: Qa1

n+1, . . . , Q
a|A|

n+1 ← ∅;
4: while B′ ̸= ∅ do
5: b← Randomly sample B′;
6: B′ ← B′\b;
7: for all a ∈ A do
8: qa,bn ← Backup Qa

n at b (Eq. (6.15));

9: Qa
n+1 ← Qa

n+1 ∪ qa,bn ;
10: for all b′ ∈ B′ do
11: if Qa′

n+1 ̸= ∅ ∧Qa′

n+1(b
′) ≥ Qa′

n (b′), ∀a′ ∈ A then
12: B′ ← B′\b′;
13: end if
14: end for
15: end for
16: end while
17: Vn+1 ← ∪a∈AQa

n+1;
18: return Vn+1

6.3.3 Execution-Time Belief Updates

In a standard POMDP, a belief state b can be updated by an agent during plan execu-

tion, following the execution of a (by the team), and observation of o, through Eq. (6.4).

In an Event-Driven model, this update step is not always applicable. Planning algo-

rithms, such as CC-Perseus, can explicitly model the occurrence of false negative

detections of events as symbolic observations. During execution, however, agents will

not have access to any information indicating false negative detections. Therefore,

agents must take into account the fact that the system can undergo several unobserved

transitions between any two belief update steps.

132

6.3 Solving Event-Driven MPOMDPs

Theorem 3. Let of ∈ O represent false negative detections of events. For an

infinite-horizon agent in an Event-Driven POMDP, given that the team is executing

a and observing o in belief state b̂, the belief update step is:

b̂a,o =

(

Ha,o(I −Ha,of)−1b̂
)

1T
(

Ha,o(I −Ha,of)−1b̂
) , (6.16)

iff for all eigenvalues λi of Ha,of , |λi| < 1.

Proof. For of ∈ O indicating false negative observations, o ∈ O\of and a ∈ A, we have

that:

b̂a,o(s) ∝
∑

s1∈S

Pr(o|s1,a, s)Pr(s|s1,a)×
(

b(s1) +
∑

s2∈S

Pr(of |s2,a, s1)Pr(s1|s2,a)

×
(

b(s2) +
∑

s3∈S

Pr(of |s3,a, s2)Pr(s2|s3,a)×
(

b(s3) + . . .
)))

In matrix notation, as before, this is:

b̂a,o ∝ Ha,o
(∞
∑

k=0

(Ha,of)k
)

b̂ (6.17)

If |λi| < 1 for all eigenvalues |λ| of Ha,of :

b̂a,o =
1

η
Ha,o(I −Ha,of)−1b̂ (6.18)

with η = 1THa,o(I − Ha,of)−1b̂, since 1T b̂a,o = 1. We note that if any |λi| = 1, this

implies that the system has completely unobservable (Pr(of |·) = 1) loops. In those

conditions, the belief state cannot be tracked.

The notation b̂ here indicates run-time belief states, so as to clarify that Eqs. (6.4)

and (6.16) will produce different outputs. In large systems, if the computational com-

plexity of obtaining (I−Ha,of)−1 is prohibitive, it can be approximated through a finite

number of sums (see proof). The requirement that Ha,of must have eigenvalues less

than 1 can be seen as a generalization of a recent result of Cabasino et al. (2013) in

DES theory, in which it was shown that tracking the possible states of a Petri Net with

133

6. ASYNCHRONOUS MULTIAGENT DECISION-MAKING UNDER
PARTIAL OBSERVABILITY

Left Server Right Server

Problem Model |S| |A| |O| d

Access2
E 72 6 9 3
S 72 18 96 3

Access3
E 216 8 10 4
S 216 54 256 4

Figure 6.5: Left: A layout of the Access2 problem; Right: Size of the model components
for the tested scenarios, using event-driven (E) and synchronous (S) approaches.

unobservable or perceptually aliased transitions is only possible if those transitions are

acyclic.

6.4 Experiments

In this section we evaluate our proposed methodology, in simulated environments, by

comparing its performance to that of synchronous models of the same decision-making

problems.

We consider an autonomous multiagent surveillance system, where static agents

(e.g. sensors) and mobile agents (e.g. robots) must cooperate in order to control the

access of human operators to sensitive equipment. In the Access2 problem, two sensors

which provide biometric information (e.g., cameras) are connected to two restricted-

access servers located in adjacent rooms (see Figure 6.5). Either sensor can mistake the

validity of a user’s credentials, or fail to detect that a user is there at all (0.2 probability

each). A robot aids these sensors by performing additional measurements, reducing the

possibility of false positives and negatives, and also acts as a failsafe in case one of the

sensors malfunctions. The robot can move between the two rooms (0.8 probability of

successfully switching rooms), and knows its position with certainty. The goal of the

problem is to authorize as many valid users as possible (a reward of 10 for each), and

to explicitly reject all others, or at least idly refrain from authorizing them (10 and 0),

respectively. There is a −10 penalty for giving access to non-authorized user.

This task was represented using both an event-driven and a standard synchronous

approach, using factored models. The sizes of the respective model components can be

seen in Figure 6.5. To see why there is such a pronounced difference in |O|, consider

that each sensor can observe authorized and non-authorized users, hardware failures, or

nothing at all. The robot can also observe users (or nothing), along with its own position.

134

6.4 Experiments

0 1 2 3 4 5 6
0

5

10

15

20

Time, t (sec)

M
ax

. I
m

pr
ov

em
en

t

Perseus Baseline / Event!Driven Model
Perseus / Synchronous Model
CC!Perseus / Event!Driven Model

TD-POMDP

(a) Access2, residual

0 50 100 150 200
0

50

100

150

200

250

Iterations

N
um

be
r o

f υ
−V

ec
to

rs

Perseus Baseline / Event−Driven Model
Adjusted Perseus Baseline (|A| x |ϒ|)
Perseus / Synchronous Model
CC−Perseus / Event−Driven Model

(b) Access2, |Υn|

0 5 10 15 20 25 30
0

5

10

15

20

Time, t (sec)

M
ax

. I
m

pr
ov

em
en

t

Perseus Baseline / Event!Driven Model
Perseus / Synchronous Model
CC!Perseus / Event!Driven Model

(R

(c) Access3, residual

0 50 100 150
0

100

200

300

400

Iterations

N
um

be
r o

f υ
−V

ec
to

rs

Perseus Baseline / Event−Driven Model
Adjusted Perseus Baseline (|A| x |ϒ|)
Perseus / Synchronous Model
CC−Perseus / Event−Driven Model

(d) Access3, |Υn|

Figure 6.6: (a), (c) Residual difference between successive value function approximations,
maxB{Vn(b)− Vn+1(b)} (b), (d) Size of the value function, |Υn|, as a function of n.

In the synchronous approach, we must take the product of all of these possibilities. In

the event-driven approach, the only detections that we need to model are the arrival/exit

of a user, the failure of either sensor, and a change of state by the robot, plus a “false

negative” observation, as per Definition 6.2.2. Additionally, we can reduce the number

of joint actions by ruling out inconsistent decisions (for example, there is never the need

to authorize two users simultaneously).

Both the normal Perseus algorithm (Spaan and Vlassis, 2005) and CC-Perseus

were run on this problem, over a set of 50 sampled belief points with γ = 0.95 and

h =∞. All experiments were run on an Intel Core i5 2.67Ghz computer with 4GB RAM.

As a baseline, the Perseus algorithm was run on our event-driven model, disregarding

the effect of unobservable events. Figure 6.6a shows the maximum improvement (or

residual) to the value function between steps using these algorithms, which is indicative

of their real-time convergence. From here we can see that CC-Perseus on the event-

driven model outperforms its standard version in the synchronous setting (total run-time

135

6. ASYNCHRONOUS MULTIAGENT DECISION-MAKING UNDER
PARTIAL OBSERVABILITY

6 8 10 12 14 16 18 20 22
0

10

20

30

40

Run!time Collected Reward (Discounted)

N
r.

O
cc

ur
re

nc
es

Perseus
CC!Perseus

(a) Reward (histogram)

Algorithm Run-Time Reward δ̄V
Perseus 12.94± 2.82 4.73

CC-Perseus 15.45± 2.75 0.60

(b) Reward (relevant statistics)

−2 −1 0 1 2 3 4
−200

−150

−100

−50

0

50

Time, log10 t (sec)

Be
st

 V
al

ue
, m

ax
BV(

b)

Perseus / Synchronous Model
CC−Perseus / Event Driven Model
Perseus Baseline / Event−Driven Model

(c) Planner convergence vs. time

Figure 6.7: (a) Reward accumulated at run-time for Access2, as a comparative histogram
for 100 runs of 25 steps. (b) Respective mean/deviation, and mean error between collected
reward and expected value (δ̄V). (c) Evolution of maxB Vn(b) in real time for the various
models/solvers in Access3, showing similar final results, but faster convergence in the event-
driven case.

was 22.78 s vs. 29.03 s, respectively, until a residual of 10−4). Figure 6.6b also shows

how the total number of vectors of CC-Perseus follows |A| times that of the baseline,

since Q−functions are explicitly maintained for each action. In Figure 6.7 we show how

the baseline policy, even though faster to compute, is outperformed by CC-Perseus,

since action constraints are not considered in the former case. Due to this fact, the

expected value calculated by Perseus does not correspond to the reward accrued at

run-time (an error of 27%, vs. 3% with CC-Perseus).

In order to showcase the scalability of these methods, a larger version of the above

problem was implemented. Access3 has 3 rooms/sensors/servers along a corridor, but

the sensor at the center can only detect authorized personnel (or nothing). Therefore,

there is only one more event with respect to the previous problem, but the presence

of another agent causes an exponential increase in the number of observations of the

synchronous model. Figure 6.5 shows the sizes of the models for this problem, and

Figures 6.6c and 6.6d show performance results. Although synchronous and event-

driven models are not strictly comparable with regard to expected reward, since their

dynamics are inherently different, we show in Figure 6.7c an overlay of the best expected

value (in the sample set) for Access3 using either model, to establish that they in fact

converged to similar near-optimal policies. Running times to a residual of 10−4 were

6m 52.39 s for event-driven CC-Perseus and 2h 27m 24.27 s for synchronous Perseus.

This shows that the simple addition of an agent increased the computational advantage

136

6.5 Extension to Generalized Semi-Markovian Domains

of the event-driven model over its alternative by more than an order of magnitude (also

clearly visible in Figure 6.7c). The problem files for these experiments can be accessed

at http://users.isr.ist.utl.pt/~jmessias/PhDthesis1.

6.5 Extension to Generalized Semi-Markovian Domains

We will now describe how our Event-Driven MPOMDP framework can be extended

beyond fully-Markovian domains, using the methodologies of Chapter 5.

As we have previously seen for fully observable cases, if event firing times are gov-

erned by non-exponential distributions fa
e , then a factored asynchronous system, in

which more than one event can be enabled in parallel, can only be fully modeled by a

GSMDP. The resulting model can, however, be approximated as an SMDP, by replac-

ing those non-exponential distributions with Phase-Type distributions. Therefore, in

order to extend Event-Driven MPOMDPs to the domain of continuous-time, we begin

by incorporating Semi-Markovian dynamics into our framework.

Definition 6.5.1. An Event-Driven Multiagent Partially Observable Semi-Markov De-

cision Process (Event-Driven MPOSMDP) is a tuple

⟨d,S,A,O, E , T, O,F , R, C⟩ where:

⟨d,S,A,O, E , T, O,R⟩ are defined as in a discrete-time Event-Driven MPOMDP (Defi-

nition 6.2.2);

⟨F , C⟩ are defined as in an SMDP (Definition 2.2.1), and describe, respectively, proba-

bility distributions over the firing time of each event, and cumulative reward rates.

From Definition 6.5.1, we see that the extension of our framework to Semi-Markovian

domains is conceptually very simple, since we have simply introduced the components

of SMDPs that weren’t already present in Definition 6.2.2. The resulting extended

framework is still analytically tractable, but only because we have opted to explicitly

model false negative detections as constraints on the decision-making process (see Sec-

tion 6.2.3).

In this case, as a stochastic process, our multiagent decision-making process evolves

as follows:

1Our problem files are written in the ProbModelXML format (Arias et al., 2012), and are
solvable with the MultiAgent Decision Process (MADP) toolbox (Spaan and Oliehoek, 2008).

137

http://users.isr.ist.utl.pt/~jmessias/PhDthesis

6. ASYNCHRONOUS MULTIAGENT DECISION-MAKING UNDER
PARTIAL OBSERVABILITY

1. An action a ∈ A is selected by the team at belief state b ∈ B;

2. An event e ∈ E is sampled from T (s,a, e);

3. A time te is sampled from fa
e . This is the time at which e will trigger;

4. As e triggers, an observation of that event is sampled from O(a, e, o), and a new

step of the process begins;

5. If and only if o is not a false negative observation (o ̸= of), the team is allowed

to select a new action a′ ∈ A. Otherwise, a′ = a.

Note that the planning horizon, for such a system, can be defined over the number

of decision steps or in the total amount of continuous time that the system experiences.

We are typically interested in agents that are able to operate indefinitely, particularly in

robotics applications. However, as in the case of discrete POMDPs, for the solution to

these models to be practical, we need to approximate the optimal stationary solution,

by calculating finite-step value functions with sufficiently large n.

With this, we will now show that value functions for Event-Driven MPOSMDPs are

also PWLC, for a finite number of steps and infinite time. The optimization criterion,

in this case, is an adaptation of the SMDP expected discounted reward (2.10), i.e.:

V π
n (bn) = Eπ

{
h−1
∑

n=0

e−λTn
∑

s∈S

bn(s)

(

R(s, δn(bn)) +

∫ Tn+1

Tn

C(s, δn(bn))e
−λ(t−Tn)dt

)
}

,

(6.19)

with Th =∞.

Theorem 4. The optimal value function V ∗
n for an Event-Driven MPOSMDP, with

respect to the expected discounted reward (6.19), is PWLC for finite n and infinite

t. That is, it can be written as:

V ∗
n (b) = max

υn∈Υn

υn · b ,

where Υn is a set of |S|-dimensional vectors, and b is a sufficient statistic for the

execution history of the system up to step n (⟨b0,a0, o0, . . . , an−1, on−1, on⟩).

138

6.5 Extension to Generalized Semi-Markovian Domains

Proof. Adapting Eqs. (2.17) and (6.2), the optimal value at b ∈ B, and at n < h−1, is:

V ∗
n (b) = max

a∈A

{∑

s∈S

b(s)U(s,a) +

∑

s∈S,o∈O
ε∈E(s,a),

∫ ∞

0
b(s)p(o, ε, t | s,a)

(

max
a′∈C(a,o)

Q∗
n+1(b

a,o,t,a′)

)

e−λtdt
}

. (6.20)

Here,
∫ τ
0 p(o, ε, t | s,a)dt represents the probability that the next transition is due to

event ε, at or before time τ , and the corresponding detection is o. C(a, o) is defined

as in Eq. (6.1), and U(s,a) is obtained through Eq. (2.16). Factoring this joint

distribution:

p(o, e, t | s,a) = p(o, t |a, e)Pr(e | s,a)

= p(t |a, e)Pr(o |a, e)Pr(e | s,a)

= fa

e (t)O(a, e, o)T (s,a, e) ,

where we used the properties that p(o, t | e, s, a) = p(o, t | e,a) (from Definition 2.2.2)

and p(t | o, e,a) = p(t | e,a).

Also, note that the belief update now also depends on the elapsed time. From

(Mahadevan, 1998):

ba,o,τ (s′) =

∑

s∈S fa

Φ(s,s′)(τ)T (s,a,Φ(s, s
′))O(a,Φ(s, s′), o)b(s)

∑

u,u′∈S fa

Φ(u,u′)(τ)T (u,a,Φ(u, u
′))O(a,Φ(u, u′), o)b(u)

(6.21)

We will use the same induction base as in the proof of Theorem 2. That is, at step

n = h− 1, in vectorial form, we have:

V ∗
h−1(b) = max

a∈A
ua · b , (6.22)

where ua is the a-th column of U(s,a).

We will also define a |S| × |S| matrix, Ga,o,τ , such that, for a ∈ A, o ∈ O and

τ ∈ R
+
0 :

[Ga,o,τ]i,j = fa

Φ(si,sj)
(τ)T (sj ,a,Φ(sj , si))O(a,Φ(sj , si), o) .

139

6. ASYNCHRONOUS MULTIAGENT DECISION-MAKING UNDER
PARTIAL OBSERVABILITY

Then, adapting Eq (6.8), we can rewrite the backup at step n < h− 1 as:

V ∗
n (b) = max

a∈A

{

ua · b+
∑

o∈O

∫ ∞

0
1TGa,o,tb max

a′∈C(a,o)

(q∗,a
′

n+1)
TGa,o,tb

1TGa,o,tb
e−λtdt

}

(6.23)

= max
a∈A

{

ua · b+
∑

o∈O

∫ ∞

0
max

a′∈C(a,o)
(q∗,a

′

n+1)
TGa,o,tb e−λtdt

}

. (6.24)

Returning, momentarily, to our “flat” notation, and defining s′e,s to be the resulting

state after event e in state s (that is, Φ(s, s′e,s) = e), we have that:

V ∗
n (b) = max

a∈A

{∑

s∈S

b(s)U(s,a) +

∑

s∈S,o∈O
ε∈E(s,a),

∫ ∞

0
max

a′∈C(a,o)
q∗,a

′

n+1(s
′
ε,s)f

a

e (t)T (s,a, ε)O(a, ε, o)b(s)e−λtdt
}

(6.25)

= max
a∈A

{∑

s∈S

b(s)U(s,a) +

∑

s∈S,o∈O
ε∈E(s,a),

max
a′∈C(a,o)

q∗,a
′

n+1(s
′
ε,s)T (s,a, ε)O(a, ε, o)b(s)

∫ ∞

0
fa

e (t)e
−λtdt

}

(6.26)

Let Da be an |S|× |S| matrix such that:

[Da]s,s′ =

{

L{fa
e (t)} if Φ(s, s′) ∈ E(s,a),

0 otherwise.

Then,

V ∗
n (b) = max

a∈A

{

ua · b+
∑

o∈O

max
a′∈C(a,o)

(q∗,a
′

n+1)
T (Ha,o ◦Da) b

}

, (6.27)

where A ◦ B is the Hadamard (entry-wise) product of A an B, and Ha,o is defined as

in the proof of Theorem 2.

Finally, we have that V ∗
n (b) = max

υn∈Υn

υn · b, with

υn = ua +
(∑

o∈O

max
a′∈C(a,o)

(q∗,a
′

n+1)
T (Ha,o ◦Da)

)T
. (6.28)

140

6.5 Extension to Generalized Semi-Markovian Domains

This theoretical result enables us to apply algorithms for Event-Driven MPOMDPs,

such as CC-Perseus, to this Semi-Markovian framework. Indeed, we note that the

only necessary modification to the algorithm presented in Section 6.3.2 would be the

substitution of Eq. (6.13) with

qk,a
′,a,o

n =
(

(qk,a
′

n+1)
T (Ha,o ◦Da)

)T
. (6.29)

We emphasize, however, that this was only possible since we have considered decision

steps to occur at every event, including those that are not detected; if that wasn’t the

case, and we would not be able to describe the behavior of the system between deci-

sion steps due to the effect of false negative observations and intermediate transitions,

analogously to what we have proposed in Section 6.2.3. This is due to the fact, in the

limit, an unobserved chain of infinite transitions would involve infinite nested integrals

of fa
e (t) for the respective intermediate events and actions. This also prevents us from

extending the run-time belief update proposed in Theorem 3 to these continuous-time

models. For this reason, we cannot (yet) execute Event-Driven MPOSMDP plans, and

we have not collected empirical results using this framework.

Conceptually, in an Event-Driven MPOSMDP equipped with time, transition, and

observation models described directly over event detections, and not over events, the

update (6.21) could be used. In particular, this would require time models of the form

fa,o
s,s′ , i.e. depending explicitly on the initial state s and the state s′ at the time of the

next detection, but not on any intermediate undetected events. The problem with such

models is that they do not isolate the effect of false negative detections: they depend

implicitly on the intermediate states between s and s′, which may affect the probabil-

ity of emitting a given observation. Therefore, these distributions can easily become

impossible (or at least highly impractical) to parametrize. We note, however, that for

the belief update (6.21), these time models do not need to be integrated, but simply

evaluated at τ , so we conjecture that learning approximations to these functions could

suffice, in practice. Obtaining an appropriate execution-time belief update mechanism

for Event-Driven MPOSMDPs constitutes one of our most immediate topics for future

work.

Finally, we note that the only difference between the proposed Event-Driven MPOS-

MDP framework, as per Definition 6.5.1 and a conceptual, even more general Multia-

141

6. ASYNCHRONOUS MULTIAGENT DECISION-MAKING UNDER
PARTIAL OBSERVABILITY

gent Partially Observable GSMDP is that, in the latter, event times would be allowed to

depend on the execution history of the system. Therefore, the application of the Event-

Driven MPOSMDP framework to Generalized Semi-Markov domains follows trivially

from the considerations of Chapter 5 — that is, it can be used to approximate Gener-

alized Semi-Markov systems, if all of the persistently enabled events in those systems

are replaced by unobservable Semi-Markov chains.

6.6 Summary

In this chapter, we have proposed a novel modeling approach for multiagent decision-

making under partial observability, based on the MPOMDP framework, which draws

from the concepts of asynchrony in Discrete-Event systems to allow a more compact rep-

resentation of such scenarios than what is typically possible through decision-theoretic

frameworks.

We have described how such a model could be formalized and shown that it still

retains the essential properties that allow it to be solved through dynamic programming.

We have also shown how a common POMDP-solving algorithm could be adapted to

function in an event-driven paradigm, and how agents can track belief states at run-

time in the presence of false negative observations.

We have supported the efficiency of our framework, by showing that, for simulated

environments, our asynchronous models could be solved faster than synchronous alter-

natives, and the resulting event-driven policy performed better during execution.

Finally, we have also shown how these concepts could be tied to the work presented

in Chapter 5 for Generalized Semi-Markovian systems. The proposed Event-Driven

MPOSMDP framework constitutes a direct result of our effort of integrating Discrete-

Event Systems and Decision Theory, and allows the modeling of fully communicative

multi-robot systems, subject to the influence of continuous time, and partial observabil-

ity.

142

Chapter 7

A Case Study in Multiagent

Surveillance

7.1 Introduction

In this chapter, we describe the application of the Event-Driven MPOMDP framework,

proposed in Chapter 6, to a decision-making problem involving a real networked robot

system of significant dimension, operating in the context of autonomous surveillance. In

doing so we will discuss, from a pragmatical standpoint, the decision-theoretic modeling

process for this system, and also the organization and functionality of the various soft-

ware components that are necessary for the deployment of these methods on a real team

of robots. Among these software components, we will note those that are direct and

novel contributions of this work, and that were developed with the purpose of easing

the implementation of generic decision-theoretic controllers on multi-robot systems.

Finally, we will evaluate the performance of our multi-robot system.

7.2 The MAIS+S Testbed

Our case study takes place as part of the MultiAgent Intelligent Surveillance System

(MAIS+S) project1. The main testbed for MAIS+S is a networked surveillance system

that combines common stationary sensors (cameras) with mobile autonomous agents

(robots). The purpose of this framework is to complement a typical human surveillance

1Project reference CMU-PT/SIA/0023/2009. Web: http://gaips.inesc-id.pt/mais-
s/project.html

143

7. A CASE STUDY IN MULTIAGENT SURVEILLANCE

CTMDP

(a) Camera positions / FOVs (b) Robot operation area

Figure 7.1: The environment of our surveillance framework. (a): The positions and
fields-of-view (FOVs) of the stationary cameras in our surveillance system, overlaid on the
respective floor plan at ISR-Lisbon; (b): The area that was designated for the operation
of our robots, shown in white. The gray shaded areas are off-limits to the robots, and also
outside of the coverage of the camera network. The boundaries of this map were obtained
experimentally using the onboard laser rangefinders of the robots.

team by providing situational awareness based on video analytics and fused sensor data,

while leveraging decision-theoretic solutions, such as those presented in this thesis, to

allow autonomous response of the robot team to relevant events, in the absence of

human input. This testbed is an extension of the earlier ISRobotNet surveillance

framework (Barbosa et al., 2009).

In the following sections, we describe the fundamental aspects of our surveillance

framework, and of its event-driven control architecture.

7.2.1 Hardware

The physical testbed for this project, which is installed at the Institute for Systems and

Robotics (ISR-Lisbon), is comprised of a network of stationary cameras and a pair of

mobile robots, all of which are able to share data in real-time.

A floor plan of the environment for this system is represented in Figure 7.1a, which

also shows the camera positions and respective fields-of-view. The system contains

twelve AXIS 211/P1344 network cameras (Figure 7.2b), connected to three servers (HP

DL120 G6), which are able to process the live feed from the cameras at a maximum of

144

7.2 The MAIS+S Testbed

(a) The robot team

(b) Surveillance cameras

(c) Camera views

Figure 7.2: (a): Our robot team, Duke (left) and Orwell (right); (b): Examples of the
network cameras used in our surveillance system; (c): Typical view from (some of) our
surveillance cameras. The bounding boxes shown around people in these images are the
output of a set of video processing algorithms, running in real time in our camera servers.

145

7. A CASE STUDY IN MULTIAGENT SURVEILLANCE

Cooperative Task Allocation
(Event-Driven MPOMDP)

Visitor Assistance
(FSM)

Surveillance Incident
Response (FSM)

Emergency Response
(FSM)

Patrol Task
(Event-Driven POMDP)

Navigation
(ROS)

Coordination Level

Task Level

Motion Control Level Human-Robot
Interaction (ROS)

Figure 7.3: The various levels of decision-making involved in our two-robot autonomous
surveillance scenario. This hierarchical organization integrates different decision-making
formalisms – the cooperation between agents is modeled as an Event-Driven MPOMDP;
the tasks that it abstracts as actions were described either as manually designed Finite
State Machines (FSMs), or, in the case of the ‘Patrol’ task, as a single-agent Event-Driven
POMDP.

25 frames per second. A set of video processing algorithms running on these servers,

which is outside of the scope of this work, is able to detect the position of people in

the areas covered by each camera, and also if people are waving directly at any of the

cameras (Moreno et al., 2009). Figure 7.2c shows snapshots from typical camera feeds.

The robot team in this framework consists of two Pioneer 3-AT robots, equipped

with laser scanners and webcams (Figure 7.2a). Each robot carries an onboard laptop

(Sony VAIO VPCS135FA/B), which not only runs its navigation and decision-making

algorithms, but also acts as an interface for Human-robot interaction. The robots are

connected to the network via their wireless adapters, and are able to roam seamlessly,

and with negligible packet loss, across different wireless access points over the area

designated for their operation (shown in Figure 7.1b). When operating continuously,

each robot has approximately 30 minutes of battery life.

7.2.2 Decision-Making

The operation of our robot team as a part of the surveillance framework requires

decision-making at different levels of abstraction. These are graphically represented

in Figure 7.3. The cooperative decision-making problem in this scenario lies at the

top of this hierarchical organization, and concerns the allocation of tasks between the

robots, as a response to the discrete detections of the sensor network.

The event-driven methodologies that were studied in Chapter 6 are particularly ap-

propriate to this type of problem. Since agents (robots) and static sensors (cameras)

are heterogeneous, and communicate over different media, subject to different delays

146

7.2 The MAIS+S Testbed

and restrictions (wired / wireless network), ensuring their synchronization is not only

difficult, but undesirable. Furthermore, for a large network that is supposed to operate

over extended periods of time, it is more efficient, in terms of communication usage,

to exclusively communicate relevant changes in the system, than it is to perform syn-

chronous communication with mostly constant information, at a sufficiently high rate

so as to preserve reactivity to detections.

We cast the problem of multi-robot coordination in our surveillance framework as an

Event-Driven MPOMDP1. The actions in this model correspond to the abstract tasks

that each robot must be capable of performing individually. We will now provide a

short description of the requirements and of the design of each of these tasks:

1. Patrol: This is the default task for both robots, that should be performed in

the absence of events in the surveillance framework. When patrolling, each agent

should actively search for ongoing occurrences.

Since this is naturally a partially observable problem, it was modeled as a single-

agent Event-Driven POMDP. The state space for this task contains the position of

the robot in a topological graph describing its area of operation (Figure 7.15b), and

also the position of a fictitious “target”, which is drawn with uniform probability

over the topological nodes. The robot is rewarded for observing and “capturing”

the target, which is only possible if both the robot and the target are in the

same topological node. This induces the behavior of searching every node for the

presence of the target, until the robot is sufficiently certain that no target exists.

In that case, the robot terminates its patrol round, and a new fictitious target is

spawned.

The actions in this model correspond to movement to an adjacent topological node,

plus “capture” and “terminate round” actions. Observations, in turn, correspond

to the presence or absence of the occurrence in each node. An important feature of

this model is that observations may be emitted by external sources of information

– the robot may receive observations signaling that a room is clear from its partner,

or from a human security agent, for example. This will naturally cause the robot

1Evidently, an Event-Driven MPOSMDP (Section 6.5) would be a more exact representa-
tion, since events may have different rates of occurrence over time. However, as we cannot yet
execute Event-Driven MPOSMDP policies, we here make the assumption that all events occur
at the same rate, which, as it will be shown, does not compromise the operation of the system.

147

7. A CASE STUDY IN MULTIAGENT SURVEILLANCE

to skip those rooms until its present patrol round is terminated. When both

robots execute this task simultaneously, this results in an implicitly cooperative

behavior in which each robot patrols only part of the environment (Figure 7.15a).

The full state, action, and observation space description of this task can be found

in Appendix A.

2. Assistance Response: In this task, the robot should assist visitors to ISR,

in guiding them to their desired destinations. Visitors may request assistance

by waving directly to one of the cameras. When the cameras communicate the

position of the waving person to the robot team, a robot should then move there

and interact with that person. If both robots simultaneously decide to assist a

visitor, the closest robot has priority, and should proceed with the task. The

remaining robot should cancel its execution and select a different task. A robot

can also decide to assist visitors without having received a waving detection from

one of the cameras. In this case, the robot should audibly offer to guide any

waiting visitors, while scanning its operational area;

3. Surveillance Incident Response: This task encapsulates the response to generic

surveillance incidents – in particular, these can be events in which unauthorized

people trespass into restricted areas, in which case a robot should warn the tres-

passer; or camera failures, which should prompt one of the robots to minimize

the uncertainty over the expected field-of-view of the disabled camera, in order to

maintain optimal sensor coverage of the environment;

4. Emergency Response: A symbolic task representing the response of the robots

to emergencies (e.g. fires). This is the highest priority task, and should prompt

both robots to move to the position of the detected emergency. The task is

completed immediately if both robots reach the emergency position, or if one robot

reaches and holds that position for 120 seconds. Although emergency detections

must be simulated, this task serves the purpose of being an easily recognizable

joint action.

The “Assistance Response”, “Surveillance Incident Response” and “Emergency Re-

sponse” tasks were implemented as manually specified Finite State Machines (FSMs).

The layout of these FSMs can be found in Appendix A.

148

7.2 The MAIS+S Testbed

Tasks may have a higher probability of being successfully completed if they are

performed simultaneously by both agents (e.g. addressing an emergency situation),

while in others it is pointless to engage both robots simultaneously (e.g. assisting a

visitor).

The state space in our coordinative Event-Driven MPOMDP model is factored into

a set of variables which encode the occurrence of each of the events that the robot team

is supposed to respond to, according to the aforementioned tasks (visitors requesting

assistance, surveillance incidents, and emergencies); and also the condition of each robot,

i.e. whether it is enabled or disabled, and whether it is busy responding to an event.

Observations, in turn, symbolize the detections of these events, triggered by the

surveillance framework as a whole. That is, observations can originate from any of

the robots or any of the stationary sensors, even though the latter are not formally

agents. The robot team selects a joint assignment of tasks (starting a new decision

episode) whenever an observation is received. Note that the relationship between events

and observations is not a bijection, in the general case – multiple observations can be

associated with the same event, in order to model different degrees of certainty with

which an event is detected. For example, in our framework, each camera can transmit

a detection of a person requesting assistance with either a ‘Low’ or a ‘High’ confidence,

depending on the outcome of its detection algorithms. These are associated with the

same underlying event, but due to the fact that each of these detections has different

rates of false positives / negatives, the robot team may respond differently to each of

them.

The robot team is penalized for each step that an event is awaiting response. Dif-

ferent events carry different penalties according to their priority (emergencies have the

highest priority, while assisting visitors has the lowest). This reward strategy implies

that, before committing to a low priority event, each robot must consider its partner’s

availability to respond to high priority situations that may take place in the meantime.

The resulting Event-Driven MPOMDP model has |S| = 144, |A| = 16 and |O| = 13.

Due its the size, the specific parameterization of this model (transition, observation

probabilities, and rewards) is here omitted, although we encourage the reader to in-

spect the model definition at: http://users.isr.ist.utl.pt/~jmessias/PhDthesis

(the patrol task Event-Driven POMDP can also be accessed). The 2-DBN that rep-

149

http://users.isr.ist.utl.pt/~jmessias/PhDthesis

7. A CASE STUDY IN MULTIAGENT SURVEILLANCE

event detections

event detections

• Video Processing

• Event Filtering

• Sensor Processing

• Navigation

• Human-Robot Interaction

• Decision-Making

Camera Network

Camera Servers

Robot Robot

• Video Capture

Figure 7.4: An overview of the structure of our surveillance system, and the respective
functional distribution.

resents this problem graphically, as well as the full description of its state, action and

observation spaces, can be found in Appendix A.

7.2.3 Software Organization

We used ROS (Quigley et al., 2009) as the middleware for our surveillance system. The

inherent asynchronous, distributed execution strategy of ROS is particularly suitable

for the deployment of event-driven control strategies, such as the one proposed in this

work.

In Figure 7.4, we show an overview of the functional organization of our surveillance

framework. We note that all of the decision-making involved in this system runs locally

in each robot. Cameras (and their respective servers) act merely as external sources

of information, in the form of events. These are then passed to the robots in a format

that identifies the type of event, its actual (continuous) position in the environment,

and the time associated with the detection. Events are filtered, as per the methodology

discussed in Section 6.2.4 (Figure 6.3b), which means that detections from different

cameras are fused, and subsequent detections from the same camera are tracked, so

that the same event is not erroneously transmitted multiple times.

150

7.3 The Markov Decision-Making (MDM) Library

Event-Driven
(M)POMDP Design
(ProbModelXML /

OpenMarkov)

Planning
(CC-Perseus /

MADP)

Execution
(MDM / ROS)

Figure 7.5: The design and implementation of an Event-Driven MPOMDP model.

The implementation of the actual decision-making process that is meant to be car-

ried out by the robots, based on these events, is a three-step process (Figure 7.5): first,

the Event-Driven MPOMDP model is defined in an appropriate file format. We used

OpenMarkov (Arias et al., 2012) to design the model graphically (as per the 2-DBN

in Figure A.10); then, we plan over the resulting model using CC-Perseus, through

the MADP Toolbox (Spaan and Oliehoek, 2008), to obtain an approximately optimal

policy; finally, we execute this policy in each of the mobile robots, by means of the

MDM Library, a decision-making library that was designed in the context of this work,

and which we will describe in Section 7.3. This library handles the semantic grounding

of the observations in the model, with respect to the events that are transmitted in the

network; and of the actions of the Event-Driven MPOMDP, as the tasks that were pre-

viously described. We implemented the Finite State Machines describing most actions

in the model using the SMACH ROS package1.

7.3 The Markov Decision-Making (MDM) Library

This section describes the “Markov Decision-Making” (MDM) software package and its

applications. MDM was developed as part of this thesis work, with the goal of support-

ing the deployment of DT methodologies to teams of physical autonomous agents.

As we have previously seen throughout this work, modeling a real-world system

through an MDP-based framework typically requires the abstraction of relevant char-

acteristics of the environment. Consequently, a plan which results from such a model

also provides symbolic, abstract actions, which are not directly applicable to the con-

trol inputs of a physical autonomous agent (see Section 3.2.3). Therefore, agents must

be provided with some means of interpreting the environment through the scope of its

1URL: http://www.ros.org/wiki/smach

151

http://www.ros.org/wiki/smach

7. A CASE STUDY IN MULTIAGENT SURVEILLANCE

associated MDP, and must also be capable of interpreting the actions that the solution

to that MDP provides as concrete references to its actuators. This problem is depicted

in Figure 7.6.

Robot

Environment
Abstraction

Action
Interpretation

w

v x
y
θ

sa
MDP

Policy (π)

Figure 7.6: An example of the integration of an MDP-based control policy to a robotic
agent. The actual control inputs of the robot are its linear and angular velocities (v and
w resp.). It is able to sense its location in the environment (the triplet ⟨x, y, θ⟩). The
MDP control policy requires the abstraction of this information as a symbolic state s. In
response, it provides an adequate symbolic action a, which must be then interpreted by
the robot as a sequence of appropriate control inputs.

In most cases, both sides of this abstraction are carried out in an ad-hoc approach,

tailored to the task at hand and the particular policy that a given DT model is supposed

to provide. This results, however, in a large amount of implementation-specific work

by the problem designer, which is difficult to reuse in other, similar applications, and is

subject to designer errors during deployment, which, in turn, are difficult to track, and

may invalidate the DT model of the system and/or its solution.

The purpose of the MDM package is to provide researchers / autonomous systems

engineers with an easy-to-use set of tools for the deployment of MDP-based decision-

making methods to physical agents. Its features include:

• The ability to easily abstract system/environment characteristics as symbolic

states or observations (for discrete MDPs or POMDPs, respectively);

• Supports single agent and multiagent systems;

• Generic callback-based action interpretation allows actions to be defined through

ROS-native frameworks (e.g. actionlib1/SMACH);

1URL: http://wiki.ros.org/actionlib

152

http://wiki.ros.org/actionlib

7.3 The Markov Decision-Making (MDM) Library

• The ability to implement hierarchical MDPs/POMDPs;

• Supports synchronous (fixed-rate) and asynchronous (event-driven) execution strate-

gies;

• Relevant execution information can easily be logged through ROS (actions, states,

rewards, transition rates, etc.);

• MDM is based on the MADP Toolbox (Spaan and Oliehoek, 2008). MADP is

a toolbox for decision-theoretic research, containing state-of-the-art solution al-

gorithms for multiagent MDP-based models, and is actively maintained and ex-

tended by researchers in that field. MDM can potentially implement any model

which can be defined through MADP.

MDM is currently available at http://users.isr.ist.utl.pt/~jmessias/MDM/.

It is developed and maintained specifically as a package for the ROS middleware.

7.3.1 Terminology

In the remainder of this section, we will discuss the software architecture of the MDM

Library. We will here overview the basic concepts and terminology of the ROS middle-

ware that are necessary to that end.

In the ROS framework, processes, or nodes, run in a distributed, networked fashion.

Each node represents an abstract producer or consumer of data. ROS abstracts the

actual protocols for communication between nodes. This results in a modular frame-

work where the physical location of each node in the network is irrelevant from the

implementation standpoint – nodes running on the same machine communicate in the

same way as nodes in different network locations. Nodes can communicate one-to-many

/ many-to-many, via topics (which can be thought of as streams of data), or one-to-one,

via services. When communicating via topics, nodes can publish (send) data to a topic;

and they can subscribe to a topic, which means that they register to receive all data

flowing through it.

By default, nodes are expected to receive data asynchronously. The corresponding

processes are woken up as they receive topic data or service calls. The data is processed

by means of a suitable callback function.

For a more complete overview of ROS, see (Quigley et al., 2009).

153

http://users.isr.ist.utl.pt/~jmessias/MDM/

7. A CASE STUDY IN MULTIAGENT SURVEILLANCE

7.3.2 MDM Overview

At its core, MDM is organized into a set of Layers, which embody the components that

are involved in the decision-making loop of a generic MDP-based agent:

• The System Abstraction Layer – This is the part of MDM that constantly maps

the sensorial information of an agent to the constituent abstract representations

of a (PO)MDP model. This layer can be implemented, in turn, by either a State

Layer or an Observation Layer (or both), depending on the observability of the

system;

• The Control Layer – Contains the implementation of the policy of an agent, and

performs essential updates after a decision is taken (e.g. belief updates);

• The Action Layer – Interprets (PO)MDP actions. It associates each action with

a user-definable callback function.

MDM provides users with the tools to define each of these layers in a way which

suits a particular decision-making problem, and manages the interface between these

different components within ROS.

An MDM ensemble is an instantiation of a System Abstraction Layer, a Control

Layer, and an Action Layer which, together, functionally implement an MDP, POMDP,

or any other related decision-theoretic model. A basic MDM control loop is shown in

Figure 7.7, which embodies a single-agent MDP. The inputs and outputs to each of the

various ROS components are also made explicit.

In the following subsections, the operation of each of these core components is

described in greater detail.

7.3.2.1 The State Layer

From the perspective of MDM and for the rest of this document, it is assumed that a

robotic agent is processing or filtering its sensor data through a set of appropriate ROS

nodes, in order to estimate relevant characteristics of the system as a whole (e.g. its

localization, atmospheric conditions, etc.). This information can be mapped to a space

of discrete factored states by a State Layer, if and only if there is no perceptual aliasing

and there are no unobservable state factors. The State Layer constitutes one of the two

possible System Abstraction Layers in MDM (the other being the Observation Layer).

154

7.3 The Markov Decision-Making (MDM) Library

Sensors Actuators

Robot

Predicate Manager

Action Layer

Navigation /
Motion control

State Layer

ROS

MDM
Control Layer

sta
tes

a
ct
io
n
s

filtered sensor data

predicate updates

predicate updates

states actions

action callbacks

action callbacks

control references

control referencesraw sensor data

filtered sensor data

raw sensor data

Sensor
Processing / Fusion

Figure 7.7: The control loop for an MDP-based agent using MDM.

Functionally, State Layers translate sets of logical predicates into factored, integer-

valued state representations. For this purpose, MDM makes use of the concurrently

developed Predicate Manager ROS package1. In its essence, Predicate Manager allows

the user to easily define semantics for arbitrary logical conditions, which can either be

directly grounded on sensor data, or defined over other predicates through propositional

calculus. Predicate Manager operates asynchronously, and outputs a set of predicate

updates whenever one or more predicates change their logical value (since predicates

can depend on each other, multiple predicates can change simultaneously).

From the perspective of ROS/MDM, predicates are seen as named logical-valued

structures. More formally, let p represent a predicate and lt(p) ∈ {0, 1} represent the

1Also available at http://users.isr.ist.utl.pt/~jmessias/MDM/. The Predicate Man-
ager package was developed, and is currently being maintained, by J. Reis (ISR/IST).

155

http://users.isr.ist.utl.pt/~jmessias/MDM/

7. A CASE STUDY IN MULTIAGENT SURVEILLANCE

logical value of p at some time t ∈ R
+
0 . Given a set of predicates P = {p1, . . . , pn}, and

a factored state description X = {X1 . . . ,Xm}, the State Layer establishes a surjective

map Hi : {0, 1}k → Xi for each state factor i, that is, it maps length-k logical vectors

onto each discrete set Xi. These logical vectors, in turn, are the values of k predicates

in a given subset P ′ = {p′1, . . . , p
′
k} ⊆ P . That is, such a vector can be taken at time t

as vP
′

t ∈ {0, 1}k : [vP
′

t]i = lt(p′i) ∀i ∈ {1, . . . , k}.

Predicates can be mapped onto discrete state factors by a State Layer, in one of the

following ways:

• A binary state factor can be defined by binding it directly to the value of a

particular predicate. That is, for the i-th state factor and j-th predicate, xi|t =

lt(pj) ∀t ∈ R
+
0 .

• An integer-valued factor can be defined by an ordered set of mutually exclusive

predicates, under the condition that one (and only one) predicate in the set is true

at any given time. The index of the true predicate in the set is taken as the integer

value of the state factor. Formally, the given (sub)set of predicates P ′ ⊆ P must

be such that lt(p′1) ∨ lt(p′2) ∨ . . . ∨ lt(p′k) = 1 and lt(p′u) ∧ lt(p′v) = 1 =⇒ u = v,

∀t ∈ R
+
0 . Then, for each time t, xi|t = ιt such that ιt = min{k : lt(p′k) = 1}.

The State Layer always outputs the joint value of the state factors that it contains,

i.e. a single integer value which unambiguously corresponds to an assignment of state

factors. This minimizes the amount of information that needs to be passed between

modules. However, for multiagent problems, note that this does not mean that the

whole joint state of the system needs to be modeled in each State Layer for every agent.

If each agent can only access part of the state space, for example in a Dec-MDP, then

different State Layers can model different subsets of state factors.

7.3.2.2 The Observation Layer

In the partially observable case, sensorial information should be mapped to a space of

discrete factored observations, by an Observation Layer. The resulting decision-making

loop, which can be used for POMDP-driven agents, is shown in Figure 7.8.

The most significant difference of this abstraction layer with respect to a fully-

observable State Layer is that, while in the latter case states are mapped directly from

156

7.3 The Markov Decision-Making (MDM) Library

Sensors Actuators

Robot

Predicate Manager

Action Layer

Navigation /
Motion control

Observation Layer

ROS

MDM
Control Layer

o
b
s
e
r
v
a
tio

n
s

a
c
ti
o
n
s

filtered sensor data

events

events

observations actions

action callbacks

action callbacks

control references

control referencesraw sensor data

filtered sensor data

raw sensor data

Sensor
Processing / Fusion

Figure 7.8: The basic control loop for a POMDP-based agent using MDM.

assignments of persistent predicate values; in an Observation Layer, observations are

mapped from instantaneous predicate changes. This is consistent with our definition of

observations as event detections, in Chapter 6. The same rationale is here followed: an

observation symbolizes a relevant occurrence in the system, typically associated with an

underlying (possibly hidden) state transition. This event is captured by the system as

a change in some conditional statement. The semantics of events, therefore, are defined

over instantaneous conditional changes, as opposed to persistent conditional values.

The Predicate Manager package also makes it possible to define named p-events

(short for “predicate-based event”). A named p-event is simply a label associated to

a change in a predicate, or set of predicates1. These can be defined either as proposi-

1Note that these p-events are not equivalent to the “events” that are contemplated by Defini-
tion 2.2.2 and that were used throughout this work. In particular, if changes in interdependent
predicates are labeled with different p-events, several of these p-events may trigger simultane-
ously. This means that an “event” (as per Definition 2.2.2) may actually be associated with a
set of simultaneous p-events.

157

7. A CASE STUDY IN MULTIAGENT SURVEILLANCE

tional formulas over existing predicates, in which case the respective p-event is triggered

whenever that formula becomes true; or directly as conditions over other sources of data

(e.g. a touch sensor signal).

Observation spaces can also be factored. Observation factors are always associ-

ated with at least two p-events, and so their definition is similar to that of integer-

valued state factors. Let Ω = {ω1, . . . ,ωn} be a set of p-events and O = {O1, . . . ,Om}

a factored observation space description. An Observation Layer defines a mapping

Gi : PS(Ω) → Oi, for each observation factor i, that is, it maps from subsets of Ω

directly onto each discrete domain Oi. Let νt(Ω) ⊆ Ω ∪ ∅ represent the p-events in Ω

which have triggered at time t (possibly none). Then, an observation factor i is defined

through a set Ω′ = {ω′
1, . . . ,ω

′
k} ⊆ Ω of ordered asynchronous p-events – that is, at

most one p-event in Ω′ triggers at any given instant (maxt∈R+
0
|νt(Ω′)| = 1) – so that,

iff νt(Ω′) ̸= ∅, oi|t = κt with κt = min{k : e′k ∈ νt(Ω′)}. Less formally, whenever a

p-event is received, the value of the i-th observation factor is the index of the first (and

supposedly only) active p-event in the associated p-event set.

Note that, although events are naturally asynchronous, this does not mean that syn-

chronous decision-making under partially observability cannot be implemented through

MDM. As it will be seen, only the Control Layer is responsible for defining the execution

strategy (synchronous or asynchronous) of a given implementation.

As in the case of the State Layer, an Observation Layer always outputs the joint

value of the observation factors that it contains.

7.3.2.3 The Control Layer

The Control Layer is responsible for parsing the policy of an agent or team of agents,

and providing the appropriate response to an input state or observation, in the form of

a symbolic action.

The internal operation of the Control Layer depends on the decision-theoretic frame-

work which is selected by the user as a model for a particular system. For each of

these frameworks, the Control Layer functionality is implemented by a suitably defined

(multi)agent controller. Currently, MDM provides ready-to-use controllers for MDPs

and POMDPs operating according to deterministic policies, which are assumed to be

computed outside of ROS/MDM (using, for example, MADP).

158

7.3 The Markov Decision-Making (MDM) Library

For POMDPs, the Control Layer can also perform belief updates internally1. Con-

sequently, in such a case, the stochastic model of the problem (its transition and ob-

servation probabilities) must typically also be passed as an input to the controller (an

exception is discussed in Section 7.3.3). The system model is also used to validate the

number of states/actions/observations defined in the System Abstraction and Action

Layers.

MDM Control Layers use the MADP Toolbox extensively to support their func-

tionality. Their input files (policies, and the model specification if needed), can be

defined in all MADP-compatible file types, and all decision-theoretic frameworks which

are supported by MADP can potentially be implemented as MDM Control Layers.

The MADP documentation describes the supported file types for the description of

MDP-based models, and the corresponding policy representation for each respective

framework.

The Control Layer of an agent also defines its real-time execution scheme. This

can be either synchronous or asynchronous – synchronous execution forces an agent to

take actions at a fixed, pre-defined rate; in asynchronous execution, actions are selected

immediately after an input state or observation is received by the controller.

All agent controllers can be remotely started or stopped at run-time through ROS

service calls. This allows the execution of an MDM ensemble to be itself abstracted as

an “action”.

7.3.2.4 The Action Layer

Symbolic actions can be associated with task-specific functions through an MDM Ac-

tion Layer. In this layer, the user unambiguously associates each action of a given

(PO)MDP with a target function (an action callback). That callback is triggered when-

ever a Control Layer publishes its respective action. An Action Layer can also interpret

commands from a Control Layer as joint actions, and execute them under the scope of

a particular agent.

The general purpose of an action callback is to delegate the control of the robotic

agent to other ROS modules outside of MDM, operating at a lower level of abstraction.

1Belief updates are performed internally if the POMDP Control Layer is connected to the
output of an Observation Layer, which is the default case. Alternatively, POMDP Control
Layers can also accept belief states directly, in which case no updates are carried out (see
Section 7.3.3.1)

159

7. A CASE STUDY IN MULTIAGENT SURVEILLANCE

Sensors Actuators

Robot

Predicate Manager

Navigation /
Motion control

ROS

filtered sensor data

predicate updates

action callbacks

control references

control referencesraw sensor data

filtered sensor data

raw sensor data

Sensor
Processing / Fusion

Action Layer AState Layer A

Ensemble A
Control Layer A

sta
tes

a
ct
io
n
s

predicate updates

states actions

action callbacks

Action Layer BState Layer B

Ensemble B

Control Layer B

sta
tes

a
ct
io
n
s

predicate updates

states actions

action callbacks

Action Layer CState Layer C

Ensemble C

Control Layer C

sta
tes

a
ct
io
n
s

predicate updates

states actions

action callbacks

enable enable

MDM

Figure 7.9: An example of the organization of a hierarchical MDP, as seen by MDM.
The actions from Action Layer A enable / disable the controllers in ensembles B and C.
When a controller is disabled, its respective State Layer still updates its information, but
the controller does not relay any actions to its Action Layer.

For example, action callbacks can be used to send goal poses to ROS native naviga-

tion modules; or to execute scripted sets of commands for human-robot interaction.

However, the Action Layer also makes it possible to abstract other MDM ensembles

as actions. This feature allows users to model arbitrarily complex hierarchical depen-

dencies between MDPs/POMDPs (see Figure 7.9 for an example of the resulting node

layout and respective dependencies).

The layered organization of MDM, and the “peer-to-peer” networked paradigm of

ROS, allow action execution and action selection to be decoupled across different sys-

tems in a network, if that is desired. This can be accomplished by running an agent’s

Action Layer on a different network location than its respective Control Layer. For

mobile robots, this means that the components of their decision-making which can be

computationally expensive (sensor processing / abstraction, and stochastic model pars-

160

7.3 The Markov Decision-Making (MDM) Library

ing, for example), can be run off-board. For teams of robots, this also implies that a

single Control Layer, implementing a centralized multiagent MDP/POMDP policy, can

be readily connected to multiple Action Layers, one for each agent in the system (see

Figure 7.10).

For the implementation of typical topological navigation actions (which are prevalent

in applications of decision theory to robotics), MDM includes Topological Tools, an

auxiliary ROS package (bundled with MDM). This package allows the user to easily

define states and observations over a map of the robot’s environment, such as those

obtained through ROS mapping utilities. It also allows the abstraction of that map as

a labeled graph, which in turn makes it possible to easily implement context-dependent

navigation actions (e.g. “Move Up”, “Move Down”) in an MDM Action Layer.

7.3.3 Deploying MDM: Considerations for Specialized Scenarios

The previous sections covered the internal organization of MDM and provided an

overview of its implementation in generic scenarios. The present section discusses how

MDM can be applied to scenarios with practical requirements which lie outside of the

more common deployment schemes which have been presented so far.

7.3.3.1 POMDPs with External Belief States

In some scenarios, the probability distribution over the space state of the system can be

handled indirectly, and continuously, by processes which can run independently of the

agent’s decision-making loop. This may be the case, for example, if a robot is running

a passive self-localization algorithm, which outputs a measure of uncertainty over the

robot’s estimated pose, and if the user wants to use that estimate, at run-time, as a

basis for the belief state of an associated POMDP.

In MDM, this execution scheme can be implemented by omitting the Observation

Layer of a POMDP agent, and instead passing the estimated belief state directly to its

Control Layer. For this purpose, POMDP Control Layers subscribe, by default, to a

topic where the belief state can be externally specified. Upon receiving a belief estimate,

the Control Layer can output its associated action, according to the provided policy file,

either asynchronously or at a fixed temporal rate. A representation of this deployment

scheme is shown in Figure 7.11.

There are, however, notable caveats to this approach:

161

7. A CASE STUDY IN MULTIAGENT SURVEILLANCE

Sensors Actuators

Robot 1

Predicate Manager

Action Layer 1

Navigation /
Motion control

Observation Layer

ROS
MDM

Control Layer

o
b
s
e
r
v
a
tio

n
s

a
c
ti
o
n
s

filtered sensor data

events

events

observations actions

action callbacks

action callbacks

control references

control referencesraw sensor data

filtered sensor data

raw sensor data

Sensor
Processing / Fusion

Action Layer 2

actions

action callbacks

Action Layer 3

actions

action callbacks

Navigation /
Motion control

action callbacks

control references

Navigation /
Motion control

action callbacks

control references

Sensors Actuators

Robot 2

control referencesraw sensor data

Sensors Actuators

Robot 3

control referencesraw sensor data

filtered sensor data

raw sensor data

Sensor
Processing / Fusion

filtered sensor data

raw sensor data

Sensor
Processing / Fusion

)

Figure 7.10: An MPOMDP implemented by a single MDM ensemble – in this case,
there are multiple Action Layers. Each one interprets the joint actions originating from
the centralized controller under the scope of a single agent. There is a single Observation
Layer which provides joint observations, and a single Predicate Manager instantiation
which fuses sensor data from all agents.

• The description of the state space used by the Control Layer must be known by

the belief state estimator. In particular, the notion of state that is assumed by

the module which is responsible for the belief estimation must be the same as

that which is modeled in the POMDP. If this is not the case, then the probability

distributions originating from the external estimator must first be projected onto

the state space of the POMDP, which is not trivial. The system abstraction must

be carried out within the belief state estimator;

• Algorithms which produce the belief state estimate directly from sensor data (e.g.

162

7.3 The Markov Decision-Making (MDM) Library

self-localization) typically operate synchronously, at the same rate as that source

data. This means that asynchronous, event-driven POMDP Control Layers are

not well-defined in this case;

• Planning is still assumed to be carried out prior to execution, and, during plan-

ning, the stochastic models of the POMDP are assumed to be an accurate repre-

sentation of the system dynamics. If the external belief updates do not match the

sequences of belief states predicted by the transition and observation models of

the POMDP, then the agent can behave unexpectedly at run-time, since its policy

was obtained using ill-defined models; if, on the other hand, the external belief

updates are consistent with those which are predicted by the POMDP model, then

a better option (in terms of the amount of work required for the deployment of

the POMDP) is to simply carry out those belief updates internally in the Control

Layer, as per the deployment scheme described originally in Section 7.3.2.2.

7.3.3.2 Multiagent Decision-Making with Managed Communication

For multiagent systems, the standard operation of ROS assumes that a single ROS

Master1 mediates the connection between the all of the nodes that are distributed

across a network. After two nodes are connected, communication between them is peer-

to-peer, and managed transparently by ROS, without providing the user the possibility

of using custom communication protocols (for example, to limit the amount of network

traffic). Therefore, in its default deployment scheme, the ROS Master behaves as a

single point of failure for the distributed system, and more advanced communication

protocols such as the one proposed in (Reis et al., 2013) cannot be used.

A more robust multiagent deployment scheme combines multiple ROS Masters, with

managed communication between them (see Figure 7.12). Typically, each mobile robot

in a multi-robot team will operate its own ROS Master. Topics which are meant to be

shared between Masters through managed communication must be explicitly selected

and configured by the user.

For MDM centralized multiagent controllers, which completely abstract inter-agent

communication, using a multimaster deployment scheme simply means that a complete

1http://www.ros.org/wiki/Master

163

7. A CASE STUDY IN MULTIAGENT SURVEILLANCE

Sensors Actuators

Robot

Action Layer

Navigation /
Motion control

MDM
Control Layer

b
elief

sta
te

a
ct
io
n
s

actions

action callbacks

action callbacks

control references

control referencesraw sensor data

filtered sensor data

raw sensor data

Sensor
Processing / Fusion

Belief State Estimator

filtered sensor data

belief state

state space description

st
a
te

sp
a
ce

d
es
cr
ip
ti
o
n

ROS

Figure 7.11: A deployment scheme for a POMDP-based agent where belief updates are
carried out outside of MDM. The node that is responsible for the estimation of the belief
state must have the same state space description as the Control Layer. The MDM ensemble
is driven at the same rate as the belief state estimator, so it is implicitly synchronous with
sensorial data.

copy of its respective MDM ensemble must be running locally to each Master. Commu-

nication should be managed before the System Abstraction Layer, ideally by sharing

Predicate Manager topics, so that each agent can maintain a coherent view of the sys-

tem state, or of the team’s observations. Note that, since each agent has local access to

the joint policy, it can execute its own actions when given the joint state or observation.

For MDM controllers with explicit communication policies, communication should

be managed at the output of the System Abstraction Layer, possibly with feedback

from the Control Layer. The rationale in such a case is that states or observations

are local to each agent (as opposed to being implicitly shared), and may not contain

enough information for an agent to unambiguously determine its own action at the

Control Layer. Consequently, the Control Layer should also be capable of fusing system

information arriving from different sources.

164

7
.3

T
h
e

M
a
r
k
o
v

D
ec

isio
n
-M

a
k
in

g
(M

D
M

)
L
ib

ra
ry

Sensors Actuators

Robot 2

Predicate Manager

Action Layer

Navigation /
Motion control

Observation Layer

ROS Master 2

MDM
Control Layer

o
b
serva

tio
n
s

a
ct
io
n
s

filtered sensor data

events

events

observations actions

action callbacks

action callbacks

control references

control referencesraw sensor data

filtered sensor data

raw sensor data

Sensor
Processing / Fusion

ex
tern

a
l

u
p
d
a
tes

Multimaster
Comms. Manager

SensorsActuators

Robot 1

Predicate Manager

Action Layer

Navigation /
Motion control

Observation Layer

ROS Master 1

MDM
Control Layer

o
b
serva
tio
n
s

a
ct
io
n
s

filtered sensor data

events

events

observationsactions

action callbacks

action callbacks

control references

control references raw sensor data

filtered sensor data

raw sensor data

Sensor
Processing / Fusion

ex
te
rn
a
l

u
p
d
a
te
s

Multimaster
Comms. Manager

Figure 7.12: A multiagent MDM deployment scheme with multiple ROS Masters, and managed multimaster communication.
Predicate Manager topics are explicitly shared between ROS Masters, so each Observation Layer still outputs joint observations.
This is the approach which was taken in the MAIS+S project, using SocRob Multicast (Reis et al., 2013) to manage the multimaster
communication.

165

7. A CASE STUDY IN MULTIAGENT SURVEILLANCE

0 200 400 600 800 1000

Patrol

Assist Person

Surveillance Incident Response

Emergency Response

Ca
m
er
a
Fa
ilu
re

As
sis
ta
nc
e
Re
qu
es
t

Pe
rs
on
As
sis
ta
nc
e
Re
so
lv
ed

Em
er
ge
nc
ytime (s)

Actions
1 2 3 4

Robot 1 Actions
Robot 2 Actions

0

Figure 7.13: A timeline of actions and events in a trial run of our autonomous surveillance
system. The steps of the decision-making process are identified at the top, and match the
robot paths shown in Figure 7.14. The event detections, shown under the timeline, are
experienced by both robots with negligible delay.

7.4 Results

The main results of our multi-robot experiments can be seen, in video format, at

http://users.isr.ist.utl.pt/~jmessias/PhDthesis. Our results video also pro-

vides further description of our experimental setup for multiagent surveillance at ISR-

Lisbon. In the remainder of this section, we will provide an outline of these results.

In Figures 7.13 and 7.14, we show the timeline of a trial execution of our Event-

Driven MPOMDP policy. In this trial, the detection of a camera failure prompts one

the robots to inspect that position, and replace the failed camera by assuming a station-

ary position while covering its field-of-view. This corresponds to action “Surveillance

Incident Response” taken at step 1. Meanwhile, the other robot continues to patrol

the environment, in the absence of any other events; In step 2, an assistance request

is detected. Since one of the robots is already busy replacing the failed camera, the

remaining agent (robot 1) decides to assist, and guides that person to a desired destina-

tion. Afterwards, the robot goes back to patrolling the environment until, at step 4, a

fire detection is simulated, which causes both robots to abandon their active tasks and

address the emergency immediately. The total runtime of this trial (19m 18s) is limited

only by the battery lifetimes of both robots. We used infinite-horizon policies, with a

discount rate of γ = 0.95, since there isn’t a fixed limit to the number of steps that

166

http://users.isr.ist.utl.pt/~jmessias/PhDthesis

7.4 Results

x (m)
-15 -10 -5 0 5 10

-10

-5

0

5

10

15 Robot 1 Pose

Robot 2 Pose

Step 1

y
(m

)

Multiagent

x (m)
-15 -10 -5 0 5 10

-10

-5

0

5

10

15 Robot 1 Pose

Robot 2 Pose

Step 2

y
(m

)

x (m)
-15 -10 -5 0 5 10

-10

-5

0

5

10

15 Robot 1 Pose

Robot 2 Pose

Step 3

y
(m

)

x (m)

y
(m

)

-15 -10 -5 0 5 10

-10

-5

0

5

10

15 Robot 1 Pose

Robot 2 Pose

Step 4

Figure 7.14: The paths traversed by the robots during a trial run, overlaid on the floor-
plan of their environment at ISR. Each snapshot represents a different decision step, identi-
fied at the top, which matches the timeline of actions and events shown in Figure 7.13. Step
0 is omitted. In each step, the initial position of each robot is represented by a diamond
marker, and the final position by a circular marker. The position where each event was
detected at the beginning of each step is also shown as a star-shaped marker. Step 1:
Robot 1 patrols, while robot 2 converges to the position of a failed camera; Step 2: Robot
1 assists a person in need of guidance, while robot 2 remains stationary; Step 3: Robot 1
continues to patrol; Step 4: Both robots converge towards the position of a simulated fire.

167

7. A CASE STUDY IN MULTIAGENT SURVEILLANCE

can be taken during operation, and since our run-time belief update (Eq. (6.16)) is,

at this time, only applicable to infinite horizon policies, due to the inability to observe

how many false negative events occur between each two decisions. In practice, how-

ever, a low number of decisions is taken in each run – in this example, only 4 decisions

steps are taken. This very low frequency of decision-making steps, while maintaining

near-instantaneous reactivity, can only be achieved, in the domain of MDP theory, by

asynchronous frameworks such as ours, or related SMDP-based methodologies such as

the Options framework (Sutton et al., 1999). In contrast to the latter, our framework

has the added advantage of allowing decision steps with any real-valued temporal du-

ration, and not just multiples of a fundamental time-step.

Since robots only communicate at event detection instants, an event-driven approach

also keeps communication between agents to a strictly necessary minimum. Implicitly,

4 communication episodes were necessary for the coordination of the robot team in this

trial run, each of them carrying only an integer value (the observation symbol) and the

detection timestamp.

The ability of our robots to patrol their environment cooperatively, searching for

events, is showcased in Figure 7.15, over a trial run of 2m 35s. Recall that the patrol

task is also an (Event-Driven) POMDP, so their behavior is not hardcoded. Each robot

covers only part of the state space (shown in Figure 7.15b) to maximize search efficiency.

7.4.1 Realistic Simulations

We note that the experimental conditions in this real-world environment cannot be held

constant, which, coupled with limited battery lifetime of our robots, does not allow for

a statistically significant amount of real robot data to be collected, for a quantitative

evaluation of the performance of our multi-robot system. Therefore, we have used a

ROS-native simulation environment (Stage) as a platform for a systematic, and real-

istic, evaluation of the performance of our Event-Driven MPOMDP. This simulation

considers the physical properties of both robots, and runs the same code for navigation

and decision-making as the real multi-robot system. In Figure 7.16, we show a set of

results that was obtained by simulating the arrival of visitors to ISR, and the consequent

response by the robot team to assist those visitors, in the presence of uncertainty re-

garding the detection of assistance requests. Visitors always enter the environment and

request assistance in same position, but only one visitor can be present at a time. Upon

168

7.4 Results

x (m)

y
(m

)

-15 -10 -5 0 5 10

-10

-5

0

5

10

15 Robot 1 Pose

Robot 2 Pose

(a) Robot paths during cooperative patrol (b) The underlying partition into
states

Figure 7.15: The behavior of our robot team when patrolling their environment coop-
eratively. (a) The paths covered by the robots after 2m 35s of execution. In this time,
the robots covered all the relevant areas of their floor. A new round would trigger in the
absence of other events. (b) The state space description for the patrol task consisted of a
topological map where each node abstracts a relevant (reachable) area of the environment.
Each of these nodes is here represented in a different color. Some rooms are out of bounds
(grey areas) by design.

arriving, the visitor waits for a maximum of 3 minutes. A fixed camera overlooking

the arrival position is expected to detect an event eassistance, signaling that the visitor

is waiting for guidance. If none of the robots show up during that period, the visitor

leaves, unattended, and a new arrival time is sampled from an exponential distribution

with λ = 1/120.

In Figure 7.16a, we show the frequency of successfully attended visitors, as a function

of the probability of false negatives in their detection, Pr(of | eassistance). For each data

point, we ran the realistic simulation for 4 hours (simulation time), to an average sample

size of 45 arrivals. If no event detections are received for a sufficiently long time (160s),

a “timeout” event triggers instead, forcing a new decision episode to take place, and

belief update as per Eq. (6.16). This means that the likelihood that a visitor is waiting

increases with time, even if eassistance is completely unobservable (see Figure 7.16c). If

this likelihood is high, the robots will still trigger their “assistance response” behavior,

169

7. A CASE STUDY IN MULTIAGENT SURVEILLANCE

and search for visitors at their arrival position. Therefore, the Event-Driven MPOMDP

policy provides a higher rate of successfully attended visitors than a fully-observable

alternative, particularly (and as expected) as the probability of false negative detections

increases. In reality, the probability of false negative detections of an assistance request

by our surveillance cameras is 0.5, so this shows a clear advantage of a partially-

observable formulation to this problem. In Figure 7.16b, we also show, as a box-plot,

the waiting times of the visitors that were successfully attended, and we can see that

there is no clear dependency between the rate of false negatives and (successful) service

time.

0.0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1

Assistance Request False Negative Probability, Pr(f | eassistance)

Su
cc

es
sf

ul
 A

ss
is

ta
nc

e
Ep

is
od

es
,

R
el

at
iv

e
Fr

eq
ue

nc
y

Event!Driven MPOMDP
MMDP Baseline

(a) Assisted visitors vs.
Pr(of | eassistance)

0

50

100

150

0.0 0.2 0.4 0.6 0.8 1.0
Assistance Request False Negative Probability, Pr(f | eassistance)

W
ai

tin
g

Ti
m

e
fo

r
Su

cc
es

sf
ul

 E
pi

so
de

s,
 s

ec
.

(b) Waiting times for attended visitors

0 500 1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

time, sec.

As
si

st
an

ce
 R

eq
eu

es
t

Pr
ob

ab
ilit

y

︸

(c) Run-time belief propagation with Pr(of | eassistance) = 1

Figure 7.16: Results for a realistically simulated “visitor assistance” experiment. (a) The
relative frequency of successfully attended visitors versus the probability of not detecting
their arrival. The Event-Driven MPOMDP provides higher solution quality than the fully
observable, theoretical baseline. (b) The waiting times of successfully attended visitors,
which are seemingly uncorrelated with the false negative detection probability. (c) The
likelihood that a person is waiting for assistance, in a sample run, and for 1 hour of
execution, when arrivals are fully unobservable (Pr(of | eassistance) = 1). This was obtained
by marginalizing the result of Eq (6.16). The instants in which one of the robots decided
to search for visitors are marked.

170

7.5 Summary

7.5 Summary

In this chapter, we have supported the applicability of our Event-Driven MPOMDP

methods to real multi-robot systems, by presenting the results of its implementation in

a full scale, autonomous multiagent surveillance framework.

In doing so, we have described the software components that are essential to our

implementation, and which include original contributions of this thesis work. The MDM

Library, which is the most significant of these original software contributions, aims at

facilitating the deployment of general DT methods to teams of robots.

Our multi-robot system, operating at ISR-Lisbon, was shown to cooperate by using

an Event-Driven MPOMDP policy, with a low (average) frequency of decisions. Our

approach requires minimal communication, while retaining solution quality and reac-

tivity. Through realistic simulation, we saw that our event-driven system is robust to

missed event detections.

171

7. A CASE STUDY IN MULTIAGENT SURVEILLANCE

172

Chapter 8

Conclusions

To conclude this thesis, we will review the main contributions of this work, and discuss

potential directions for future research.

8.1 Contributions

In this work, we have studied the problem of decision-making under uncertainty for

teams of real robots. We will now overview our most significant contributions towards

that end:

Examining the limitations of Decision Theory, from the point-of-view

of Robotics. At their core, DT methods are grounded on abstract, mathematical

frameworks. Although they elegantly address the problems of planning and learning for

autonomous agents, these methods are rarely directly applicable to scenarios involving

physical environments and agents. The problems involved in the integration of symbolic

DT methods, in systems with physical agents, are often overlooked, or approached in an

ad-hoc manner. This has been the main motivation for the development of this thesis

work. In Chapter 3, we have provided comprehensive, step-by-step guidelines for the

process of designing and implementing a DT control policy for teams of robots. In doing

so, we have also identified the most significant obstacles to this process.

Developing methods to manage communication in MPOMDPs. The com-

plexity of DT methodologies that assume costly or unavailable communication limits

their applicability to real multiagent systems. A popular approach to circumvent this

issue is to try to separate the problems of planning over actions, and planning over

173

8. CONCLUSIONS

communication instances. That is, communication is assumed to be free during plan-

ning, and minimized a posteriori, if needed. Previously to this work, the only avail-

able methodologies to manage communication in MPOMDPs operated exclusively at

run-time (Roth et al., 2005a). In Chapter 4, we have developed methods to obtain

communication policies for MPOMDPs prior to execution. We have shown that our

methods allow MPOMDP agents to act, given a joint value function, but based only

on locally available information, when possible; and also allow agents to determine

what additional information is necessary, when needed. We saw that, when using our

methods to manage communication in scenarios with sparse interactions, the number of

communication episodes is significantly reduced, and the run-time performance of the

multiagent team is preserved.

Analyzing and implementing decision-making for teams of robots as an

event-driven process. One of the most significant limitation of common multia-

gent DT methods is that they assume synchronized perception and action loops among

all agents. In a team of (possibly heterogeneous) physical agents, synchronization is

undesirable, since it induces loss of reactivity, and / or increases the horizon of the

decision-making problem and communication frequency. In Chapter 5, we have ex-

plored the application of the GSMDP framework to a team of robots, by interpreting

multiagent decision-making as an event-driven, possibly non-Markovian process. We

have highlighted the limitations of the GSMDP framework, namely: that it assumes

full observability over states and events; and that its approximation as a fully Marko-

vian CTMDP is not always possible for robotics problems, due to the prevalence of

events that follow temporal distributions that are not amenable to Phase-Type approx-

imations. Even so, we have empirically demonstrated that event-driven DT policies are

not only feasible for practical, cooperative robotics applications, but that they outper-

form synchronous MDP-based alternatives. This constitutes, to our knowledge, the first

reported application of the GSMDP framework to a real multi-robot system.

Introducing frameworks for multiagent decision-making driven by par-

tially observable events. In Chapter 6, we have taken a novel interpretation of

MPOMDP dynamics, that considers the asynchronous and uncertain perception of the

environment by the multiagent team. For fully Markovian systems, this interpretation

was embodied in our Event-Driven MPOMDP framework. We have studied the impli-

cations of observing events, as opposed to states, on decision-making. In particular, we

174

8.2 Future Work

have shown how, in systems driven by partially observable events, with free communi-

cation, the total number of observations to be considered grows linearly in the number

of agents, as opposed to exponentially as is the case in synchronous MPOMDPs. This

allows Event-Driven MPOMDP models to scale to larger domains than synchronous

MPOMDP counterparts. Moreover, the Event-Driven MPOMDP framework explicitly

considers the effects of false positive and false negative event detections. We have proved

that such a model still retains the essential properties of a standard POMDP that allow

their solution to be computationally efficient, and we have extended a standard POMDP

point based-solver to operate in the event-driven setting. Finally, we have introduced

an extended version of our framework for Semi-Markovian domains. The Event-Driven

MPOSMDP framework allows the methodologies of fully observable GSMDPs to be

applied to domains with partially observable events. Our event-driven frameworks were

developed, from their onset, with the explicit purpose of providing suitable models for

decision-making in teams of robots.

Supporting the application of DT methods to general Robotics domains.

In Chapter 7, we described the application of our Event-Driven MPOMDP framework

to a multi-robot, networked surveillance system. This implementation has not only

provided evidence of the applicability of our methodologies to real teams of robots, but

it has also resulted in the development of software tools with the purpose of aiding the

deployment of DT frameworks and methods to multi-robot systems.

In Table 8.1, we organize the most important topics of the contributions of this work,

along with the relevant properties of the case studies in which they were evaluated,

and the respective publications in which these contributions were introduced, when

applicable.

8.2 Future Work

Perhaps the most important omission in this thesis has been regarding the application

of reinforcement learning methods to obtain DT policies directly from the interaction

of robotic agents with their environment. One of the issues that was identified in

Chapter 3, pertaining to the implementation of model-based MDP frameworks in real

environments, was their reliance on the knowledge of the stochastic model parameters,

175

8. CONCLUSIONS

Chapter Contributions Case-Study Properties Publications

3
Examined the
limitations of DT for
multi-robot systems

Discrete MPOMDP

—
- Partially Observable

- Fixed Time-Step

(Unrestricted Comms.)

4
A method to determine
offline comm. policies
for MPOMDPs

Discrete MPOMDP

(Messias et al., 2011)
- Partially Observable

- Fixed Time-Step

(Minimal Comms.)

5
Applied GSMDPs to

real robot team

GSMDP / MMDPs

(Messias et al., 2013a)- Fully Observable

- Asynchronous

6
Extended Event-Driven
paradigm to Partially
Observable settings

Event-Driven MPOMDP
(Messias et al., 2013b)
(Messias et al., 2013c)

- Partially Observable

- Asynchronous

7

Real-world
Event-Driven
MPOMDP application
& software

Event-Driven MPOMDP

—
- Partially Observable

- Asynchronous

Table 8.1: A summary of the contributions of this work, their respective chapters, and
resulting international publications.

and their inflexibility with respect to changes in those parameters. Reinforcement learn-

ing, and especially off-policy learning methods, could be used to address that problem,

allowing efficient decision-making in complex scenarios, in which explicitly modeling the

dependencies between all of the involved variables is not feasible. The main reason for

the omission of the application of reinforcement learning methods in this work is that we

have attempted to remain abstracted from particular solution methods for the DT mod-

els that we have considered. Rather, we have focused on the structure and properties of

the models themselves. Most of the advances presented in this work have followed di-

rectly from questioning the assumptions of DT frameworks, and whether they are valid

for problems involving robots or other physical agents. Our conjecture was that, once a

suitable framework was defined that embodied the ideal characteristics for multi-robot

decision-making (such as the Event-Driven PO(S)MDP framework(s)), then, appropri-

ate methods for planning and/or learning could be defined over that framework. One of

our most immediate directions for future research is, therefore, the development of rein-

forcement learning methodologies for the modeling frameworks that we have proposed

176

8.2 Future Work

in this work. We are aware, however, that multiagent reinforcement learning is still

an open problem, particularly for partially observable environments, where established

solutions that can be scaled to realistically-sized domains are still lacking.

Regarding our proposed Event-Driven MPOSMDP framework, and as we have noted

in Section 6.5, we have still to collect empirical results, since we have not yet defined

an appropriate belief update mechanism that can be applied, at run-time, by an agent

controlled by an Event-Driven MPOSMDP policy. This constitutes a short-term step

to be taken in our future research.

Another topic that can be explored is the integration of the communication reduction

methods presented in Chapter 4, with the event-driven frameworks that were studied

and proposed in Chapters 5 and 6. The former approach was developed specifically for

synchronous decision-making, as we had not yet considered the alternative of having

event-driven dynamics; as such, there are important obstacles to this integration. The

most prominent of these is that, as we saw in Section 6.2.5, asynchronous models cannot

be strictly described by Dynamic Bayesian Networks without introducing new state

factor variables that indirectly correlate all others. Therefore, belief state propagation

cannot be decentralized using, for example, the Factored Frontier algorithm, which

means that joint communication is always necessary to update belief states. However,

it remains to be seen whether any alternative mechanism, that does not require the

propagation of factored belief states, could still exploit the structure of a joint value

function to avoid extraneous communication.

As we have noted in Chapter 5, GSMDPs are difficult to solve in their natural

form: the possibly non-Markovian state transitions contemplated by these models im-

ply that Dynamic Programming methods cannot be directly applied. The solution that

we have studied in Chapter 5, of approximating GSMDPs as SMDPs, by replacing

non-Markovian temporal distributions with fully-Markovian Phase-Type distributions

(proposed in (Younes and Simmons, 2004)), is not always applicable, as we had noted,

due to the fact that many events in Robotics applications are governed by distribu-

tions with low coefficient of variation, which require unreasonably many phases for

an approximation. As future research, we will investigate the use of Bilateral Phase-

Type distributions (Ahn and Ramaswami, 2005), which can potentially approximate a

broader class of non-Markovian events. Furthermore, we will also study the applicabil-

177

8. CONCLUSIONS

ity, to teams of robots, of alternative algorithms that can operate directly on GSMDPs

such as that of (Rachelson et al., 2008).

178

Appendix A

Supporting Material

In this appendix, we present auxiliary material regarding the definition of the states,

actions and observations of the various DT models that were used as the case-studies

of this thesis. The problem files describing all of the models in this Appendix can be

found at http://users.isr.ist.utl.pt/~jmessias/PhDthesis. Here, we omit the

stochastic model parametrizations (transition, observation and reward functions), due

to their size, although we encourage the reader to inspect the model definition at the

online repository.

A.1 Robotic Soccer Case-Study

Here, we describe the state, action and observation spaces for our Robotic Soccer case-

study, which was cast as an MPOMDP in Chapter 3, and as a GSMDP and comparable

MMDPs in Chapter 5.

A.1.1 Partially Observable Formulation (Chapter 3)

Figure A.1 represents the factored state space of the Robotic Soccer MPOMDP. Its

action and observation spaces are shown in Figure A.2.

179

http://users.isr.ist.utl.pt/~jmessias/PhDthesis

A. SUPPORTING MATERIAL

Role Assignment: X1 =

{

Attacker – Supporter
Supporter – Attacker

Supporter State: X2 =

⎧

⎨

⎩

Ready to Receive Pass
Blocked by Obstacles
Not Ready to Receive Pass

Attacker State: X3 =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Shooting Opportunity
Near Goal – Cleared to Move
Near Goal – Blocked by Obstacles
Opponent’s Half – Cleared to Move
Opponent’s Half – Blocked by Obstacles
Own Half – Cleared to Move
Own Half – Blocked by Obstacles
Without the Ball

Figure A.1: State space description for the MPOMDP instantiation of our robotic soccer
case study.

A1 = A2 =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

Dribble
Shoot
Pass

Recover
PrepareForPass
FindClearance

O1 = O2 =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Ready
HasBallNearGoal
HasBallOppHalf
HasBallOwnHalf

Blocked
Closest

Second Closest

Figure A.2: Action space description, left, and observation space description, right, for
the MPOMDP instantiation of our robotic soccer case study.

A.1.2 Fully Observable Formulation (Chapter 5)

The state space for our Robotic Soccer GSMDP is shown in Figure A.3. The respective

action and observation spaces are represented in Figure A.4. Note that the synchronous

MMDPs that were used as a baseline for our comparative results have the same action

and observation spaces, and its state space contains the same state factors X{1,2,3,4}

(that is, the “Phase Variable” state factor is excluded).

180

A.2 Synchronous MPOMDP Case-Studies (Chapter 4)

Role Assignment: X1 =

{

Attacker – Supporter
Supporter – Attacker

Supporter State: X2 =

⎧

⎨

⎩

Ready to Receive Pass
Blocked by Obstacles
Not Ready to Receive Pass

Attacker State: X3 =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Shooting Opportunity
Near Goal – Cleared to Move
Near Goal – Blocked by Obstacles
Far From Goal – Cleared to Move
Far From Goal – Blocked by Obstacles
Without the Ball
Not Seeing the Ball

Phase Variable: X4 =

⎧

⎨

⎩

Phase 0
Phase 1
Phase 2

Figure A.3: State space description for the GSMDP instantiation of our robotic soccer
case study.

A1 = A2 =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

Dribble
Shoot
Pass

Recover
PrepareForPass
FindClearance

Figure A.4: Action space description for the GSMDP and MMDP instantiations of our
robotic soccer case study.

A.2 Synchronous MPOMDP Case-Studies (Chapter 4)

In this section, we describe the state, action and observation spaces for the simulated

decision-making problems that were used as case-studies for our communication reduc-

tion methodologies.

181

A. SUPPORTING MATERIAL

Left Room: XL =

{

L1
L2

Right Room: XR =

{

R1
R2

Figure A.5: State space description for the Relay-Small MPOMDP.

A1 = A2 =

⎧

⎨

⎩

Shuffle
Sense

Exchange
O1 = O2 =

⎧

⎨

⎩

Door
NoDoor

Idle

Figure A.6: Action space description, left, and observation space description, right, for
the Relay-Small MPOMDP.

Top Room: X1 =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

L1
CL1
CR1
R1

Agent 1 Package: X2 =

{

NoPackage
Package

Bottom Room: X3 =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

L2
CL2
CR2
R2

Agent 2 Package: X4 =

{

NoPackage
Package

Figure A.7: State space description for the Relay-Large MPOMDP.

A1 = A2 =

⎧

⎨

⎩

East
West

Interact
O1 = O2 =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

Corner - NoPackage
Corridor - NoPackage
Corridor - Package
Corner - Package

Figure A.8: Action space description, left, and observation space description, right, for
the Relay-Large MPOMDP.

182

A.3 Multiagent Surveillance Case-Study (Chapter 7)

X1 = X2 = {1, . . . , 7}

A1 = A2 =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

North
East
South
West

O1 = O2 =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

Left
Right
Both

Nothing

Figure A.9: State, action, and observation space description for the OneDoor MPOMDP.

A.3 Multiagent Surveillance Case-Study (Chapter 7)

In this section, we describe the decision-making models that were used in our multiagent

surveillance case-study.

A.3.1 Event-Driven (M)POMDP Descriptions

Here, the state, action and observation spaces for the Event-Driven (M)POMDPs that

were referred in Section 7.2.2 are described.

A.3.1.1 Coordinative (Top-Level) Event-Driven MPOMDP

The graphical model for the Coordinative Event-Driven MPOMDP that was used to

allocate tasks in our multi-robot team is shown in Figure A.10. Note that this graphical

model was designed according to the method described in Section 6.2.5, that is, by

introducing an additional state variable (the “Event Prior” variable) that models the

mutual exclusivity of every other variable in the state description. The actual factored

state space description, excluding this virtual variable (since it can be marginalized), is

represented in Figure A.11. Action and observation spaces are described in Figure A.12.

183

A. SUPPORTING MATERIAL

ARn ARn+1

SIn SIn+1

EMn EMn+1

Dn Dn+1

On On+1

En+1 on+1

a1,n

a2,n

Figure A.10: The 2-DBN for our Coordinative Event-Driven MPOMDP, which assigns
tasks to each robot. Outgoing connections from the same node at time n are represented
with the same color, for better visibility. The represented state factor variables are: “As-
sistance Requested” (AR’); “Surveillance Incident” (SI); “Emergency” (EM); “Duke Status”
(D); “Orwell Status” (O); “Event Prior” (E).

Assistance Requested: X1 =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

No
Duke Assisting
Orwell Assisting
Yes

Surveillance Incident: X2 =

{

No
Yes

Emergency: X3 =

{

No
Yes

Duke Status: X4 =

⎧

⎨

⎩

Disabled
Idle
Busy

Orwell Status: X5 =

⎧

⎨

⎩

Disabled
Idle
Busy

Figure A.11: State space description for our Coordinative Event-Driven MPOMDP.

184

A.3 Multiagent Surveillance Case-Study (Chapter 7)

A1 = A2 =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

Patrol
Assist Person

Surveillance Incident Resp.
Emergency Response

O =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

False Negative
Timeout

Waving - Low Confidence
Waving - High Confidence

Surveillance Incident
Emergency

Person Assistance Resolved
Surveillance Incident Resolved

Emergency Resolved
Duke Task Cancelled
Orwell Task Cancelled

Duke On / Off
Orwell On / Off

Figure A.12: Action space description, left, and observation space description, right, for
the Coordinative Event-Driven MPOMDP.

A.3.1.2 Patrol Task Event-Driven POMDP

The “Patrol” task Event-Driven POMDP was implemented as the graphical model shown

in A.13a. Here, we did not use the method of Section 6.2.5, since the state variables are

already mutually exclusive when conditioned on the actions of the agent. That is,

for the “Capture Target” and “Spawn Target” actions, only the “Target Position” variable

will change. For all other actions, only the “Robot Position” variable will change. In

Figure A.14 we show the factored state description for this problem, and in Figure A.15

we describe its action and observation spaces.

TPn

RPn

TPn+1

RPn+1

an

on+1

(a) Patrol 2-DBN

Mobile Robotics Lab

Soccer Field

Coffee Room

Corridor-West

Elevator Hallway

Corridor-South

(b) State Space Labels

Figure A.13: (a): The 2-DBN for the “Patrol” Event-Driven POMDP. The represented
state factor variables are: “Robot Position” (RP); “Target Position” (TP). (b): The labels
associated to our topological abstraction of the area of operation.

185

A. SUPPORTING MATERIAL

Robot Position: X1 =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

Elevator Hallway
Corridor-West
Coffee Room
Corridor-South
Mobile Robotics Lab
Soccer Field

Target Position: X2 =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

No Target
Elevator Hallway
Corridor-West
Coffee Room
Corridor-South
Mobile Robotics Lab
Soccer Field

Figure A.14: State space description for our “Patrol” task Event-Driven POMDP. See
Figure A.13b for the semantic grounding of these labels.

A =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

Move Down
Move Right
Move Up
Move Left

Capture Target
Spawn Target

O =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Elevator Hallway Clear
Corridor-West Clear
Coffee Room Clear

Corridor-South Clear
Mobile Robotics Lab Clear

Soccer Field Clear
Found Target

Figure A.15: Action space description, left, and observation space description, right, for
the “Patrol” task Event-Driven POMDP.

A.3.2 Finite State Machines

In this section, we present the Finite State Machines (FSMs) that were used for the “As-

sistance Response”, “Surveillance Incident Response” and “Emergency Response” tasks.

In these graphs, nodes represent states of the FSM and labeled arrows represent transi-

tions following the respective event. We note that, since these FSMs were implemented

with the SMACH ROS package, some of the terminology over events is specific to that

software: “preempted” events imply that the execution of a given procedure was overrid-

den by another call; “aborted / cancelled” events signify that the robot failed to complete

the procedure. All of the presented FSMs are initialized in a “Monitoring” state, where

they remain until they receive an “acting” service request, which corresponds to the

186

A.3 Multiagent Surveillance Case-Study (Chapter 7)

Monitor Active Incidents

Move to Incident

preempted

Signal Completion

Interact

Replace Camera

succeeded

completed

task completed

preempted / abortedpreempted /
aborted /
succeeded

acting,
trespassing
incident

cancelled /
preempted

acting,
camera failure

Figure A.17: The FSM for the “Surveillance Incident Response” task.

selection of that action by the coordinative Event-Driven MPOMDP.

In Figure A.16, we show the FSM for the “Emergency Response” task. The robot

is expected to move to the position of the latest detected emergency, and wait for the

other robot for a fixed amount of time.

Monitor Active Emergencies

Move to Emergency

Wait for Partner

preempted

Signal Completion

acting

succeeded

end task

task complete

preempted /
aborted

Figure A.16: The FSM for the “Emergency Response” task.

The “Surveillance Incident Response” FSM is shown in Figure A.17. Depending

on the detected incident, the robot can either replace a failed camera or move to the

position of a person trespassing in a restricted area. In the latter case, it should interact

with that person to conclude the task.

Finally, we show the “Assistance Response” FSM is shown in Figure A.18. When

187

A. SUPPORTING MATERIAL

a “assistance request” event is detected, the robot should first confirm that it is the

closest agent that is attempting to respond to that event. If so, it should move to

the position of the requesting person and interact, by offering guidance to a desired

location. Robots can also decide to offer assistance to visitors without having received

an assistance request event (which corresponds to the “acting, no detection” transition).

Monitor Active Assistance Requests Move to Elevator Hallway /

Announce Assistance to Visitors

Move to Assistance Request

Confirm Closest Agent

Interact

Guide to Destination

Signal Cancellation Signal Completion

acting, with detection

closest

aborted / preempted

acting, no detection

task cancelled

person found

cancelled /
no person found

aborted / preempted

not closest

aborted

succeeded

preempted

assistance complete /
preempted

guidance requested

succeeded

task complete

Figure A.18: The FSM for the “Assistance Response” task.

188

Appendix B

Implementation Examples for the

MDM Library

In this appendix, we present implementation examples for the Markov Decision-Making

(MDM) Library (see Section 7.3). In particular, we show how to implement the State,

Observation, Control, and Action Layers that can be used to create an MDM ensemble

in order to deploy a given DT control strategy.

These C++ examples assume that the reader is familiar with the implementation of

simple ROS nodes in that programming language, and with basic ROS concepts and

terminology (namely topics, services, parameters and namespaces).

B.1 Implementing a State Layer

The following example demonstrates how a State Layer ROS node can be implemented

in C++, for a small scenario in the context of the surveillance network described in

Chapter 7. There are two state factors in the problem: the first is an integer-valued

state factor describing the topological location of a robot in its environment; the second

is a binary variable representing whether or not there is a person waiting for assistance.

189

B. IMPLEMENTATION EXAMPLES FOR THE MDM LIBRARY

#include <ros / ros . h>

#include <markov_decision_making/ StateLayer . h>

using namespace ro s ;

using namespace markov_decision_making ;

int main (int argc , char∗∗ argv)

{

i n i t (argc , argv , " state_layer_example ") ;

StateLayer robot_mls ;

robot_mls . addStateFactor (StateDep ()

. add (" I s InElevatorHal lway ")

. add (" IsInWestCorr idor ")

. add (" I s InSouthCorr idor ")

. add (" IsInCoffeeRoom")

. add ("IsInLRM")

. add (" I s I nSo c c e rF i e l d ")) ;

robot_mls . addStateFactor (StateDep ()

. add ("PersonIsWait ing ")) ;

sp in () ;

return 0 ;

}

We will now analyze the code (besides the bare minimum ROS node initialization /

support):

StateLayer robot_mls ;

This declares our State Layer, which will be silently connecting to Predicate Manager

topics (~/predicate_map and ~/predicate_updates), but will not be spinning its own

thread. Note that the spin() function is still handled externally, and it is only called

after state factor variables are declared. The State Layer will be publishing its state

information to the ~/state topic.

190

B.2 Implementing an Observation Layer

robot_mls . addStateFactor (StateDep ()

. add (" I s InElevatorHal lway ")

. add (" IsInWestCorr idor ")

. add (" I s InSouthCorr idor ")

. add (" IsInCoffeeRoom")

. add ("IsInLRM")

. add (" I s I nSo c c e rF i e l d ")) ;

This adds an integer state factor to the State Layer, and binds its value to a set of

mutually exclusive predicates which describe whether or not the robot is in a particular

topological position. State factors must be added in the order that the user wants them

to appear in the factored state description - that is, this code snippet will be considered

as state factor X1. Likewise, predicates are added as dependencies in the order that they

should be assigned to state factor values – "IsInElevatorHallway" will correspond to

the first value of this state factor. The StateDep() class is used to easily register a chain

of predicates as dependencies. Note that, following the C++ standard and to maintain

consistency with the internal operation of MDM, all indexes start at 0. This means

that the domain of this state factor is X1 = {0, . . . , 5}.

robot_mls . addStateFactor (StateDep ()

. add ("PersonIsWait ing ")) ;

This binds the second state factor to the predicate "PersonIsWaiting", which

means that x2 = 1 iff the predicate is true.

sp in () ;

This spins this node’s thread in a loop, during which the State Layer will be running

and listening for predicate updates. Currently, the state description cannot be changed

after the spin() function is called. If the state description contained in a State Layer

does not match what is expected by an associated Control Layer, a warning will be

thrown.

B.2 Implementing an Observation Layer

An example of the implementation of a simple Observation Layer in ROS will now be

analyzed. In this example, there is a single observation factor, defined over events which

are associated to a robot’s task of patrolling its environment for fires.

191

B. IMPLEMENTATION EXAMPLES FOR THE MDM LIBRARY

#include <markov_decision_making/ObservationLayer . h>

using namespace ro s ;

using namespace markov_decision_making ;

int main (int argc , char∗∗ argv)

{

i n i t (argc , argv , " observation_layer_example ") ;

ObservationLayer o l ;

o l . addObservationFactor (ObservationDep ()

. add (" Elevator Hallway Clear ")

. add ("West Corr idor Clear ")

. add (" Cof f ee Room Clear ")

. add ("South Corr idor Clear ")

. add ("LRM Clear ")

. add (" Soccer F i e ld Clear ")

. add ("Found Fi re ")) ;

sp in () ;

return 0 ;

}

Breaking down the code:

ObservationLayer o l ;

This declares an Observation Layer which silently subscribes to event topics coming

from Predicate Manager (~/event_updates and ~/event_map). The Observation Layer

isn’t started until the spin() function is called. Before that is done, however, the

observation space description must be provided.

o l . addObservationFactor (ObservationDep ()

. add (" Elevator Hallway Clear ")

. add ("West Corr idor Clear ")

. add (" Cof f ee Room Clear ")

. add ("South Corr idor Clear ")

. add ("LRM Clear ")

. add (" Soccer F i e ld Clear ")

. add ("Found Fi re ")) ;

192

B.3 Implementing a Control Layer

This creates our observation factor and associates it to a set of named events (which

will be flowing in from ~/event_updates). As before, indexes start at 0 – the output

of this Observation Layer is 0 when the event "Elevator Hallway Clear" is received.

While spinning, the resulting observation is published to the ~/observation topic,

whenever one of the associated events is caught. The Observation Layer also listens in

the ~/observation_metadata topic for incoming observation space descriptions from

associated Control Layers, for validation purposes.

B.3 Implementing a Control Layer

The following examples show how generic Control Layers for MDPs and POMDPs can

be implemented. First, for an asynchronous (event-driven) MDP:

#include <s t r i n g . h>

#include <ros / ros . h>

#include <markov_decision_making/ControllerEventMDP . h>

using namespace std ;

using namespace ro s ;

using namespace markov_decision_making ;

int main (int argc , char∗∗ argv)

{

i n i t (argc , argv , "mdp_control_layer_example") ;

i f (argc < 4) {

ROS_ERROR_STREAM ("Usage : mdp_control_layer_example"

<< "<number o f s t a t e s >"

<< "<number o f ac t ions>"

<< "<path to MDP Q−tab le>") ;

abort () ;

}

s i ze_t nr_states = a t o i (argv [1]) ;

s i z e_t nr_act ions = a t o i (argv [2]) ;

s t r i n g q_tab le_f i l e = argv [3] ;

193

B. IMPLEMENTATION EXAMPLES FOR THE MDM LIBRARY

ControllerEventMDP c o n t r o l l e r (nr_states ,

nr_actions ,

q_tab le_f i l e) ;

sp in () ;

return 0 ;

}

The ControllerEventMDP class implements an asynchronous controller for an MDP

agent. Note that it requires, as an input, the Q−value function associated with the

desired policy. The MDP stochastic models are not required, only its domain sizes

(number of states and actions). However, if the MDP itself is defined in a MADP-

compatible file format, it can be passed as an input instead (see the MDM API for

alternate constructors). In that case, the model will be parsed by MADP, and the

following options can be set as parameters in the node’s private namespace:

• is_sparse (boolean): when set to true, the internal representation of the transi-

tion and observation functions of the model uses sparse (boost::uBLAS) matrices.

Typically, for large models, this results in faster parsing and less memory usage

at run-time.

• cache_flat_models (boolean): when set to true, even if the model is defined in

a factored format (for example, if the model is written in the ProbModelXML for-

mat), the “flat” (non-factored) version of the transition and observation functions

will be calculated and stored in memory.

MDP controllers will subscribe to the ~/state topic and publish the associated

action to the ~/action topic. Additionally, if the MDP model is provided, the controller

will publish the immediate reward after an action selection to the ~/reward topic.

In contrast, the following implementation describes an asynchronous POMDP con-

troller:

#include <s t r i n g . h>

#include <ros / ros . h>

#include <markov_decision_making/ControllerEventPOMDP . h>

194

B.3 Implementing a Control Layer

using namespace std ;

using namespace ro s ;

using namespace markov_decision_making ;

int main (int argc , char∗∗ argv)

{

i n i t (argc , argv , "pomdp_control_layer_example") ;

i f (argc < 3) {

ROS_ERROR_STREAM ("Usage : pomdp_control_layer_example"

<< "<path to problem f i l e >"

<< "<path to POMDP value funct ion>") ;

abort () ;

}

s t r i n g prob lem_f i l e = argv [1] ;

s t r i n g va lue_func t i on_f i l e = argv [2] ;

ControllerEventPOMDP c o n t r o l l e r (problem_fi le ,

va lue_func t i on_f i l e) ;

sp in () ;

return 0 ;

}

Note that, for POMDP controllers operating according to the scheme shown in

Figure 7.8, the problem file must be passed to the constructor, so that it is able to

handle belief updates at run-time. POMDP controllers receive observations through the

~/observation topic. Additionally, they subscribe to /~initial_state_distribution,

which can be used to set the initial belief of the POMDP. As outputs, POMDP con-

trollers publish actions on the /~action; the belief state at run-time to /~current_belief;

and the immediate (expected) reward to ~/reward.

195

B. IMPLEMENTATION EXAMPLES FOR THE MDM LIBRARY

B.4 Implementing an Action Layer

The following example shows how a simple MDM Action Layer can be implemented.

The present Action Layer interprets the high-level actions Patrol, Assistance Response,

Trespassing Response and Emergency Response. The former of these is itself a POMDP

(this is an example of hierarchical control), while the remaining actions are carried out

by finite-state controllers defined using the SMACH package.

#include <boost /bind . hpp>

#include <ros / ros . h>

#include <std_srvs /Empty . h>

#include <markov_decision_making/ActionLayer . h>

using namespace ro s ;

using namespace markov_decision_making ;

class Actions

{

public :

Act ions () :

patro l_stop_cl ient_

(nh_. s e r v i c eC l i e n t <std_srvs : : Empty>("patrol_POMDP/ stop ")) ,

patro l_rese t_c l i ent_

(nh_. s e r v i c eC l i e n t <std_srvs : : Empty>("patrol_POMDP/ r e s e t ")) ,

assistance_SMACH_client_

(nh_. s e r v i c eC l i e n t <std_srvs : : Empty>("assistance_SMACH/act ")) ,

trespassing_SMACH_client_

(nh_. s e r v i c eC l i e n t <std_srvs : : Empty>("trespassing_SMACH/act ")) ,

emergency_SMACH_client_

(nh_. s e r v i c eC l i e n t <std_srvs : : Empty>("emergency_SMACH/ act ")){}

void patrolPOMDP() {

std_srvs : : Empty e ;

patro l_rese t_c l i ent_ . c a l l (e) ;

}

void assistanceSMACH () {

std_srvs : : Empty e ;

patro l_stop_cl ient_ . c a l l (e) ;

196

B.4 Implementing an Action Layer

assistance_SMACH_client_ . c a l l (e) ;

}

void trespassingSMACH () {

std_srvs : : Empty e ;

patro l_stop_cl ient_ . c a l l (e) ;

trespassing_SMACH_client_ . c a l l (e) ;

}

void emergencySMACH() {

std_srvs : : Empty e ;

patro l_stop_cl ient_ . c a l l (e) ;

emergency_SMACH_client_ . c a l l (e) ;

}

private :

NodeHandle nh_ ;

S e r v i c eC l i e n t patrol_stop_cl ient_ ;

S e r v i c eC l i e n t patro l_reset_c l i ent_ ;

S e r v i c eC l i e n t assistance_SMACH_client_ ;

S e r v i c eC l i e n t trespassing_SMACH_client_ ;

S e r v i c eC l i e n t emergency_SMACH_client_ ;

} ;

int main (int argc , char∗∗ argv)

{

i n i t (argc , argv , " action_layer_example ") ;

Act ions am;

ActionLayer a l ;

// Patro l Action

a l . addAction (boost : : bind (&Actions : : patrolPOMDP , &am)) ;

// Ass i s tance Response Action

a l . addAction (boost : : bind (&Actions : : assistanceSMACH , &am)) ;

//Trespass ing Response Action

a l . addAction (boost : : bind (&Actions : : trespassingSMACH , &am)) ;

//Emergency Response Action

a l . addAction (boost : : bind (&Actions : : emergencySMACH , &am)) ;

sp in () ;

return 0 ;

197

B. IMPLEMENTATION EXAMPLES FOR THE MDM LIBRARY

}

198

B.4 Implementing an Action Layer

The most important aspect of this example is how actions are bound to functions

in the action layer:

Actions am;

ActionLayer a l ;

// Patro l Action

a l . addAction (boost : : bind (&Actions : : patrolPOMDP , &am)) ;

// Ass i s tance Response Action

a l . addAction (boost : : bind (&Actions : : assistanceSMACH , &am)) ;

//Trespass ing Response Action

a l . addAction (boost : : bind (&Actions : : trespassingSMACH , &am)) ;

//Emergency Response Action

a l . addAction (boost : : bind (&Actions : : emergencySMACH , &am)) ;

This will create an Action Layer with four associated actions, where each of them is

implemented by a method in the auxiliary Actions class. Note that the latter class is not

a part of MDM – it is simply a design choice, a generic way of containing all action imple-

mentations in the same object. The addAction(.) function accepts boost::function

pointers (to functions with no arguments / return values), so using bind on the methods

of our auxiliary class directly returns the desired type. Those methods will be imme-

diately called when their respective action is received through the ~/action topic. For

example, receiving action 0 will trigger the Actions::patrolPOMDP() method.

In this example, all action-bound functions hand over the control of the agent to

other modules through ROS service calls. This is also a design choice – using services

lets the Action Layer know when and if its client modules receive a request for execution,

so it allows for a more secure control of the program. The execution on the client side

is outside of the scope of the Action Layer (and of this example). Each SMACH finite-

state controller is triggered by calling an <>\act service in its respective namespace,

which can advertised by a SMACH Service State1. The execution of a lower-level

MDP/POMDP can also be controlled via service requests: Control Layers automatically

advertise services to stop,start or reset their execution (the latter essentially stops and

starts the controller from its initial conditions). In this particular implementation, the

lower-level POMDP (patrol_POMDP) is controlled by calling its stop/reset services.

The downside to the service-based approach is that a client which should not be

running in a given context may also need an explicit request to stop its execution. This

1see: http://www.ros.org/wiki/smach/Tutorials/ServiceState

199

B. IMPLEMENTATION EXAMPLES FOR THE MDM LIBRARY

is true, in particular, for the lower-level MDPs/POMDPs.

B.5 Software Location and Documentation

MDM is kept up-to-date at http://users.isr.ist.utl.pt/~jmessias/MDM/, where

installation instructions can also be found.

With the MDM package installed, the rosdoc tool will generate a local copy of its

documentation. The MDM C++ API can then be consulted, and its respective documen-

tation includes further detail on the practical implementation of each MDM module.

200

http://users.isr.ist.utl.pt/~jmessias/MDM/

References

J. H. Ahn and J. C. Hornberger. Involving patients in the cadaveric kidney transplant

allocation process: A decision-theoretic perspective. Management Science, pages

629–641, 1996.

S. Ahn and V. Ramaswami. Bilateral phase type distributions. Stochastic models, 21

(2-3):239–259, 2005.

M. Arias, F. Díez, M. Palacios-Alonso, M. Yebra, and J. Fernández. POMDPs in Open-

Markov and ProbModelXML. In Seventh Annual Workshop on Multiagent Sequential

Decision Making Under Uncertainty (MSDM-2012), page 1, 2012.

H. Asama. Distributed Autonomous Robotic Systems 8. Springer, 2009.

Y. Aviv and A. Pazgal. A partially observed Markov decision process for dynamic

pricing. Management Science, pages 1400–1416, 2005.

M. Barbosa, A. Bernardino, D. Figueira, J. Gaspar, N. Gonçalves, P. U. Lima,

P. Moreno, A. Pahliani, J. Santos-Victor, M. T. J. Spaan, and J. Sequeira. IS-

RobotNet: A testbed for sensor and robot network systems. In Proc. of International

Conference on Intelligent Robots and Systems, pages 2827–2833. IEEE, 2009.

N. Bäuerle and U. Rieder. Markov Decision Processes with applications to finance.

Springer Verlag, 2011.

R. Becker, S. Zilberstein, and C. Goldman. Solving transition independent decentralized

Markov decision processes. Journal of Artificial Intelligence Research, 22:423—-455,

2004.

201

REFERENCES

F. L. Bellifemine, G. Caire, and D. Greenwood. Developing multi-agent systems with

JADE, volume 7. Wiley. com, 2007.

R. Bellman. A Markovian decision process. Technical report, DTIC Document, 1957a.

R. Bellman. Dynamic Programming. Princeton University Press, 1957b.

D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. The complexity of decen-

tralized control of Markov decision processes. Mathematics of Operations Research,

27(4):819–840, 2002.

D. P. Bertsekas and S. E. Shreve. Stochastic optimal control: The discrete time case,

volume 139. Academic Press New York, 1978.

C. Boutilier. Planning, learning and coordination in multiagent decision processes. In

Proceedings of the 6th conference on Theoretical aspects of rationality and knowledge,

pages 195–210. Morgan Kaufmann Publishers Inc., 1996.

C. Boutilier and D. Poole. Computing optimal policies for partially observable decision

processes using compact representations. In Proceedings of the National Conference

on Artificial Intelligence, pages 1168–1175. Citeseer, 1996.

C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific independence

in Bayesian networks. In Proceedings of the Twelfth Conference on Uncertainty in

Artificial Intelligence, pages 115–123. San Francisco, California, 1996.

M. Bowling and M. Veloso. Simultaneous adversarial multi-robot learning. In Proc. Int.

Joint Conf. on Artificial Intelligence, volume 3, pages 699–704, 2003.

X. Boyen and D. Koller. Tractable inference for complex stochastic processes. In Proc.

of Uncertainty in Artificial Intelligence, 1998.

S. J. Bradtke and M. O. Duff. Reinforcement learning methods for continuous-time

Markov decision problems. Advances in neural information processing systems, 7:

393–400, 1995.

E. Brunskill, L. P. Kaelbling, T. Lozano-Pérez, and N. Roy. Planning in partially-

observable switching-mode continuous domains. Annals of Mathematics and Artificial

Intelligence, 58(3):185–216, 2010.

202

REFERENCES

M. P. Cabasino, A. Giua, and C. Seatzu. Diagnosis using labeled Petri Nets with

silent or undistinguishable fault events. IEEE Transactions on Systems, Man, and

Cybernetics: Systems, 43(2):345–355, 2013.

J. Capitán, M. T. J. Spaan, L. Merino, and A. Ollero. Decentralized multi-robot coop-

eration with auctioned POMDPs. International Journal of Robotics Research, 32(6):

650–671, 2013.

A. R. Cassandra. Exact and approximate algorithms for partially observable Markov

decision processes. PhD thesis, Brown University, Providence, RI, USA, 1998a.

A. R. Cassandra. A survey of POMDP applications. In Working Notes of AAAI 1998

Fall Symposium on Planning with Partially Observable Markov Decision Processes,

pages 17–24, 1998b.

C. G. Cassandras and S. Lafortune. Introduction to discrete event systems. Kluwer

academic publishers, 1999.

I. Chades, J. Carwardine, T. G. Martin, S. Nicol, R. Sabbadin, and O. Buffet. MOMDPs:

A solution for modelling adaptive management problems. In Proc. of the National

Conference on Artificial Intelligence, 2012.

H. P. Chao and A. S. Manne. Oil stockpiles and import reductions: A dynamic pro-

gramming approach. Operations research, pages 632–651, 1983.

H. Cheng. Algorithms for partially observable Markov decision processes. PhD thesis,

University of British Columbia, 1988.

H. Costelha and P. Lima. Modelling, analysis and execution of robotic tasks using Petri

Nets. In IEEE/RSJ International Conference on Intelligent Robots and Systems,

pages 1449–1454. IEEE, 2007.

B. Damas and P. Lima. Stochastic discrete event model of a multi-robot team playing

an adversarial game. In 5th IFAC/EURON Symposium on Intelligent Autonomous

Vehicles-IAV2004, 2004.

J. S. de Cani. A dynamic programming algorithm for embedded Markov chains when

the planning horizon is at infinity. Management Science, pages 716–733, 1964.

203

REFERENCES

C. Derman, G. J. Lieberman, and S. M. Ross. A stochastic sequential allocation model.

Operations Research, pages 1120–1130, 1975.

M. B. Dias, R. Zlot, N. Kalra, and A. Stentz. Market-based multirobot coordination:

A survey and analysis. Proceedings of the IEEE, 94(7):1257–1270, 2006.

S. E. Dreyfus. A note on an industrial replacement process. OR, 8(4):190–193, 1957.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. John Wiley & Sons,

2001.

J. Duncan and L. S. Scholnick. Interrupt and opportunistic replacement strategies for

systems of deteriorating components. Operational Research Quarterly, pages 271–283,

1973.

F. J. Díez, M. A. Palacios, and M. Arias. MDPs in medicine: Opportunities and

challenges. In Decision Making in Partially Observable, Uncertain Worlds: Exploring

Insights from Multiple Communities, 2011. Workshop at IJCAI11.

J. E. Eckles. Optimum maintenance with incomplete information. Operations Research,

pages 1058–1067, 1968.

H. Ellis, M. Jiang, and R. B. Corotis. Inspection, maintenance, and repair with partial

observability. Journal of Infrastructure Systems, 1(2):92–99, 1995.

R. Emery-Montemerlo, G. Gordon, J. Schneider, and S. Thrun. Game theoretic control

for robot teams. In Proceedings of the IEEE International Conference on Robotics

and Automation, pages 1163–1169. IEEE, 2005.

T. Fabian, J. L. Fisher, M. W. Sasieni, and A. Yardeni. Purchasing raw material on a

fluctuating market. Operations Research, pages 107–122, 1959.

X. G. Fang and G. Havas. On the worst-case complexity of integer gaussian elimina-

tion. In Proceedings of the 1997 international symposium on Symbolic and algebraic

computation, pages 28–31. ACM, 1997.

E. A. Feinberg and A. Shwartz. Handbook of Markov decision processes: methods and

applications, volume 40. Springer Netherlands, 2002.

204

REFERENCES

F. Fernández and L. E. Parker. Learning in large cooperative multi-robot domains.

International Journal of Robotics and Automation (Special issue on Computational

Intelligence Techniques in Cooperative Robots), 16(4):217–226, 2001.

S. E. Fleten and T. K. Kristoffersen. Short-term hydropower production planning by

stochastic programming. Computers & Operations Research, 35(8):2656–2671, 2008.

V. K. Garg. An algebraic approach to modeling probabilistic discrete event systems. In

Proceedings of the 31st IEEE Conference on Decision and Control, pages 2348–2353.

IEEE, 1992.

B. P. Gerkey and M. J. Matarić. Multi-robot task allocation: Analyzing the complex-

ity and optimality of key architectures. In Proceedings of the IEEE International

Conference on Robotics and Automation, volume 3, pages 3862–3868. IEEE, 2003.

P. W. Glynn. A GSMP formalism for discrete event systems. Proceedings of the IEEE,

77(1):14–23, 1989.

P. Gmytrasiewicz and P. Doshi. A framework for sequential planning in multiagent

settings. Journal of Artificial Intelligence Research, 24(1):49–79, 2005.

C. V. Goldman and S. Zilberstein. Decentralized control of cooperative systems: Cat-

egorization and complexity analysis. Journal of Artificial Intelligence Research, 22:

143–174, 2004.

R. A. Grupen and J. A. Coelho. Acquiring state from control dynamics to learn grasping

policies for robot hands. Advanced Robotics, 16(5):427–443, 2002.

X. Guo and O. Hernández-Lerma. Continuous-time Markov decision processes: theory

and applications, volume 62. Springer, 2009.

E. A. Hansen and Z. Feng. Dynamic programming for POMDPs using a factored state

representation. In Proceedings of the Fifth International Conference on AI Planning

Systems, pages 130–139, 2000.

E. A. Hansen, D. S. Bernstein, and S. Zilberstein. Dynamic programming for partially

observable stochastic games. In Proceedings of the National Conference on Artificial

Intelligence, pages 709–715. Menlo Park, CA; Cambridge, MA; London; AAAI Press;

MIT Press; 1999, 2004.

205

REFERENCES

M. Hauskrecht and H. Fraser. Planning treatment of ischemic heart disease with par-

tially observable Markov decision processes. Artificial Intelligence in Medicine, 18(3):

221–244, 2000.

D. Herrero-Perez and H. Martinez-Barbera. Petri Nets based coordination of flexible

autonomous guided vehicles in flexible manufacturing systems. In IEEE International

Conference on Emerging Technologies and Factory Automation, pages 508–515. IEEE,

2008.

J. Hoey and P. Poupart. Solving POMDPs with continuous or large discrete observation

spaces. In Proc. Int. Joint Conf. on Artificial Intelligence, 2005.

J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. SPUDD: Stochastic planning using

decision diagrams. In Proc. of Uncertainty in Artificial Intelligence, 1999.

R. A. Howard. Dynamic programming and Markov processes. New York: John Wiley

& Sons, Inc, 1960.

R. A. Howard. Semi-Markovian decision processes. Bulletin de l’Institut International

de Statistique, 40(2):625–652, 1963.

K. Hsiao, L. P. Kaelbling, and T. Lozano-Perez. Grasping POMDPs. In Proceedings of

the IEEE International Conference on Robotics and Automation, pages 4685–4692.

IEEE, 2007.

D. Hsu, W. S. Lee, and N. Rong. A point-based POMDP planner for target tracking.

In Proceedings of the IEEE International Conference on Robotics and Automation,

pages 2644–2650. IEEE, 2008.

E. Ignall and P. Kolesar. Optimal dispatching of an infinite-capacity shuttle: control at

a single terminal. Operations Research, pages 1008–1024, 1974.

T. Jaakkola, S. P. Singh, and M. I. Jordan. Reinforcement learning algorithm for

partially observable Markov decision problems. In Advances in Neural Information

Processing Systems 7, pages 345–352. MIT Press, 1995.

A. H. Jazwinski. Stochastic processes and filtering theory, volume 64. Academic Press,

Inc., 1970.

206

REFERENCES

W. S. Jewell. Markov-renewal programming. ii: Infinite return models, example. Oper-

ations Research, pages 949–971, 1963.

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey.

Arxiv preprint cs/9605103, 1996.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially

observable stochastic domains. Artificial Intelligence, 101:99–134, 1998.

R. S. Kaplan. Optimal investigation strategies with imperfect information. Journal of

Accounting Research, pages 32–43, 1969.

J. Kober, B. Mohler, and J. Peters. Learning perceptual coupling for motor primitives.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 834–

839. IEEE, 2008.

S. Koenig and R. Simmons. Xavier: A robot navigation architecture based on par-

tially observable Markov decision process models. Artificial Intelligence Based Mobile

Robotics: Case Studies of Successful Robot Systems, pages 91–122, 1998.

G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto. Robot learning from demon-

stration by constructing skill trees. The International Journal of Robotics Research,

31(3):360–375, 2012.

A. R. Kristensen. A survey of Markov decision programming techniques applied to the

animal replacement problem. European Review of Agricultural Economics, 21(1):73,

1994.

A. Kumar and S. Zilberstein. Anytime planning for decentralized POMDPs using expec-

tation maximization. In Uncertainty in Artificial Intelligence, pages 294–301, 2010.

H. Kurniawati, D. Hsu, and W. S. Lee. SARSOP: Efficient point-based POMDP plan-

ning by approximating optimally reachable belief spaces. In Robotics: Science and

Systems, pages 65–72, 2008.

D. E. Lane. A partially observable model of decision making by fishermen. Operations

Research, pages 240–254, 1989.

207

REFERENCES

S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graph-

ical structures and their application to expert systems. Journal of the Royal Statistical

Society - Series B (Methodological), pages 157–224, 1988.

M. Lawford and W. M. Wonham. Supervisory control of probabilistic discrete event

systems. In Proceedings of the 36th Midwest Symposium on Circuits and Systems,

pages 327–331. IEEE, 1993.

T. Lemaire, R. Alami, and S. Lacroix. A distributed tasks allocation scheme in multi-

UAV context. In Proceedings of the IEEE International Conference on Robotics and

Automation, volume 4, pages 3622–3627. IEEE, 2004.

Z. W. Lim, D. Hsu, and W. S. Lee. Monte Carlo Value Iteration with macro-actions.

Journal of Web Semantics, 2:2, 2004.

P. U. Lima and L. M. Custódio. Multi-robot systems. In Innovations in robot mobility

and control, pages 1–64. Springer, 2005.

J. Lindqvist. Operation of a hydrothermal electric system: A multistage decision pro-

cess. Power Apparatus and Systems, Part III. Transactions of the American Institute

of Electrical Engineers, 81(3):1–6, 1962.

J. D. C. Little. The use of storage water in a hydroelectric system. Journal of the

Operations Research Society of America, pages 187–197, 1955.

D. W. Low. Optimal dynamic pricing policies for an M/M/s queue. Operations Research,

pages 545–561, 1974.

S. Mahadevan. Partially observable semi-Markov decision processes: Theory and appli-

cations in engineering and cognitive science. In AAAI: Fall Symposium on Planning

with Partially Observable Markov Decision Processes, 1998.

S. Mahadevan and J. Connell. Automatic programming of behavior-based robots using

reinforcement learning. Artificial intelligence, 55(2-3):311–365, 1992.

S. Mahadevan and N. Khaleeli. Robust mobile robot navigation using partially-

observable semi-Markov decision processes. Technical report, 1999.

208

REFERENCES

R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and P. Varakantham. Taking

DCOP to the real world: Efficient complete solutions for distributed multi-event

scheduling. In Proc. of Int. Conference on Autonomous Agents and Multi Agent

Systems, volume 1, pages 310–317. IEEE Computer Society, 2004.

M. J. Matarić. Reward functions for accelerated learning. In Proceedings of the Eleventh

International Conference on Machine Learning, volume 189. Morgan Kauffman, New

Brunswick, NJ, 1994.

M. J. Matarić. Reinforcement learning in the multi-robot domain. Autonomous Robots,

4(1):73–83, 1997.

D. A. McAllester and S. Singh. Approximate planning for factored POMDPs using

belief state simplification. In Proc. of Uncertainty in Artificial Intelligence, 1999.

J. Messias, M. T. J. Spaan, and P. U. Lima. Efficient offline communication policies

for factored multiagent POMDPs. In Proceedings of the 25th Annual Conference on

Neural Information Processing Systems (NIPS ’11), pages 1917–1925, 2011.

J. Messias, M. T. J. Spaan, and P. U. Lima. GSMDPs for multi-robot sequential

decision-making. In Proceedings of the 27th AAAI Conference on Artificial Intelli-

gence, 2013a.

J. Messias, M. T. J. Spaan, and P. U. Lima. Multiagent POMDPs with asynchronous

execution. In Proceedings of the 12th International Conference on Autonomous Agents

and Multiagent Systems (AAMAS-13) - Extended Abstract, 2013b.

J. Messias, M. T. J. Spaan, and P. U. Lima. Asynchronous Execution in Multiagent

POMDPs: Reasoning over Partially-Observable Events. Artificial Intelligence (Spe-

cial Issue on AI and Robotics) Submitted. Pending Review., 2013c.

S. A. Miller, Z. A. Harris, and E. K. P. Chong. A POMDP framework for coordi-

nated guidance of autonomous UAVs for multitarget tracking. EURASIP Journal on

Advances in Signal Processing, 2009:2, 2009.

W. T. Miller, F. H. Glanz, and L. G. Kraft. CMAC: An associative neural network

alternative to backpropagation. Proceedings of the IEEE, 78(10):1561–1567, 1990.

209

REFERENCES

G. E. Monahan. A survey of partially observable Markov decision processes: Theory,

models, and algorithms. Management Science, pages 1–16, 1982.

P. Moreno, A. Bernardino, and J. Santos-Victor. Waving detection using the local tem-

poral consistency of flow-based features for real-time applications. In Image Analysis

and Recognition, pages 886–895. Springer, 2009.

T. Murata. Petri Nets: Properties, analysis and applications. Proceedings of the IEEE,

77(4):541–580, 1989.

K. Murphy and Y. Weiss. The factored frontier algorithm for approximate inference

in DBNs. In Proc. of Uncertainty in Artificial Intelligence, pages 378–385. Morgan

Kaufmann Publishers Inc., 2001.

K. P. Murphy. Dynamic Bayesian networks: representation, inference and learning.

PhD thesis, University of California, 2002.

R. Nair, P. Varakantham, M. Tambe, and M. Yokoo. Networked distributed POMDPs:

A synthesis of distributed constraint optimization and POMDPs. In Proc. of the

National Conference on Artificial Intelligence, pages 133–139, 2005.

G. Neto. Planning, learning and control under uncertainty based on discrete event

systems and reinforcement learning. PhD thesis, Instituto Superior Técnico, Univer-

sidade Ténica de Lisboa, 2010.

G. Neto, H. Costelha, and P. Lima. Topological navigation in configuration space

applied to soccer robots. In RoboCup 2003: Robot Soccer World Cup VII, pages

551–558. Springer, 2004.

A. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, and E. Liang.

Autonomous inverted helicopter flight via reinforcement learning. Experimental

Robotics IX, pages 363–372, 2006.

B. Ng, C. Meyers, K. Boakye, and J. Nitao. Towards applying interactive POMDPs to

real-world adversary modeling. In Twenty-Second IAAI Conference, 2010.

I. Nourbakhsh, R. Powers, and S. Birchfield. Dervish: an office-navigating robot. AI

magazine, 16(2):53, 1995.

210

REFERENCES

M. Ohnishi, H. Kawai, and H. Mine. An optimal inspection and replacement policy

under incomplete state information. European journal of operational research, 27(1):

117–128, 1986.

F. A. Oliehoek. Factored Dec-POMDPs: exploiting locality of interaction. In Value-

based planning for teams of agents in stochastic partially observable environments,

chapter 2. PhD thesis Frans A. Oliehoek, University of Amsterdam, 2010.

F. A. Oliehoek and A. Visser. A hierarchical model for decentralized fighting of large

scale urban fires. In AAMAS’06 Workshop on Hierarchical Autonomous Agents and

Multi-Agent Systems, pages 14–21, 2006.

F. A. Oliehoek, M. T. J. Spaan, and N. Vlassis. Dec-POMDPs with delayed commu-

nication. In Multi-agent Sequential Decision Making in Uncertain Domains, 2007.

Workshop at AAMAS07.

F. A. Oliehoek, M. T. J. Spaan, and N. Vlassis. Optimal and approximate q-value

functions for decentralized POMDPs. Journal of Artificial Intelligence Research, 32

(1):289–353, 2008a.

F. A. Oliehoek, M. T. J. Spaan, S. Whiteson, and N. Vlassis. Exploiting locality of

interaction in factored Dec-POMDPs. In Proc. of Int. Conference on Autonomous

Agents and Multi Agent Systems, 2008b.

F. A. Oliehoek, S. Whiteson, and M. T. J. Spaan. Approximate solutions for factored

Dec-POMDPs with many agents. In Proc. of Int. Conference on Autonomous Agents

and Multi Agent Systems, pages 563–570. International Foundation for Autonomous

Agents and Multiagent Systems, 2013.

D. W. Onstad and R. Rabbinge. Dynamic programming and the computation of eco-

nomic injury levels for crop disease control. Agricultural Systems, 18(4):207–226,

1985.

T. Osogami and M. Harchol-Balter. Closed form solutions for mapping general distri-

butions to quasi-minimal PH distributions. Performance Evaluation, 63(6):524–552,

2006.

211

REFERENCES

J. Pajarinen and J. Peltonen. Efficient planning for factored infinite-horizon Dec-

POMDPs. In Proc. Int. Joint Conf. on Artificial Intelligence, 2011a.

J. Pajarinen and J. Peltonen. Periodic finite state controllers for efficient pomdp and

dec-pomdp planning. In Advances in Neural Information Processing Systems, pages

2636–2644, 2011b.

C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of Markov decision processes.

Mathematics of operations research, pages 441–450, 1987.

S. Paquet, L. Tobin, and B. Chaib-Draa. An online POMDP algorithm for complex

multiagent environments. In Proceedings of the fourth international joint conference

on Autonomous agents and multiagent systems, pages 970–977. ACM, 2005.

R. E. Parr. Hierarchical control and learning for Markov decision processes. PhD thesis,

Citeseer, 1998.

R. Patrascu, P. Poupart, D. Schuurmans, C. Boutilier, and C. Guestrin. Greedy linear

value-approximation for factored Markov decision processes. In Eighteenth national

conference on Artificial intelligence, pages 285–291, Menlo Park, CA, USA, 2002.

American Association for Artificial Intelligence. ISBN 0-262-51129-0.

J. Pavón and J. Gómez-Sanz. Agent oriented software engineering with INGENIAS. In

Multi-Agent Systems and Applications III, pages 394–403. Springer, 2003.

J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference.

Morgan Kaufmann, 1988.

J. Pineau and S. Thrun. An integrated approach to hierarchy and abstraction for

POMDPs. Technical Report CMU-RI-TR-02-21, Robotics Institute, Carnegie Mellon

University, 2002.

J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm

for POMDPs. In International Joint Conference on Artificial Intelligence, volume 18,

pages 1025–1032. Citeseer, 2003.

J. M. Porta, N. Vlassis, M. T. J. Spaan, and P. Poupart. Point-based value iteration

for continuous POMDPs. The Journal of Machine Learning Research, 7:2329–2367,

2006.

212

REFERENCES

P. Poupart. Exploiting Structure to Efficiently Solve Large Scale Partially Observable

Markov Decision Processes. PhD thesis, University of Toronto, 2005.

P. Poupart and C. Boutilier. Value-directed belief state approximation for POMDPs.

In Proc. of Uncertainty in Artificial Intelligence, volume 130, 2000.

G. Pritchard, A. B. Philpott, and P. J. Neame. Hydroelectric reservoir optimization in

a pool market. Mathematical programming, 103(3):445–461, 2005.

M. L. Puterman. Markov decision processes: Discrete stochastic dynamic programming.

John Wiley & Sons, Inc., 1994.

D. V. Pynadath and M. Tambe. The communicative multiagent team decision problem:

Analyzing teamwork theories and models. Journal of Artificial Intelligence Research,

16:389–423, 2002.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.

Ng. ROS: an open-source Robot Operating System. In ICRA workshop on open

source software, 2009.

M. M. Quottrup, T. Bak, and R. Zamanabadi. Multi-robot planning: A timed automata

approach. In Proceedings of the IEEE International Conference on Robotics and

Automation, volume 5, pages 4417–4422. IEEE, 2004.

E. Rachelson, G. Quesnel, F. Garcia, and P. Fabiani. Approximate policy iteration

for generalized semi-Markov decision processes: an improved algorithm. In European

Workshop on Reinforcement Learning, 2008.

J. C. G. Reis, P. U. Lima, and J. Garcia. Efficient distributed communications for

multi-robot systems. In Proceedings of the 17th RoboCup International Symposium,

2013.

M. Riedmiller, T. Gabel, R. Hafner, and S. Lange. Reinforcement learning for robot

soccer. Autonomous Robots, 27(1):55–73, 2009.

H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathe-

matical Statistics, pages 400–407, 1951.

213

REFERENCES

P. Rong and M. Pedram. Extending the lifetime of a network of battery-powered mobile

devices by remote processing: a Markovian decision-based approach. In Proceedings

of the 40th annual Design Automation Conference, pages 906–911. ACM, 2003.

J. Rosell, N. Munoz, and A. Gambin. Robot tasks sequence planning using Petri Nets.

In Proceedings of the IEEE International Symposium on Assembly and Task Planning,

pages 24–29. IEEE, 2003.

M. Roth, R. Simmons, and M. Veloso. Decentralized communication strategies for

coordinated multi-agent policies. In Multi-Robot Systems: From Swarms to Intelligent

Automata, volume IV. Kluwer Academic Publishers, 2005a.

M. Roth, R. Simmons, and M. Veloso. Reasoning about joint beliefs for execution-time

communication decisions. In Proc. of Int. Conference on Autonomous Agents and

Multi Agent Systems, pages 786–793. ACM, 2005b.

M. Roth, R. Simmons, and M. Veloso. Exploiting factored representations for decen-

tralized execution in multi-agent teams. In Proc. of Int. Conference on Autonomous

Agents and Multi Agent Systems, 2007.

A. J. Schaefer, M. D. Bailey, S. M. Shechter, and M. S. Roberts. Modeling medical

treatment using Markov decision processes. Operations Research and Health Care,

pages 593–612, 2005.

S. Seuken and S. Zilberstein. Memory-bounded dynamic programming for Dec-

POMDPs. In International Joint Conference on Artificial Intelligence, pages 2009–

2016, 2007.

S. M. Shechter, M. D. Bailey, A. J. Schaefer, and M. S. Roberts. The optimal time to

initiate hiv therapy under ordered health states. Operations Research, 56(1):20, 2008.

Y. Shoham and K. Leyton-Brown. Multiagent systems: Algorithmic, game-theoretic,

and logical foundations. Cambridge University Press, 2009.

R. Simmons and S. Koenig. Probabilistic robot navigation in partially observable en-

vironments. In International Joint Conference on Artificial Intelligence, volume 14,

pages 1080–1087, 1995.

214

REFERENCES

E. J. Sondik. The optimal control of partially observable Markov processes. PhD thesis,

Stanford, 1971.

F. A. Sonnenberg and J. R. Beck. Markov models in medical decision making. Medical

decision making, 13(4):322, 1993.

M. T. J. Spaan and F. Groen. Team coordination among robotic soccer players. In

G. Kaminka, P. Lima, and R. Rojas, editors, RoboCup 2002: Robot Soccer World

Cup VI, volume 2752 of Lecture Notes in Computer Science, pages 409–416. Springer

Berlin / Heidelberg, 2003.

M. T. J. Spaan and F. S. Melo. Interaction-driven Markov games for decentralized

multiagent planning under uncertainty. In Proc. of Int. Conference on Autonomous

Agents and Multi Agent Systems, 2008.

M. T. J. Spaan and F. A. Oliehoek. The MultiAgent Decision Process toolbox: Software

for decision-theoretic planning in multiagent-systems. In AAMAS’08 Workshop on

Multiagent Sequential Decision Making in Uncertain Domains (MSDM-2008). IFAA-

MAS, 2008.

M. T. J. Spaan and N. Vlassis. A point-based POMDP algorithm for robot planning.

In Proceedings of the IEEE International Conference on Robotics and Automation,

volume 3, pages 2399–2404. IEEE, 2004.

M. T. J. Spaan and N. Vlassis. Perseus: Randomized point-based value iteration for

POMDPs. Journal of Artificial Intelligence Research, 24(1):195–220, 2005.

M. T. J. Spaan, F. A. Oliehoek, and N. Vlassis. Multiagent planning under uncertainty

with stochastic communication delays. In Proc. of Int. Conf. on Automated Planning

and Scheduling, pages 338–345, 2008.

M. T. J. Spaan, F. A. Oliehoek, and C. Amato. Scaling up optimal heuristic search in

Dec-POMDPs via incremental expansion. In Proc. of International Joint Conference

on Artificial Intelligence, pages 2027–2032, 2011.

M. Sridharan, J. Wyatt, and R. Dearden. Planning to see: A hierarchical approach

to planning visual actions on a robot using POMDPs. Artificial Intelligence, 174:

704–725, 2010.

215

REFERENCES

S. Stidham and R. Weber. A survey of Markov decision models for control of networks

of queues. Queueing Systems, 13(1):291–314, 1993.

R. S. Sutton. Temporal credit assignment in reinforcement learning. PhD thesis, Uni-

versity of Massachusetts Amherst, 1984. AAI8410337.

R. S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting.

ACM SIGART Bulletin, 2(4):160–163, 1991.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, volume 28.

Cambridge Univ Press, 1998.

R. S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A framework

for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1):

181–211, 1999.

D. Szer and F. Charpillet. An optimal best-first search algorithm for solving infinite

horizon Dec-POMDPs. Machine Learning: ECML 2005, pages 389–399, 2005.

N. Tao, J. Baxter, and L. Weaver. A multi-agent, policy-gradient approach to network

routing. In In: Proc. of the 18th Int. Conf. on Machine Learning, pages 553–560.

Morgan Kaufmann, 2001.

G. Tesauro. Practical issues in temporal difference learning. Machine learning, 8(3):

257–277, 1992.

G. Theocharous and S. Mahadevan. Approximate planning with hierarchical partially

observable Markov decision processes for robot navigation. In Proceedings of the IEEE

International Conference on Robotics and Automation, 2002.

G. Theocharous, S. Mahadevan, and L. P. Kaelbling. Spatial and temporal abstractions

in POMDPs applied to robot navigation. Technical Report MIT-CSAIL-TR-2005-

058, Computer Science and Artificial Inteligence Laboratory, MIT, 2005.

S. Thrun. Learning to play the game of chess. Advances in Neural Information Pro-

cessing Systems, pages 1069–1076, 1995.

S. Thrun. Monte carlo POMDPs. Advances in neural information processing systems,

12:1064–1070, 2000.

216

REFERENCES

J. N. Tsitsiklis and B. Van Roy. Feature-based methods for large scale dynamic pro-

gramming. Machine Learning, 22(1):59–94, 1996.

W. T. B. Uther and M. M. Veloso. Tree based discretization for continuous state space

reinforcement learning. In Proceedings of the fifteenth national/tenth conference on

Artificial intelligence/Innovative applications of artificial intelligence, pages 769–774,

1998.

N. Vlassis, M. Toussaint, G. Kontes, and S. Piperidis. Learning model-free robot control

by a Monte Carlo EM algorithm. Autonomous Robots, 27(2):123–130, 2009.

D. Wang and B. J. Adams. Optimization of real-time reservoir operations with Markov

decision processes. Water Resources Research, 22(3):345–352, 1986.

D. X. Wang and X. R. Cao. Event-based optimization for POMDPs and its application

in portfolio management. In Proceedings of the 18th IFAC World Congress, pages

3228–3233, 2011.

C. Watkins. Learning from delayed rewards. PhD thesis, King’s College, Cambridge,

1989.

C. C. White. Procedures for the solution of a finite-horizon, partially observed, semi-

Markov optimization problem. Operations Research, pages 348–358, 1976.

C. C. White. Partially observed Markov decision processes: a survey. Annals of Oper-

ations Research, 32, 1991.

C. C. White, E. C. Wilson, and A. C. Weaver. Decision aid development for use in

ambulatory health care settings. Operations Research, pages 446–463, 1982.

D. J. White. Real applications of Markov decision processes. Interfaces, pages 73–83,

1985.

D. J. White. Further real applications of Markov decision processes. Interfaces, pages

55–61, 1988.

D. J. White. A survey of applications of Markov decision processes. Journal of the

Operational Research Society, 44(11):1073–1096, 1993.

217

REFERENCES

D. J. White and J. M. Norman. Control of cash reserves. OR, pages 309–328, 1965.

J. D. Williams and S. Young. Partially observable Markov decision processes for spoken

dialog systems. Computer Speech & Language, 21(2):393–422, 2007.

I. H. Witten. An adaptive optimal controller for discrete-time Markov environments.

Information and Control, 34(4):286–295, 1977.

S. Witwicki, F. S. Melo, J. Capitán, and M. T. J. Spaan. A flexible approach to modeling

unpredictable events in MDPs. In Int. Conf. on Automated Planning and Scheduling,

2013.

S. J. Witwicki. Abstracting Influences for Efficient Multiagent Coordination Under

Uncertainty. PhD thesis, University of Michigan, 2012.

F. Wu and X. Chen. Solving large-scale and sparse-reward Dec-POMDPs with

correlation-MDPs. In U. Visser, F. Ribeiro, T. Ohashi, and F. Dellaert, editors,

RoboCup 2007: Robot Soccer World Cup XI, volume 5001 of Lecture Notes in Com-

puter Science, pages 208–219. Springer Berlin / Heidelberg, 2008.

F. Wu, S. Zilberstein, and X. Chen. Multi-agent online planning with communication.

In Int. Conf. on Automated Planning and Scheduling, 2009.

T. Yamasaki and T. Ushio. Decentralized supervisory control of discrete event systems

based on reinforcement learning. IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, 88(11):3045–3050, 2005.

H. L. S. Younes. Planning and execution with phase transitions. In Proceedings of the

National Conference on Artificial Intelligence, pages 1030–1035, 2005.

H. L. S. Younes and R. G. Simmons. Solving generalized semi-Markov decision pro-

cesses using continuous Phase-Type distributions. In Proceedings of the Nineteenth

National Conference on Artificial Intelligence, pages 742–747. San Jose, California.

AAAI Press., 2004.

S. Young, M. Gasic, S. Keizer, F. Mairesse, J. Schatzmann, B. Thomson, and K. Yu. The

hidden information state model: A practical framework for POMDP-based spoken

dialogue management. Computer Speech & Language, 24(2):150–174, 2010.

218

REFERENCES

E. Zhou, M. C. Fu, and S. I. Marcus. A density projection approach to dimension

reduction for continuous-state POMDPs. In 47th IEEE Conference on Decision and

Control, pages 5576–5581. IEEE, 2008.

219

	List of Figures
	List of Tables
	Introduction
	Motivation: Planning Under Uncertainty in the Real World
	Related Approaches to Multiagent (and Multi-Robot) Decision-Making
	Objectives
	Thesis Outline and Contributions
	Publications

	Background
	Markov Decision Processes
	Planning and Learning for MDPs

	Extensions for Continuous-Time Problems
	Semi-Markov Decision Processes
	Continuous-Time Markov Decision Processes
	Generalized Semi-Markov Decision Processes

	Extensions for Partially Observable Domains
	Partially Observable Markov Decision Processes
	Planning Algorithms for POMDPs
	Continuous-Domain POMDPs

	Partially Observable Semi-Markov Decision Processes

	Extensions for Multiagent Decision-Making Problems
	Decentralized Partially Observable Markov Decision Processes
	Modeling Communication
	Factored Models

	On the Practical Implementation of MDPs and Related Models
	A Review of MDP-Based Applications
	POMDPs for Real Teams of Robots
	A Case Study in Robotic Soccer: Overview
	Identifying an Appropriate DT Framework
	Modeling States, Actions, and Observations
	States
	Observations
	Actions

	Real-Time Execution Strategies
	Obtaining the Stochastic Models
	Defining the Reward Model
	Implementation and Results of the Robotic Soccer Case-Study
	Communication
	Solving the MPOMDP
	Experimental Setup
	Results

	Summary

	Efficient Communication in Partially Observable Domains
	Exploiting Sparse Dependencies in MPOMDPs
	Decision-Making with Factored Beliefs
	An illustrative example: the Relay-Small problem
	Formal model
	Value Bounds Over Local Belief Space
	Dealing With Locally Ambiguous Actions
	Mapping Local Belief Points to Communication Decisions

	Experiments
	Summary

	Continuous-Time Execution and Planning for Teams of Robots
	Event-Driven Multi-Robot Systems: Beyond SMDPs
	GSMDPs as a Framework for Multi-Robot Decision-Making
	From DES to GSMDPs
	Modeling and Solving a GSMDP
	Tracking Phase Variables
	Effects on Communication

	Results: Revisiting the Robotic Soccer Case Study
	Experimental Setup
	Simulation Results
	Real Robot Results

	Summary

	Asynchronous Multiagent Decision-Making under Partial Observability
	Introduction
	Event-Driven MPOMDPs
	Synchronous vs. Asynchronous Execution in Multiagent Systems with Partial Observability and Free Communication
	Formal Definition
	Decision-Making with Partially Observable Events
	Jointly Observed Events
	Factored Graphical Representations

	Solving Event-Driven MPOMDPs
	Dynamic Programming
	A Randomized Point-Based Algorithm
	Execution-Time Belief Updates

	Experiments
	Extension to Generalized Semi-Markovian Domains
	Summary

	A Case Study in Multiagent Surveillance
	Introduction
	The MAIS+S Testbed
	Hardware
	Decision-Making
	Software Organization

	The Markov Decision-Making (MDM) Library
	Terminology
	MDM Overview
	The State Layer
	The Observation Layer
	The Control Layer
	The Action Layer

	Deploying MDM: Considerations for Specialized Scenarios
	POMDPs with External Belief States
	Multiagent Decision-Making with Managed Communication

	Results
	Realistic Simulations

	Summary

	Conclusions
	Contributions
	Future Work

	Supporting Material
	Robotic Soccer Case-Study
	Partially Observable Formulation (Chapter 3)
	Fully Observable Formulation (Chapter 5)

	Synchronous MPOMDP Case-Studies (Chapter 4)
	Multiagent Surveillance Case-Study (Chapter 7)
	Event-Driven (M)POMDP Descriptions
	Coordinative (Top-Level) Event-Driven MPOMDP
	Patrol Task Event-Driven POMDP

	Finite State Machines

	Implementation Examples for the MDM Library
	Implementing a State Layer
	Implementing an Observation Layer
	Implementing a Control Layer
	Implementing an Action Layer
	Software Location and Documentation

	References

