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Abstract
Employing a swarm of independently controlled Micro Aerial Vehicles (MAVs), instead of a

single flying robot, can increase the robustness and efficiency of many aerial coverage missions

through parallelism, redundancy and cooperation. Swarms of autonomous MAVs also show

great potential in many diverse applications. In a search and rescue mission, a group of MAVs

could quickly reach disaster areas by flying over obstacles, cluttered and inaccessible terrains,

and work in parallel to detect and locate people that are in need of help. However, swarms

of MAVs have so far mostly been demonstrated in simulation or in few real works in well

prepared environments and with the aid of external systems that are either impractical or

not always available. This is due to the multiple challenges that still remain in the design

of truly autonomous MAV teams, where on-board solutions that are independent of any

external systems and that can satisfy the strict constraints imposed on these small, lightweight,

inexpensive and safe robots are required. This thesis contributes by proposing solutions to

some of these challenges to assist with the future deployment of MAV swarms for real missions,

and in particular for search and rescue operations.

Designing a group of autonomous MAVs requires addressing challenges such as self local-

ization and relative positioning. Individual’s knowledge about their three dimensional position

is required for allowing MAVs to navigate to different points in space and to make decisions

based on their positions. Furthermore, robots within an aerial swarm need to interact with

each other and to work together towards achievement of a global goal, where knowledge

about the position of other swarm members is necessary for overcoming challenges such as,

moving in formations, avoiding inter-robot collisions, and achieving distributed search and

coverage tasks. Due to the strict constraints imposed on the MAVs in terms of size, weight, 3D

coverage, processing power, power consumption and price, there are not many technological

possibilities that could provide individuals with the self-localization and relative positioning

information without the aid of external systems. Inspired by natural swarms, where complex

cooperative behaviours are acquired from local actions of individuals that rely entirely on

their local senses, and furthermore, inspired from the sense of hearing among many animal

groups which use sound for localization purposes, we propose an on-board audio-based

system for allowing individuals in an MAV swarm to use sound waves for obtaining the relative

positioning, and furthermore, the self-localization information. We show that not only such a

system fully satisfies the constraints of MAVs and is capable of obtaining these information,

but also provides additional important opportunities, such as the detection and localization

of crucial acoustic targets in the environment. Operating during night time, through foliage

iii



Abstract

and in adverse weather conditions such as fog, dust and smoke, and detection and collision

avoidance with non-cooperative noise-emitting aerial platforms are some of the potential

advantages of audio-based swarming MAVs.

In this thesis, we firstly describe an on-board sound-source localization system and novel

methods for the innovative idea of localizing emergency sound sources, or other narrowband

sound sources in general, on the ground from airborne MAVs. For MAVs involved in a search

and rescue mission, the ability to locate the source of distress sound signals, such as the sound

of an emergency whistle blown by a person in need of help or the sound of a personal alarm,

is significantly important and would allow fast localization of victims and rescuers during

night time and in fog, dust, smoke, dense forests and otherwise cluttered environments. We

propose multiple methods for overcoming the ambiguities related with localizing narrowband

sound sources.

Furthermore, we present the on-board audio-based relative positioning system for provid-

ing individuals in an MAV swarm with information about the position of other MAVs in their

vicinity. We initially describe a passive method that exploits only the engine sound of other

robots, in the absence of the self-engine noise, to measure their relative directions. We then

extend this method to overcome some of its limitations, by proposing active acoustic signalling

where individuals generate a chirping sound similar to the sound of birds to assist others in

obtaining their positions. A method based on fractional Fourier transform (FrFT) is used by

robots to identify and extract sounds of simultaneous chirping robots in the neighbourhood.

We then describe an estimator based on particle filters that fuses the relative bearing measure-

ments with information about the motion of the robots, provided by their onboard sensors, to

also obtain an estimate about the relative range of the robots.

Finally, we present a cooperative method to address the self-localization problem for a team

of MAVs, while accommodating the motion constraints of flying robots, where individuals

obtain their three dimensional positions through perceiving a sound-emitting beacon MAV.

All methods are based on coherence testing among signals of a small on-board microphone

array, to measure the probable direction of incoming sound waves, and estimators for robust

estimation of the desired information throughout time. In addition, all solutions are indepen-

dent of any external system and rely entirely on the swarm itself.

Overall, this thesis presents innovative methods for contributing to the three challenges of

target localization, relative positioning and self localization in a swarm of micro air vehicles

using sound as the main source of information.

Key words: Aerial robots, micro aerial vehicles, multi robots, swarm, relative positioning sys-

tem, localization, search and rescue, sound-source localization, acoustic targets, microphone

array, narrowband sounds, emergency sounds, audio-based system, MAV, UAV.
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Résumé
Le fait d’utiliser une flotte de robots volant, chacun contrôlé de manière indépendante, permet

d’augmenter de manière considérable la robustesse et l’efficacité de nombreuses missions de

couverture aérienne. Ceci est dû au parallélisme des taches effectuées, à la redondance et à

leur coopération. Les flottes de robots volants, autonomes, démontrent également leurs forts

potentiels à travers des applications diverses et variées. Dans les missions de secourismes,

une telle flotte pourrait rapidement atteindre une zone sinistrée, en survolant les obstacles au

sol et les milieux denses voir inaccessibles par les voies terrestres. Cette flotte pourrait alors se

partager la zone de recherche, afin de détecter et localiser plus rapidement de potentielles

victimes nécessitant une assistance. Cependant, jusque-là, l’utilisation de ces flottes de robots

volants n’ont démontré leurs potentielles, qu’à travers des simulations ou des environnements

réels, très contraints, reposant sur des interventions humaines ou des technologies qui ne sont

pas toujours applicables à de telles situations. Ceci est dû au challenge propre à la construction

de robots vraiment autonomes, ou les systèmes embarqués doivent être indépendants de tous

systèmes extérieurs et satisfaire aux contraintes de poids, taille, prix et sureté requis pour de

telles missions. Cette thèse vient donc contribuée, à ce sujet, en proposant des solutions à

certains des challenges évoqués précédemment, afin d’assister le futur déploiement de telles

flottes dans des missions réelles, particulièrement pour celles de secourisme.

Le design d’une flotte de robots volant requiert de résoudre certains challenges tels que

l’auto-localisation et le positionnement relatif aux autres. La connaissance, par chaque ro-

bot volant, de sa position en trois dimensions, est nécessaire afin de pouvoir naviguer dans

l’espace. De plus, chaque robot volant a besoin d’interagir et collaborer avec les autres. Et ce,

en vue de réaliser certaines tâches ou la connaissance des positions des autres individus est

nécessaire, comme voler en formation ou d’assurer la non-collision entre robot, ou encore

d’explorer ou couvrir une zone de manière distribuée. Les possibilités technologiques dispo-

nibles, de nos jours, permettant l’auto-localisation et le positionnement relatif sont limitées.

Ceci est principalement dû aux strictes contraintes en termes de taille, poids, couverture en

trois dimensions, capacité des processeurs embarqués, consommation énergétique et prix,

qui s’appliquent aux robots volants, Dans la nature, des collaborations complexes ont pu

être observées, ou l’action locale de chaque individu repose entièrement sur leurs capacités

sensorielles locales. A ce titre, l’ouïe est utilisée chez de nombreux animaux pour se localiser

les uns les autres. S’inspirant de ces deux derniers points, nous proposons une solution basée

sur l’utilisation des ondes sonores, permettant à chaque robot volant de se positionner locale-

ment par rapport aux autres afin de s’auto-localiser. Nous ne nous limitons pas à démontrer,
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Résumé

ici, qu’une telle solution répond aux contraintes liées à l’utilisation de robots volants et est

capable d’obtenir ces informations. Elle offre également de nombreuses autres opportunités,

telles que la détection et localisation de cibles acoustiques présentes dans cet environnement.

Cette solution permet entre autre d’opérer de nuit, à travers des feuillages denses et dans

des conditions météorologiques difficiles, telle que le brouillard, les nuages de poussières

ou de fumées. Elle permet également de détecter et d’éviter des plateformes volantes non

coopératives, grâce au son que celles-ci émettent naturellement.

Dans cette thèse, nous commençons par décrire une méthode embarquée de localisation

d’une source sonore ainsi que la méthode innovatrice pour localiser, depuis un robot volant,

un signal de détresse émis depuis le sol. Pour un robot volant impliqué dans une mission de

secourisme, la possibilité de localiser un signal de détresse, tel que celui émis par un sifflet

ou une alarme personnelle, est d’une grande importance. Elle permettrait ainsi de trouver

rapidement des victimes ou sauveteurs et ceci quelques soient les conditions, même de nuit,

par brouillard, malgré des nuages de poussières ou de fumée, à travers une forêt dense ou

n’importe quel environnement compliqué. Nous proposons trois différentes méthodes pour

résoudre le problème d’ambiguïté lié à la localisation de source sonore.

De plus, nous présentons la méthode embarquée permettant à un robot volant de se

localiser par rapport aux autres en utilisant le son. Nous commençons par présenter une

méthode passive pour déterminer la direction des autres robots, qui utilise seulement le

bruit émis par leur moteur. Nous présentons ensuite une approche utilisant une émission

active de son émis par chaque individu, comme le font les oiseaux pour se localiser les uns

les autres. Une méthode basée sur la transformée de Fourrier fractionnaire est utilisée pour

permettre d’identifier et discrétiser les sons émis simultanément par les robots voisins. Nous

décrivons ensuite une estimation basée sur les filtres à particules qui mixe les informations

d’orientations du son émis avec la trajectoire du robot, obtenu à partir de ses propres capteurs,

pour également estimer la distance des robots voisins.

Enfin, nous présentons une méthode coopérative pour répondre aux problèmes d’auto-

localisation pour une flotte de robots volants, ou ils ajustent leurs trajectoires selon la position

en trois dimensions de la source sonore qu’ils perçoivent. Toutes ces méthodes s’appuient

sur la cohérence des mesures prises par plusieurs microphones, afin d’en déduire la probable

direction de l’onde sonore entrant et d’améliorer son estimation au cours du temps. Enfin, il

nous semble important de rappeler que toutes les méthodes présentées sont indépendantes

de systèmes extérieurs et ne reposent ainsi que sur la flotte de robots volants elle-même.

En conclusion, cette thèse présente une manière innovante de résoudre les trois problèmes

suivants : localisation d’une cible, localisation relative et auto-localisation, d’une flotte de

petits robots volants, utilisant le son comme information principale.

Mots clés : robots aériens, des micro véhicules aériens, robots multiples, essaim, système de

positionnement relatif, la localisation, recherche et sauvetage, localisation de source sonore,

cibles acoustiques, réseau de microphones, sons à spectres étroits, des sons d’urgence, le

système basé sur l’audio, MAV, UAV .
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Resumo
Usar um enxame de Micro Veículos Aéreos (MVAs) controlados independentemente, em vez

de um único robô voador, pode aumentar a robustez e eficiência de várias missões de cober-

tura aérea, atrás de paralelismo, redundância e cooperação. Enxames de MVAs autónomos

possuem também potencial em várias aplicações de diversos tipos. Numa missão de busca e

salvamento, um grupo de MVAs pode chegar rapidamente a áreas de desastre, voando por

cima de obstáculos, terrenos confuso e de difícil acesso, e trabalhar em paralelo para detectar

e localizar pessoas necessitadas de auxílio. No entanto, enxames de MVAs têm até agora sido

demonstrados principalmente em simulação ou em escassos trabalhos em ambientes reais,

nos quais o ambiente de teste é bastante controlado e auxiliado por sistemas externos que

são ou pouco práticos ou completamente indisponíveis em situações reais. Tal facto é devido

aos múltiplos desafios que ainda permanecem na elaboração de equipas de MVAs verdadeira-

mente autónomas, onde soluções com sensores a bordo de MVAs que são independentes de

quaisquer sistemas externos e que podem satisfazer as restrições rigorosas impostas sobre

estes pequenos, leves, baratos e seguros robôs são requeridas. Esta tese contribui para este

esforço, propondo soluções para alguns destes desafios, com o intuito de auxiliar a futura

utilização de enxames de MVAs para missões reais, em especial para as operações de busca e

salvamento.

Projectar um grupo de MVAs autónomos implica enfrentar desafios como auto-localização

e posicionamento relativo. Conhecimento de cada indivíduo sobre a sua posição tridimen-

sional é necessário para permitir que MVAs naveguem para diferentes pontos no espaço e

tomem decisões com base nas suas posições. Para além disso, robôs operando dentro de um

enxame aéreo precisam de interagir com outros membros do enxame e trabalhar em conjunto

para a realização de um objectivo global, onde conhecimento sobre a posição dos outros

membros do enxame é necessário para a superar desafios tais como navegação em formação,

evitar colisões inter-robô e alcançar tarefas de busca e cobertura distribuídas. Devido às

limitações rigorosas impostas aos MAVs em termos de tamanho, peso, cobertura 3D, poder de

processamento, consumo de energia e preço, não há muitas possibilidades tecnológicas que

possam fornecer os indivíduos auto-localização e informações de posicionamento relativo

sem a ajuda de sistemas externos. Inspirado por enxames naturais, onde comportamentos

cooperativos complexos são construídos a partir de acções locais de indivíduos que dependem

inteiramente dos seus sensores locais, e no sentido da audição, usado em vários grupos de

animais para fins de localização, propomos um sistema de sensores a bordo de MVAs baseado

em áudio para permitir que membros de um enxame MAV possam utilizar ondas sonoras para
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a obtenção do posicionamento relativo e, além disso, informação de auto-localização. Mostra-

mos que este sistema, não só satisfaz plenamente as limitações de MVAs e é capaz de obter

estas informações, mas também oferece oportunidades adicionais importantes, tais como a

detecção e localização de alvos acústicos cruciais no ambiente. O funcionamento durante o

período nocturno, através de vegetação e em condições climáticas adversas, como neblina,

poeira e fumo, e a detecção e prevenção de colisões com plataformas aéreas não-cooperativas

e emissoras de ruído, são algumas das potenciais vantagens de enxames de MVAs baseados

em áudio.

Nesta tese, descrevemos um sistema de localização baseado em sensores a bordo com

fonte sonora e novos métodos para a ideia inovadora de localizar fontes de som de emergência

no chão a partir de MVAs no ar. Para MVAs envolvidos em missões de busca e salvamento, a

capacidade de localizar a fonte de sinais sonoros de emergência, como o som de um apito de

emergência soprado por uma pessoa que precisa de ajuda ou o som de um alarme pessoal, é

significativamente importante e permitiria a localização rápida de vítimas e socorristas du-

rante a noite e na névoa, poeira, fumo, densas florestas e ambientes desordenados. Propomos

três métodos diferentes para superar as ambiguidades relacionadas com a localização de

fontes de som de emergência ou, em geral, fontes de som de banda estreita.

Seguidamente, apresentamos um sistema de posicionamento relativo baseado em sensores

a bordo com fonte sonora para fornecer membros de um enxame de MVAs com informações

sobre a posição de outros MVAs na sua vizinhança. Inicialmente, descrevemos um método

passivo que explora apenas o som do motor de outros robôs, na ausência de ruído dos

próprios motores, para medir as suas direcções relativas. De seguida estendemos esse método

para superar algumas de suas limitações, propondo uma sinalização acústica activa onde os

membros de um enxame MVAs geram um som semelhante ao chilrear de aves para ajudar

os outros na obtenção de suas posições. Um método baseado em Transformada de Fourier

Fraccionária (TFrF) é usado por robôs para identificar e extrair sons de chilrear de robôs

simultâneos na vizinhança. Em seguida, descrevemos um estimador baseado em filtros de

partículas que funde as medições de rolamento relativos, com informações sobre o movimento

dos robôs, fornecidas pelos seus sensores a bordo, para obter também uma estimativa sobre a

distância relativa dos robôs.

Por fim, apresentamos um método de cooperação para resolver o problema de auto-

localização para uma equipa de MVAs, que considera as restrições de movimento de robôs

voadores, onde os indivíduos obtêm suas três posições dimensionais através de perceber um

MVA que funciona como farol emissor de som. Todos os métodos são baseados em testes

de coerência entre os sinais de um pequeno conjunto de microfones a bordo, para medir a

direcção provável de ondas sonoras de entrada, e estimadores para a estimativa robusta da

informação desejada ao longo do tempo. Além disso, todas as soluções são independentes de

qualquer sistema externo e dependem inteiramente do próprio enxame.

Palavras-chave: robôs aéreos, micro veículos aéreos, sistemas de múltiplos robôs, enxame,

posicionamento relativo, localização, busca e salvamento, alvos acústicos, sons de banda

estreita, localização baseada em som, sistema baseado em aúdio, MVA, VANT.
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1 Introduction

T HE goal of this thesis is to contribute to the field of aerial robotics by proposing solutions

to some of the challenges faced in the design of autonomous swarms of Micro Air Vehicles

(MAVs). We aim at proposing new methods to assist with the future deployment of MAV swarms

for real missions and in particular for search and rescue operations. We propose novel methods

that exploit sound as the main source of information in order to allow individual robots inside

an aerial robotic swarm to obtain information about the position of themselves, information

about the position of other swarm members, and to localize interesting acoustic targets in the

environment. This chapter initially presents the background and motivation behind this work

and describes some of the challenges associated with the design of autonomous MAV swarms.

The state of the art is then reviewed describing the related work towards addressing the

mentioned challenges. Finally an overview of the thesis is provided along with a description of

the main contributions of this work.

Figure 1.1: Artistic view of audio based swarming MAVs

1



Chapter 1. Introduction

1.1 Background and motivation

Flying robots can rapidly reach areas of interest by flying over obstacles, cluttered and inacces-

sible terrains and are capable of providing elevated and bird’s eye view sensing of target areas.

Such important features make flying robots suitable for applications in many distinct science,

defence and commercial environments. In search and rescue missions and in disaster situa-

tions similar to the Japan’s 2001 earthquake and tsunami (see Figure 1.2), aerial robots could be

employed to rapidly reach target areas in order to gather first critical information and to search

for survivors until the arrival of ground units [Basiri et al., 2012]. Other applications of flying

robots include environmental monitoring [Goktouan et al., 2010], aerial surveillance and

mapping [Templeton et al., 2007], traffic monitoring [Puri, 2005] and infrastructure inspection

[Sa and Corke, 2014, Katrasnik et al., 2008].

Employing a swarm of aerial robots for exploration and coverage missions, instead of a single

flying robot, can increase the robustness and efficiency of such missions through redundancy,

parallelism and cooperation. For example, in a search and rescue mission in a wide area

incident, it is possible to obtain a rapid aerial coverage by dividing potential target areas among

multiple flying robots working in parallel. In addition, sharing resources among multiple

robots allows the development and employment of small, simple, inexpensive, robust and safe

”Micro Air Vehicles” (MAVs) for many complex tasks that either require a large, expensive and

complicated aerial platform or are beyond the ability of a single robot. Swarms of MAVs also

introduce many interesting applications such a rapidly deployable communication network

over a disaster area with damaged communication infrastructures (Figure 1.3) [Hauert et al.,

2010]. Sensing and mapping of chemical clouds [Kovacina et al., 2002, Oyekan and Huosheng,

2009], searching for forest fires [Merino et al., 2006], aerial surveillance system [Beard et al.,

2006], aerial transportation [Michael et al., 2011], building constructions [Lindsey et al., 2012]

and detecting targets of interest [Ruini and Cangelosi, 2009, Sauter et al., 2005, Yang et al.,

2005, Altshuler et al., 2008] are some of the other applications that are envisioned for MAV

Figure 1.2: Pictures of Tohoku earthquake and tsunami, illustrating the complexity of the
environments for search and rescue operations in such disaster situations. Image Credits:
Douglas Sprott, https://www.flickr.com/photos/dugspr
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1.1. Background and motivation

Figure 1.3: Swarming Micro Air Vehicles (SMAVs) could be employed to create a rapidly deploy-
able wireless communication network over a disaster area to replace damaged communication
infrastructures, allowing communication between different rescue teams and the mission
coordinator and coordinating rescue efforts [Hauert et al., 2010]

swarms.

A rapid progress in the design and control of real multi MAV systems have been observed over

the recent years [Kushleyev et al., 2013, Lindsey et al., 2012, Ritz et al., 2012, Hauert et al., 2011]

that mostly exhibit autonomous operation of real swarms inside well prepared environments

and with the aid of impractical external systems such as motion tracking cameras. Despite this

progress, multi MAV systems have rarely been used so far for real mission scenarios. Two key

challenges imposed in the design of MAV swarms that need to be considered before allowing

their use for real missions are:

1. Self Localization

2. Relative Positioning

Self Localization is the problem of estimating the MAV’s location relative to its environment.

Individual’s knowledge about their 3D position is essential for allowing MAVs to navigate

autonomously to different points in space and to make decisions based on their current

positions. Furthermore, robots within an aerial swarm are required to interact with each

other and to work together towards achievement of a desired goal. This introduces additional

problems such as inter robot collisions and formation control. A common idea that has

been addressed throughout the literature of both the natural and artificial swarms is that

individual’s knowledge about the relative position of other swarm members is essential for

achieving successful swarming behaviours [Reynolds, 1987, Pugh and Martinoli, 2006, Mataric,

1997]. For example, awareness about the relative range and/or bearing of neighbouring robots

3



Chapter 1. Introduction

Figure 1.4: Picture of a commercially available omnidirectional microphone sensor used in
some part of this work, purchased at a price of around 1 Euro, that has a radius of 2mm and a
weight of 0.04g

can allow a robot to maintain formations [Basiri et al., 2010, Moshtagh et al., 2009], and to

decrease the risk of collisions [Carnie et al., 2006], with other team members.

A solution to the mentioned challenges for a swarm of MAVs must satisfy strict constraints

imposed on the MAVs in terms of weight, size, power consumption, processing power, three-

dimensional coverage and price. These hard constraints limit many successful solutions, that

are available and are being used on ground robots or large aerial vehicles, to be transferred

to MAVs. The most common approaches used for MAVs are based on Global Positioning

System (GPS) sensors, to obtain the position of robots with the aid of GPS satellites, and a

wireless communication network between robots, to share the obtained positions with each-

other. However, GPS vulnerability is considered as one of the main problems that need to be

solved before allowing MAVs to operate inside civilian airspace [James et al., 2001, Humphreys,

2012, Conte and Doherty, 2008]. GPS technologies are exposed to jamming and interferences

[Pinker and Smith, 1999], have low update rate and resolution [Kernbach, 2013], and are

impossible to use in indoors or cluttered environments where there is no direct line of sight

with the GPS satellites [Siegwart and Nourbakhsh, 2004]. The lack of suitable solutions for self

localization and relative positioning of MAV swarms that satisfies the MAV constraints and is

independent of any external systems motivated this research study.

Inspired by natural swarms, where complex cooperative behaviours are acquired from local

actions of individuals that rely entirely on their local senses [Mataric, 1993], and furthermore,

inspired from the sense of hearing among many animal groups which use sound for localiza-

tion purposes [Muller and Robert, 2001, Pollack, 2000, Farnsworth, 2005], we hypothesized

that an on-board audio-based system is a promising solution that could potentially allow an

MAV swarm to exploit sound waves for obtaining the relative positioning, self-localization and

the autonomy required for real operations. Such a system will be based on low cost, small size,

passive and omnidirectional microphone sensors, as shown in Figure 1.4, which clearly satisfy

the mentioned MAV constraints.

We envision many potential advantages and applications for audio based MAV swarms. Firstly,

they will be based on sound waves that are independent of illumination, weather conditions

such as fog, dust and smoke, and can overcome obstacles throughout their ways, allowing

4



1.2. State of the art

the operation of the swarm in night-time and through foliage. In addition, they could be

employed to detect and locate many interesting acoustic targets in the environment. For

example a team of MAVs could be employed in search and rescue missions to quickly detect

and locate emergency acoustic sources in the area, such as the sound of a personal alarm or a

safety whistle that is being blown by a person in need of help. Furthermore, audio-based MAVs

could potentially detect, locate and avoid collision with other non cooperative noise-emitting

aerial platforms since the engine of most flying platforms already generate sound while flying.

Remote environmental noise monitoring, aerial surveillance and study of biological systems

are some of the other applications we envision for MAV swarms with hearing capabilities.

More potential applications are described later in Chapter 5.

To summarize, the lack of on-board solutions to relative positioning and localization, that is

independent of any external systems and that can satisfy the constraints of MAVs, are some

of the reasons limiting the employment of MAV swarms for real missions despite their great

potential benefits. This motivate research on a new approach, where we hypothesized that an

on-board audio-based system could be a promising solution for obtaining this information

and a great asset for localizing targets from the air, such as locating victims in a rescue mission.

1.2 State of the art

This section briefly discusses the existing approaches to the problems of self localization in

flying robots and relative positioning for multiple aerial robot systems along with a description

of their advantages and limitations.

1.2.1 Localization methods

Robot localization is a well known problem faced in the design of autonomous mobile robots,

that is described as the problem of determining the robots’ positions relative to a single

reference point. In general, robot localization methods that are addressed in the literature can

be divided into two main categories:

1. Global Localization methods

2. Local Localization methods

In global localization methods, the position of robots relative to a single global reference

frame is obtained with the assist of an external system. Using external colour vision cameras

[Altuğ et al., 2005] or infrared 3D motion tracking cameras [Lupashin et al., 2010, Valenti et al.,

2007] for indoor aerial robots, and using Global Positioning System (GPS) [Hauert et al., 2011]

and wireless positioning beacons [Corke et al., 2005] for outdoor aerial robots, are some of

the examples of global localization methods that are used in aerial robotics domain. The

advantage with solutions based on this approach is the good accuracy that they usually provide
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while having a low computational complexity. Their main drawback is the dependency on an

external system that might not always be available in reality. Deployment of motion tracking

cameras or wireless positioning beacons in the environment and in advance of each mission,

if not impossible, is both costly and time-consuming. Furthermore, GPS sensors require a

constant direct line of sight with the transmitting satellites and hence they can not be used

indoors or in cluttered areas. GPS sensors are also vulnerable to interferences and jamming

[Pinker and Smith, 1999], they have a poor vertical resolution of few tens of meters [Kernbach,

2013] and a low update rate of few updates per second. Robustness of aerial robots against

GPS failures is considered as an essential feature that must be obtained before allowing the

real operation of aerial robots inside civilian airspace [James et al., 2001].

Due to disadvantages of the first approach, much effort has been put into the design of

local localization methods, where the position of robots are obtained locally, using onboard

sensors, and independent of any external systems. In this group of methods, localization is

achieved using probabilistic techniques and by only employing on-board proprioceptive and

exteroceptive sensory information. The most common examples of this approach used on

MAVs are the vision based SLAM (Simultaneous Localization and Mapping) algorithms that

mainly use an onboard camera and an Inertial Measurement Unit(IMU) to map features in

the environment and to localize the robot throughout time [Blosch et al., 2010, Bryson and

Sukkarieh, 2007, Artieda et al., 2009, Weiss et al., 2011]. This group of methods are mostly

used for indoor aerial robots where GPS signal are not available. The main drawback with

the local localization methods is that they mainly require a high computational power and

a high data storage for operation that is not always available, specially on small scale micro

air vehicles. The need for real-time processing of high resolution and high frame-rate images,

the dependency on illumination, visual contrast, weather conditions and the limited field of

view of vision sensors and the errors caused due to the high or insufficient number of features

in the images, the long displacement between loop closings and the fast dynamic nature of

MAVs, are some of the major drawbacks of the visual SLAM methods for aerial robots [Weiss

et al., 2011, Artieda et al., 2009].

1.2.2 Relative positioning

In natural swarms, e.g., flocking in birds and schooling in fishes, individuals mainly rely on

information about the relative location of other swarm members for achieving swarming be-

haviours. Inspired from nature, several research works have shown that individual’s knowledge

of their local neighbours is sufficient for obtaining successful swarming of artificial agents

[Reynolds, 1987, Pugh and Martinoli, 2006, Mataric, 1997, Burgard et al., 2000]. In the case of

collective aerial systems, many spatial coordination methods are presented, mostly in simula-

tion, that use relative positioning information to achieve tasks such as, formation flight [Basiri

et al., 2010, Moshtagh et al., 2009, Anderson et al., 2008], mid air collision avoidance[Carnie

et al., 2006, Shim et al., 2003] and optimal dispersion for sensor coverage [Parunak et al., 2003].
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One way of obtaining the relative positioning information is to use a global localization

system, described in Section 1.2.1, alongside a communication network [DeLima et al., 2006,

Pack et al., 2006, Hauert et al., 2011]. This allows robots to obtain their positions with the

assist of an external system and then share this information with each other to compute

the relative positions. However, this method suffers from the dependency on an external

system and other limitations of global localization methods explained in Section 1.2.1. In

addition, the need for an effective communication network among all robots might result in

high communication overhead that limit the scalability of solutions [Pugh et al., 2009] and

introduces additional challenges such as routing and scheduling. Furthermore, this approach

requires active cooperation of all individuals in communicating their locations, which could

increase the chance of failures.

A more closer-to-nature solution to relative positioning is to directly measure the relative

location of other robots using only on-board exteroceptive sensors. Solutions based on this

approach are mostly developed for ground robots, that provide positions in two-dimensional

space, and rely on sensors such as laser range finders [Simmons et al., 2000], infrared sensors

[Pugh and Martinoli, 2006, Kemppainen et al., 2006, McLurkin and Smith, 2007] and cameras

[Das et al., 2002]. However, since flying MAVs require a system with low cost, small size,

low weight, low complexity and three-dimensional coverage, many of the successful systems

implemented on ground robots can not be used on MAVs. Despite this, some effort has

been done in transferring these solutions from ground robots to MAVS. Throughout the rest

of this section we summarize the current state of the art in on-board sensor-based relative

positioning systems developed for MAVs and investigate other existing sensor technologies as

potential candidates for such a system.

Laser range scanners are one of the favourites in ground-based robotics, providing accurate

planar scan of the robot’s surrounding environment that are used to estimate and track the

robot positions throughout time [Jensfelt and Christensen, 2001, Nüchter and Hertzberg,

2008, Brenneke et al., 2003]. However their bulkiness is considered as the main drawback

which stops them from being used on MAVs. A 3D laser scanner with a limited field of view of

30x40 degrees have been used in [Scherer et al., 2007] on an outdoor helicopter with a payload

of 29kgs. Mini laser range finders have been used by [Saunders et al., 2005, Kownacki, 2011],

as shown in Figure 1.5.a, for detection of large static obstacles (trees and buildings) located

directly in front of an MAV. These sensors provide accurate range measurements of obstacles

located in front of the laser beam up to a few hundreds of meters away. A major drawback of

such sensors is their single point/planar detection ability, which makes them a bad candidate

for measuring the position of other MAVs in three-dimensional spaces. Also, these sensors

are sensitive to ambient natural light and considered as power consuming sensors since they

require emission of a laser beam for operation [Hebert, 2000].

Several works show the effectiveness of optical sensors for achieving fixed-obstacle and terrain

avoidance in miniature aerial vehicles [Griffiths et al., 2006, Beyeler et al., 2009, Byrne et al.,

2006]. Few works also investigate the use of cameras along with heavy and bulky hardware
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(a) (b) (c)

Figure 1.5: a) Mini laser range finder mounted in-front of an MAV for static obstacle detection
[Saunders et al., 2005], b) Four Doppler radar transducers mounted in-front of an unmanned
aerial vehicle to monitor the UAV’s flight path for obstacles [Viquerat et al., 2008] , c) Three
cameras mounted inside the nosecone of a small aircraft for detection of other aircraft [Utt
et al., 2005]

on unmanned aerial vehicles (UAVs) for detecting the motion of other aircraft relative to the

background scene and for computing their relative directions [Utt et al., 2005, Mejias et al.,

2010]. Figure 1.5.c shows the optical cameras used in the work by [Utt et al., 2005] that is

attached in-front of a small aircraft. Systems based on such sensors have a limited field of

view and are highly dependent on light conditions and visual contrast. These systems also

greatly suffer from missed or false detections when the target is located on non-uniform or

cluttered backgrounds and also in the presence of vibrations and adverse weather conditions.

Furthermore, image processing of high resolution and high frame rate images is considered a

very computationally intensive task that require expensive and heavy hardware [Mejias et al.,

2010] that are still challenging for use on MAVs.

Radar-based systems, such as the Traffic Collision Avoidance system (TCAS), are used for

relative positioning between commercial aircrafts. Their operations are based on a transpon-

der that sends out a radio message to the transponders of nearby aircrafts asking for their

information. Once a reply message is received, it determines the range (from the time-of-flight

of the message’s round trip) and bearing (from directivity pattern of its directional antennas)

of the corresponding aircraft. TCAS systems are not suitable for small scaled aerial platforms

or MAVs as they are bulky, expensive and can only detect other transponder-equipped aircraft.

More recently, advancements in radio communication modules with highly accurate, synchro-

nized clocks has led to research in the time-of-flight range-only measurement of cooperative

wireless sensor nodes [Lanzisera et al., 2006]. But so far, these modules have not been tested

on flying platforms.

Small scale Doppler radar transducers, shown in Figure 1.5.b, are the basis of the sensor suite

proposed in [Viquerat et al., 2008] for allowing an MAV to detect the presence and measure the

relative bearing of colliding obstacles . The sensor suite has a weight of about 300 grams and
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1.2. State of the art

Figure 1.6: Sensor suit proposed by [Roberts et al., 2009] for an on-board relative positioning
system for and indoor flying team of robots. This sensor suit weights ≈ 400 grams and consists
of 160 IR transmitters and 48 photo diodes and is capable of providing accurate 3D range and
bearing inside a range of 10 meters.

power consumption of 3.7 watts. However, having a small field of view of (30o), a low angular

resolution of (15o) and a small operating range of 10 meters are some of the major drawbacks

of this system.

Few recent works also show the use of ultrasound distance-measuring sensors on MAVs for

measuring the altitude and/or avoiding collisions with large static obstacles in small indoor

environments [Muller et al., 2014, Becker et al., 2012]. Similar to Doppler radar transducers,

such sensors also consist of a transmitter and a receiver, and they operate by measuring the

time difference between the time of transmission of a pulse of ultrasound wave and the time

of receiving its echo reflected from a solid surface. These sensors are small and light-weight

and suitable for using on MAVs. However, small working range (< 10m), small field of view

(35o) and the dependency on the shape, density and material of detecting objects are some of

the major disadvantages of ultrasound sensors, making them unsuitable for measuring the

distance to other small scale micro air vehicles in three dimensional space.

To our best of knowledge, the only totally onboard relative positioning systems demonstrated

for actual MAV teams are based on infra-red (IR) sensors [Melhuish et al., 2002, Roberts et al.,

2009] and are used for indoor flying robots. The sensor suit proposed by [Roberts et al., 2009],

illustrated in Figure 1.6, have been shown to provide accurate three dimensional relative range

and bearing estimations, within a 10 meters range. This sensor suit consist of a total of 208

IR transmitters and receivers and it has a weight of ≈ 400g , a size of 50×50cm and a power

consumption of 10 watts. Some drawbacks with an IR based solution is the requirement

of a direct line of sight between the transmitting and the receiving modules and the cross

interference between the sensors. Furthermore, these sensors are not suitable for MAVs

operating in outdoor or large indoor environments due to their short working range.
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1.3 Main contributions

This thesis proposes new solutions to address some of the challenges faced in the design and

deployment of MAV teams for real missions, and in particular for search and rescue operations

where teams of MAVs can be a crucial asset for fast recovery of victims and for saving human

lives. We aim at proposing an on-board solution for swarm of MAVs, and novel methods for the

three challenges of: target localization, relative positioning and self localization; where there is

currently a lack of technological possibilities that could provide this information independent

of any external systems while accommodating the strict constraints of micro aerial vehicles.

We propose the novel concept of exploiting sound to obtain the required on-board sensor

suite and strategies for addressing these challenges.

More specifically, this thesis contributes with:

• an on-board acoustic source localization system suitable for detection and localization

of acoustic sources in the environment from airborne MAVs.

• proposing the innovative application of locating emergency acoustic sources from flying

MAVs that could be crucial for search and rescue and/or aerial surveillance missions.

• novel methods for localization narrowband sound sources and overcoming the high

ambiguity associated with localizing these type of sources.

• an on-board sensor suite and methods for allowing individuals in an MAV swarm to

directly measure the relative bearing of other robots in the vicinity and estimators to es-

timate their relative locations, considering the current lack of technological possibilities

that can be used on these small scale flying robots.

• a cooperative method for allowing individuals in a swarm of MAVs to obtain their three

dimensional position, all relative to a single reference point, without the need of a

communication network and independent of GPS and other external systems, while

accommodating the motion constraints of flying robots.

The proposed solutions are all tested on actual flying robots in order to validate each method.
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1.4 Objectives and thesis overview

The objectives of this thesis are closely related to the three challenges, described in the previous

section, for designing truly autonomous MAV swarm, which also correlate with the thesis

chapters.

• Chapter 2: Localization of emergency sound sources on the ground

The first objective is to develop a strategy for providing individual MAVs with the ability

to detect and localize narrowband sounds, such as emergency sound sources, on the

ground with the aim of assisting rescuers in a search and rescue mission with fast

localization and recovery of victims. This chapter initially describes an onboard sensor

suite and methods for detection and measuring the direction of incoming sound waves.

It then explains the limitations in localizing narrowband sounds and proposes multiple

methods for tackling these limitations. It is shown how different sources of information,

such as the Doppler shift in the sound frequency, caused due to the motion of the MAV,

the motion dynamics of the flying robot, and the behaviour of the robot itself can be

employed to obtain accurate localization estimates.

• Chapter 3: Audio-based relative positioning for multiple micro air vehicle systems:

The second objective is to obtain an on-board solution for allowing individual robots

to locate other swarm members in their vicinity. In this chapter, firstly, an on-board

audio-based relative bearing measurement system is described. For this, a method that

exploits the engine sound of other flying robots, in the absence of the self-engine noise,

is proposed. Furthermore, the method is extended to achieve a longer detection range,

to relax the self-engine noise constraint, and to identify the identity of the robots. A

position estimator is then described to robustly estimate the relative range and bearings

from the direction measurements. In this chapter, methods such as Fractional Fourier

Transform(FrFT), time-delay of arrival direction estimation (TDOA), and particle filters

are employed for sound source separation, relative direction measurement and relative

position estimation, respectively.

• Chapter 4: Audio-based localization for swarms of micro air vehicles:

The third objective is to propose a method for obtaining self-localization of individuals

in an MAV swarm that is independent of any external systems. This chapter describes

a method based on the cooperation of robots for obtaining the three-dimensional

positioning information. Here it is shown how moving individuals can use their on-

board audio based sensor suite to measure the relative direction of a sound-emitting

beacon MAV and furthermore use these bearing-only measurements to obtain their

three-dimensional positions throughout time and without the need of any communica-

tion network. In particular, we propose a solution that can accommodate the motion

constraints of flying robots and we demonstrate it on fixed wing robots that are not able

to stop or turn in-place and must always maintain a forward speed for remaining aloft.
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• Chapter 5: Conclusion:

Finally, Chapter 5 summarizes and concludes the thesis. In this chapter, firstly the

main accomplishments of this thesis work is described. Secondly, multiple potential

applications for the described methods, and in general for swarms of micro aerial

vehicles with hearing capabilities, is proposed. The chapter concludes by providing

some possible future work towards improvement of the propositions provided in this

work.

1.5 Publications during thesis work

Parts of this thesis was published in the following publications:

• Basiri, M., Schill, F., Lima, P., and Floreano, D. (2012). Robust acoustic source localization

of emergency signals from micro air vehicles. In IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 4737 –4742

• Basiri, M., Schill, F., Floreano, D., and Lima, P. U. (2013). Audio-based relative positioning

system for multiple micro air vehicle systems. In Proceedings of Robotics: Science and

Systems, Berlin, Germany

• Basiri, M., Schill, F., Floreano, D., and Lima, P. U. (2014a). Audio-based localization for

swarms of micro air vehicles. In 2014 IEEE International Conference on Robotics and

Automation (ICRA), Hongkong

papers submitted or under submission for possible publication:

• Basiri, M., Schill, F., Lima, P. U., and Floreano, D. (2014b). Localization of emergency

acoustic sources by micro aerial vehicles. Under review in IEEE Transactions on Robotics

• Basiri, M., Schill, F., Lima, P. U., and Floreano, D. (2015). Onboard audio-based relative

positioning system for teams of small aerial robots. Under submission
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2 Localization of emergency sound
sources on the ground

I N search and rescue operations, Micro Air Vehicles (MAV’s) can assist rescuers to faster

locate victims inside a large search area and to coordinate efforts of rescue teams. Acoustic

signals play an important role in outdoor search and rescue missions. Personal alarms and

safety whistles, as found on most aircraft life vests, are commonly carried by people engaging

in outdoor activities, and are also used by rescue teams, as they allow transmission of a distress

signal reliably over long distances and far beyond visibility. Such sources generate a loud

narrowband sound signal, suitable for long range detections, that is difficult to localize by

human listeners. For an MAV involved in a search and rescue mission, the ability to locate the

source of a distress sound signal, such as the sound of an emergency whistle blown by a person

in need of help, is significantly important and would allow fast localization of victims and

rescuers during night time, through foliage and in adverse weather conditions such as dust,

fog and smoke. In this chapter we present a real-time on-board sound source localization

system for MAVs to autonomously locate emergency acoustic sources on the ground, such

as the sound of a safety whistle or a personal alarm. We propose three different methods for

localizing emergency sources with MAVs that are based on measuring the coherence between

signals of four spatially separated on-board microphones. The first method involves designing

an emergency sound source that allows immediate localization by the MAV while relying

only on acoustic information. The other two methods allow localizing currently available

emergency sources that are difficult to localize due to the high ambiguity associated with

localization of narrow-band sounds. The second method uses a particle filter to combine

information from the microphone array, the dynamics of the MAV, and the Doppler shift in

the sound frequency caused due to the motion of the MAV. The third method involves actively

controlling the robot’s attitude and fusing acoustic measurements with attitude measurements

for achieving accurate and robust estimates. Furthermore, we evaluate our methods in real

world experiments where two types of flying micro air vehicles are used to locate and track a

narrowband sound source on the ground.
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Chapter 2. Localization of emergency sound sources on the ground

2.1 Introduction

The main objective of a search and rescue mission is to quickly locate and extract victims from

the disaster situation. A search effort in rough outdoor terrain can be very time consuming

and physically challenging, and keeping track of the positions of multiple rescue teams in a

large area without communication infrastructure can be an additional problem. Autonomous

Micro Air Vehicles (MAVs) can assist rescuers to faster locate victims in a large search area,

and help coordinate rescue efforts by reporting the location of rescue teams to the mission

coordinator [Hauert et al., 2010]. They can directly reach potential target areas by flying over

obstacles, cluttered and inaccessible terrains, and hence achieve area coverage faster than

ground units. Furthermore, by employing a swarm of aerial robots and dividing potential

target areas among them, it is possible to further increase the searching speed and obtain

scans of large areas quickly. Locating human victims from aerial robots have raised the interest

of few researchers over the recent years [Andriluka et al., 2010, Goodrich et al., 2008, Gaszczak

et al., 2011, Reilly et al., 2010]. Almost in all related works, the detection of people has been

investigated through images obtained from vision sensors.

Sound is one of the most important cues for locating people in a disaster situation. Sound

waves travel in all directions and can be detected at long distances from the sound source,

and beyond line of sight. During night time or in fog, dust, smoke, dense forests or otherwise

cluttered environments, acoustic signals are far more reliable than visual cues. This is the main

motivation behind the use of personal alarms and safety whistles in most survival kits and

disaster preparedness supplies offered today. Safety whistles are an inexpensive and effective

method for emitting a distress signal in emergency situations, and are also commonly used for

basic signalling when noise or distance makes voice communication difficult. They are often

used by people engaging in outdoor activities, such as hikers, mountaineers, skiers, boaters

and scuba divers, and are commonly provided with airplane life vests. These whistles enable

the user to generate a very loud and clear narrow-band sound (usually a pure tone between 2-5

kHz), which can be perceived distinctly from long ranges and in noisy environments, without

making the signaller hoarse and exhausted. There is usually little environmental noise in

the multi-kilohertz range, which enhances detectability. However, a disadvantage of high-

frequency, narrow-band sounds is the difficulty for human listeners to correctly locate the

direction of the source [Stern et al., 1988]. Similarly, personal alarms are capable of generating

a loud high frequency narrowband sound signal with frequencies around the piezo element’s

resonance frequency. In addition, with the advancement of mobile phones and hand-held

computers, applications for emitting distress signals through the device speakers is not out

of reach, where a loud sound signal could be produced by focusing the power into a narrow

frequency band.

The aim of this chapter is to develop an audio-based localization system for MAVs to locate

and track emergency acoustic sources on the ground, while satisfying the strict constraints

imposed on MAVs in terms of size, weight, processing power and electrical power consumption.

Such a system could also provide a simple way of interaction between human operators and
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MAVs. For example, a rescue team could easily signal its position to the mission coordinator by

using specific whistle signals, or an operator could command robots to land in a desired spot.

Other potential applications include aerial surveillance and environmental noise monitoring.

In the next chapters we show how this system could further be exploited to address relative

positioning and localization problems for the design of multi-MAV systems.

Hearing has always been one of the key senses among humans and animals allowing them to

use sound for attracting attention, communication and localization purposes. Despite this,

audition in robotics has not received great attention compared to vision, and most studies on

this focus on speech recognition and localization of talkers for home, office, and humanoid

robots [Matsusaka et al., 1999] [Okuno et al., 2002] [Nakadai et al., 2000]. In most works, a

technique inspired by animal hearing called Inter-aural Time Difference (ITD) (also known as

Time Difference of Arrival TDOA) is used for localizing sound sources. This method is based on

measuring the time delay, caused by the finite speed of sound, between the signals perceived

by two spatially separated microphones to estimate the direction of incoming sound waves.

While the complex hearing capabilities of animals achieve good performance with only one

pair of acoustic sensors, technical systems often use arrays of microphones for assisting robots

in locating broadband sound sources in the environment [Valin et al., 2003]. In this chapter,

we propose solutions relying on the TDOA method for localizing narrowband sounds and

for designing an emergency source localization system for MAVs based on a small, compact

and on-board array of low cost electret microphones. Design of new acoustic sensors that

could also be used on MAVs have been investigated in some recent works [Ruffier et al., 2011]

[de Bree et al., 2010].

In the TDOA sound source localization method, the time delay between signals of a micro-

phone pair is generally estimated using cross-correlation. A problem faced with this approach

is that it requires the sound source to be a broadband source [Buchner et al., 2005] and it

fails to estimate the correct time delay for narrowband sounds. This is because with narrow-

band sounds there is an ambiguity in the time delay estimations which results in ambiguous

direction estimation, i.e. coherence testing among the signals from different microphones

no longer provides a unique time delay. This problem is particularly pronounced for higher

frequencies.

We propose three different strategies for an MAV based emergency source localization system

and for overcoming the problems with localizing such narrowband sound sources. A detailed

explanation of each method is explained throughout this chapter.

• The first method consists of designing an emergency acoustic source, based on a piezo

transducer, that generates a sound wave that can be localized immediately from the

microphone signals. This is achieved by fast modulation of the sound frequency around

the resonance frequency of the piezo element, for increasing the frequency bandwidth,

and a modified TDOA estimation for obtaining a unique source direction.
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The second and third methods investigate localization of existing emergency sources, or

narrowband sources in general, where the TDOA method alone fails to correctly localize the

source.

• The second method exploits the fast motion of the MAVs and the Doppler shift in

the sound frequency, caused due to this motion, for resolving the ambiguous TDOA

direction estimates. This is more suitable for fixed wing type of MAV’s as they always

need to maintain a forward speed for staying airborne.

• In the third proposed method we explain how in-place changing of the attitude by the

flying robot could allow the robot to correctly locate narrowband sound sources. This is

more suitable for rotorcraft MAVs such as quadrotors since they are capable of hovering

and turning in place.

In both latter methods, our strategy is to use the ambiguous TDOA information along with

other sources of information in order to obtain a more reliable estimate. For this, particle

filters are employed, also known as sequential Monte Carlo method [Gilks et al., 1996]. Particle

filtering is considered a powerful tool for handling localization, navigation and tracking

problems [Doucet et al., 2001]. Few works show the effectiveness of particle filtering for

tracking wide-band sound sources inside reverberant environments [Ward et al., 2003],[Asoh

et al., 2004]. The work presented in this chapter focuses on the tracking of narrowband and

single-frequency sound sources, proposes novel methods to incorporate acoustic informations

and vehicle dynamics in a particle filter framework, and presents experimental results.

This chapter is organized as follows: Section 2.2 describes the TDOA localization method and

explains the limitations in locating narrowband sound sources. The definitions and equations

used throughout this chapter and parts of other chapters are described here. Section 2.3

explains the three proposed methods for an audio-based localization system for MAVs for the

purpose of locating emergency acoustic sources. In Section 2.4 results of real experiments for

each proposed methods are provided, where two types of flying MAVs are used to locate and

track the location of emergency sound sources in the environment. Section 2.5 concludes the

chapter, providing also clues for future work.

2.2 TDOA sound source localization

In TDOA localization an array of spatially separated microphones is used for estimating the

3D direction to a sound source. Due to finite speed of sound, incoming sound waves are

picked up by the microphones at different times. By comparing the microphone signals and

obtaining the time delay between them, it is possible to estimate the direction of arrival of the

sound wave. TDOA localization can be divided into two main parts:

1. Coherence measuring
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2.2. TDOA sound source localization

Figure 2.1: Illustration of a sound field consisting of two microphones (i ),( j ) and a single
sound source S. The microphones are placed on an MAV and dm meters apart from one
another. Vector u is a unit vector in the body-fixed coordinate system (x, y, z) pointing towards
the sound source S.

2. Direction estimation

A detailed explanation of each part is provided throughout the rest of this section.

2.2.1 Coherence measuring

For a pair of spatially separated microphones i , j that experience sound waves from a common

sound source S (as illustrated in Figure 2.1), a time delay τi j exists between their reception of

the sound signal. This time delay is dependent on the angle θ between the sound wave-front

and the microphone pair’s baseline direction, and it can be approximated by considering the

far field assumption (ds >> dm):

τi j ≈ dmcosθ

c
(2.1)

where dm is the distance between the microphones, c is the speed of sound. Thus the time

delay τi j lies within the range:

−dm

c
< τi j < dm

c
(2.2)

Cross correlation is a commonly used technique for measuring the coherence and obtaining

the time delay between two signals. Cross correlation between the digitized sequences of two

17



Chapter 2. Localization of emergency sound sources on the ground

microphone signals pi [n],pi [n], each having a length of N samples can be computed by

Ri j (τ) =
N−1∑
n=0

pi [n] p j [n −τ]

where pi [n] is the signal perceived by microphone i and τ is the correlation lag in samples

in the range expressed by Equation (2.2). In order to reduce the computation time, the cross

correlation function can be obtained in the frequency domain by computing the inverse

Fourier transform of the cross spectrum:

Ri j (τ) =
N−1∑
k=0

Pi [k]P∗
j [k]ei 2πkτ

N (2.3)

where Pi (k) is the discrete Fourier transform of pi (n) and P∗
j denotes the complex conjugate

of P j . This results in a reduction of complexity from O(N 2) to O(N log N ), making it more

suitable for on-line computations.

The correlation value Ri j (τ) reaches a maximum value at τ = τi j . The shape of the cross

correlation Ri j is dependent on the statistical properties of the sound signal itself. If the sound

source is an ideal white noise then Ri j is equal to an impulse function transposed by τi j .

However, if the sound source is a band limited white noise, Ri j no longer has an impulse

shaped peak but instead it has a more broadened peak centred at τi j . The actual shape of the

correlation Ri j can be described mathematically by [Ferguson, 1999]

Ri j (τ) = Pa
sin(πB(τ−τi j ))

πB(τ−τi j )
cos(2π f0(τ−τi j )) (2.4)

where B is the bandwidth of the signal, f0 is the centre frequency of the bandwidth, and Pa is

the signal power. As the bandwidth approaches zero, i.e. the sound source is a pure sinusoid

with frequency f0, the correlation Ri j becomes a periodic sine wave with peaks of the same

amplitude and period of 1/ f0. This makes the identification of the peak corresponding to the

correct time delay ambiguous. Figure 2.2 shows cross-correlations in a simple sound field

case explained in Figure 2.1, for three different sound sources. It can be seen that the cross

correlation of narrowband sounds from a whistle and a piezo alarm contain multiple peaks;

hence making it impossible to identify the true time delay.

One method to tackle the time delay ambiguity problem for narrow-band sound sources is

to simply decrease the distance between the microphones in order to avoid multiple cross

correlation peaks. To obtain a single cross-correlation peak, the microphone pair’s inter-

distance must satisfy

dm < c

2 f0
(2.5)

However, the angular resolution of a microphone array for a given sampling frequency de-

creases for smaller distances between the microphones and as we are interested in locating
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Figure 2.2: Cross-correlations for three different sound sources. The power spectral density of
every sound source is shown in graphs(a-c) and their corresponding cross correlation is shown
below each graph (d-f). The three sound sources are: (a) air blower (b) emergency whistle (c)
piezo alarm

high frequency sounds, this would lead to poor estimations.

2.2.2 Direction Estimation

We explained previously how cross correlation could be used to obtain a measure of similarity

between signals of a microphone pair. Here, we will explain how the measure of similarity

for an array of microphones could be used along with knowledge of the microphone array’s

geometry to estimate probable sound source directions.

Let’s consider the sound field scenario in Figure 2.1 and let’s initially assume that the sound

source S is a broadband source that leads to a unique time delay τi j when correlating signals

of microphones (i ),( j ). Considering the far field assumption (ds >> dm), and using Equation

(2.1), it is possible to approximate:

cosθ = cτi j

dm
(2.6)
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Also, from the cosine law it is possible to derive:

cosθ =
−→x i j .−→u

dm
(2.7)

where −→u is a unit vector pointing towards the sound source. By combining Equations (2.6)

and (2.7) we get

−→x i j .−→u = cτi j (2.8)

In three dimensional space and by considering a body-fixed coordinate system that is attached

to the MAV’s frame, the vectors −→u and −→x i j are defined as

−→u = (ux ,uy ,uz )
−→x i j = (mi x −m j x ,mi y −m j y ,mi z −m j z )

= (mi j x ,mi j y ,mi j z ) (2.9)

where (mi x ,mi y ,mi z ) are the coordinates of microphone i . To solve for a unique 3D direction
−→u , from (2.8), a minimum of three microphone pairs that are not all located on the same plane

is required.

A simple and powerful method for estimating the source direction from the coherence mea-

surements, known in the literature as Global Coherence Field(GCF)[DiBiase et al., 2001] is to

simply compute the sum of cross correlation values, of all the microphone pairs, for every

plausible direction −→u .

B(−→u ) = ∑
∀pai r s

Ri j
(
τi j (−→u )

)
(2.10)

where τi j (−→u ) is the expected time delay for pair i , j , if the source was in direction −→u , and is

computed from Equation (2.8). In case of broadband sources, the direction of the source can

be derived as the direction that maximizes B(−→u ).

An alternative method for computing the direction towards a broadband source is to firstly

find the τMi j that maximizes Ri j and then to use the least square search method to compute

the direction that best fits the set of time delays for all pair combinations. From (2.8) and (2.9)

a linear system of N equations can be obtained when N different microphone-pairs are used:

Au = b (2.11)
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2.2. TDOA sound source localization

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m12x m12y m12z

m13x m13y m13z

m23x m23y m23z
...

...
...

mi j x mi j y mi j z

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

2

3
...

N

u =

⎡
⎢⎣

ux

uy

uz

⎤
⎥⎦b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cτM12

cτM13

cτM23
...

cτMi j

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.12)

The system of Equations (2.11) can be used to compute a unique solution u if three or more

microphone-pairs exist which are not all on the same plane. A value for u that best satisfies

the system of Equations (2.11) can be estimated using the linear least square method [Lawson

and Hanson, 1995]

ul s = (AT A)−1 AT b (2.13)

to minimize the sum of the squared errors

εr =
∑

(Aul s −b)2 (2.14)

Both explained methods for direction estimation provide a unique solution in the case of a

broadband sound source as there is a single global maximum in the correlation for each pair.

The least square (LS) method is less computationally complex and hence more suitable for

real-time applications. However, as it only considers the maximum correlation point for every

microphone pair it is considered to be the weaker approach and its accuracy is shown to drop

for low signal to noise situations [Brutti et al., 2008a]. Throughout this work both methods

were used. The LS method was chosen initially for fixed-wing type robots as their fast speed

requires a faster solution and also since by reducing their engine power and gliding, they are

capable of increasing the signal to noise ratio. The GCF was used in rotor craft type of robots

as they suffer more from engine noise.

In Section 2.2.1 it was shown that coherence measuring for narrowband sounds leads to

multiple peaks in the cross correlations. This also results in multiple global maximum in

the sum of cross correlation value B(−→u ), in Equation (2.10), and hence multiple potential

directions to the sound source could be interpreted. Figure 2.3 shows the normalized values

of B(−→u ) for a narrowband sound of 5kHz obtained with a tetrahedral microphone array of

length 18 cm and for all feasible directions −→u . Furthermore, the LS method cannot be used as

there are more than one time delay that maximizes each cross correlation. In later sections

we describe methods for overcoming this problem. Our strategy is to take into account all

potential directions and fuse this information with other sources of information available

to obtain the correct direction. In Section 2.3.2.2 the value of B(−→u ) is directly used as the

likelihood that direction −→u is pointing towards the sound source. In Section 2.3.2.1, the

LS method is used instead to derive a set of potential source directions. This is achieved by
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Figure 2.3: Normalized values of B(−→u ), shown by colors, for a narrowband sound of 5kHz
obtained with a tetrahedral microphone array of length 18 cm. Each cell on the unit sphere
represents a direction that is defined by a vector starting from the origin and ending on the
cell.

computing the source direction ul s and error εr , for all possible time delay combinations using

Equations (2.13) and (2.14). Those values of ul s that have the lowest errors are considered as

potential directions towards the sound source. Hence, a set of possible source directions is

obtained:

{uk ,k = 1 : M } (2.15)

where M is equal to the number of corresponding peaks among microphone pairs.

2.3 Localization of emergency acoustic sources

In the previous section we described how an on-board microphone array could be used to

obtain information about the direction of a sound source relative to an MAV. We furthermore

explained the limitations of obtaining a unique and accurate direction estimate for existing

emergency acoustic sources emitting a narrowband sound signal. In this section we will

explain the three proposed methods for having an audio-based localization system, suitable

for MAVs, for the purpose of locating emergency acoustic sources.
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2.3. Localization of emergency acoustic sources

2.3.1 Design of an emergency acoustic source

A simple and effective solution for designing an emergency source localization system for

MAVs is to simply design an acoustic source that facilitates the TDOA localization process by

resulting in a unique time delay when measuring the coherence between the microphone sig-

nals. This would allow the robot to obtain a unique and instantaneous bearing measurement

to the target while only relying on acoustic information. Multiple criteria were considered for

designing such a source. Similar to other emergency acoustic devices, it should be easy to use

and to carry by human operators. It has to generate a loud sound that can be picked up from

long distances by both human ears and the MAV’s on-board microphones. The sound’s fre-

quency should also be in the multi-kilohertz range to enhance detection against low frequency

environmental, wind and the engine noise of the robots. For this, a piezo based device was

developed. Piezo transducers are simple, inexpensive and lightweight devices that are already

used in most personal alarms. Piezo transducers generate sound by converting electrical

pulses into mechanical vibrations. The resulting sound can be very loud if the frequency of

the vibrations are close to the resonance frequency of the piezo element. To generate a loud

sound wave that is required here and furthermore to obtain a unique global maximum in

the cross correlations, a driving circuit based on a micro controller was designed to produce

a continuous and band-limited periodic linear chirp signal around the piezo’s resonance

frequency. The instantaneous frequency of this signal is computed from

f (t ) = FH − FH −FL

ΔT
mod

(
t

ΔT

)
(2.16)

where FH and FL are the highest and lowest frequencies of the chirp, that is found empirically

as the limits above and below the piezo’s resonance frequency where the output sound power

is still above a certain threshold which is suitable for long range detections. ΔT is the duration

of a single chirp that is chosen to be equal to the length of the time window used in the

coherence measuring, i.e. ΔT = N /Fs where Fs is the sampling frequency and N is the number

of samples used for coherence measuring. Figure (2.4) shows the spectrogram of a sound

recording from this source illustrating the change in the sound frequency.

On the perceiving end, a template of the chirp that is stored in the memory is used by the

robot to detect the presence of this sound source in the environment. This is achieved by

continuously cross correlating the template signal with one of the microphone signals. When

a good coherence is detected, it can be concluded that the sound is from the desired source.

Once the sound is detected, the TDOA method explained previously is employed to estimate

the direction towards the sound source. However, as the output sound power is not uniform

for all the frequencies of the chirp and the sound is also significantly louder at the resonance

frequency, it results in a non equal contribution of the frequencies when computing the

cross correlation using Equation (2.3). This could lead to multiple wide correlation peaks. A

weighting function was introduced into Equation (2.3) by [Knapp and Carter, 1976] in order to
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Chapter 2. Localization of emergency sound sources on the ground

Figure 2.4: Spectrogram of one second of sound recoding from the proposed piezo based
emergency source. The individual chirp duration ΔT is equal to ΔT = N /Fs , where N is the
number of samples used in the coherence measuring and Fs is the sampling frequency. In this
work N = 1024, Fs = 40kHz and ΔT = 25.6ms

solve the problem of wide cross correlation peaks in broadband sound localization. This is

achieved by whitening the cross-spectrum of the signals and allowing equal contribution of

all frequencies in the cross correlation. A modified version of this weighting function is used

here instead to allow dampening the resonance frequency and providing equal contribution

of the entire chirp frequencies:

Ri j (τ) =
N−1∑
k=0

χ

[
Pi P∗

j

|Pi |
∣∣P j

∣∣
]

ei 2πkτ
N (2.17)

χ=
{

1 fL < f < fH

0 otherwise

Result of experiments using this method is presented in Section 2.4.1.

2.3.2 Localizing ambiguous narrowband sources

The previous section described the developing of a new sound source and the TDOA based

localization system that results in immediate localization by the MAVs depending entirely

on sound waves. However, it is of interest that MAVs can also detect and locate the currently

available narrowband emergency sources, such as whistles or personal alarms, that lead to

ambiguous TDOA measurements. In this section we describe two different estimators for

locating such sources. Both estimators employ particle filters for fusing TDOA measurements

with other sources of information in order to recursively estimate the probability density of

the target location. Information sources such as the behaviour of the MAV in time, provided

by on-board proprioceptive sensors, TDOA measurements available up to the current time

and the Doppler shift in the sound frequency is used to obtain reliable and accurate direction

estimates. The general algorithm of the proposed particle-based estimators [Doucet et al.,
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2.3. Localization of emergency acoustic sources

1. Initiate a set of N particles with equal weights:
Si (0) = {

(−→ui (0), wi (0) = 1/Np
)

: i = 1,2, ..Np }

2. Repeat for every data frame:

(a) Prediction: Predict a new set of particles S̃i (t ) from Si (t−1) using the prob-
abilistic motion model of the MAV and on-board proprioceptive sensors.

(b) Update: Update the weight wi of every particle by finding the likelihood of
acquiring audio-based measurements y(t) given the particle’s predicted
state. wi (t ) = p(y(t )

∣∣ ũi (t )).

(c) Normalize wi to have
N∑

i=1
wi = 1.

(d) Estimate the target direction, and a reliability measure for this estimation,
from the probability density function represented by the particle set.

(e) Form particle set Si (t) by re-sampling S̃i (t) according to the weights of
particles.

Table 2.1: General algorithm of the proposed particle-based estimator for estimating the
direction of ambiguous narrowband sounds

2001], illustrated in Table 2.1, is described here. More details of each estimator is provided in

the following subsections.

At time instant t , all the hypotheses about the target’s direction is modelled using a set of Np

particles of direction vectors −→ui (t ) and weight wi (t ):

Si (t ) = {
(−→ui (t ), wi (t )

)
: i = 1,2, ..Np } (2.18)

where −→ui = (uxi ,uyi ,uzi ) is a unit vector in the body-fixed coordinate system that starts at the

origin and points towards a direction. −→ui can also be described in the body-fixed spherical

coordinate system (r, � φ, � θ) by:

−→ui = (1,φi ,θi ) i = 1,2, ..Np (2.19)

where φi is the azimuth defined in the range [−π,π] and θi is the elevation defined in the

range [−π/2,π/2]. The estimators start by forming an initial set of Np particles Si (0) with

uniform weights wi (0) = 1/Np . Particles either could be generated uniformly over the entire

state space, or only over a desired part of the state space if some prior knowledge about the

possible location of the target is available. In the proposed problem of localizing targets on

the ground from a flying MAV the initial state space is reduced to all vectors pointing towards

the ground.

Prediction and Update are the two main recursive steps of the particle based estimators. In the
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Chapter 2. Localization of emergency sound sources on the ground

prediction step, a set of new particles S̃i (t ) is predicted by propagating the states of Si (t −1)

according to a probabilistic motion model. This is achieved by transforming the vectors −→ui (t −
1) to

−→̃
u i (t ) using the information gathered from the MAV’s on-board proprioceptive sensors

indicating the change in the state of the MAV. In the update step, acoustic measurements

are employed to investigate the likelihood of obtaining these measurements for all particles,

and particles are then weighted according to this measure. Furthermore, at each time step,

particles are re-sampled according to their weights and a direction to the target is estimated

from the probability density function represented by the particle set. Detailed description of

the mentioned steps for both proposed estimators are provided in the following subsections.

2.3.2.1 Exploiting the motion of the MAV

The first estimator was initially designed to address the problem of emergency source localiza-

tion using fixed wing type of MAVs. These MAVs always need to maintain a forward motion

in order to stay airborne. The idea here is to make use of this motion to obtain a unique and

accurate direction estimate for narrowband sounds. Due to the relative speed between the

MAV and the target, the perceived sound’s frequency is different from the source’s frequency.

This is known as the Doppler effect. The relationship between the frequency f0 of the sound

source and the observed frequency f is defined by the equation:

f = f0
c + vo

c + vs
(2.20)

where c is the speed of sound, vo and vs are the components of the observer and the sound

source velocities that is relative to each other. With the assumption of knowledge about the

source frequency f0, Equation (2.20) can be used to obtain a measure of the relative speed

vr = (vo − vs) between a moving MAV and the stationary sound source vs = 0:

vr = c(
f

f0
−1) (2.21)

where f is measured by searching for the maximum peak in the power spectral density of

the sound measurements inside the range f0 − fm < f < f0 + fm , with fm being the maximum

possible shift in frequency. fm is obtained from the absolute speed vR of the MAV

fm = vR

c
f0 (2.22)

Furthermore, existence of a peak within the defined range is used for detecting the presence

of a source in the environment prior to executing the localization algorithm.

The model used for the prediction step of the estimator assumes that the robot has only

forward motion (i.e. along the x axis on the body-fixed coordinate system), and the target

is located on the ground, i.e. at zero height(see Figure 2.5). The prediction procedure starts

by estimating a target distance di for every particle based on the MAV’s current height and
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v    t 

u (t-1)i

h h
T (t-1)i

d i T (t)i

Figure 2.5: Position of a robot in two successive time steps along with the vectors used in the
prediction step of the particle based estimator.

orientation:

di = h

cos � (−→u i (t −1),
−→
h )

(2.23)

where � (−→u i (t −1),
−→
h ) is the shortest angle between vectors −→u i and the height vector

−→
h . From

(2.19) and (2.23), it is possible to construct a vector Ti that extends the unit vector −→u i until it

reaches the ground.

−→
T i (t −1) = (di ,φi ,θi ) (2.24)

This vector is then propagated by taking into account the translation and rotations of the

body-fixed coordinate system due to the speed −→v and the change in the yaw (Δλ), pitch (Δβ)

and roll (Δα) angles of the MAV.

−→
T i (t ) = R(Δλ,Δβ,Δα)(

−→
T i (t −1)−−→v Δt ) (2.25)

where Δt is the time interval between the updates and R is a rotation matrix representing the

rotations of the MAV. Finally, to account for the uncertainty in the predictions, a vector
−→̃
u i is

randomly generated from the set of all possible direction vectors with constraint:

� (
−→
Ti ,

−→̃
u i ) ∼ N (0,σA) (2.26)

where N (0,σA) is a normal distribution with mean zero and standard deviation σA . The value

of σA is chosen in relation with the accuracy of the model that is used. The random 3D vector−→̃
u i , that satisfies constraint (2.26), is obtained by simply generating a random vector�e, relative

to the direction of the z axis and with distribution � (−→z ,−→e ) ∼ N (0,σA), and then rotating it so
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Chapter 2. Localization of emergency sound sources on the ground

that it is relative to the vector
−→
Ti :

−→̃
u i =

(
Ry (

π

2
)Rx (−φT )Ry (−θT )

)
�e (2.27)

where (φT ,θT ) are the azimuth and elevation of vector
−→
Ti (t ), Ra(b) is the basic rotation matrix

for rotating vectors by angle ”b” around the axis ”a”, and�e is defined in spherical coordinate

system as:

�e(r,φ,θ) =
(
1,e1,

π

2
−e2

)
(2.28)

where e2 ∼ N (0,σA) and e1 ∼U (−π,π) is a uniformly generated number in the range (−π,π).

For the update step of the estimator we employ the set of M direction measurements from

the TDOA localization unit (2.15) and the relative speed measurement vr from the Doppler

speed estimation (2.21) to investigate the likelihood of obtaining these measurements for

every particle. Particles are then weighted according to this measure. For this investigation,

we propose the likelihood function:

wi = e

(−ε2
Di

/
2σ2

D

)
M∑

k=1
e

(−ε2
T i k

/
2σ2

T i

)
(2.29)

where εT i k is the shortest angle between vector
−→̃
u i and the kth TDOA measurement −→u k , and

εDi is the error between the computed relative speed ṽr i and the measured relative speed

value vr :

εT i k = � (−→u k ,
−→̃
u i )

εDi = |vr − ṽr i |
(2.30)

where the computed relative speed ṽr i is simply calculated using the MAV’s velocity vector−→
V R and the vector

−→̃
u i :

ṽr i =
∥∥∥−→V R

∥∥∥cos � (
−→
V R ,

−→̃
u i ) (2.31)

The values of σT and σD in (2.29) reflect the confidence of Doppler-speed and TDOA mea-

surements respectively and are found empirically.

The direction to the target is estimated at each time step from the probability density function

represented by the particle set. For this a weighted mean of all particles’ states could be used.

However, to avoid inaccurate estimations for situations with multi-modal distributions, a

weighted mean of particles located in a local neighbourhood of the particle with the highest

weight is used instead:

ūT =
K∑

i=1
wi

−→u i ∀{−→ui } ∈ Si : � (−→u i ,−→u max ) < ξ (2.32)
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The experiments and results corresponding to this section is described in Section 2.4.2.

2.3.2.2 Behaviour based localization

Another method of narrowband sound localization is proposed in order to allow in-place

localization that is suitable for rotorcraft type of MAVs such as helicopters and quadrotors.

Such a solution would be advantageous for these type of vehicles as they are able to maintain

their position once the sound is detected to allow a constant signal-to-noise ratio and avoid

the loss of this detection. Furthermore, these type of MAVs are capable of flying in both indoors

and outdoors which is advantageous in many rescue operations. Inspired by the ability of

some animals in improving sound localization with the aid of head movements [Populin,

2006], we hypothesized that controlling the behaviour of the robot could allow elimination of

ambiguities related with narrowband sound localization. The idea with this method is that

once the robot detects the presence of a sound source, by in-place platform rotations it can

obtain the true target direction. An advantage of this method over the former method is that

no prior knowledge about the sound source frequency is required.

Once again let’s consider the sound field scenario of Figure 2.1 where a single microphone

pair is in the presence of a high frequency narrowband sound source of frequency f0. The

actual time delay τi j between the two signals is a function of the angle θ with the relation

expressed in Equation (2.6). However, as previously explained, for a narrowband sound,

coherence measuring results in multiple potential time delays, τp , inside the range expressed

by Equation (2.2):

τp = τi j + n

f0
∀n ∈Z :

∣∣τp
∣∣≤ dm

c
(2.33)

From Equations (2.33) and (2.6), the set of potential angles θp when the sound source is at

angle θ can be obtained:

θp = cos−1
(
cosθ+ cn

dm f0

)
∀n ∈Z :

∣∣cosθp
∣∣≤ 1 (2.34)

Figure 2.6 illustrates a plot of the potential angles θp , computed using Equation (2.34), for

different source angles θ when a sound source of 5kHz and microphone distance of 0.21

meters is used. An ambiguity in the form of 6-7 possible directions for every angle exists.

However, it can also be noted that a linear change in the angle θ results in a linear change in

only the potential direction corresponding to the true source direction. This is used as the

main concept behind the proposed behaviour based localization method. Once the robot

detects the presence of an ambiguous sound source in the environment, by changing the

orientation of its on-board microphone array and comparing the acoustic measurements

with the attitude information that is provided by its on-board sensors, it can eliminate the

ambiguous directions and obtain the true source direction.
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Figure 2.6: Plot of potential TDOA angles towards a narrowband sound source of 5kHz for
different source angles θ relative to a microphone pair with inter distance of 0.21 meters.
Multiple potential angles exist for every direction due to the ambiguity in the time delay
estimations.

A particle based estimator is derived to fuse the attitude information with the acoustic TDOA

measurements and to estimate the target’s direction throughout time. The state space defined

in Equation (2.19) is specified for every particle so that each particle represents a 3D direction

in the body fixed coordinate system. Initially NI particles are distributed uniformly over

the part of the state space where it is pointing towards the ground. Figure 2.7 shows two

representation of the initial particle distribution in a body fixed Cartesian and in a 2D plot of

azimuth versus elevation. To have a uniform distribution over the entire potential state space,

particles are initially placed on the corners of a geodesic grid on the surface of a unit sphere in

the Cartesian coordinate system.

Upon first detection of the sound, the particles are weighted based on the sum of cross

correlations B(−→u i ) from the TDOA measurements. For this, the time delay τ(−→u i ) is initially

computed from Equation (2.8). Furthermore, Equation (2.10) is used to compute the sum of

cross correlations B(−→u i ) where cubic-spline interpolation is used to interpolate the values of

Ri j
(
τi j (−→u )

)
from the discrete cross correlations Ri j . A new set of Np particles, with Np < NI ,

is drawn from this initial distribution proportional to their weights. The robot then initiates

an in-place rotation around its local z-axis, i.e. in yaw direction, and iteratively performs the

prediction and update steps of the estimator.

In the prediction step, firstly particles are propagated according to the change in the robot’s

attitude compared to the previous state. The change in the yaw (Δλ), pitch (Δβ) and roll (Δα)
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Figure 2.7: Plots of initial particle distribution relative to the body fixed coordinate system
where each particle defines a 3D direction. Left) Plot of particles in Cartesian coordinate
system. Particles are uniformly placed on the surface of a half sphere that represents the
directions towards the ground. Right) Plot of azimuth versus elevation

attitude angles, obtained from on-board sensors, are used to propagate the particles:

−→̂
ui (t ) = R(Δλ,Δβ,Δα)(−→u i (t −1)) (2.35)

Furthermore, similar to Equation (2.26), a set of predicted particles ũi is generated by changing

each particle
−→̂
ui by a random angle that is drawn from a normal distribution with a standard

deviation relative to the uncertainty in the attitude measurements. This random change in the

directions also allows the exploration of the particles beyond their initial grid formation which

leads to a finer search of the optima in the sum of cross correlation function B . In the update

step, predicted particles S̃i (t ) are once again weighted based on the sum of cross correlation

values B(
−→̃
ui ). Finally, particles are re-sampled according to their weights. A systematic re-

sampling approach [Arulampalam et al., 2002] that is suitable for real time implementation is

used in this work.

Figure 2.8 illustrates the change in the particle distribution in an experiment where a constant

in-place heading rotation of the robot results in the convergence of the particles to the correct

source direction. The uncertainty existing in the TDOA measurements can be seen in the

initial particle distribution after the first update. This uncertainty is reduced throughout time

and a unique direction is estimated after a gradual decrease in the heading.

After each iteration, an estimated target direction �uT and a reliability factor X are estimated

from the particle distribution. These are obtained using a simple vector addition of all the
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Figure 2.8: The change of the particle distribution in an experiment where the rotorcraft
MAV of Figure 2.9 is rotated in yaw to correctly locate a sound source of 5kHz. a) After initial
detection of sound b) After ≈ 20o rotation c) After ≈ 40o d) After ≈ 95o

particles, hence resulting in a fast computation that is suitable for real time implementations.

�UT = X�uT =
NP∑
i=1

�ui (2.36)

where �uT is a unit vector along the direction of the total vector �UT and X is the norm of vector
�UT . The value of X reflects the disparity of the particles and is used as a measure of reliability

for the estimated direction. The closer the value of X is to the particle number Np , the more

concentrated is the particle distribution. In this work the value of X is used by the robot to

detect the convergence of the particles to a unique solution. The experiments and results
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related to this section is described in Section 2.4.3.

2.4 Experiments and results

To test and verify the proposed methods, multiple experiments were performed with the two

MAV platforms shown in Figure 2.9. A microphone array consisting of four microphones

was mounted on both MAVs. The minimum number of four microphones, required for 3D

direction estimation, was used to minimize the hardware and computational loads. The

positions of the microphones were mainly chosen according to the constraints of the MAVs

while trying to have an array shape close to a tetrahedron in order to have approximately equal

performance in every direction [Hu et al., 2011]. For the fixed wing MAV, the microphones

were positioned to form a regular tetrahedron of edge length 10 cm. For the quadrotor MAV,

three microphones forming a triangle of edge length 18cm were placed between the propellers

to stop the propeller airflow from influencing the microphones and the fourth microphone

was placed under the MAV. The MAVs were equipped with autopilots that allowed them to fly

fully autonomously to predefined waypoints.

The measurements required for the prediction steps of the estimators were obtained entirely

using on-board sensors. For the fixed wing MAV, the change in roll and pitch of the MAV were

measured using on-board gyroscopes and the airspeed and altitude using an absolute and a

differential pressure sensor. As no compass was present on this MAV, the heading information

was obtained from an on-board GPS sensor. For the rotor-craft MAV, the attitude was obtained

from a low level complementary filter that combined the on-board gyroscopes, accelerometers

and compass data. These measurements along with the resulting localization estimates were

transmitted and stored on a ground station for later analysis using a wireless communication

network.

The embedded circuit shown in Figure 2.9 was designed for the acoustic processing. This

circuit is based on an AVR32 microcontroller that amplifies and digitizes the microphone

signals and computes the TDOA localization steps. A sampling rate of 40kHz and a sample

size of 1024 was used for the coherence measurements. Furthermore, for computations of the

particle filter, a second identical microcontroller was used in parallel. The following sections

explain the experiments and results of the three proposed methods. Videos of experiments for

each method can be found at http://lis.epfl.ch/ABSMAV.

2.4.1 Localizing the proposed emergency source

Multiple experiments were performed in order to test the performance of the localization

system, explained in Section 2.3.1, in locating the proposed emergency sound source while

only relying on TDOA measurements. The quadrotor MAV was used to estimate the direction

to this sound source from different locations relying only on the perceived sound waves. In

these experiments the GPS positions of the target and the MAV were stored and only used as the
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Chapter 2. Localization of emergency sound sources on the ground

Figure 2.9: Pictures of the two MAV platforms used in the experiments along with the picture
of the developed embedded acoustic board for on-board acoustic processing. A microphone
array of four microphones is used on each robot. The positions of microphones on the
quadrotor is highlighted with red circles
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Figure 2.10: Results of the experiments where the rotorcraft MAV was used to locate the
proposed acoustic target on the ground by estimating the relative direction of the incoming
sound waves and navigating autonomously to reach the target. Left) plots of the audio-based
direction estimations and the heading of the robot provided by the IMU. Right) path of the
robot and the position of the target for multiple trials.

reference. Experiments showed a good correspondence between the GPS based and the audio-

based direction estimates. Figure 2.10 shows the audio-based and the GPS based estimates

in one of the experiments. In addition, since with this continuously sound emitting source a

continuous direction estimation is obtained, a motion controller was also implemented on

the MAV to navigate it to the position of the target. Note that no GPS information is required

for this navigation as the robot could reach the target by controlling its attitude and speed

to move towards the estimated direction of the target. Experiments showed that the motion

controller was capable of successfully navigating the robot towards the target position, by

relying on the audio-based direction estimates. The path of the MAV for multiple experiments

is shown in Figure 2.10. Note that the motion of the robots could also be observed from the

direction estimates, where the initial reduction in the azimuth is due to the robot changing

its heading to face the target, the gradual increase of the elevation is because the robot is

approaching the target and the elevation of 90o shows that the robot has reached above the

target.

2.4.2 Localization using motion exploitation

Experiments were conducted using the fixed wing MAV, for testing the method presented in

Section 2.3.2.1, in localizing a commonly available emergency source located on the ground

that is emitting a narrowband sound. The MAV was controlled to fly within the visual range
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Chapter 2. Localization of emergency sound sources on the ground

Figure 2.11: (a)The safety whistle used in the experiment (commonly available in outdoor
shops). It features two chambers, and emits two closely spaced, superimposed frequencies
between 2kHz and 2.1 kHz. (b) A hand-held piezo alarm that emits a single frequency of 3.8
kHz.

of a safety pilot while occasionally reducing or even turning off its engine to increase the

detection range by increasing the signal to noise ratio. This reduction in the engine power is

achieved automatically whenever the MAV is descending in the altitude. Two different sound

sources were used for these experiments: a commonly available safety whistle of 2.1kHz and

a 3.8kHz hand-held piezo alarm.The sounds were triggered by a human experimenter in a

known location. The whistle was blown in intervals of approximately 1 to 2 seconds.

Figure 2.12 shows the result of an experiment where the safety whistle is used as the target

sound source. This figure illustrates the relative direction estimates from the flying MAV

compared against the relative direction computed from the GPS positions. The TDOA mea-

surements, dispersion of particles and the direction error between GPS and relative direction

is also indicated in this figure. Furthermore the estimated direction is used to obtain an

estimate of the target position from triangulation using the MAVs altitude and position. The

target position estimation error in meters during a time interval of the flight is also shown in

this figure. Here, the particle filter algorithm is initialized after the MAV’s motor input drops

below a predefined threshold. It can be seen that as soon as the first whistle is observed,

particles converge toward the correct direction of the target. Furthermore, when there are no

observations available or the MAV’s motor input is above a predefined threshold, the particle

filtering update step is no longer performed and hence only the probabilistic motion model of

the MAV is responsible for the tracking. This results in the gradual increase in the spreading

of the particles until the next observation is available. It can be seen that in this experiment,

and after the last set of whistle sound observations, the target position is tracked correctly for

several seconds and then suddenly the error starts to increase. This is because at this point

the MAV starts to perform a sharp 180 degrees turn and the simple forward motion model

used does not fully capture this behaviour. Note that although the microphone pair’s inter

distance and the frequency of the target does not satisfy Equation (2.5), and hence 2 peaks

could appear in the cross correlations, there are no ambiguities in the final TDOA observations.

This is because the current geometry of the microphone array ensures that for this target

frequency not all pairs experience this ambiguity simultaneously. Therefore in the proposed

method, in the step in which corresponding time delays among different pairs are identified,
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incorrect peaks are automatically eliminated and a single direction measurement is obtained.

Hence, in this experiment, as there were no ambiguities present in the TDOA measurement,

the Doppler based relative speed estimation step and knowledge of the target frequency were

not necessary.

To further test the performance of the system in situations where ambiguities occur in the

final TDOA observations, a set of experiments were performed in which a piezo alarm with

a frequency of 3.8 kHz was used as the target source. Figure 2.13 shows the result of an

experiment that illustrates the correct direction estimation despite the high ambiguity existing

in the TDOA measurements. The raw azimuth estimates from TDOA alone are shown as small

red dots,indicating ambiguities in the form of 5-6 possible angles are clearly visible. However,

the particle-filtered estimate quickly converges to the correct estimate. Furthermore, the

target position is shown to be tracked correctly long after observations are no longer available.

A detection range beyond 150 meters was achieved with both the whistle and the alarm.

2.4.3 Behaviour based localization

To test the behaviour based approach the quadrotor shown in Figure 2.9 was used in multiple

experiments for detecting the direction of a narrowband sound source. Initially, experiments
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Figure 2.12: Result of an experiment where a fixed wing MAV is used to locate a human target
on the ground who is occasionally blowing into a safety whistle. The TDOA measurements
also indicate the times that the sound of the whistle is perceived by the MAV illustrating the
discontinuities with the sound of the whistle.
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Figure 2.13: Result of an experiment where a fixed wing MAV is used to locate the position of a
human target on the ground that is holding a piezo alarm (N=100).

were performed indoors with an 8 camera Vicon system used as the reference. In these sets of

experiments, the MAV’s heading was changed manually once a sound was played through a

speaker. The on-board audio-based relative direction estimates �u along with the reliability

values X , defined in Equation (2.36), were logged throughout the experiments. The MAV’s

attitude and position along with the position of the speaker were all obtained through the

Vicon system and used for computing the true relative source direction. Experiments showed

that an initial change in the MAV’s attitude once the sound is played always leads to accurate

estimations within few seconds whereas keeping the attitude constant always leads to wrong

estimates. This confirmed the initial hypothesis that the attitude control by the robot could

allow localization of narrowband sources. Figure 2.14 shows the result of two experiments for

estimating the direction of a 4.5kHz sound source, where in one experiment the robot’s attitude

is fixed whereas in the other the attitude is changed. It can be seen that the particles fully

converge to the correct direction after a change in the attitude of approximately 140 degrees

in the heading.i,e. yaw direction. Experiments also showed that after the initial convergence,

the estimator is capable of tracking the target direction with a high accuracy and without the

need of further changing its attitude. A root-mean-square-error (RMS) of 2.39 degrees were

calculated for the target localization error after the initial convergence of the estimator. In

addition, the estimator was robust against discontinuities in the sound play.

To further test the proposed method a set of experiments were performed outdoors for localiz-

ing a person blowing into a safety whistle. This time the change in the attitude required for
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Figure 2.14: Direction estimation in indoor environment, with the behaviour based method,
for the two cases of fixed attitude and alternating attitude. Plots start immediately after a
sound of 4.5kHz is played. The top plots show the audio-based direction estimations against
the true directions computed from the Vicon system. The bottom plots show the robot’s true
attitude given from the Vicon system. A measure of particle spreadness Ψ is computed from

Ψ= 150
(
1− X

NP

)
, where X is the reliability value in Equation (2.36) to have values in the range

(0,150)

obtaining the true direction estimate was performed automatically by the robot. The robot

was programmed to maintain its position in the air until the detection of the whistle. This

detection was achieved by detecting the occurrence of a strong peak in the sound’s frequency

spectrum. Upon first detection, the robot started modifying its attitude by firstly increasing

and furthermore decreasing its heading by ≈ 140o in approximately four seconds. This was to

allow the estimator more time to handle the discontinuities with the whistle sound. Whenever

a good convergence in the estimator was detected the robot controlled its orientation to face

this estimated direction. A 4.1kHz low cost whistle was blown occasionally by a person in

known locations, each time blown for three times with intervals of 1-2 second. Figure 2.15

illustrates four instances of these experiments showing the success of obtaining the correct

direction of the target. Plots show clearly the initial change in the attitude, that starts immedi-

ately after the sound detection, and the final converged estimated azimuth that was used as

the input to the attitude controller to control the final heading of the robot towards the target.
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Figure 2.15: Results of experiments where the rotorcraft MAV of Figure 2.9 uses the behaviour
based approach to detect a person blowing into a safety whistle of 4.1kHz. The robot was pro-
grammed to firstly increase and then decrease its orientation by ≈ 140 degrees, upon detecting
the whistle, until a good direction estimation is obtained. Then the robot automatically turns
to face the estimated direction.
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2.5 Conclusion

In this chapter multiple solutions to the problem of localizing emergency acoustic sources

on the ground using micro aerial vehicles were proposed. The solutions provided required

an on-board microphone array to measure the probable directions of the emergency source

based on TDOA measurements, and on-board sensors to obtain information about the state of

the MAV. The first solution consisted of designing a sound source that allowed immediate local-

ization by the MAV using entirely acoustic information. The other two methods addressed the

problem of localizing the currently available emergency sources that lead to ambiguous TDOA

measurements due to the repetitive nature of narrow band sounds. In the second proposed

method, knowledge of the vehicle dynamics, along with the sound frequency and the Doppler

shift of this frequency were used for resolving these ambiguities. In the third proposed method,

autonomous control of the attitude by the robot and furthermore fusion of acoustics and

attitude measurements were employed to obtain correct estimations. Investigating different

types of MAV motions for improving the localization accuracy and reducing the convergence

time, employing multiple MAVs for facilitating area exploration and for achieving cooperative

target localization are some potential future directions on this topic.
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3 Audio-based relative positioning for
multiple micro aerial vehicle systems

D ESIGNING a group of autonomous MAVs requires addressing new challenges, such as

inter-robot collision avoidance and formation control, where individual’s knowledge

about the relative location of their local group members is essential. A relative positioning

system for an MAV needs to satisfy severe constraints in terms of size, weight, processing

power, power consumption, three-dimensional coverage and price. These constraints prevent

the current relative positioning systems designed for ground robots and large aerial vehicles

to be used in MAVs. Inspired by the sense of hearing in animals [Farnsworth, 2005, Muller

and Robert, 2001], which provides them with the ability of using sound for communication

and localization, we propose an onboard audio-based system for allowing MAVs in an MAV

swarm to obtain information about the position of their neighbouring robots. In this chapter,

we firstly propose a method, based on measuring the coherence among signals of a small

onboard microphone array, to measure the relative direction of other robots from perceiving

their engine sounds in the absence of self-engine noises. We then extend the method to

obtain this information in the presence of self-engine noises, for achieving a longer detection

range, and for distinguishing the identity of different robots. For this purpose, we propose

active acoustic signalling where individuals generate unique chirp sounds similar to birds. A

method based on fractional Fourier transform (FrFT) is used by the individuals to identify

and extract sounds of simultaneous chirping robots in the neighbourhood. Furthermore, we

describe an estimator based on particle filters that fuses the relative bearing measurements

with information about the motion of the robots, provided by their onboard sensors, to also

obtain an estimate about the relative range of the target robots.
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Chapter 3. Audio-based relative positioning for multiple micro aerial vehicle systems

3.1 Introduction

Relative positioning is the problem of gaining information about the position of other robots,

by the individuals in a robotics group. In Sections 1.1 and 1.2.2, the importance of an onboard

relative positioning system for multi-robot systems was described. It was further described that

due to the strict requirements of micro aerial vehicles, requiring a small, compact, lightweight

and three-dimensional solution, there is a lack of technological possibilities that could provide

this information without relying on any external systems. In this chapter, we propose an

onboard audio-based system for individual MAVs that exploits the locally perceived sound

waves for obtaining this information.

Audio-based relative positioning has not been favoured for ground robots due to the avail-

ability of many other sensor technologies that could be used on the less constrained ground

robots and because of the existing challenges in sound source localization inside reverberant

and noisy domestic environments. In the case of underwater robotic swarms, the effective-

ness of audio-based relative positioning compared to other methods have been shown by

some researchers [Kottege and Zimmer, 2007]. In these systems, a pair of hydrophone sen-

sors onboard a small submarine is used for measuring the relative bearing of other sound

emitting submarines. Audio-based relative positioning for miniature aerial robots has not

been addressed so far. However, existing examples in nature shows the potential success of

such a system for aerial robots. Flight calls of nocturnal migratory birds during coordinated

migration at night [Farnsworth, 2005], and phonotaxis behaviour among insect swarms for

mating and predator avoidance [Gibson et al., 2010, Muller and Robert, 2001] are some of the

many existing examples.

An audio-based relative positioning system for swarm of MAVs will have many potential

advantages. First of all, this system will be dependant on extremely low cost, lightweight,

small size and passive microphone sensors which are very suitable for employment on small

scale micro aerial vehicles. Today, microphone sensors with a size of few millimetres are

commercially available at a price of around one Euro (as it was illustrated in Figure 1.4 ).

Another important feature of microphone sensors are their omni-directionality, that allows

them to provide a full three-dimensional coverage that is an essential requirement for aerial

robots as they are operating in the 3D space. In addition, the passivity of these sensors will

result in a low power consuming system for having a longer swarm endurance. Design of other

acoustic sensors for potential future use on aerial robots have also been investigated in some

recent works [Ruffier et al., 2011] [de Bree et al., 2010].

An audio-based relative positioning system will be based on sound waves that are independent

of illumination and weather conditions, such as fog, dust, rain and smoke, and can operate at

night time. This system does not necessarily need a direct line-of-sight between the robots

for its operation as sound waves are capable of overcoming obstacles throughout their ways,

hence it can provide information through foliage and occlusions caused by other robots. In

addition, such a system could potentially be less computationally expensive compared to
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vision-based systems, as it will mainly rely on the phase information that is already available in

the one dimensional sound waves, rather than the need for feature extraction and processing

sequences of two-dimensional high-resolution images to find and locate these small robots.

Furthermore, as the engine of most flying robots already produce sound waves while flying,

this sound could be exploited for obtaining passively the relative position of team-mates

and other non cooperative flying platforms. Finally this system could be exploited further to

detect, locate and study many other interesting acoustic targets from the flying MAVs which

introduce many potential applications, such as locating emergency acoustic sources in search

and rescue missions that was described in Chapter 2.

This chapter is organized as follows: Section 3.2 describes the relative bearing measurement

system for passive localization of neighbouring robots based entirely on the sound of their

engines, with the related experiments and results presented in Subsection 3.2.5. In Section

3.3 active acoustic signalling is introduced, to resolve some of the limitations of the previous

method, where individuals generate bird-like sounds to assist others in locating them. Fur-

thermore, in this section an estimator based on particle filters is developed for estimating

the relative locations of other robots throughout time. Experiments and results related to

this section are presented in Subsection 3.3.4. Finally, Section 3.4 concludes the chapter by

providing a conclusion and some potential future works on this topic.

3.2 Passive audio-based relative-bearing measurement system

This section explains our work on obtaining an onboard system for measuring the relative

bearing to neighbouring robots based entirely on the sound of their engines. Exploiting the

already available sound produced by the engine of flying robots would result in a high energy-

efficient solution and could potentially be employed to locate many other non-cooperative

aerial platforms, that is an important feature for having a reactive sense and avoid system to

avoid mid-air collisions. The proposed method is suitable for the cases when there are either

no self-engine noise present, or the engine sound from other robots and the self-engine noise

have the required differentness for separating the sounds from the self-engine noise. This

method could potentially be employed in groups of fixed-wing MAV’s as they are capable of

gliding with their engines reduced or turned off, and in groups of rotor-craft MAVs that can rest

on the ground or attach to ceilings or walls [Stirling et al., 2012, Mellinger et al., 2010, Doyle

et al., 2013, Roberts et al., 2008]. Localizing the engine sound of distant robots in presence

of an engine with the same sound characteristics that is only few centimetres away from the

microphones, hence resulting in an extremely low signal to noise ratio (SNR), is a challenging

problem that is beyond the scope of this work. However, a method based on active acoustic

signalling is described later in Section 3.3 to obtain the relative positioning in presence of the

self-engine noises.

The proposed system is based on the TDOA sound source localization method that was

previously introduced in Section 2.2, and a compact on-board microphone array used for
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Figure 3.1: Schematic diagram of the proposed passive audio-based relative bearing measure-
ment system illustrating the main parts of the system.

measuring the sound waves. Note that unlike the emergency sound sources that had a nar-

rowband nature, the engine sound of robots and other flying platforms are mostly broadband

sounds and consist of a wide range of frequencies. Hence the problem of ambiguous direction

measurements, described for the narrowband emergency sources is not experienced here.

Figure 3.1 presents the block diagram of the passive relative bearing measurement system

consisting of its main units. An explanation of each individual unit is provided in this section.

Some of these units will also be the building blocks of the other proposed methods and will be

used in the next sections.

3.2.1 Microphone array

An onboard microphone array of four microphones is used for simultaneously measuring

the sound waves, emitted from the engine of other robots at four different locations. Four

microphones are chosen in this work since it is the minimum number of microphones required,

if they are not all placed on the same plane, to locate the direction of sound sources in a 3D

space without ambiguity. This minimum number is chosen in order to minimize the hardware

and computational complexity, for achieving a simple and real-time solution suitable for small

scale MAVs. However, due to the small size of these sensors, more microphones could easily

be added on the MAVs to increase the robustness of the system. There are no strict constraints

on the position or the geometry of the microphone array, that makes it suitable for being

mounted on any type of MAVs, and only the microphone positions relative to each other must

be known with a good accuracy. In this section, we use two different type of microphone

array geometries, as shown in Figure 3.2, where a flat triangular microphone array, with a

total weight of 3.5 grams, is used on pocket-size rotor-craft MAVs and a regular tetrahedral

microphone array is used on the fixed-wing MAVs. The regular tetrahedral microphone array

geometry provides approximately equal localization performance in all directions [Hu et al.,

2011]. The flat microphone array has the advantage of compactness, but it introduces a top-

bottom ambiguity when localizing sound sources in the 3D space as all the microphones are

placed on the same plane. However, because the localization with this array is performed after

the rotorcraft MAV rests on a flat surface, this ambiguity is not experienced and the robot is
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Figure 3.2: Pictures of the two different microphone arrays used in this section, with the micro-
phones indicated by red circles. Left: a tetrahedral microphone array with inter-microphone
distance of 10cm is used on the nose of a fixed wing MAV platform. Microphones are covered
by foam for wind-protection. Right: a flat microphone array attached on a pocket size rotor-
craft platform, with three microphones forming an equilateral triangle with sides of 18cm and
the fourth microphone in the center of this triangle. The total weight of this array is 3.5 grams.

aware that sound sources are located only on one side of the array.

Initially, sound waves are picked up by the microphones and are converted into electric

signals. These signals are then amplified and filtered using basic analogue filters to remove the

unwanted electrical noises. Furthermore, signals from all the microphones are simultaneously

sampled and converted into a digitized form with a sampling frequency of Fs . Upon obtaining

a discrete sequence of N samples from all the microphones, these sequences are passed to

the coherence measuring unit. The length N of the sequence should be chosen as a trade-off

between the the stability, obtained with large values of N, and the tracking requirements,

if there are no limitations in the available memory and the processing power. However, in

this work, we use N = 1024 samples to meet the low memory and computational power of

common micro-controllers.

3.2.2 Coherence measuring unit

The coherence measuring unit is based on the method that was previously explained in

Section 2.2.1, where cross-correlation is used to obtain a measure of similarity between all

of the microphone signals. The unit starts by measuring the similarity between each pair of

microphone signal sequences, as a function of time delay τ applied to one of the sequences,

using the function:

Ri j (τ) = F F T −1

(
F F T

(
pi (n)

)
.F F T ∗ (

p j (n)
)

W

)
(3.1)
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where F F T is the Fast Fourier Transform, F F T −1 is the inverse FFT, F F T ∗ denotes the complex

conjugate of the FFT results, pi (n) is the digitized sequence obtained from microphone i with

n = 0,1, ..., N −1 and τ is the correlation lag in samples. W is the spectral weighting function

for improving the similarity analysis which is described later in this section. Note that for

W = 1 the coherence measuring function (3.1) is a general cross correlation that is computed

in the frequency domain by taking the inverse Fourier transform of the cross spectrum. The

value of Ri j (τ) for all the probable discrete time delays in the range ±τmax is only of interest

and is stored for further processing. The maximum time delay τmax is limited to the sampling

frequency F s and the distance dm between the two microphones:

τmax = dm

c
Fs (3.2)

where c is the speed of sound.

Investigating the similarity degree only for a set of integer delays limits the resolution of the

coherence measurements, and hence the bearing measurements, to the sampling frequency

and the microphone pair inter-distances. In this work a sampling frequency of 40K H z is used,

which allows the digitization to be also performed by the same micro-controller that is used

for the computations and avoids the need for any additional analogue to digital converting

hardware. However, to provide more resolution to the similarity measurements, a cubic spline

interpolation with a factor of 10 is performed on the values of Ri j (τ) within the desired range.

The sub-sample resolution is computed from:

Ri j

(
τ+ l

10

)
=Ri j (τ)+ l

20

[
Ri j (τ+1)−Ri j (τ−1)+ l

10

(
2Ri j (τ−1)−5Ri j (τ)+4Ri j (τ+1)−

Ri j (τ+2)+ l

10

(
3Ri j (τ)−3Ri j (τ+1)+Ri j (τ+2)−Ri j (τ−1)

))]
(3.3)

where l = 0,1,2, ...,10. Figure 3.3 illustrates the result of the coherence measuring, before and

after the interpolation, for a pair of microphone that is inside a sound field caused by the

engine of a flying rotor-craft MAV. It can be seen that the interpolation leads to a higher time

delay resolution and smoother peaks which increases the position accuracy of the maxima

points.

One limitation of using the general cross correlation method, i.e. W = 1, for measuring the

similarity, is that results are strongly dependant on the statistical properties of the sound

signal [Valin et al., 2007], and it usually leads to wide cross correlation peaks. The role of

the weighting function W , in Equation (3.1), is to improve the localization robustness by

performing sound frequency bin weighting. Many different weighting functions are proposed

in the literature [Perez-Lorenzo et al., 2012, Miro, 2007]. The PHAT weighting, proposed by

[Knapp and Carter, 1976], is one of the most popular weighting functions among research

works in the sound-source localization community, showing robust localization performance,
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Figure 3.3: Coherence measure Ri j (τ) for a pair of microphones inside a sound field, top:
before interpolation, bottom: after interpolation. Dashed vertical line shows the time-lag of
the maximum similarity and the solid vertical line shows the true time delay computed from
the true source and microphone positions.

particularly against reverberations:

WPH AT = ∣∣FFT
(
pi (n)

)∣∣ ∣∣FFT
(
p j (n)

)∣∣ (3.4)

This weighting function whitens the cross-spectrum in order to give equal contribution to all

of the frequencies. This way the coherence measurement is only based on the phase informa-

tion of the signals, and it is independent of the signal dynamics, resulting in a much sharper

correlation peaks that could increase the precision. One drawback of this method is that every

frequency bin in the spectrum contributes equivalently in the similarity measure, even if the

signal is not present in that frequency bin or it is dominated by noise. A modified version

of the PHAT weighting was used here instead to only take into account the frequency band-

width where the sound is mostly present and to also de-emphasize the dominant frequency

components within this range.

W =χ
(∣∣FFT

(
pi (n)

)∣∣ ∣∣FFT
(
p j (n)

)∣∣)α (3.5)

where

χ=
{

1 fmin < f < fmax

0 otherwise
(3.6)

with fmin and fmax being the minimum and maximum limits of the frequency range. The value

of α is within the range [0−1], and it is used to control the trade-off between full whitening

and no whitening for the frequency bins inside the defined range. The larger the values of

α, the sharper are the peaks in the resulting coherence measurements. However, a large α
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Figure 3.4: Coherence measure Ri j (τ), between signals of a microphone pair that is experienc-
ing the sound of a rotorcraft MAV in an indoor environment, with: PHAT weighting, α= 0.8,
α= 0.6, α= 0.4 and general cross correlation, i.e. α= 0. The entire frequency range was used
for computing the coherence measurements.

could lead to less robustness in case of low signal to noise ratio situations. In addition, a larger

frequency range would also result in sharper correlation peaks. Hence, it is desirable to have

engine sounds that cover a wide range of frequencies.

Figure 3.4 shows a comparison between, PHAT weighting, α= 0.8, α= 0.6, α= 0.4 and general

cross correlation, i.e. α= 0, for a pair of microphones experiencing sound of a rotorcraft MAV

in an indoor environment, where the entire frequency range was used for these coherence

measurements. It can be seen that the PHAT weighting results in an erroneous global peak

which does not correspond to the source. This is because the sound of the robot’s engine is

absent in a wide range of frequencies and the noise present in these frequencies are considered

equally in computing the coherence. This problem can be resolved, by reducing the value of α

to put more emphasize on the dominant frequency bins, with the expense of obtaining wider

peaks.

Figure 3.5 shows an example for the effect of the frequency range on the coherence mea-

surements, where Fmi n is equal to zero and Fmax is reduced from the maximum possible

frequency, i.e. PHAT weighting, to the frequency of 2kHz. It can be observed that the reduction

of the frequency range weakens the false peak in the PHAT weighting. This is since the sound

produced by the used rotorcraft engines is mostly present in the lower frequency bins. On the

other hand, too small frequency range results in wide and inaccurate peaks.

The three parameters of α, fmin and fmax can be tuned according to the sound-source spec-

ifications and the available signal to noise ratio, for obtaining the best performance. The

instantaneous frequency spectrum of the measured sound sequence could be used for on-line
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Figure 3.5: Coherence measure Ri j (τ), between signals of a microphone pair that is experienc-
ing the sound of a rotorcraft MAV in an indoor environment, for different frequency ranges
and all with α= 1.

computation of these parameters prior to measuring the coherence, using a simple threshold-

ing technique. The spectrum of the sound measurement for when there are no target robots

present, could be used as a reference for obtaining suitable threshold values. Figure 3.6 shows

the frequency spectrums for two sound sequences measured when ”no robots” and when ”a

single robot” was present, in the same experimental setup as for Figures 3.4 and 3.5. It can be

seen that a suitable frequency range can be obtained from comparing the two spectrums to

find the range where the robot sound is mostly present. Also since in the defined range there

are very few frequency bins that does not contain the sound of the robot, a value of α close to

one would be suitable to consider equally all of the frequencies inside this range .

The instantaneous frequency spectrum of the measured sequences could also be employed

to detect the presence of robots in the vicinity and to distinguish the sound of a robot from

other sound sources that might be present. For this, a template of the robot sound’s frequency

spectrum is stored in the memory and is used to compute the similarity of incoming sounds

with this template, prior to the coherence measurements. A similarity value S is computed

using the cross correlation method:

S = F F T −1 (
Pmi c (k)Ptmp (k)∗

)
k = 0,1, ..., N −1 (3.7)

where Pmi c is the frequency spectrum of one of the microphones and Ptmp (k) is the frequency

spectrum of the stored template. A good similarity value, defined by a threshold that is found

empirically, indicates the sound belongs to the desired robots.
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Figure 3.6: Frequency spectrums of a sound sequence in two cases of ”no MAVs” and ”a single
MAV” being present in proximity of a microphone. This information could be used to find
good parameters for the proposed weighting function

3.2.3 Relative bearing measurement unit

Upon finding the similarity measure Ri j from (3.1) for all microphone pairs i j , a search for

the most likely source direction
−→
b m is performed. This is the direction that maximizes the

sum of the coherence measurements from all of the microphone pairs.

−→
b m = argmax

−→
b

∑
i , j

Ri j (τ�bi j ) (3.8)

where time delay τ�bi j is the expected time delay if the source was in the direction
−→
b , and is

computed from the coordinates of microphones i and j in the body fixed coordinate system.

τ�bi j =
−→x i j .

−→
b

c

−→
b = (bx ,by ,bz )

−→x i j = (mi x −m j x ,mi y −m j y ,mi z −m j z ) (3.9)

where (mi x ,mi y ,mi z ) are the coordinates of microphone i and c is the speed of sound.

A spherical geodesic grid, defined on a unit sphere, is used to search for the most likely source

direction among the set of all potential directions. Each grid point represents a direction

vector
−→
b that starts at the origin and ends at that grid point. A geodesic grid of 2562 points is

used in this work to cover the entire 3D directions (see Figure 3.7). For the case of a resting

rotor craft, this is reduced to 1313 points to only cover the potential directions described by

a half sphere over the resting surface. For having a fast searching speed that is suitable for
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Figure 3.7: The grid used in the bearing measurement unit for finding the most probable
sound direction. Left: A geodesic grid of 2562 points to represent the set of all 3D directions.
Right: A geodesic grid of 1313 points is used to represent potential directions for a robot resting
on a surface.

the real-time implementation, the time delays τ�bi j for all the grid points are computed in

advance and stored in a lookup table in the static memory. The bearing measurement unit

then simply goes through the table and uses the stored time delays to compute
∑
i , j

Ri j (τ�bi j ) for

all the directions and then finds the direction with the maximum value. Figure 3.8 shows the

result of a grid search from an experiment involving two small rotorcraft MAVs, one resting

and one flying MAV, which illustrates the likelihood of all the potential relative directions.

To improve the resolution of the direction estimation, that is limited by the resolution of the

grid, a weighted averaging between the grid point having the highest coherence value and

its six adjacent points, based on their coherence values, is used as the final estimated target

direction.

3.2.4 Coherence pruning unit

The previous units described a method for locating the direction of a single neighbouring

robot by perceiving the sound of its engine and finding the direction with the maximum

coherence among all of the microphone-pair signals. In the case of multiple neighbouring

robots, this method will provide the direction of the dominant sound source that is exhibiting

the highest coherence in the similarity measurements. For a homogeneous MAV group with

equivalent engines, that are producing the same sound characteristics, the dominant sound

source will correspond to the nearest neighbouring robot. However, in practice, the dominant

sound might not always be the nearest neighbour as the engine sounds are varying with other

factors such as the robot’s speed and throttle power. The Coherence pruning unit is used

to also obtain the bearing information of other existing robots that are potentially masked

behind the sound of the dominant robot. Inspired by the work of [Brutti et al., 2008b], the idea
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Figure 3.8: Grid search result for an experiment involving a resting rotorcraft MAV and a
target flying rotorcraft MAV, showing the likelihood of the target’s 3D direction for all potential
directions around the resting MAV. Each cell is on the surface of a unit sphere and represents
the end of a unit vector starting from the origin. The cell with the highest value is considered
as the direction of the target robot

is to de-emphasize the effect of the dominant robot in all of the similarity measurements in

order to locate other robots with weaker coherences.

The coherence pruning unit initially uses Equation (3.9) to compute the time delay τ�bm i j , for

every microphone pair, that corresponds to the resulting bearing measurement
−→
b m from

the bearing measurement unit. This time delay is then used to generate a pruning sequence

Ui j (τ) that is added to the similarity measurements Ri j (τ) to de-emphasize the existing peak

of the dominant source at time lag τ�bm i j .

Ro
i j (τ) = Ri j (τ)+Ui j (τ) (3.10)

Ui j (τ) =
{

B(τ) B(τ) > 0

0 B(τ) ≤ 0
(3.11)

B(τ) = 1

L

(
τ−τ�bm i j

)2 −Ri j (τ�bm i j ) τ ∈ [−τmax,τmax] (3.12)

where B(τ) is a second order polynomial sequence and L is a constant that defines the sharp-

ness of this polynomial. The value of L is chosen to produce a polynomial with an approxi-

mately equal sharpness as the coherence peaks, that is dependant on the parameters used in

the similarity measurements that were explained in Section 3.2.2. Figure 3.9 shows plots of a

microphone pair’s coherence measurements in an experiment with one perceiving MAV and
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Figure 3.9: Coherence measurement plots in an experiment with one perceiving rotorcraft
MAV and two target rotorcraft MAVs, illustrating the pruning step

two target MAVs, before and after the the coherence pruning was preformed. Note that the

localized dominant sound source does not necessarily correspond to the dominant peaks in

the coherence measurements, as shown in this figure.

The pruned coherence measurements Ro
i j are then passed into the bearing measurement

unit to search for the most probable sound direction. This procedure is repeated similarly

for locating other existing robots that might also be present in the perceived sound mixture.

Figure 3.10 shows the direction likelihoods, obtained by the bearing measurement unit, for

multiple pruning iterations, on a time window of sound measurements containing the sound

of four rotorcraft MAVs.

Experiments, discussed later in Section 3.2.5, shows that up to two pruning iterations can be

performed to acquire an accurate direction for the three most dominant target robots. A large

drop in the precision after the third pruning iteration, for obtaining the direction of the fourth

dominant robot, is observed. However, in reality, since the dominancy of robots alter in time,

due to the change in the engine sound and the movements of robots, it is potentially possible

to track the direction of more robots throughout time with only two pruning iterations and a

memory based algorithm.

The number of pruning iterations should be in accordance with the number of target robots.

Always performing two pruning iterations for finding the three dominant targets, regard-

less of the number of robots that are present, results in false detections for the cases with

less than three target robots. If this information is unavailable, the total cross correlation

value
∑
i , j

Ri j (τ�bm
) for the most probable direction�bm , after every pruning step, and a simple

thresholding method, could be used to disregard detections with poor coherence values. An

alternative methods for identifying the false detections is to check the direction consistency in

few adjacent time frames. Figure 3.11.a shows an example of performing two pruning steps, to

55



Chapter 3. Audio-based relative positioning for multiple micro aerial vehicle systems

1   0.75   0.5   0.25   0

Azimuth (   ) o Azimuth (   ) o 

Azimuth (   ) o Azimuth (   ) o 

(a)

(c)

(b)

(d)

El
ev

at
io

n(
   

)
  o

 
El

ev
at

io
n(

   
)

  o
 

El
ev

at
io

n(
   

)
El

ev
at

io
n(

   
)

  o
 

  o
 

Figure 3.10: The normalized direction likelihood patterns for multiple pruning iterations,
using a single time window of sound measurements containing the sound of four rotorcraft
MAVs. The direction with the maximum likelihood, i.e. direction with the highest total cross
correlation value

∑
Ri j (τ�bi j ) , after each pruning iteration is considered as a new robot and

is marked by a new white circle. a) No pruning is performed, showing the direction of the
dominant robot. b)After the first pruning, showing the direction of the second robot c) After
the third pruning, indicating the direction of the third robot. d) After the third pruning,
showing the direction of the fourth robot. The accuracy of the direction measurements are
discussed in Section 3.2.5

locate three target robots, in an experiment where only two target robots were present. A clear

inconsistency in the directions, obtained after the second pruning iteration, between multiple

consecutive time frames is observed that indicates only two target robots are present in the

proximity.

Another alternative, but effective, method for accurately detecting the number of target

robots in a single time frame, that could also provide information about the identity of the

neighbouring robots, is to exploit the pulse width modulation (PWM) signal of the robots’

motor drivers for adding a unique acoustic tone to the engine sound of every robot. The PWM

signal is an electric signal provided by a robot’s motor driver that controls the motor speed by

adjusting the pulse width of this signal. A strong acoustic tone is generated by the motors with

the same frequency as the PWM signal. Figure 3.11.b shows the spectrogram of the measured

sound waves of a single electric motor equipped with a propeller inside an anechoic chamber,
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Figure 3.11: a) Direction measurement by performing two pruning steps, to locate three target
robots from their engine sounds, for an experiment where only two target robots were present.
The inconsistency in the direction measurements obtained after the second pruning iteration,
between multiple consecutive time frames, is an indicator that only two robots are present in
the detection range. b) Spectrogram of sound recording, in an anechoic chamber, from a single
electric motor equipped with a propeller, along with a plot of the motor’s rotational speed
recorded by a tachometer. The tone generated by the motor itself due to the input 7.8 kHz
PWM signal, indicated by the dashed ellipsoid, has a constant frequency that is independent
of the motor speed, whereas a direct relationship between the rotational speed of the motor
and the sound of the propeller exist.

indicating that the tone due to the PWM signal is independent of the motor speed. It is possible

to generate a unique tone for every robot by assigning a different PWM frequency to each

robot. This allows the perceiving robots to use their measured sound frequency spectrum,

F F T
(
pi (n)

)
, from one of the microphones, and simply count the number of target robots.

Our research on this topic showed that it is also possible to generate more complex acoustic

signals, instead of a simple pure tone, by dynamic variation of the PWM frequency without

affecting the motor speeds.

3.2.5 Experiments and results

Several experiments were performed to test the proposed audio-based relative bearing mea-

surement system on real robotic platforms. Experiments showed the success of the system in

obtaining accurate measurements in the absence of the self-engine noise and in low acoustic
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Figure 3.12: Pictures of the pocket size MAVs used in indoor experiments for testing the
proposed passive relative bearing measurement system. The perceiving MAV is equipped with
a flat microphone array of 4 microphones with a total weight of 3.5 grams. The microphones
are marked by the circles and form a triangle of length 18cm with a microphone in the center
of the triangle.

noise environments. However, since the detection range of the system is directly dependant

on the output sound pressure level (SPL) of the engines and the environmental acoustic noise

level, the suitability of the approach highly depends on the type of used MAV platforms and

the operating environments. In the case of the platforms used in this work, a good perfor-

mance were observed in both indoor and outdoor environments. Precise relative bearing

measurements were obtained indoors, even with pocket size rotorcraft MAVs having small

and quiet engines. Figure 3.12 shows the picture of the two pocket size MAVs that were used

for the indoor experiments.

Figure 3.13 shows the result of an experiment in measuring the 3D relative bearing to a pocket-

size flying rotor-craft MAV from a perceiving stationary team-mate resting on the ground. The

target MAV was flown manually inside an empty room with dimensions (6×3.5×3) meters

with the perceiving MAV located in the center of the room. Motion tracking cameras, i.e. Vicon

system, was used for measuring the true robot positions and for computing the actual relative

bearings between the robots. No other major sources of acoustic noise was present inside the

room, however, the sound of the cooling fans belonging to the 8 tracking cameras and two

computers could be perceived clearly. Accurate direction estimates with only few outliers were

observed throughout the experiments despite the soft sound generated by this small scale

robot. Figure 3.14 shows the error histograms of the relative azimuth and elevation errors for

this experiment. Due to the existing inconsistency with the azimuth errors in the spherical

coordinate representation, that could show large azimuth errors for small angular differences

near the poles with elevation of 90o , the shortest angular error between the measured and

the true 3D direction vectors was computed for having a better representation of the system’s

precision. The histogram of this error is also presented in Figure 3.14. A root mean square error
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Figure 3.13: The relative azimuth and elevation to a flying pocket size rotor craft MAV, from
a stationary MAV on the ground, compared against the true values found using the motion
capture system

of 1.39 degrees were computed for the angular error between the true and the audio-based

direction estimations.

Experiments were also performed to test the performance of the system and the coherence

pruning unit when experiencing the sound from multiple robots. For this, the sound of a flying

rotor-craft MAV was recorded in real flight using an onboard digital sound recorder. Different

instances of the recorded sound was then played simultaneously from multiple loudspeakers

for various positions. The exact position of the loudspeakers and the perceiving robot was

measured using the Vicon system. Figure 3.15 illustrates the box plots for the angular error in

the cases of two, three and four simultaneously playing robot sounds. In these plots, the source

number corresponds to the order of the sound sources that are located from the same time

window of acoustic measurements, i.e. The source number n is the source that is localized after

n −1 pruning iterations. In all the experiments up to three sources were localized with a good

accuracy. However, the precision dropped significantly after the third pruning step resulting in

poor measurements for the direction of the fourth source. The number of existing sources did

not have a major effect on the localization performance for the first three dominant sources,

with only a minor increase in the number of outlier.

Note that although the system was only capable of providing reliable direction measurements

for the first three dominant targets at a given time instance, however, in reality direction

information of more targets can be obtained throughout time. This is because the engine

sounds are constantly varying and the robots are moving, which alters the superiority of the

targets throughout time, allowing more than three robots to be discovered in time. A time-filter

algorithm, such as particle filters, could potentially be employed to keep track of the direction

of more robots throughout time.
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Figure 3.14: Error histograms of the relative azimuth and elevation errors for this experiment

Outdoor experiments were also carried out with the available fixed wing MAVs, where accurate

relative direction measurements to a flying MAV, that was manually controlled, was obtained

from a stationary MAV on the ground. The used fixed wing MAV had a single small electric

motor engine that produced sound pressure levels in the range of 55dB to 72dB depending on

the input throttle value. A detection range of beyond 150 meters were observed when the target

robot was flying with near full throttle speeds. This range was reduced for lower throttle values.

Figure 3.16 shows a plot of audio-based relative azimuth measurements compared against

GPS based measurements from one of these experiments illustrating a good correspondence

between the two values. The throttle input of the target robot and the inter robot distance is

also shown for each measurement.

Furthermore, experiments were executed to try and measure the relative bearing between two

flying fixed wing MAVs using the sound of their engines. The robots were programmed to fly

autonomously between predefined way-points using their onboard autopilots. The perceiving

Robot was programmed to switch its engine off occasionally. However, in these experiments

the direction of the target robot was obtained only few times and only when the robots were

in a close proximity with each other. Two main reasons were identified for this poor detection

range. Firstly, and most evidently, was that these robots required a low input throttle value

for their autonomous operations which resulted in very low sound levels generated by the

target robot that could hardly be heard even by the human operators. Secondly, the platform

vibrations, actuator noises and the high air flow on the microphones, due to the fast speed of

these MAVs, led to a lower signal to noise ratio that also influenced the detection range. This
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Figure 3.15: Box plots illustrating the statistical properties of the relative direction measure-
ment error in experiments with multiple rotor-craft MAV sounds. a) Two targets b) Three
targets c) four targets
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Figure 3.16: The relative azimuth to a flying fixed-wing MAV from a similar but stationary MAV
on the ground. The throttle input of the target robot and the inter robot distance computed
from GPS positions is also shown for each measurement.
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is because these noises are mostly dominant in the lower frequency regions of the sound’s

spectrum, where the target sound is also mostly present, particularly for longer distances.

3.2.6 Summary of method

In this section an onboard solution for measuring the relative directions between individuals

in a team of MAVs, based entirely on the sound generated by their engines, and in the absence

of the self-engine noise, was presented. The proposed system exhibited a good accuracy, par-

ticularly in low acoustic noise environments. The detection range for the system depends on

the sound level of the target engine’s and the acoustic noise level, hence making the suitability

of the approach dependant on the type of platforms and the operating environments. It was

further shown that the direction of up to three local neighbours, demonstrating the highest

superiority in the coherence measurements, could be measured at a single time instance by

pruning the coherence measurements. Time-filter tracking methods could potentially be

employed to track the direction of more robots throughout time as the superiority of robots

alter in time. The proposed method has the advantage of energy efficiency due to its passivity

that could also provide important bearing information of other non-cooperative aerial robots

and platforms that produce sound during flying. The inability to identify the robot identities

or to distinguish team-mates from other flying robots, the no self-engine noise constraint, and

the dependency of the detection range on the engine speed of the target robots are some of

the limitations of this method and motivation for the next section.

3.3 Active audio-based relative positioning system

A passive audio-based relative bearing measurement system, based on perceiving the engine-

sound of robots, was described in the previous section. Although this method provides several

advantages, some of the mentioned drawbacks motivated research for an alternative solution.

This section explains a method based on active acoustic signalling, where individuals generate

a unique bird-like sounds, to assist each-other in obtaining the inter-robot relative bearing

information. Furthermore, an estimator is derived for the fixed-wing type of MAVs that fuses

the bearing measurements with information about the motion of the MAVs, provided by their

onboard sensors, to estimate more robustly the relative position, i.e. both relative range and

bearing, throughout time. An estimator for rotor-craft type of MAVs could potentially be

derived in a similar manner.

Figure 3.17 presents the schematic diagram of the overall audio-based relative positioning sys-

tem. The system is divided into two main parts of ”Target robot” and ”Perceiving robot” states

to illustrate the main units of the system involved at each state. In the target robot state, the

”Chirp Generator” of a robot generates unique chirp sound of predefined rate and frequency.

In the perceiving state, sound waves are picked up by an onboard microphone array and are

continuously checked by the ”Chirp Detection and Separation” unit for existence of chirps in

the sound mixture. When a full chirp is detected, it is filtered out from the sound mixture and is
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Figure 3.17: Schematic diagram of the proposed relative positioning system illustrating main
parts of the system.

then passed to the ”Coherence Measuring” unit. The coherence measuring unit, that was pre-

viously described in Section 3.2.2, obtains a measure of similarity between the chirps among

all of the microphone pairs. The frequency range used in the coherence measuring, defined

by fmi n and fmax in Equation (3.6), is chosen as the minimum and maximum frequencies of

the perceived chirp. The value of α= 1 is used in Equation (3.5) to consider equally all the

frequencies within the chirp’s range of frequencies. The resulting coherence measurements

and the knowledge of the microphone array’s geometry is then used by the Relative Bearing

Measurement unit, previously explained in Section 3.2.3, to estimate a measure of the target’s

direction. Finally, the position estimator unit, based on particle filters, estimates robustly the

relative location of the target robot by fusing the noisy bearing measurement with information

about the relative motion of robots throughout time. The relative motion between robots are

computed using information from the onboard proprioceptive sensors and with the aid of a

communication network. The particle filter is preferred over a parametric approach, such as

the Extended Kalman Filter, due to the non-linear nature of the relative motion dynamics of

the MAVs. A more detailed explanation of the units that were not explained in the previous

section is presented in the following subsections.
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Figure 3.18: A piezo transducer attached near the nose of a fixed wing MAV that is used as the
target robot in the experiments described later in Section 3.3.4

3.3.1 Chirp generator

Piezoelectric transducers are simple, inexpensive and lightweight devices that are suitable

to be used on MAVs. These devices generate sound by converting electrical signals into

mechanical vibrations. A loud sound wave can be produced if the input signal frequencies

are close to the resonance frequency of the piezo element. In addition, focusing the available

electrical power into a narrow range of frequencies results in a longer range transmission of

the sound waves. Hence, to generate a loud sound wave that is needed for achieving a longer

detection range, particularly suitable for outdoor operations, and to avoid the problem of

ambiguous bearing measurements related with localization of narrowband sounds, described

in Section 2.2, a piezo transducer is used on the robots to generate band limited chirp signals.

Figure 3.18 shows one of the fixed wing robots equipped with a piezo transducer that is used

in the experiments described later in Section 3.3.4.

The chirp generating unit of every target robot generates linear chirps with a predefined and

unique chirp rate. Since an entire chirp is used by the perceiving robots for computing a single

bearing measurement, the time interval between the chirps can be chosen in accordance with

the required measurement rates. To generate continuous chirps, the frequency of the input

sine-wave signal to the piezoelectric element is varied in time:

f (t ) = Fstr + Fend −Fstr

ΔT
mod

(
t

ΔT

)
(3.13)

where Fstr and Fend are the starting and ending frequencies of the chirp that is chosen differ-

ently for every robot, and ΔT is the chirp duration. Figure 3.19 illustrates the sound wave and

spectrogram of an in-flight sound recording, performed with three flying fixed-wing MAVs, i.e.

one perceiving MAV and two target MAVs emitting periodical chirps. .
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Figure 3.19: Sound wave and spectrogram of an in-flight sound recording involving one
perceiving robot and two chirping MAVs. The two linear chirps are in the same frequency
band and have a different chirp rate. One of the target robots produced chirps with up-sweep
frequency from 1700kHz to 4700kHz and the other target robot produced linear chirps with
down-sweep frequency from 4700kHz to 1700kHz.

3.3.2 Chirp detection and extraction

This unit is responsible for the detection and extraction of a chirp in the perceived sound

mixture. For this purpose, one of the microphone signals are continuously checked by the

unit to find the existence of chirps in the sound mixture. The presence of a chirp, belonging to

a specific target robot, is detected by template matching technique, where a continuous cross

correlation of the sound mixture with a template of the desired chirp determines the existence

and the time segment containing the entire chirp.

After a chirp is detected, it is filtered out from other sounds and overlapping chirps that might

also be present in the selected time segment. For this purpose, initially the time segment from

all of the microphone signals are passed through a band-pass filter to remove the unwanted

low and high frequency noises that are outside the chirp’s frequency range (see Figure 3.21.b).

Furthermore, Fractional Fourier transform (FRFT) [Namias, 1980] is used to remove the noises

within the frequency range of the chirp.

First proposed by Namias [Namias, 1980], FRFT has been recently favoured in the field of

signal processing [Ozaktas et al., 1994], mostly for recovering signals from noise [Erden et al.,

1999, Kutay et al., 1997] and particularly when dealing with chirp signals [Durak and Aldirmaz,

2010]. Unlike Fast Fourier transform (FFT), the FRFT provides a compact representation of

chirp signals, which makes it possible to remove the noise inside the same frequency region as

65



Chapter 3. Audio-based relative positioning for multiple micro aerial vehicle systems

Figure 3.20: A comparison between the time, frequency and fractional domain representation
of a linear chirp. a) Time domain b) Spectrogram c) Frequency domain d) Fractional domain

the chirp, that cannot be removed with traditional frequency domain filters. FRFT, transforms

the linear chirp to an intermediate domain between the time and frequency to have the chirp

represented by a single sharp peak. Figure 3.20 illustrate a comparison between the time,

frequency and fractional domain of a linear chirp. In simple words, FRFT projects the signal,

represented in time-frequency plane, onto a line of arbitrary angle ϕ defined by the FRFT

order α, whereas the FFT projects the signal on to the y-axis, i.e. ϕ = π/2 . A method for

computing the fractional Fourier transform by means of fast Fourier transform algorithm is

presented by [Garcia et al., 1996].

To represent the detected chirp in its most compact form, the Fractional Fourier transform

(FRFT) of the time window containing the entire chirp is computed with an FRFT order of α

obtained by the following equation.

α= 2

π
ϕ= 2

π
tan−1

(
fs

Fend −Fstr

)
(3.14)

where Fstr and Fend are the starting and ending frequencies of the perceived chirp in Hertz and

fs is the sampling frequency. Equation (3.14) was derived from the geometrical relationship

between the chirp rate and FRFT order for time-frequency discretized chirp signals provided

by [Capus and Brown, 2003].
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Figure 3.21: In-flight sound of a chirping MAV recorded by an observing MAV in different
steps of the chirp extraction procedure (a) Spectrogram of a detected chirp (b)Spectrogram
of the signal after band-pass filtering (c) FRFT transform of the band-passed chirp and the
corresponding passband region (d) Spectrogram of the final filtered chirp.

Upon computing the FRFT, the result contains an impulse-shaped peak that corresponds

to the desired chirp. The chirp is then filtered out from other sounds, by only retaining the

bin with the highest peak along with its few nearby bins and setting all other bins to zero

(illustrated in Figure 3.21.c) The ratio of the peak value to the mean value of all zeroed bins

prior to zeroing provides a good measure for the quality of the perceived chirp, i.e. signal to

noise ratio. This measure is computed and used later as a reliability measure for the obtained

bearing measurements, where only measurements satisfying a predefined reliability level

are used in the update step of the particle filter. Furthermore, the filtered chirp in the FRFT

domain is transformed back to the time domain by computing the inverse FRFT. Steps and

result of the chirp extraction procedure for a detected chirp in a real world experiment with

two flying MAVs is illustrated in Figure 3.21.

3.3.3 Position estimator

The already described units of Figure 3.17, provide a method for allowing individuals to

obtain an instantaneous relative bearing measurement to sound emitting target robots in the

neighbourhood, that might be noisy or unavailable at times. It is now required to estimate

more reliably the relative bearing information and to also obtain some information about the
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relative range of the target robots. This is achieved by fusing the relative bearing measurements,

that are obtained throughout time, with the relative motion dynamics of the perceiving and

the target MAVs, measured by their onboard proprioceptive sensors. The particle filtering

method, that was initially introduced in Section 2.3.2, is used here for fusing this information

in order to recursively estimate the probability density of the target location.

At time instant k, the relative position of a single target robot is modelled using a set of N

particles of vectors pi (k) and weight wi (k), where pi (k) = (pxi (k), pyi (k), pzi (k)) is a vector in

the body-fixed coordinate system of the perceiving robot that starts at its origin and ends at

a point in space. pi (k) can also be described in the body-fixed spherical coordinate system

( � φ, � θ,r ) by:

ui (k) = (φi (k),θi (k),ri (k)) i = 1,2, ..N (3.15)

where φi is the relative azimuth defined in the range [−π,π], θi is the relative elevation defined

in the range [−π/2,π/2] and ri is the relative range defined in the range [Rmi n ,Rmax ]. Rmi n

and Rmax are dependent on the platform size, and the sound pressure level generated by the

piezo transducer, respectively. For the MAVs and the piezos used in this work these ranges are

found approximately to be [1,250] meters.

A three dimensional state vector is specified for every particle:

Si (k) = [
φi (k) θi (k) ri (k)

]
(3.16)

The unit starts by forming an initial set of particles {Si (0), i = 1 : N } for every target robot

detected to be in the neighbourhood. Particles either could be distributed uniformly over the

entire state space, or only over a desired part of the state space if some prior knowledge about

the possible location of the target is available. In this work, to reduce the number of required

particles, the initial state space is reduced to all vectors in the space having a small deviation

from the first reliable bearing measurement.

As described previously in Section 2.3.2, a particle filter estimator consists of two main steps

that is repeated iteratively: Prediction and Update.

3.3.3.1 Prediction step

In the prediction step, a set of new particles {S̃i (k)} is predicted by propagating Si (k − 1)

according to a probabilistic relative motion model. This model is derived with the assumption

that, at every time step, robots have a forward motion, (i.e. along the x axis of their body-fixed

coordinate system), followed by a three dimensional rotation, (i.e. yaw (λ), pitch (β) and roll

(α) rotations around the z, y and x axis of the body fixed coordinate system respectively).

Figure 3.22 illustrates the positions of two robots in two successive time steps consisting

of a perceiving robot A and a target robot B. Using linear algebra the following relationship
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Figure 3.22: Positions of two robots (perceiving A and target B) in two successive time steps
along with coordinate systems and connecting vectors

between the vectors can be described:

−→p (k) = R A′
B ′ (RB ′

B
−→
T B )+R A′

A
−→p (k −1)−R A′

A
−→
T A (3.17)

where R J
I is a rotation matrix that rotates a vector from the coordinate system I to the coordi-

nate system J :

R J
I = Rz (λJ −λI ).Ry (βJ −βI ).Rx (αJ −αI ) (3.18)

(λI ,βI ,αI ) is the bearing of the coordinate system I relative to a fixed N ED coordinate system

and (Rz ,Ry ,Rx ) are basic rotation matrices that rotate vectors about the local z, y and x axis

respectively.

Equation (3.17) is used by the perceiving robot A to predict the vector
−→̃
p i (k) for particle i from

its previous value −→p i (k −1). For this, speed and orientation measurements of the perceiving

robot, and of the target robot that are transmitted via a communication network, are used. The

forward motion vectors
−→
T A and

−→
T B are initially computed from the speed sensor readings VA

and VB measured at time instance k −1

−→
T A=

⎡
⎢⎣

(VA(k −1)+ξV )d t

0

0

⎤
⎥⎦ −→

T B=

⎡
⎢⎣

(VB (k −1)+ξV )d t

0

0

⎤
⎥⎦ (3.19)

where d t is the time interval between the two time steps and ξV = N (0,σV ) is a random

number generated with a normal distribution of mean zero and standard deviation σV . The

value of σV is chosen in relation with the reliability in the speed sensor reading measurements.
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Furthermore, the rotation matrices R J
I (λ+ξλ,β+ξβ,α+ξα) in Equation (3.17) are computed

from the bearing measurements (λ,β,α)I ,J and using Equation (3.18), with ξλ = N (0,σλ),

ξβ = N (0,σβ) and ξα = N (0,σα) to simulate the noise in the measurements. Finally, Equation

(3.17) can be solved for the prediction
−→̃
p i (k) of particle i .

3.3.3.2 Update step

In the update step, the likelihood of the obtained audio-based relative bearing measurement

is investigated for every particle and particles are weighted according to this measure. For this

investigation, we propose the likelihood function:

wi = 1

σm
�

2π
e
− 1

2

(
εi
σm

)2

(3.20)

where

εi = � (
−→
b m(k),

−→̃
p i (k)) (3.21)

is the angle between the measured bearing
−→
b m(k) at time k and the predicted vector

−→̃
p i (k)

of particle i . The value of σm reflects the confidence of the bearing measurements and is

found empirically. As mentioned in Section 3.3.2, only reliable measurements obtained from

chirps with a good signal to noise ratio, i.e. that satisfy the predefined reliability level, is used

in the update step. The update step is skipped for unreliable measurements. In addition to

this, a simple outlier rejection method further investigates whether the update step should

be performed, where newly arrived measurements with large deviation from the predicted

particle distribution are rejected.

Note that, the likelihood function (3.20) is formed by assuming that the angular error between

the direction measurements
−→
b m and the true directions

−→
b T , have a Gaussian distribution

with mean zero and standard deviation σm . i.e.

� (
−→
b m ,

−→
b T ) ∼N (0,σ2

m) (3.22)

Experiments showed that this assumption approximately holds. Figure 3.23 shows the relative

bearing measurements and the histogram of the angular errors from a field experiment

involving a target robot and a perceiving robot.

3.3.3.3 Relative Position Estimation

The relative range and bearing of the target can be estimated at each time step from the

probability density function represented by a particle set. For this, a weighted mean of all

particles’ positions could be employed. However, to avoid inaccurate estimations for situations
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Figure 3.23: Audio-based bearing measurements from an experiment involving a perceiving
robot and a target robot. In this experiment, the perceiving robot was fixed over the ground
to eliminate the uncertainties, in the estimation of the true bearings, caused by the onboard
gyroscopes and the GPS of the perceiving robot. The target robot is flown manually in prox-
imity of the perceiving robot and its onboard GPS is used only to compute the true bearings.
top: Audio-based and GPS based relative azimuth measurements. bottom: histogram of the
angular errors between the measured bearings and the true bearings.

with multi-modal distributions, a weighted mean of particles located in a local neighbourhood

of the particle with the highest weight is used instead:

S̄T =
K∑

i=1
wi Si : ∀|Si −Smax | < ξ (3.23)

Finally, the particles are resampled according to their normalized weights to avoid the problem

of degeneracy of the particle filtering algorithm.
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Figure 3.24: Picture of the two type of MAV platforms used in the experiments, indicating the
position of the four onboard microphones. Both robots were designed and developed in the
Laboratory of Intelligent Systems at EPFL. More information about the fixed wing robot can
be found in the work of [Leven et al., 2007]

3.3.4 Experiments and results

3.3.4.1 Relative bearing measurement

Initially, experiments were undertaken to test the proposed active audio-based relative bearing

measurement system. For this, real world experiments with both fixed-wing and rotorcraft

type of MAVs were performed. In these experiments, the target robots were equipped with

a piezo transducer and a small electrical circuit based on a micro-controller for generating

periodic linear chirps. According to the datasheet of the used piezo element, a maximum

sound output of 100dB at 1 meter is produced at the resonance frequency. On the other hand,

the perceiving robots were equipped with an array of four microphones as shown in Figure

3.24. The microphones were covered with a small piece of foam for wind protection and for

reducing the noise introduced by the airflow caused by the motion of the robots.

Figure 3.25 illustrate results of an outdoor experiment where a perceiving rotorcraft MAV

was flown manually in the vicinity of a continuously chirping rotorcraft MAV. The target MAV

generated continuous linear chirps, each chirp with a down-sweep frequency from 4700kHz

to 1700kHz in approximately 25.6 milliseconds. The microphone array on the perceiving rotor-

craft MAV composed of three microphones forming a triangle of edge length 18cm, each placed

between the propellers, and the fourth microphone was placed approximately 5.2cm under the

center point of the triangle. A sampling rate of 40kHz was used for simultaneously sampling

the four microphone signals by the onboard microcontroller. Throughout the experiment, the

audio-based relative azimuth and elevation measurements from the audio processing board,

the robot’s attitude measurements provided by the onboard inertial measurement unit (IMU),

and the GPS positions, were transmitted and stored on to a ground station through an XBee
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communication link. The stored GPS and IMU measurements were used later to compute the

GPS-based relative bearing measurements for comparison. Figure 3.25(a,b) shows plots of

audio-based and GPS-based relative azimuth and elevation measurements for parts of this

experiment illustrating a good correspondence between the two values. A histogram of the

angular difference between the GPS based and audio-based relative bearing measurements for

this experiment is shown in Figure 3.25.c. Experiments with the used rotor-craft MAV showed

the success of detecting, filtering and localizing the chirp sound of target robots in presence

of the self-engine noise produced by the four engines of the robot. A detection range of ≈ 60

meters were found in these experiments.

90 95 100 105 110 115 120 125 130

0

200

time(s)

Az
im

ut
h 

( o  )

90 95 100 105 110 115 120 125 130
20
40
60
80

100
120

time (s)

El
ev

at
io

n 
( o  )

10 20 30 40 50 60
20
40
60
80

100
120

Fr
eq

ue
nc

y

Angular difference ( o )

Audio
GPS

Audio
GPS

(a)

(b)

(c)

Figure 3.25: Relative bearing measurements from a flying rotorcraft MAV to a chirping team-
mate.

In addition, a distributed leader-follower motion coordination between the two rotorcraft

MAVs were implemented to further test the onboard relative bearing measurement system.

For this purpose, a reactive controller was implemented on one of the robots to autonomously

follow a chirping leader robot based entirely on the the instantaneous 3D audio-based bear-

ing measurements. The heading of the follower robot was directly controlled by the relative

azimuth measurements to face the direction of the leader robot, the relative elevation mea-

surements were used to control the speed of the robot to reach the target, and the values
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Figure 3.26: Photo showing an instance of the audio-based leader-follower experiments
involving two rotorcraft MAVs, where a fully autonomous follower MAV used the on-board
active relative bearing measurement system to reactively follow a teleoperated chirping leader
robot. Videos can be found at http://lis.epfl.ch/ABSMAV
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Figure 3.27: Path and positions of the MAVs, extracted from the GPS logs of the leader-follower
experiment, illustrating the success of the fully autonomous follower robot to reactively follow
the chirping leader robot using entirely the locally perceived sound waves
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from an onboard pressure sensor were used to maintain the altitude of the robot. The overall

controller can be thought of as a potential vector field in space, with vectors guiding the robot

to maintain its current altitude while pointing towards the goal point of |elevation| = 90 degrees

(i.e. the point exactly above the leader robot if the leader is at a lower altitude, or exactly bellow

the leader robot if it is at a higher altitude). Figure 3.26 shows an instance of the experiment

where the autonomous follower MAV is following a teleoperated chirping leader robot. Figure

3.27 shows the path and positions of the MAVs, extracted from the GPS logs of one of the

experiments, illustrating the success of the fully autonomous follower robot to follow the

leader robot while entirely depending on the 3D bearing information obtained from the locally

perceived sound waves.

Furthermore, real world experiments involving three fixed-wing flying robots were carried

out. In these experiment a perceiving robot was flown manually in the vicinity of two simulta-

neously chirping robots. The target robots were controlled automatically by their onboard

autopilots based on a set of predefined GPS way-points. One of the target robots produced

linear chirps with an up-sweep frequency from 1700kHz to 4700kHz and the other robot

produced linear chirps with down-sweep frequency from 4700kHz to 1700kHz. The rate of

chirping for both robots were set to about 20 chirps per second with each chirp having a

duration of approximately 0.05 seconds. An instance of the sound recording by the perceiving

robot is shown in Figure 3.19 that illustrates the chirps from the two targets robot in the

sound mixture. The microphone array on the perceiving robot formed a regular tetrahedron

of edge length 10 cm and a sampling rate of 48kHz was used for this experiment. The array’s

position and dimension was selected in order to prevent the drag caused by the microphones

from affecting the MAV’s stability. The orientation, altitude, air-speed and global position-

ing information of the MAVs were measured using onboard sensors and transmitted and

recorded on the ground station through a wireless communication network. The roll and pitch

orientations of the MAVs were measured using onboard gyroscopes, and since no compass

sensor was present on these MAVs, the heading information from the onboard GPS sensor was

used instead. The MAVs were controlled to fly within the visual range of a safety pilot while

the engine power of the perceiving robot was occasionally reduced to improve the detection

range by increasing the signal to noise ratio. Plots of audio-based and GPS based relative

azimuth measurements along with the GPS based relative distance is shown in Figure 3.28.

Simultaneous bearing measurements to the two robots is obtained indicating the success of

the system in correctly identifying and separating the two overlapping chirps. Experiments

also indicated that the maximum detection range of the system depends on the self-motor

sound of the perceiving robot, where a lower detection range was obtained for high motor

speeds. This can be seen in Figure 3.28.b, at around t = 5 seconds where a higher motor input

results in less reliable measurements for the further away robot and only the closer robot is

continuously localized. This is because, as the engine-speed is increased, the noise at higher

frequencies where the chirps are expected is also increased that results in the reduction of the

signal to noise ratio. A detection range of up to ≈ 200 meters were obtained by the perceiving

robots when gliding with the engine turned off.
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Figure 3.28: Results of a real world experiment involving three flying fixed-wing robots, where
the relative direction of two simultaneously chirping robots is measured from a perceiving
robot. (a) and (b) illustrate two different instances of the experiment, each containing plots of
relative audio-based azimuth measurements and GPS-based azimuth estimates. The relative
distance between the robots shown is computed using GPS positions.
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In addition, experiments were performed in simulation to test the performance of the method

in cases with more than two overlapping chirps. Note that in practice it is possible to reduce

the number of overlapping chirps, by reducing the chirp rate of the robots, or by using different

piezos and spreading the chirps in different frequency ranges. In these experiments, the sound

wave at each microphone position were simulated by superimposing the waves from randomly

positioned point sources, based on the principle of superposition of sound waves. Simple

free-field sound-wave propagation model was used to simulate the sound wave of a source at

the point of the microphone. Each source generated a continuous chirp sequence, with unique

chirp rates but with equal chirp duration, to ensure that all the chirps overlap with each other.

The chirp sequence for every source was randomly started in every experiment to simulate the

fact that the chirp timing between robots are not synchronous and that chirps from different

robots could overlap at different times. A sampling frequency of 40kHz, chirp duration of 50ms

and a microphone array with the same dimension as the one on the rotorcraft MAV was used

for the simulations. Figure 3.29 shows the spectrogram of a microphone signal and the relative

bearing measurements from an experiment with 10 overlapping chirps. It can be seen that all

chirps are successfully extracted from the sound mixture and the directions of all 10 targets

are identified correctly. Experiments showed that for large number of overlapping chirps,

and since the chirp timing between the robots are not synchronous, multiple overlapping

times could occur on a single chirp that might prevent it from being detected or correctly

localized. Figure 3.30 shows the number of sources that was incorrectly localized for the cases

of 6,8,10,12 and 14 overlapping chirps, each computed from 100 experiment runs with random

overlapping configurations.

3.3.4.2 Relative position estimation

The experimental data obtained from the in-flight experiments involving three fixed-wing

MAVs were employed to test the performance of the particle filter estimator in estimating

both the relative bearing and the relative range of the two target robots. It was observed

that the estimator was capable of tracking the relative bearing of robots, and also provide

an estimate of the relative range, with a good accuracy. Figure 3.31 shows the path of all

three robots, recorded by the GPS sensors, for 25 seconds duration of flight time. The relative

bearing measurements and estimates for this duration of time is shown in Figure 3.32. It can

be observed that, the relative bearing of the targets are tracked correctly even at times that

there are no reliable observations available. The relative range estimations along with the

particle distributions and GPS based range estimates are shown in Figure 3.33. It can be seen

that, the particles gradually converge towards the correct relative range and furthermore track

it with an acceptable accuracy. As expected, the speed of convergence and the accuracy in

the relative range estimations are dependent on the motions and positions of the robots. For

some types of relative motions, the particles having an inaccurate range are eliminated faster

than for other types of motions. Figure 3.33 shows that in the first few seconds, where the

perceiving robot is further away from the target robots, and robots are moving towards each

other, particles are still widely spread in relative range although they have converged to the
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Figure 3.29: The spectrogram of a microphone signal and the measured direction likelihoods
of the extracted chirp signals in a simulation experiment with 10 simultaneously chirping
targets. The true source direction is marked with a cross and the direction with the maximum
likelihood is marked with a circle.

0
1
2
3
4
5
6
7

6 8 10 12 14
Number of overlapping Chirps

N
um

be
r o

f i
nc

or
re

ct
ly

 
lo

ca
liz

ed
 s

ou
rc

es

Figure 3.30: Number of incorrectly localized sources in a single time frame for the cases of
6,8,10, 12 and 14 overlapping chirps, computed from 100 random overlapping configurations.
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Figure 3.31: The motion path of robots recorded by onboard GPS sensors, for 25 seconds of
flight time in an experiment involving one perceiving robot to locate and track two target
robots

correct bearing. As the robots get closer and pass each other, the disparity of the particles in

range is also reduced.

3.4 Conclusion

In this chapter, two methods for measuring the relative bearing of individuals in a group of

MAVs were presented. Both methods were based on a small, compact and onboard micro-

phone array for passively measuring the sound waves in space and estimating the direction

of arrival of sound waves. The first method relied on the sound waves generated by the en-

gine of other robots to obtain the relative bearing measurements. This method exhibited a

good direction accuracy in the absence of the self engine noise, but the detection range was

strongly dependant on the output sound level of the targets and the acoustic noise level of

the environment. Furthermore, by pruning the coherence measurements it was possible to

simultaneously measure the direction of up to three target robots having the highest sound

superiority. The method had the advantage of energy efficiency due to its complete passivity

and the capability of measuring the direction of other non-cooperative sound emitting aerial

platforms. However, the inability to identify the robot identities, the no self-engine noise

constraint and the dependency of the detection range on the engine speed of the target robots

were some of the limitations of this method motivated the need for the second approach. The

second method was based on perceiving acoustic chirp signals emitted by the robots using an

onboard piezo transducer. The unique and high frequency chirps allowed the robots to obtain

the relative bearing measurements in presence of the self-engine noise and to identify the

identity of robots for each measurement. Although the chirping rate and frequency could be

selected to reduce or remove overlapping chirps in the sound mixture, however experiments
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Figure 3.32: The relative azimuth estimates from the Position Estimator unit compared with
the relative azimuth computed from the GPS positions and the onboard IMU orientations.
The measurements obtained by the Relative Bearing Measurement unit are also shown by
small markers.

Figure 3.33: The Relative range estimations, standard deviation of the relative range of all
particles and GPS based range values
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showed that with the described fractional Fourier filter it is possible to extract and localize

many overlapping chirps. Furthermore, an estimator was derived for the fixed-wing type

of robots to allow individuals to estimate and track the relative position of other members

throughout time, by fusing the bearing measurements with the state information of the MAVs

provided by the onboard sensors. In the next section, a solution to self localization of individu-

als, all relative to a single reference point, is described based on the proposed relative bearing

measurement system described in this chapter.
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4 Audio-based localization for swarms
of micro air vehicles

L OCALIZATION is one of the key challenges that needs to be considered beforehand to design

truly autonomous MAV teams. Individual’s knowledge about their three dimensional

position is required for allowing MAVS to autonomously navigate to different points in space

and for performing many aerial coverage tasks such as exploration and mapping. Furthermore,

sharing this information with other robots through a communication network provides an

alternative solution to the inter-robot relative positioning problem that was discussed in

previous chapter.

In this chapter, we present a cooperative method to address the localization problem for a

team of MAVs, that is independent of any external systems while satisfying the constraint of

MAVs, where individuals obtain their position through perceiving a sound-emitting beacon

MAV which is flying relative to a reference point in the environment. In particular, we provide

a solution for a team of fixed wing robots that accommodates the motion constraints of

these type of robots. The method is based on the on-board audio-based relative bearing

measurement system, described in the previous chapter, for allowing robots to measure

the relative direction to the sound emitting beacon robot. This information, along with the

internal sensory information and prior knowledge about the behaviour of the beacon robot, is

used by the individuals to localize themselves and the beacon robot without the need for a

communication network. The proposed method is evaluated both in simulation and in real

world experiments.

83



Chapter 4. Audio-based localization for swarms of micro air vehicles

4.1 Introduction

MAV self localization problem, is the problem of estimating the three dimensional position of

an MAV relative to a single reference point by the MAV itself . In Section 1.1, the importance of

self-localization for designing truly autonomous MAV teams were described. It was described

that, individual’s knowledge about their 3D location is necessary for allowing robots to au-

tonomously navigate to different points in space and to achieve many aerial coverage tasks

such as exploration and mapping. This information could further be used to avoid inter robot

collisions by priori spatial separation of individuals at different altitudes or locations [Allred

et al., 2007, Cole et al., 2008]. In addition, by sharing their positions with other team members,

individuals can obtain the relative positioning information, allowing them to form formations

[Basiri et al., 2010] [Moshtagh et al., 2009] and avoid collisions with other MAVs without the

need of priori spatial separation [Carnie et al., 2006].

The constraints of MAVs limit the transfer of successful localization solutions from ground

robots and large aerial vehicles to the small scale MAVs. Section 1.2.1 provided an overview of

the existing localization methods used for MAVs, where solutions were divided into two main

categories of Global methods and Local methods. Global localization methods rely on external

systems, such as the 3-D motion tracking cameras or global positioning system (GPS) satellites,

that might not always be accessible to the MAVs. On the other hand, local localization methods,

such as the vision based SLAM, had the important advantage of independency, however, they

required high computational power and data storage, to detect, localize and keep track of

features in the environment, that might not be available on the small scale and inexpensive

MAVS. The need for real-time processing of high resolution and high frame-rate images, the

dependency on illumination, visual contrast, weather conditions and the limited field of view

of vision sensors, the errors caused due to the high or insufficient number of features in the

images, the long displacement between loop closings and the fast dynamic nature of MAVs,

were some of the other drawbacks of the visual SLAM methods for aerial robots [Artieda et al.,

2009].

The aim of the work presented in this chapter was to obtain a localization solution for a team

of MAVs that is independent of any external system while avoiding the high complexity and

drawbacks of the local localization methods. For this purpose, we propose a cooperative

method allowing robots to obtain their 3D positions through cooperation, where a robot in

the group acts as a positioning beacon assisting others with obtaining their positions. The

method is based on the on-board audio-based relative bearing measurement system that

was described in Section 3.3, that allows robots to measure the relative bearing to a sound

emitting beacon robot. The robots then use this information, along with their on-board

sensory information to localize themselves all relative to a single reference point. Particularly

we derive a solution for fixed wing type of MAVs that can accommodate the motion constraint

of these type of robots and their requirement to always maintain a forward speed for staying

airborne.
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4.2. Proposed method

This chapter is organized as follows: Section 4.2 describes our proposed method for self

localization of MAVs in a Multi-MAV system, where an estimator is derived for estimating the

robot locations throughout time based on the bearing-only measurements to the beacon robot.

Section 4.3 provides the results of simulation and real world experiments of the proposed

method. Section 4.3 describes a conclusion to this chapter and potential future works.

4.2 Proposed method

This section explains our method for localizing MAVs in a Multi-MAV system. This method can

be considered as a combination between the two class of localization approaches, described

in Section 1.2.1, to employ some of the advantages from both classes. It allows a group of MAVs

to cooperatively localize themselves using only their onboard sensors, and independent of any

external systems, while avoiding the high complexity nature of the local localization methods.

The idea here is that a single MAV in the group starts to fly in a circular pattern, acting as a

positioning beacon and attracting the attention of other robots by emitting sound waves, that

are continuous sequence of acoustic chirps of predefined rate and frequency. All MAVs are

equipped with the audio-based relative bearing measurement system presented in Section

3.3 to passively perceive the chirps and measure the direction of the beacon robot. Upon

hearing the calls of the beacon robot, MAVs start to estimate their positions and the position

of the beacon robot simultaneously, all relative to a single reference point, throughout time.

An Extended Kalman Filter (EKF) estimator is derived for this estimation that is explained in

detail in Section 4.2.1 . No communication between robots is required as robots only consider

the prior knowledge of the beacon robot’s behaviour in their estimations.

As illustrated in Figure 4.1, the beacon robot is controlled to circle around a desired reference

point, while trying to maintain a previously defined altitude, speed and circling radius. Many

control strategies for guiding an MAV on a circular path exists [Frew et al., 2007, Nelson et al.,

2007]. In this work, a vector field based controller, similar to the one proposed in [Nelson

et al., 2007], was used to control the motion of the beacon MAV around the reference point.

The beacon MAV can consider a static point on the ground that is detected by an onboard

camera [Grocholsky et al., 2006], or a static acoustic target on the ground that is detected by

an onboard microphone array, similar to our proposed solution in Chapter 2, as the reference

point.

4.2.1 Position estimation using bearing-only measurements

A position estimator, based on the Extended Kalman Filtering (EKF) method [Welch and Bishop,

1995], is derived to allow observing robots to robustly estimate their locations throughout time.

This is achieved by fusing the noisy relative bearing measurements, with information about

the motion of the robot itself, gathered by the onboard proprioceptive sensors, and taking

into account the prior knowledge about the behaviour of the beacon robot. The estimator is

recursive and consists of an Initialization step and two iterative steps, Prediction and Update,
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Figure 4.1: Diagram illustrating the positions of two MAVs, beacon MAV (pb) and observing
MAV (po), for two successive time steps, and introducing some other symbols that are used
for describing the position estimation method.

that are explained in the following subsections.

At time instant k, the position of the beacon MAV and an observing MAV, relative to the

reference point, is given by position vectors pb(k) and po(k) respectively, where pb is defined

in Cylindrical coordinate system by pb = (ρb ,φb , zb) and po is defined in Cartesian coordinate

system by po = (xo , yo , zo). The combination of both position vectors is considered as the state

vector X for the EKF:

X =
(

pb

po

)
=

[
ρb φb zb xo yo zo

]T
(4.1)

Furthermore, a 6×6 covariance matrix P (k) defines the state error covariance matrix at time

instant k.

Initialization

In this work, an initial state estimation strategy is proposed in order to obtain a good initial

guess of the state vector X (0) to have a faster convergence in the state estimation. The EKF

is initialized after the first reliable bearing measurement is obtained, by using the MAV’s

orientation and altitude sensor values:

pb(0) = (Rb ,0, Zb) (4.2)

po(0) = Zb
−→
j −�(RG

O
−→
b0) (4.3)

� =
{ (Zb−Zo )

si g n(Zb−Zo (0))
−→
j ·RG

O (0)
−→
b0

Zb �= Zo

DM
2 Zb = Zo
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where, Zb and Rb are the prior knowledge of the beacon MAV’s altitude and circling radius

respectively,
−→
j is a unit vector along the positive z axis of the global coordinate system G ,

(·) is the vector dot product, Zo(0) is the measured altitude of the observer MAV at time zero

and DM is the maximum detection range of the bearing measuring sensor. Vector
−→
b0 is a unit

vector in the observer MAV’s body fixed coordinate system O pointing along the direction of

the initial relative bearing measurement. RG
O (0) is a rotation matrix that rotates vectors from

coordinate system O to G :

RG
O (k) = Rz (−λo(k))Ry (−βo(k))Rx (−αo(k)) (4.4)

(λo(k),βo(k),αo(k)) are the yaw, roll and pitch orientation measurements of the observer

robot and (Rz ,Ry ,Rx ) are basic rotation matrices that rotate vectors about the local z, y, x axis

respectively. In the case of ideal measurements and when Zb �= Zo , Equation (4.3), obtained

using basic vector operations, calculates the center point of a circle of radius Rb that have the

observer MAV on its circumference. Furthermore, a covariance matrix P (0) is initialized:

P (0) = di ag (σ2
ρb (0),σ

2
φb (0),σ

2
zb (0),σ

2
xo (0),σ

2
yo (0),σ

2
zo (0))

where σ2
x(0) is the initial covariance of the state variable x that are chosen in accordance to the

reliability of sensor readings and the uncertainties in the initial state estimation.

Prediction

In the prediction step, the current state of the system X̃ (k) is predicted from X (k −1). For the

observer MAV, a probabilistic motion model and the onboard sensor information, providing

the speed and orientation of the MAV, is used to predict the position vector p̃o(k) from po(k−1).

p̃o(k) = po(k −1)+RG
O (k −1)

⎡
⎢⎣

Vo(k −1)d t

0

0

⎤
⎥⎦ (4.5)

where Vo(k) is the speed sensor reading and d t is the time interval between the two time steps.

The motion model (4.5) is derived by assuming that, at every iteration, the MAV has a forward

motion along the x-axis of its body fixed coordinate system, followed by a three dimensional

rotation.

If communication between the robots were available, the speed and orientation values of the

beacon MAV along with conversions between Cylindrical and Cartesian coordinate systems

could also be used to predict the beacon MAV’s position vector p̃b(k). However, as we are

interested in a solution that does not depend on a communication network, only the prior

knowledge about the speed Vb and circling radius Rb is used to obtain p̃b(k):

p̃b(k) = pb(k −1)+
[

0 Vb
Rb

d t 0
]T

(4.6)
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Furthermore, a prediction of the state covariance matrix, P̃ (k), is obtained by assuming that

the uncertainty in state predictors (4.5) and (4.6) is a zero mean multivariate Gaussian.

Update

In the Update step, the relative bearing measurement, presented by vector �bk , is used to update

the state prediction X̃ (k). For this, a measurement model to predict the relative bearing from

the state predictions is defined:

θ = tan−1
(

ry

rx

)
ϕ= tan−1

(
rz�

rx
2+ry

2

)
(4.7)

where

�r = (rx ,ry ,rz ) = (
ρb cosφb −xo ,ρb sinφb − yo , zb − zo

)
is a vector in the global coordinate system G that starts at the position po and ends at the

position pb . θ and ϕ are the azimuth and elevation of vector�r . The predicted bearing (θ̃, ϕ̃) is

found by substituting the state predictions X̃ (k), from Equations (4.5) and (4.6), into Equation

(4.7).

Furthermore, an innovation μ(k) is defined as the difference between the predicted bearing

(θ̃k ,ϕ̃k ) and the measured bearing (θ̂k ,ϕ̂k ):

μ(k) =
[
θ̂k − θ̃k ϕ̂k − ϕ̃k

]T
(4.8)

where θ̂k and ϕ̂k are the azimuth and elevation of vector �bk expressed in the coordinate system

G , i.e RG
O (k)�bk . The innovation covariance matrix S(k) is computed by:

S(k) = HP̃ (k)H T +D (4.9)

where D is the error covariance of bearing measurements and is found empirically. H is the

Jacobian of the measurement model (4.7) with respect to the states:

H =
[

∂θ
∂X
∂ϕ
∂X

]∣∣∣∣∣
X̃ (k)

=
[

H11 ... H16

H21 ... H26

]∣∣∣∣∣
X̃ (k)

(4.10)
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where

H11 =
(
yo cosϕb −xo sinϕb

)/ℜ1

H12 = ρb
(
ρb −xo cosϕb − yo sinϕb

)/ℜ1

H14 =
(−yo +ρb sinϕb

)/ℜ1

H15 =
(
xo +ρb cosϕb

)/ℜ1

H13 = H16 = 0

H21 =
(
(zo − zb)

(
ρb −xo cosϕb − yo sinϕb

))/ℜ3

H22 =−ρb (zo − zb)
(
yo cosϕb −xo sinϕb

)/ℜ3

H24 = (zo − zb)
(
xo −ρb cosϕb

)/ℜ3

H25 = (zo − zb)
(
yo −ρb sinϕb

)/ℜ3

H23 =−H26 =
√ℜ1

/
ℜ2

ℜ1 = ρb
2 +xo

2 + yo
2 −2ρb

(
xo cosϕb + yo sinϕb

)
ℜ2 =ℜ1 + (zo − zb)2

ℜ3 =ℜ2

√(
xo −ρb cosϕb

)2 + (
yo −ρb sinϕb

)2

Finally the states are updated:

X (k) = X̃ (k)+K (k)μ(k)

P (k) = P̃ (k)−K (k)HP̃ (k)

where K (k) is the Kalman gain at time k derived by:

K (k) = P̃ (k)H T S(k)−1

4.3 Experiments and results

To verify the proposed bearing-only position estimator, initially experiments were performed

in simulation using a group of modelled MAVs. Simulated MAVs were presented by a first order

3D flight model with three degrees of freedom for the airspeed, turn rate and the altitude, all

controlled by PID controllers. The MAV’s airspeed, turn rate and altitude dynamics had rate

limitations and were influenced by a uniform noise. Furthermore, the sensors that provide the

MAV’s orientations, speed, altitude and the relative bearing to the beacon MAV were modelled

to be affected by a zero mean uniform noise while the relative bearing sensor was also limited

in range. Model parameters were tuned to best represent the simple MAV platform that was

used throughout the real experiments [Leven et al., 2007]. A vector field controller was used

on the MAVs to steer their motions onto a circular path around desired waypoints. For the

beacon robot this waypoint was always a fixed point in space, while for the observer robots

random waypoints were generated sequentially to navigate them between random points in

the space. Figure 4.2 shows the results of multiple simulation runs involving a beacon MAV

and an observer MAV. It shows the gradual convergence of the position estimations to the

true position and the reduction in the error covariance, once the beacon MAV is within the

detection range of the observer MAV. The absolute estimation error for all the EKF states in
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Figure 4.2: Results of position estimations in multiple simulation runs involving 1 observer
and 1 beacon MAV. A uniform noise of ±5o for relative-bearing/attitude sensors and ±1m
for altitude/speed sensors is used in the simulations. The bearing sensor’s detection range is
defined as 150m. Plots compare the position estimates alongside the true path of the robots
showing the convergence of the estimates to the true position.

one of the experiments is shown in Figure 4.3. The gradual reduction of errors in the position

estimates corresponding to the beacon robot, and the observer robot itself, is illustrated in this

figure. As expected, the convergence speed depends on the relative motion between the robots,

where for the motions that result in a faster change of the relative bearing a faster localization

is obtained. Upon localization, a good position tracking is achieved by the estimator.

Multiple real experiments were performed to further test the proposed method and the

localization performance using the available fixed-wing platforms. A beacon MAV, equipped
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Figure 4.3: Absolute estimation errors of all the EKF states in the experiment of Figure 4.2.a
with an observer MAV, indicated by the subscript (o), and a beacon MAV, indicated by the
subscript (b); illustrating the gradual reduction of the position errors towards zero.

with an autopilot, was programmed to fly in circles around a GPS coordinate with constant

velocity and constant altitude while emitting chirps using an on-board piezo transducer. An

observing MAV, as shown in Figure 3.24, equipped with the on-board audio-based relative

bearing measurement system described in Section 3.3, was then flown manually in proximity

of the beacon MAV to measure the direction of the incoming acoustic chirp signals. The engine

power of the observer MAV was occasionally reduced or turned off to increase the chirp to

noise ratio and the detection range. The orientation, altitude, air-speed and global positioning

information of both MAVs were measured using on-board sensors and were transmitted and

stored on to a ground station. Figure 4.4 shows the audio-based position estimates of the

observer robot, along with the path of the robot provided by the on-board GPS sensors, for

two instances of the experiments. A good coherence between the GPS-based and audio-based

estimates is observed. Figure 4.5 shows the absolute difference between the GPS-based and

audio-based state estimates illustrating the convergence of position estimates towards the

GPS positions.

4.4 Conclusion

A solution to the problem of MAV swarm localization was presented. This solution consists of

a single beacon MAV that circles around a reference point in space while emitting continuous

linear chirps of predefined frequency spectrum to assist other MAVs in localizing themselves.

MAVs were equipped with the on-board audio-based relative positioning system described in

Section 3.3, to measure the bearing to a chirping beacon MAV, and on-board sensors, to obtain

information about their motions throughout time. The proposed EKF-based filter was shown
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Figure 4.4: Result of a real experiment with two MAVs showing the audio-based position
estimates, the error covariance ellipsoids and the path of the MAVs provided by the GPS
sensors
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Figure 4.5: Absolute estimation error of all the EKF states in a real world experiment for
an observer MAV, indicated by subscript (o), and a beacon MAV, indicated by subscript (b),
illustrating the gradual reduction of the state errors, corresponding to the position errors of
both robot.
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to be well-suited for the sensor fusion and achieving a robust localization. No communication

between the robots was required for this purpose and only prior knowledge about robot’s

behaviours were used in the estimations. Investigating different types of MAV motions that

could result in a faster localization, employing multiple beacon MAVs to improve localization

performance, and study of switching protocols to switch MAVs between beacon and observer

states, for exploration and reduction in the swarm’s overall localization error, are some of the

potential areas for future explorations.
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5 Conclusion

5.1 Main accomplishments

T HE Goal of this thesis was to contribute to the field of aerial robotics by proposing potential

solutions to some of the challenges faced in the design of autonomous teams of micro

aerial vehicles (MAVs), and assisting with their future deployment for real missions. This thesis

focused on the new paradigm of exploiting sound waves to obtain independent and on-board

solutions that are compatible with the strict constraints of these small-scale, light-weight

and inexpensive robots. We proposed novel methods based on an on-board audio-based

sensor suite in order to allow individuals inside an MAV swarm to obtain awareness about the

position of themselves, the position of other swarm members and to detect and locate other

important acoustic targets from the air.

In this thesis, the problem of relative positioning between individuals in an MAV team was

considered. Although relative positioning is considered by both the natural and artificial

swarm researchers as the essential and sufficient requirement to many swarming behaviours,

however, the lack of technological possibilities that could provide individuals with this infor-

mation, while satisfying the strict constraint of MAVs, have limited solutions to be dependent

on external systems that are either impractical or not always available. In this thesis we pro-

posed the naturally inspired solution of using sound waves to obtain an extremely lightweight,

small, real-time and on-board system for inter-robot relative positioning of MAV teams. For

this purpose, we initially proposed a method based on few spatially separated microphone

sensors that allowed robots to measure the relative bearing of their neighbouring robots by

perceiving the sound emitted from their engines. The method was shown to provide accurate

measurements in the absence of the self engine noise, however, the detection range was de-

pendant on the target robot’s engine sound levels and the noise of the operating environment.

We then proposed an alternative method where individuals generated unique chirp signals to

assist others in obtaining their bearing measurements, which allowed distinguishing the robot

identities and the operation in the presence of self engine noises. A filtering method based

on fractional Fourier transform allowed the robots to extract a chirp from other overlapping
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chirps or noise in the sound mixture and for obtaining accurate localization. An estimator

was then derived for the fixed-wing type of robots to allow them to robustly estimate both

the relative range and the relative bearings of other robots throughout time, by fusing the

audio-based bearing measurements with other on-board sensory information.

Furthermore, a solution to the self-localization problem of individuals in an MAV swarm

was introduced, that is independent of any external systems, does not require inter-robot

communication, and it can accommodate motion constraints of fixed wing flying robots. The

solution, based on the principle of cooperation, consisted of a sound emitting beacon MAV

flying in a circular pattern and observing MAVs equipped with the proposed audio-based

relative bearing measurement system. An EKF based estimator was shown to be well suited

for fusing the audio-based bearing measurements and other on-board sensory information,

to obtain the three dimensional positions throughout time.

In addition, this thesis showed how the on-board audio-based sensor suite could also be

employed to obtain information about important acoustic targets in the environment. The

novel idea of localizing emergency sound sources from airborne micro aerial vehicles was

presented that could be a crucial asset particularly in search and rescue operations. Employing

a team of MAVs for locating distress sound signals, such as the sound of a person blowing

into a safety whistle, could allow the fast localization of victims and the coordination of

rescue members in night time and through fog, dust, smoke and foliage. We furthermore

proposed multiple solutions to overcome the ambiguity associated with localizing emergency

sound signals, or other narrowband sounds in general, and to accommodate different type

of aerial robotic platforms. Exploiting the Doppler shift in the sound frequencies due to the

motion of the robot, active control of the robot’s behaviour while fusing acoustics and attitude

information, and modulating the frequency of the sound source itself, were the basis for the

three different proposed methods. Experiments with real flying robots showed the success

of detecting and correctly localizing different type of emergency sources and verified the

proposed methods and solutions.

5.2 Potential applications

This thesis presented multiple practical methodologies designed to enable autonomous oper-

ation of groups of small scale aerial robots for real mission scenarios. The ability of obtaining

inter-robot relative positioning and self localization information, independent of any external

systems, provides a practical solution for realisation of multi-MAV control algorithms, and

opens the door to many potential aerial coverage applications. Such abilities would partic-

ularly be desired in applications that require fast deployment of groups of aerial robots for

operating in unprepared environments. Rapidly deployable communication network, aerial

surveillance system, search and rescue operations and environmental monitoring are some of

the examples envisioned for truly autonomous MAV swarms.

Furthermore, this thesis presented the idea and methodology of providing micro aerial vehicles

96



5.2. Potential applications

with the important sense of hearing, for detection and localization of different type of acoustic

sources in the environment. Apart from the discussed advantages of using sound for achieving

spatial coordination in multi MAV systems, audio-based flying robots offer additional avenues

to research and applications:

Sense and avoid system: An important requirement for allowing MAVs to operate freely in the

airspace is the ability to autonomously sense and avoid mid-air collision with other aircraft

and non-cooperative aerial robots. Since MAVs do not have the necessary power and payload

to employ radar and other active anti-collision systems, an audio based sense and avoid

system could be a promising solution to passively detect and avoid collision with many aerial

platforms through the sound emitted by their engines. Many available examples of hear and

avoid behaviour in nature [Miller and Surlykke, 2001] show the potential effectiveness of a

hear and avoid collision avoidance system for MAVs.

Search and rescue: Employing aerial robots capable of locating sound sources for search and

rescue operations bring forward many important advantages and opportunities. In Chapter

2 it was shown how such aerial robots could provide a method of quickly localizing victims

in disaster situations through emergency acoustic sources such as personal alarms or safety

whistles, that can operate in night time, through foliage and many adverse weather conditions.

Furthermore, a team of MAVs could be used to keep track and coordinate different rescue

teams using simple acoustic signalling. Also since sound waves are able to bend around

obstacles and travel for long distances, audio based controllers could be used on indoor

flying robots to pursue the path of sound waves and quickly reach acoustic targets inside

buildings, semi-collapsed structures and caves. A collision resilient flying robot [Briod et al.,

2014] equipped with the proposed audio-based direction measurement system could be a

promising solution for indoor search and rescue operations.

Aerial surveillance: Many applications could be envisioned for audio based MAVs for surveil-

lance purposes. MAVS could potentially be used to patrol areas of interest for localizing

interesting sounds such as alarms, sirens, gun fire and explosions. In protected areas, rest-

ing MAVs could launch automatically and quickly localize and reach points of interest upon

hearing the sound of security alarms or sirens indicating intrusion. Furthermore, the method

presented in Chapter 4 could be employed to allow an MAV, upon locating an acoustic target

on the ground, to inform the target’s position to other team-mates without the need of a

communication network and by simply chirping and circling around the target. In addition,

audio based MAVs could potentially join the fight against illegal poaching by patrolling and

localizing the sound of hunting rifles in dense forests.

Environmental noise monitoring: Another interesting application could be to use MAVs

for performing remote acoustic noise monitoring and inspection. Aerial robots could be

used to measure the acoustic noise level and generate acoustic maps in many areas such as

construction sites, airports, roads, industrial sites and near wind turbines. Perceiving sounds

from the air has the advantage of direct line of sight to the acoustic sources that could improve
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the detection and localization as the sound waves are less effected by obstacles.

Study of biological systems: Building small aerial robots that could be socially integrated

into groups of flying animals could potentially assist in the study of animal behaviours at the

individual and collective level. The ability of these robots to detect, locate and interact through

the sense of sound could facilitate the animal-robot interaction. A potential future application

that the author envision on this area is to employ audio based MAVs to better study and

investigate the purpose of the flight calls of nocturnal migratory birds, where existing research

has been limited to far away recordings made from stationary ground stations [Hamilton,

1962, Larkin et al., 2002, Sanders and Mennill, 2014]. In addition using audio-based aerial

robots could potentially allow modelling of phonotaxis behaviour among insects,[Doherty,

1985, Hoy, 2014, Hedwig and Robert, 2014] for better understanding of these organisms and

obtaining efficient robot controllers.

Mapping and Obstacle avoidance: Detecting and localizing echoes of the emitted sound

waves could potentially provide the MAVs with important information about the surrounding

environment and the presence of large obstacles for collision avoidance. The work presented

by [Dokmanić et al., 2013, Dokmanic et al., 2011] describes a method of determining the basic

shape of a room based on a microphone array and from a single sound emission. Implement-

ing a similar method on the proposed audio based system could raise new advantages and

applications.

Simple human-robot interaction: An audio-based detection and localization system onboard

of aerial robots could provide a simple way of interaction between human operators and flying

robots, allowing inexperienced users to operate and control the robots through means of

acoustic signals. Experiments performed in Section 2.4.3 illustrate an example of attracting

the attention and navigating an aerial robot to a desired point using a simple whistle.

Entertainment: A growing interest in employing swarm of aerial robots for art and entertain-

ment applications have been observed over the recent years [Murphy et al., 2011, Schoch

et al., 2014]. Groups of small aerial robots have been demonstrated recently that can generate

3D shapes and animation in the sky [Alonso-Mora et al., 2012]. Following on this line, audio

based swarming MAVs could potentially be used to obtain distributed algorithms needed for

displaying large objects and animations in the sky and furthermore controlling the swarm to

react and dance to sound and music.

5.3 Future directions

While many future directions were suggested in the previous section to reach the potential

application propositions, this section presents possible future work mostly aiming at improve-

ments specific to the proposed methods presented in the core of this thesis.

Firstly, improvements could be made by research on the acoustic sensors themselves to
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optimize their performance for in-flight measurements. In this work simple, low-cost and

commercially available microphone sensors were used that were surely not designed for use on

aerial robots. Employing higher quality microphones, or adapting the design of such sensors to

obtain the desired sensitivity and frequency response is expected to improve the performance

of the proposed methods. In addition, research on wind protectors or anti-vibration mounts

for such sensors could potentially allow the reduction of wind and platform-vibrations for

obtaining a higher target detection range.

Experiments showed that the self engine noise of robots highly influence the detection range

of acoustic targets and increases the rate of false estimates. Research on noise cancelling

techniques, both at the mechanical and computational levels could improve the performance

of the proposed methods and increase the detection range. Using array of directional mi-

crophones pointing away from the self engine, adding an acoustic shield around the robot’s

engine, and investigating noise cancellation algorithms are some potential future direction

on this topic. Figure 3.11.b illustrated a direct relationship between the motor speed and

the noise generated by the propeller for a single electrical motor equipped with a propeller.

Hence, an active filter for suppressing the engine noise based on the motor input values could

potentially be an effective solution.

In this work, methods were mainly based on the time delay of arrival (TDOA) of sound waves

between spatially separated microphones. However, other important acoustic information

exist that could also be taken into account to increase the robustness and obtain additional

information of the target. For example, the perceived sound intensity could be used to obtain

an approximate idea about the distance to acoustic targets. Similar to the method explained

in Section 2.3.2.1, the Doppler shift in the perceived chirp sound of neighbouring robots could

be used to obtain the relative speed with these robots which is an important information for

obtaining inter-robot collision avoidance.

Integration of the described audio based systems with other available technologies such as

vision and radio waves is an interesting line of research that could rise many additional op-

portunities. For example, MAVs could compensate the limited field of view of their cameras

by actively rotating it towards targets based on the omnidirectional acoustic information.

Additionally, integration of acoustic and radio waves is a practical method of obtaining instan-

taneous relative-range measurements between MAVs. Individuals could emit a radio signal

together with the acoustic chirp signal to allow other robots to measure the relative distance

based on the time difference between the perceived audio and radio waves.

In Chapter 2, methods for localizing emergency acoustic targets on the ground from a single

MAV was described. The solutions could potentially be extended to achieve cooperative

localization using a group of MAVs. Measuring the sound direction from multiple MAVs at

different points in space, and sharing these information through a communication network,

could be used to determine the target’s 3D position by simple triangulation. Furthermore,

methods for detecting and localizing other type of sound sources such the sound of victims
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that are shouting or the sound of a gunfire is of importance.

The proposed relative positioning and localization methods could also be investigated further

for measuring and improving the performance of the methods. Finding the minimum rate of

the acoustic chirps, i.e. the minimum bearing measurement rate, for performing a specific

coordination behaviour, would reduce the power consumption of the system and potentially

improve the performance by lowering the number of overlapping chirps. Additionally local

behaviours could be investigated to find behaviours that result in increase of precision and

a faster convergence in the position estimations. Furthermore, instead of using only linear

chirps for the localization, different chirp patterns could potentially be employed to also allow

the robots, similar to birds, to communicate simple messages with each-other. In the self

localization method presented in Chapter 4, employing multiple beacon robots and obtaining

switching protocols for switching the role of robots between the beacon and observer states,

could be used to improve localization precision and increase the coverage range.
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