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Resumo

Os edifícios são responsáveis por uma parte significativa da fatura energética
global. Prevê-se, porém, que a integração de novas novas tecnologias na gestão de sis-
temas e serviços, tenha impactos significativos na promoção da eficiência energética
neste sector. Contribuindo nesse sentido, esta dissertação começa por apresentar
um método para melhorar o desempenho do sistema de aquecimento, ventilação e
ar condicionado. Como a operação deste sistema não está, em muitos casos, dev-
idamente regulada e ajustada ao perfil de ocupação dos edifícios, o resultado é o
desperdício de energia. Como tal, a solução aqui apresentada inclui a utilização de
um controlador, com aprendizagem por reforço, capaz de aprender as regularidades
estatísticas da ocupação de um espaço e o correto agendamento das temperaturas
para esse espaço. Por simulação demonstra-se que o controlador proposto é capaz
de regular o aquecimento por forma a minimizar os custos energéticos garantindo,
contudo, o conforto dos ocupantes.

No seguimento deste estudo, a linha de investigação centrou-se na busca de soluções
para representar o ambiente do edifício com foco particular no comportamento tér-
mico dos espaços. Isto porque existem eventos, associados por exemplo a abertura
e fecho de porta e janelas, que alteram esse comportamento. Os modelos termod-
inâmicos tradicionalmente utilizados são normalmente invariantes no tempo e não
contemplam estas alterações. Como tal, ficam desajustados à realidade desses es-
paços. Para modelar uma zona térmica esta dissertação propõe a utilização de um
modelo termodinâmico baseado num sistema híbrido. Este modelo é capaz de repre-
sentar os diferentes comportamentos térmicos associados aos diferentes contextos do
espaço, definidos como os modos discretos do sistema. Apresenta-se uma aplicação-
exemplo e para validar o conceito utiliza-se os resultados do simulador EnergyPlus
como referência de comparação. Os resultados demonstram que o modelo proposto
consegue representar, com exatidão aceitável, as temperaturas de uma zona térmica
através de diferentes contextos.

Palavras Chave: HVAC, Aprendizagem por Reforço, Raciocínio baseado em
Contextos, Sistemas Híbridos, Comportamento Térmico, EnergyPlus, Edifício In-
teligente, Inteligência Ambiente, Q-Learning, Domótica, Eficiência Energética.
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Abstract

Buildings are responsible for a considerable amount of the global energy bill and
energy savings can be accomplished by integrating more efficient building technolo-
gies. Occupants tend to forget to adjust systems appropriately and, in many spaces,
the conditioning requirements are not adjusted to the occupancy of those spaces.
As a result, energy is unnecessarily wasted. This dissertation presents a method to
enhance the management of the heating, ventilation, and air conditioning systems
in buildings. Since these systems are some of the most energy-demanding services
in buildings, we describe the application of a reinforcement-learning-based supervi-
sory control approach that actively learns how to appropriately schedule thermostat
temperature set points. The result is a learning controller that learns the statistical
regularities in the occupants’ behavior, allowing them to achieve comfort requirements
while optimizing energy costs.

The study then proceeds towards finding suitable representations for building envi-
ronments, with a particular focus on how to represent the thermal behavior of building
spaces. The occurrence of events such as doors, windows and blinds being opened
or closed, can drastically affect the underlying processes that govern the dynamics of
temperature evolution of building spaces rendering standard thermodynamic models
less effective for control and prediction. Therefore, a framework is presented for model
structure and parameter selection that takes these events into account, based on the
notion of context. Contexts are modeled as discrete states of a hybrid system and
depending on how context changes, the thermodynamic model transitions through
a set of different linear time-invariant sub-models. Each sub-model is effective in
representing the thermal behavior of a building space in its associated context. We
present an application example and use the outputs of EnergyPlus as reference for
model performance evaluation. We show, through different context changes, how a
context-based model can be used to represent, with reasonable accuracy, the evolution
of temperatures in a simulated thermal zone.

Keywords: HVAC, Reinforcement Learning, Context–Awareness, Thermody-
namic Modeling, Hybrid Systems, EnergyPlus, Smart Buildings, Ambient Intelli-
gence, Q-Learning, Home Automation.
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Glossary

Ambient Intelligence A term widely used to signify a vision in which envi-
ronments support the people who inhabit them by in-
corporating data acquisition, computation, intelligence
and behavior to everyday objects and spaces in an in-
terconnected and unobtrusive way.

Context Context is a structure or a frame of reference that de-
fines which knowledge should be considered, what are
the conditions of activation and limits of validity and
when to use it at a given time.

Effectors Also known as actuators in robotics, are components
capable of moving a mechanical system such as a vent
position, window or door.

Green Building A combination of construction and a set of processes
that are environmental friendly and resource-efficient
throughout the entire building’s life-cycle.

Greenhouse Gases Gases in the atmosphere that cause the greenhouse ef-
fect, responsible for global warming and climate change.

Hybrid System A system that combines time-driven and event-driven
dynamics. The former is represented by differential
equations, characterizing the behavior of continuous-
time variables, while the latter, characterizing the
switching conditions between different discrete modes,
is described through various frameworks used for dis-
crete event systems.

Large complex system A system composed of many components which may in-
teract with each other creating complex behaviors that
are extremely hard to model and predict.

Markov Decision Process Provides a mathematical framework for modeling se-
quential decision making in situations where decision
outcomes are uncertain, and decisions are under the
control of a decision maker with the objective of maxi-
mizing a utility function.

xxi



Smart Building A building supported by technology that includes mul-
tiple systems and automation to control its operation.

Smart City A urban development vision supported that uses infor-
mation and communication technology to connect and
exchange information between different city assets (e.g.,
buildings, cars, power, water and gas distribution net-
works) with the goal of improving overall efficiency of
the city and the living conditions of its citizens.

Smart Grid An electrical grid supported by information technology
to interconnect the different network stakeholders and
systems. Information is used in the smart grid to syn-
chronize power production and demand in the network.

Temperature set point Represents the desired or target temperature value, de-
sired for a thermal zone.

Ubiquitous computing A concept strongly associated with the Internet of
Things (IoT), where many surrounding devices and sys-
tems can have computer processing capabilities, be in-
terconnected, have advanced human-machine interfaces
and weaver these capabilities into the fabric of everyday
life until they are indistinguishable.
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1
Introduction

“A house is a machine for living in.” – Le Corbusier (Architect).

Over the past few decades, many countries have committed to adopting policies
and initiatives explicitly designed to address climate change and define paths towards
energetic sustainability. These initiatives have promoted efforts to find cost-effective
ways to reduce or avoid the production of greenhouse gases (GHG) and dependence on
fossil fuels [1]. To meet these objectives, some of the policy directives and guidelines
are aimed at promoting energy efficiency in buildings, since indicators show that
there is a high cost-effective potential for energy savings in this sector [2,3]. Modern
buildings are very large complex systems (LCSs) that are capable of supplying a
variety of final services for occupants [4, 5]. It is through the process of delivering
these services that a significant fraction of the energy used is wasted, among other
reasons, due to inefficient building technologies [6]. To promote energy efficiency,
buildings need to be built or retrofitted with well-applied sustainability solutions and
incentives for energy savings.

Advances in technology are opening doors for entire new concepts and applica-
tions and energy can ultimately be saved by as much as 70% by the year 2030 in
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CHAPTER 1. INTRODUCTION

new buildings with more efficient technologies [6]. Smart buildings (SBs)1 [7–10] have
been hailed as a solution to increase energy efficiency in the building sector. These
buildings, represented in the concept map shown in Figure 1.1, are enabled by state
of the art technologies and use automation and machine-to-machine communication
to manage the complex concatenations of the internal building systems and equip-
ment, and other external systems such as the electrical smart grid (SG) [11]. SBs are
intended to deliver several building services over their lifecycle that promote a com-
fortable environment for their occupants, such as illumination, thermal comfort and
air quality, while ensuring the efficient use of building resources [12, 13]. Therefore,
there is a growing interest in developing and integrating technologies that make SBs
more comfortable, economical, safe and efficient.

SB operation includes a building automation system (BAS) with advanced con-
trols and algorithms to perform the real-time optimization of its energy-consuming
systems. Building networks, supported by open standards such as BACnet, Mod-
bus, LonMark and ZigBee [14–17], among other sensor network technologies, make
building environments more observable for computation [18]. These networks provide
access to fine-grained spatial-temporal resolution measurements of various variables
from the building environment such as temperatures, CO

2

levels, humidity, move-
ment, air velocity, occupancy, lighting conditions, energy usage, states of doors and
windows, meteorological data and damper positions. Through online platforms, more-
over, it is also possible to obtain energy pricing information, access weather forecasts,
occupancy schedules and other information relevant for decision support and perfor-
mance evaluation. Therefore, the opportunity to use all this information in various
building applications becomes evident. However, trying to use all the available in-
formation to optimize the performance of the building makes optimization problems
computationally intensive and extremely difficult to implement in real buildings.

In the beginning of the 90s, following Weiser’s publication on ubiquitous comput-
ing [19], a significant part of the research that has been done on smart environments
falls within the ambient intelligence (AmI) research community [20]. AmI is a term
widely used to convey a vision in which environments seamlessly adjust themselves
to support the activities of occupants by incorporating data acquisition, computation
and intelligent behavior into spaces and everyday objects. To create comfortable en-
vironments, SBs are expected to provide an environment with AmI that anticipates

1
Throughout this thesis, we will use the term Smart Buildings, although part of the literature

uses the term Intelligent Buildings.
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Figure 1.1: Concept map of a smart building as an integrated system of software
hardware and services.

the needs of the occupants by learning their time-varying preferences and habits and
respond in a timely and user friendly way [21–24]. However, most of these expec-
tations are not trivial to implement and represent a massive challenge for system
design and integration, knowledge representation (KR), machine learning (ML), con-
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CHAPTER 1. INTRODUCTION

trol, and optimization. Moreover, given the current state of the art, it is not yet
clear how to design and implement smart applications with the building’s physical
structure, services and processes. The integration of services and data from multiple
sources, as well as interoperability between building systems, is a serious challenge
for LCSs [25]. More research has to be carried out on these topics to support the
expectations pertaining to SBs and AmI.

This dissertation has been motivated by the rich vein of research and develop-
ment that exists for energy conservation in buildings, building systems and smart
environments. Therefore, this study is another contribution in the domain of SBs.
Research for this thesis was developed with a particular focus on ML techniques [26]
that can be deployed in the BAS to perform automated tasks in the building. The
focus of the study evolved in two distinct phases. In the initial research application,
reinforcement learning (RL) [27–30] was used to optimize the operation of the build-
ing’s heating, ventilation and air conditioning (HVAC) system, considering feedback
information from the occupant and a cost function for heating. Simulation results
with RL showed that the BAS was capable of minimizing the energy used for heating
while maximizing comfort. However, it was also concluded that further optimization
of the HVAC application would require adding additional information concerning the
building structure and operation to the optimization problem. This requirement not
only creates a problem for KR, but also makes the BAS learning process compu-
tationally expensive. Moreover, it was not clear how a RL HVAC controller could
integrate with other SB systems and contribute to the AmI vision. Therefore, the
research was guided towards finding an appropriate modeling paradigm for KR and
organization using context-based modeling. The research proceeded with a clear fo-
cus on the thermodynamic behavior of building spaces due to its potential for model
predictive control (MPC) and energy efficiency [31].

This chapter will proceed as follows. It will begin by presenting the main moti-
vation for focusing on green and smart buildings. This includes a brief overview of
important events and the global concern regarding environmental issues and energy
efficiency. While addressing this concern, the chapter will discuss the contribution
that buildings have on the global energy bill and the motivation for focusing on the
HVAC system. Two important problems are presented in this domain, the contribu-
tions to solve each problem, a list of publications, and the outline of this thesis.
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1.1. MOTIVATION

1.1 Motivation

As countries become more developed and populations increase, the demand for ser-
vices such as comfort, education, leisure, and health also rises, and populations in-
crease their energy usage in ways that are not always sustainable. As a consequence,
the global energy demand is raising serious issues for energy supply and environ-
mental impact mitigation. The world is far from achieving energy systems that are
environmentally sustainable and the global energy demand continues to grow rapidly.
Corroborating this fact, the U.S. Energy Information Administration (EIA) projects
that world energy consumption will grow by 56% between 2010 and 2040 (from 524

quadrillion British thermal units (Btu) to 820 quadrillion Btu), mainly driven by
emerging economies, such as India and China [32]. Fossil fuels such as coal, oil and
gas will continue to supply nearly 80% of global energy use through 2040, led by
natural gas, as the global supply of tight gas, shale gas, and coalbed methane in-
creases. It is the consumption of these fossil fuels, the clearing of forests, agricultural
practices, and other activities, that contribute to the amount of GHG released into
the atmosphere [33].

Climate change is a real problem and human-induced GHG emissions are the
primary cause of the global warming that has been observed over the past fifty years
[33]. Therefore, this research has been intended, since the inception of this thesis, to
become another contribution to help solve this very difficult and important problem.
This motivation is further reinforced by the fact that Portugal imports 71.5% 1 of its
energy [34], with these imports having a huge negative impact on economic growth
and contributing to the nation’s credit crisis.

Energy efficiency is the cornerstone of this thesis. The promotion of energy ef-
ficiency improves resource management and reduces energy demand, as well as its
environmental impact. In this regard, this thesis addresses the buildings sector and,
within that sector, the HVAC system. HVAC includes the equipment, distribution
network and terminals used either collectively or individually to provide fresh fil-
tered air, heating, cooling and humidity control in a building. Considering that the
HVAC systems are among the most energy-demanding systems integrated
in buildings, it is of the utmost importance that they are properly maintained and
used in the most energy-efficient and cost-effective way.

1
Values of 2012
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CHAPTER 1. INTRODUCTION

1.1.1 Energy and Buildings

Over the past few years, the energy problem has driven different research areas and
fields of interest, and a significant part of the research has focused on creating effi-
cient systems for transforming energy. This widespread concern is being addressed
in all energy systems at different levels of detail, extending from smart cities and
buildings to specific systems, such as heating and lighting. People living in developed
countries spend more than 90% of their time indoors and buildings are responsible
for approximately 41% of primary energy usage, in many cases surpassing other large
sectors, such as industry and transport [35–37]. According to the International En-
ergy Agency (IEA) [38], in 2005, the final energy use in the building sector (Services
and Domestic) was 108EJ. Between 1990 and 2005, global GHG emissions increased
to 21.2Gt CO

2

, and 33% are associated with this sector.
The problem of energy conservation in buildings is a multidimensional one. It can

be addressed in terms of building types, building sizes and building services. There
are several types of buildings with distinct energy usage patterns, such as residential
buildings, business stores, restaurants, hotels, hospitals, museums, shopping malls,
heated indoor pools, large supermarkets, etc. As people spend more time in these
buildings, the demand increases for more comfort and better building services, such
as air quality, thermal comfort, lighting, domestic hot water, food preparation and
communications. Tables 1.1a and 1.1b show the breakdown of the energy end-use in
the commercial building sector for the U.S. and China, and in the residential sector for
the U.S., China and Portugal, respectively. The residential sector in Portugal, with
approximately 3.9 million households, uses 17.7% of the total national final energy,
representing 30% of the electricity consumed [39]. In both residential and commercial
buildings, space heating represents a substantial amount of energy in all countries
(less in Portugal, due to its moderate weather), followed by water heating and other
uses, primarily electric appliances in the U.S. (artificial illumination, elevators, office
and kitchen equipment, etc.), which are also expected to increase in use over time in
Portugal and China [40,41]. In service buildings, electricity is by far the most widely
used energy commodity with a global share of 47% (in 2005). The use of electricity
has increased by 73% since 1990, which has been the main factor driving the global
increase in energy usage in this sector [38].

Among all building services, HVAC systems are the most significant energy-
consuming services. In the U.S. alone, one-sixth of the electricity consumed
goes to cool buildings at an annual power cost of $40 billion, and forecasts
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1.1. MOTIVATION

China U.S.

space heating 45% 12%
space cooling 14% 10%
water heating 22% 7%
cooking 2%
lighting 21%
other uses 19% 48%

(a) Commercial buildings.

China U.S. Portugal
appliances 21.0%
space heating 32.0% 29.0% 10.7%
space cooling 11.0% 0.7%
water heating 27.0% 11.0% 27.6%
kitchen 7.0% 3.0% 40.0%
lighting 9.0% 11.0% 6.1%
other uses 4.0% 35.0% 14.9%

(b) Residential buildings.

Table 1.1: Breakdown of commercial and residential building sector energy usage in
the U.S. (2005), China (2000), and Portugal (2010) (Source: IPCC [42]), INE/DGEG
[39]).

show that this cost will continue to increase [37, 43]. Space heating and cooling can
use up to 40% of the final energy in residential buildings, and 20% in commercial
buildings [37, 42, 44]. Contributions in this domain can have huge economic impli-
cations at a global level and can contribute to mitigating energy usage and GHG
emissions.

1.1.2 Green Buildings and Energy Efficiency

While traditional buildings have been viewed as a relatively static sector of the econ-
omy, experiencing relatively little change in technology or resource consumption pat-
terns, green buildings (GBs) use key resources such as energy, water, materials and
land more efficiently. In sustainable buildings, energy conservation plays a pivotal
role. GBs provide cost and financial benefits, as compared to conventional buildings
that are just built to code [45]. These benefits include energy and water savings,
reduced waste, improved indoor environmental quality, greater employee comfort and
productivity, reduced employee health costs and lower operations and maintenance
costs. Savings associated with energy, water and waste can be predicted with reason-
able precision after being measured and monitored over time. In contrast, productiv-
ity and health gains are much less precisely understood and far harder to accurately
predict. Therefore, some benefits are more tangible than others.

To minimize the subjective nature of what exact combination of attributes de-
fines GBs, sustainable building design tools and rating systems are currently being
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CHAPTER 1. INTRODUCTION

used for building design and performance evaluation [46]. These rating systems and
design tools promote the continuous process of systematically evaluating the perfor-
mance and effectiveness of buildings in several aspects, including cost-effectiveness,
functionality, productivity and sustainability. This benchmarking process promotes
progress towards designing and operating the best buildings for their occupants, while
still complying with national policies and regulations for the building sector.

The main goal of energy policies for the building sector is the promotion of energy
efficiency. This goal improves the management of resources and reduces energy use,
as well as its environmental impact. However, minimizing the negative impacts of
buildings is a complex multidisciplinary problem that is currently being addressed
by several different research fields. Since the building sector is very heterogeneous,
any strategy for energy efficiency must be carefully adjusted to the type of building,
climate characteristics, occupancy, and other parameters that influence the use of
energy. There is no single solution to the energy efficiency problem. Taking a long-
term perspective of sustainable development, different strategies need to be considered
and deployed to address this problem.

An important step towards energy efficiency is to improve the buildings that
already exist. For these buildings, strategies for energy frugality include retrofitting
inefficient parts of the building and adding solutions adapted to the building’s energy
usage profile, such as using solar thermal energy for heating and cooling. However,
more can be accomplished with new buildings. To establish new sustainable buildings,
the approach usually taken includes following a set of rules and general methods
that influence the siting, architecture, selection of building materials and systems
incorporated in the building. As a general rule, to save energy, building constructions
should promote an efficient interaction between the interior and exterior environments
in such a way that promotes maximal environmental comfort levels in every season
of the year, taking advantage of the best qualities of the surrounding environment.
Environmental conditions that humans consider comfortable are mainly associated
with air quality, humidity, lighting, sound and, above all, temperature [47]. These
conditions are very important in terms of productivity and health, and the financial
impacts on productivity due to poor indoor environmental conditions are well known
[48–50]. Therefore, buildings should be built to operate in such a manner that they
only bring into the indoor environment qualities of the outdoor climate that are
desired by occupants, while minimizing the amount of energy required to guarantee
comfort conditions that keep occupants productive and happy.
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Energy efficiency can be achieved if proper considerations are taken regarding
building design by using, for example, passive bio-climatic strategies, which are ap-
proaches to building design that use the architecture to minimize the use of en-
ergy [51]. To accomplish this requirement, passive design can be used as a design
strategy to optimize the interaction of the building architecture with the local micro-
climate. This strategy attempts to control comfort without using purchased energy
by maximizing the use of free solar energy for heating and lighting, as well as natural
ventilation for cooling. Figure 1.2 shows the architectural model for a new bio-
climatic office building in Lyon, designed by Nicolas Laisné Associés and scheduled
to be complete in 2018.

Figure 1.2: Plans for a new green building in Lyon using bio-climatic strategies, with
green-layered outer faceade (reprinted from http://laisneroussel.com/fr).

For energy savings, priority should be given to passive building design strate-
gies [52]. However, the ultimate passive design vision is very hard to achieve [53].
Therefore, buildings must rely on active strategies that use purchased energy and
mechanical systems to accomplish comfort and energy efficiency through the lifecycle
operation of the building. In some applications, active-passive strategies can be com-
bined for environmental control [54,55]. However, building environments are dynamic
and the integration of both strategies is a complex multifaceted process. Further re-
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search is needed to provide a detailed description of the building environment, which
is required to deploy more intelligent and efficient strategies for automation and post-
construction management [56]. Indicators show that a significant part of this research
will be integrated in the development of AmI and SBs [57–60].

Nearly Zero-Energy Buildings

Following technology developments in information and communication technologies
(ICTs), GBs are also currently one of the most important foundation blocks of the
smart city urban development vision. Integrated with SGs, there is a quantitative
ongoing challenge towards creating nearly zero-energy buildings (NZEB), with zero
net annual energy usage. The most ambitious part of this challenge is the idea
that NZEB can meet all their energy requirements from low-cost, locally available
energy sources (with a special focus on using renewable energy sources) such as micro-
turbines, fuel cells, photo-voltaic panels and diesel generators. NZEB can also include
energy storage devices (e.g. flywheels, batteries and thermal storage) and controllable
loads such as electric vehicles, elevators and HVAC systems. These buildings are
expected to be integrated with the SG with the capability for automated demand
response (DR), which is a concept where the building is capable of automatically
changing its electricity consumption patterns in response to time-varying electricity
rates or incentive programs. To achieve NZEB, it is crucial to perform a correct energy
management between supply and demand to minimize financial costs and maximize
the use of available energy. Current buildings lack necessary information systems
for energy analysis and DR control strategies. New active strategies are necessary for
future GBs to act as a coordinated cluster of systems, taking into account DR signals,
building-integrated energy storage, and availability of renewable energy, in order to
manage in real-time controllable loads such as the HVAC system [61].

1.1.3 Smart Buildings

The term SB was first used for buildings in the United States at the beginning of
the 1980s and, since then, the concept has gained traction as a result of technological
developments in several different fields, including ICTs, computer science, artificial in-
telligence (AI), robotics, control, and building automation standards. Within the past
few decades, a substantial amount of literature has been generated in this domain.
Wong and Wang [10] have presented a comprehensive review of existing research on
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intelligent buildings, with several references in which the broad concept of SBs is
discussed. To formalize the concept, Wong et al. [62, 63] present a method to evalu-
ate and benchmark the intelligent performance of a SB using a set of indicators for
intelligence with an analytical model for computing a building intelligence score. The
authors take into account the interrelationship, represented in Figure 1.3, between
the intelligent attributes and their operational goals and benefits. For buildings, the

Intelligence
of a Smart
Building

Intelligent
Attributes

Goals and
Benefits

Safety
Reliability
Cost effectiveness
Occupant comfort
Productivity
Effectiveness
Energy efficiency

Autonomy
HMI

Bio-inspired behavior
System control

Figure 1.3: The intelligence appraisal of a smart building takes into account the
interrelationship between intelligent attributes and operational goals.

term “smart”, synonymous with “intelligent”, has a functional definition: Smartness is
typically associated with the automation and integration of different building systems
in order to operate in ways that provide effective, responsive, and supportive building
environments, within which organizations can meet their performance objectives [64].
Intelligent attributes include autonomy, controllability of complex system dynam-
ics, human-machine interaction and bio-inspired behavior. In this sense, SBs extend
the behavior of normal building systems (HVAC, lighting, local power generation,
energy storage, etc.) beyond simple automation strategies to promote comfortable
environments while managing building resources, such as water, power, and natural
gas, with high efficiency and minimum waste. Goals and benefits include increased
safety and reliability, lower costs, enhanced cost and operational effectiveness of build-
ing operations, and improved occupant comfort, productivity, and energy efficiency.
These benefits can have significant impacts throughout the lifecycle of the building.
For example, for operational effectiveness, SBs are expected to perform automatic
evaluation and diagnosis of building systems using AI methods for continuous com-
missioning. Supporting this research, Louise Travé-Massuyès [65] exemplifies how
different theories in the AI and Control literature can be integrated to provide better
diagnostic solutions and to achieve improved fault management in different environ-
ments. Considering the fact that at least 10% of the energy wasted in buildings is
due to excessive run time and problems in the HVAC equipment and controls, better
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diagnostic solutions can have a significant impact in energy savings [66]. In another
example, Ellis and Mathews [67] argued that proper control of the heating and
cooling demand in a building, using an integrated system design approach,
can result in up to 70% energy savings for the HVAC system . To accomplish
these savings, the BAS is expected to “smartly” manage available building parameters
and energy systems, e.g. by storing thermal energy locally and shifting energy demand
to off-peak time periods when utility rates are lower; regulating natural lighting with
shading devices while reducing glare and overheating; and managing temperature set
points expressed in terms of space air temperatures in different conditioned spaces.
The proposal of new efficient methods for building automation is therefore a key issue
for research in energy and buildings.

Ambient Intelligence

The vision for AmI envisages that building services should be managed in an unob-
trusive and transparent way, contributing to the wellbeing of their occupants without
intruding on daily activities. Therefore, minimizing energy waste and operating costs
cannot be achieved at the expense of occupants’ comfort, productivity or health.
Building environmental conditions should be regulated within an optimization space
that is compliant with the comfort of its occupants i.e. the BAS must avoid taking
actions that will, with high probability, lead to counteractions by those oc-
cupants. Implementing this vision requires addressing a vast set of challenges posed
by building environments in a multidisciplinary effort to develop efficient ways for
managing local energy generation, learning by interacting with occupants, model-
ing and controlling building systems, characterizing the thermal behavior of building
spaces, and exchanging information with other systems outside the building, such as
other SBs and SGs.

The problem of energy conservation in SBs is currently a popular research topic
in energy management [68]. Although researchers have been working on intelligent
control systems for energy and comfort management in SBs for over a decade, there
is still a lot of work to be done in this domain [13]. The automated management
and optimization of resources in a building environment faces many challenges. In
most situations, the lack of observability, due to limited sensing capabilities, raises
uncertainty about the building environment. There is a compromise, depicted in
Figure 1.4, between the capability to manage and optimize building resources, with
a set of constraints defined by e.g. occupant comfort requirements, and the number
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of environmental variables can be observed and controlled.

Resource Management Constraints

Electricity

Gas

Water, etc.

Comfort requirements

Partially observable
environments

Limited actuation
capabilities

Figure 1.4: Compromise between the capability to manage and optimize building
resources with a set of constraints for building automation.

This dissertation is guided by the vision of having a BAS with rational actions to
proficiently manage the operation of the buildings through a thinking and learning
process, mimicking human cognition. Therefore, the BAS must extract information
from the environment, map that information into actionable knowledge, and execute
intelligent behavior based on that knowledge, as represented in the sequential process-
ing diagram illustrated in Figure 1.5 [68]. For energy efficient buildings, knowledge
includes a set of rules and models that are useful to minimize energy waste. A SB
should be able to use this knowledge in order to “understand” and predict its envi-
ronment, including where and how energy is being used. The smart BAS should
acquire data, include feedback learning, and find ways to adapt in order to
continuously improve its performance. Each processing step represents a huge
set of challenges that are not easy to address with current buildings and technology.
Therefore, building intelligence is still an open problem for research.

Data Information Knowledge Intelligent Behavior

Figure 1.5: Sequential processing for intelligent behavior (adapted from [68]).
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Context-based Modeling

It is not easy to predict and quantify the effects that SBs may have on energy sav-
ings. SBs can have multiple spaces, occupants, human-machine interfaces (HMI),
distributed systems, sensors, and a set of environmental variables (observed and un-
observed) of a significant size that require controlling and/or monitoring. Despite all
the available data, if no efforts are made on data management, data can produce little
or no meaningful information in what is known as the data-rich but information-poor
syndrome [69]. To meet the information expectations placed on building data, the
process of formalizing empirical data into parsimonious theorems and principles, and
the conceptual modeling of various building systems, must be part of the engineering
process to describe the general knowledge of each part of the building. As stated by
Weng and Agarwal, “Areas of SB research, such as modeling and prediction of build-
ing operations, can be used to augment and improve the control over a building” [7].
All building variables represent a huge amount of information and currently it is the
facility managers responsibility to interpret high-level data and and act upon the in-
formation available. This is not a trivial task in data-rich environments. Building
managers need decision support systems that are ubiquitous advisors with automatic
diagnostics capable of selecting relevant building information for decision support. To
facilitate human intervention in building operations, information should be filtered
and presented to the facility manager in a human-friendly way [70,71].

Organizing information in LCSs requires using appropriate modeling paradigms.
Context-awareness has been presented as one of these paradigms where the iden-
tification and adjustment of behavior according to specific conditions are primitive
concepts [72–81]. Coarsely speaking, context is a structure or a frame of ref-
erence which can be used as a mechanism to manage, organize or reason
about knowledge [82,83]. It can define which knowledge (or model) should be con-
sidered at a given time, what the conditions of activation are and limits of validity
under which it applies. Context-awareness provides the means to partition the opera-
tion of a complex systems such as smart buildings into “scenarios” (or situations [84])
where knowledge, strategies, parameters and objectives are organized. As an exam-
ple of partitioning, depicted in Figure 1.6, consider how occupancy (and thus the
use of energy) in a school building, depends on how the academic year is organized
into vacations, exams, holidays and instructional days. Occupancy and energy usage,
have different distinct profiles in each of these cases. Many other building variables,
parameters, objectives and strategies, also depend on the season, weather conditions,
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cost of energy, location, and other previously known facts such as meetings or other
special events.

Time and schedule
Weather Location

Meetings, events, etc.Cost of energy

Figure 1.6: Context of a school building depends on location and changes depending
on various factors such as weather conditions, special events and activities, cost of
energy and holidays.

Context has always played an important role in human intelligence. The aware-
ness of context about the environment, discussion, or problem in hand, allows many
important aspects of human interaction to remain implicit [75]. Contexts act like
adjustable filters creating a knowledge frame that is shared by all interlocutors thus
minimizing the amount of information that needs to be exchanged for an effective
communication. The interlocutors intuitively know, at each step, which knowledge
pieces must be taken into account explicitly (contextualized knowledge) and which
pieces are not directly necessary or already shared (contextual knowledge).

In the past few years context-awareness has been used in several different ap-
plications. A survey of the literature dealing directly and explicitly with context
in different domains has been presented by Brézillon [72]. Context-awareness has
been used for natural language processing (NLP), databases, ontologies, communica-
tion, electronic documentation, vision, AI and AmI [85, 86]. However, not much can
be found on context-awareness and SBs, leaving a gap in the literature. There are
several potential applications where context-awareness could be useful for building
operations. For example, when identifying the thermodynamic model of a building
thermal zone (TZ), considering a specific context associated with the TZ being oc-
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cupied by a single occupant with all are windows closed, occupancy and ventilation
rate are variables that can directly be inferred through context. These variables, as
contextual knowledge, can be replaced by constants in that context, thus minimizing
the number of explanatory variables in model equations. Therefore, when aiming
at more simplified models, context-based modeling can be a natural way of includ-
ing previous knowledge in the process of modeling systems and variables from the
observed environment.

1.2 Research Questions and Objectives

In the building environment, the attitudes and preferences of occupants have a signif-
icant impact on the efficient use of energy resources. When taking into account the
fact that occupants tend to forget to adjust the HVAC appropriately, and in many
spaces, the conditioning requirements are not adjusted to the occupancy of those
spaces, the result is energy being unnecessarily wasted. In this regard, developing
a self-adaptive energy management system capable of minimizing the energy used
for heating and cooling, by correctly scheduling the HVAC unit activity for occu-
pancy and non-occupancy periods, becomes a key factor for promoting the efficient
use of the HVAC system [87]. Ideally, a multi-objective optimal supervisory
controller for such a system would take into account activity schedules,
occupancy patterns, the individual preference of each tenant, the cost of
energy, weather predictions, and the thermodynamic behavior of building
spaces, among other information that can be used for decision support.
However, this is not a simple optimization task. HVAC is a multivariate
nonlinear time-variant system, so optimizing the operation of this sys-
tem is a complex optimization problem with numerous constraints [88,89].
Moreover, some of these constraints, such as the thermal sensation of an occupant,
occupancy, and other environmental conditions, may not be directly observable and
may need to be inferred, during execution time, from available data. Consequently,
the optimization of energy and comfort management in buildings remains an open
challenge for real-time computing, and more research is required in this domain [13].

Currently, there are still many aspects that need to be addressed in AI research
in order to create intelligent systems [90]. Subsequently, most of this research will
extend to SBs. This presents challenges and opportunities for research and an op-
portunity to foster synergy between different research areas. In the current state
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of the art, there is no generally adopted approach for creating intelligent HVAC sys-
tems. Coordinated research efforts are needed to develop AI techniques for automatic
HVAC control, and predictive systems capable of forecasting the demand for energy,
comfort conditions, and occupancy time expectancy [13]. To address these re-
quirements, this dissertation starts by pursuing the goal of developing a
supervisory controller capable of learning from the building environment,
dealing with its uncertainty, and proficiently controlling the amount of
energy used to operate the heating system, while still keeping occupants
comfortable. The research challenge includes scaling the BAS intelligent behavior
to integrate additional information, such as the state of doors, windows and blinds.
However, this integration task is too onerous for our HVAC controller. Integrating
all of the available building information that could be useful for decision support
makes the problem of energy conservation and comfort management computation-
ally expensive and extremely difficult to implement in real buildings [68]. Therefore,
this research proceeds towards finding suitable paradigms for KR in SBs,
with a particular focus on how to represent the thermodynamic behav-
ior of building spaces. Although there is some literature on ontology-based KR
for AmI and buildings [91–93], not much can be found on modeling and reasoning
about building dynamic systems. Moreover, the evolution of temperatures in building
spaces has double continuous and discrete dynamics i.e. temperatures undergo abrupt
changes of dynamics upon certain changes in the building environment. To this re-
searcher’s knowledge, there are no thermodynamic models in the literature that are
capable of describing this continuous and discrete dynamic behavior. Therefore, this
dissertation explores a modeling paradigm for creating thermodynamic models with
multiple modes of operation, capable of representing the thermodynamic behavior of
building spaces in different contexts. In the following sections, each research problem
is explained in more detail, including the methods used to solve them.

1.2.1 Automatic HVAC Optimization

In the complex building environment, building spaces with varying thermal tempera-
tures can be subdivided based on occupancy-associated information and environmen-
tal conditions (thermal zoning) [94, 95]. These spaces, defined as TZs, are passive
systems in the HVAC energy chain - exterior sources of energy are required for tem-
perature regulation. The useful heat that must be added or extracted from each
TZ is directly associated with the desired temperature set points and linked to the
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chain of energy flowing through the HVAC network [95]. Demand for HVAC varies
between TZs and the control algorithms need to be designed for each TZ based on
predicted energy demands, directly influenced by the relationships between differ-
ent configurations of floor area, office space layouts, occupancy, solar gains, state of
doors, windows, electric equipment, lighting, etc. To save energy, a smart HVAC
controller must intelligently optimize temperature set points in different
parts of the building according to the conditioning requirements of each
TZ. However, the information necessary to search for the optimal temperature pro-
file, such as occupancy schedules and comfort requirements, is either not available
or not sufficiently accurate to represent the best energy-efficient profiles for thermal
demand. Consequently, building spaces are heated or cooled even if not needed by
the occupants, and energy is wasted with incorrect thermostat settings.

Currently, in many building spaces, optimizing the operation of the HVAC includes
various strategies, such as setting the operation of the system to a low-power state
according to a certain pre-programmed schedule (setback control) [96]. This means
that comfort requirements are not guaranteed in unscheduled hours when there is
low occupancy, such as late classes or meetings. On the other hand, during normal
operating hours, energy is unnecessarily wasted in many situations [97]. For instance,
occupants tend to forget the HVAC on during non-occupancy periods, and heating and
cooling loads are set to guarantee certain fixed set points instead of being intelligently
exploited to save energy. This provides an opportunity to use ML to further optimize
the HVAC. By learning the occupants’ schedule, for example, the BAS can let the zone
temperature “drift” without invoking heating or cooling a few minutes before lunch
time - comfort conditions are maintained by thermal inertia. Energy can be saved
during non-occupancy periods with no discernible change in thermal comfort, if the
temperature set point trajectory is then set to guarantee a comfortable temperature
in the TZ at predicted times of arrival. Therefore, to go beyond simple automation
strategies, an intelligent HVAC controller must learn by observing the environment
and find optimal strategies to schedule thermostat settings according to occupancy
sensing and prediction.

Simple thermostats do not guarantee energy savings. In fact, in current buildings,
at least 5-15 % of energy is wasted due to the course-grained, manual configuration
of thermostats by occupants [98]. Therefore, learning the occupants’ thermal sensa-
tion has a great potential for HVAC comfort control and energy savings [99]. For
automatic HVAC control, calculations of human thermal comfort have historically
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been based on predefined models that predict the mean thermal sensation of the oc-
cupants [100]. However, using fixed predefined comfort models may not always be
the best solution, because comfort depends on several processes, such as physiological
or even psychological factors, as well as on several circumstances, such as location,
activity and season of the year. Different occupants can have different comfort pref-
erences and the occupants’ comfort state, associated with activity level and clothing,
cannot be measured by sensors. Energy savings can be accomplished if the smart
controller is capable of learning the occupants’ comfort preferences by observing be-
havior and performing according to those preferences. Moreover, a smart BAS should
be able to learn and explore the boundaries of comfort from the feedback received
from the occupant. It can be assumed that the less an occupant needs to instruct the
BAS (for example, by adjusting the thermostat) to change the environment (in this
case, changing the temperature), the more the occupant is satisfied. Therefore, one
of the goals of the BAS includes learning to set the temperatures to appropriate val-
ues throughout the day in a manner that minimizes the number of interactions with
occupants and, at the same time, also minimizes the costs associated with heating
and cooling.

To implement a smart BAS that is capable of dealing with the real-time un-
certainties and constraints on occupancy and comfort requirements, this dissertation
proposes a new closed-loop RL-based (Q-learning) supervisory control strategy for the
HVAC system. The strategy is presented for two different applications: (1) to control
the typical electric space heater, commonly used in many dwellings where the RL
controller is only capable of switching the heater on/off; and (2) to control the HVAC
system directly through an application programming interface, where the controller is
capable of defining temperature set points. To validate each application, simulation
results are presented for a single TZ and occupant. Results show that in both ap-
plications, the adaptive controllers are capable of learning the statistical regularities
in the occupants’ behavior, and appropriately scheduling the thermostat operation
in order to guarantee comfort requirements and optimize energy costs. Scopes and
limitations of the RL-based strategy are discussed on the basis of the vision described
for AmI and SBs.

Using an RL-based BAS brings significant advantages for the automated learn-
ing of occupancy and comfort conditions. However, through this research, some
important conclusions are drawn concerning the scalability of the computational rep-
resentation for the state of the environment. In particular, taking into account the
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thermodynamic state of the TZ and the laws that govern the evolution of tempera-
tures in the TZ, there are different actions that could be explored by a smart BAS for
additional energy efficiency, such as closing windows, blinds and doors. For example,
to minimize the amount of energy used, the HVAC should be turned off if the zone is
expected to be unoccupied, or if there is any other cost-effective means to guarantee
the same comfort levels by using e.g. natural ventilation, solar gains, or by taking
advantage of inter-zonal airflow with TZs that have higher thermal gains. The ideal
goal for the BAS would be to obtain a control input profile that minimizes a given cost
function, by using a dynamic system model (that establishes a direct input-output
relationship from a temperature set point to the actual TZ temperature), as well as
updated system information, including predictions such as weather, comfort require-
ments, occupancy, and the state of doors, windows and blinds. However, finding this
control input profile is not a simple task and using RL-optimized strategies to
identify the most energy-efficient configurations may not be possible due
to a dependence on the intractably large number of necessary states to
represent the environment, as well as the size of the underlying policy
set. Therefore, as an important research step, appropriate models to represent the
environment must be devised to support future optimization strategies.

Due to the importance that thermodynamic models have for MPC and energy
demand forecasting, this dissertation focuses on context-based thermodynamic mod-
eling and the identification of building TZs. MPC for energy and comfort manage-
ment has proven to have clear advantages over other control strategies [101,102]. The
drawbacks which currently hamper its widespread implementation include the proper
identification of the TZ thermodynamics, the need for online estimation of the corre-
sponding parameters which is robust in the presence of noise, and the fact that the
adopted thermal comfort models do not reflect the complex, nonlinear features which
characterize thermal comfort. Therefore, one of the goals of this dissertation is to
contribute in the direction of obtaining a KR model capable of identifying the differ-
ent dynamics of a TZ, with future applications for MPC, zero-net energy buildings,
and ML algorithms.

1.2.2 Thermodynamic Modeling of Building Spaces

The development of adequate models to capture the dynamics of a building, especially
the heat dynamics of building TZs for controlling indoor climate and improving energy
efficiency, has fueled a great deal of research. Models are applied to simulation and
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analysis problems, including passive design [103, 104], energy use [105], and deriving
predictive controllers for the building’s thermal dynamics [101,102,106,107].

Environmental conditions inside a TZ depend on a plethora of factors, includ-
ing zone architectural characteristics, construction materials, climate, occupancy and
activities, and the state of electric equipment and temperatures in adjacent zones.
Finding the appropriate thermal dynamics relating the control signals to average
zone temperatures is a complex task, due to the complexity of the underlying physical
processes [108,109]. Building environments are continuously changing with the occur-
rence of events, such as doors, windows and blinds being opened or closed. Changes in
the configuration of the environment affect the underlying processes that govern the
dynamics of temperature evolution of building spaces. For example, when a building
is divided into environmental zones with occupancy-based HVAC control, and tem-
peratures are adjusted to occupants’ comfort preferences, an open door will increase
the inter-zonal air-flow rate due to natural convection between two adjacent zones.
This air flow has an impact on the thermal energy exchanged between both TZs and
should be taken into account to obtain reliable analytical models. Luo and Ariyur
showed, through simulation, that better modeling of the TZ environment, with more
sensors to detect the state of doors and windows, can help to reduce the use of build-
ing energy by more than 20% [110]. Therefore, models should take these changes into
account.

Using highly detailed physical models for prediction turns many approaches to
solving energy management and control problems prohibitively large and complex,
rendering them unusable for real-time applications. To circumvent this problem,
several authors have used simplified and reduced models [111–115]. The purpose of
model size reduction is to derive a low-order model of an intrinsically complex system
to achieve a reduction in terms of computation effort, while preserving as much of
the dominant dynamic description of the original system as possible. Methods for
model reduction include, for example, selecting the appropriate time constants of the
system [116], or selecting system modes according to their energy contribution [113].
For some modeling methods, a model should be detailed enough to provide a reliable
representation of the TZ with a fast time-scale to control, for instance, the rapid
flow of heat in a small room. In other situations, a slow time-scale model is enough
to predict the mean temperature in the zone over each hour. Model reduction is
always a compromise and the relative importance of various system characteristics
is highly dependent upon the application. For this reason, Savo and Andrija state
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that there can be no universal model reduction algorithm and state that “a reduced
model is valid only over the range of conditions used to generate it” [117]. Therefore,
notwithstanding the potential use for real-time applications, a reduced model fails to
efficiently cover a broad range of conditions that would have to be described either
by adding complexity to the model, or by using several different simplified models,
with each model adapted to the range of conditions used to generate it.

This dissertation shows how model reduction can be context-dependent,
i.e. model parameters and structure depend on specific conditions that
are relevant for a model during a certain time frame. Even though a lot of
research has been conducted within context-aware systems, the core term context,
in many domains, is not yet a well defined concept [76, 118, 119]. This dissertation
formalizes the concept of context to describe a particular thermodynamic behavior
of the TZ. Different contexts are associated with different dynamics and, instead of
using a single complex thermodynamic model for the TZ, a context-dependent model
uses a set of simpler models and context as a concept to define the range of validity for
each model. This range can depend on the state of discrete input variables that affect
heat exchange, such as the position of window shades, and the opening of windows, or
it can depend on the values of continuous variables, such as solar radiation, air-flow
rate, and indoor temperature. For example, consider context being associated with
the activation of an additional heater in the TZ if the outdoor temperature falls below
a certain level, or with the state of a door connecting two adjacent TZs. This idea
has been only superficially explored in the literature. However, there are references
describing the importance of having different models to represent the dynamics of
a TZ. Yashen Lin et al. state that convective heat transfer through an open door
has a significant effect on the TZ’s thermal dynamics and showed that a door status
sensor is required for temperature prediction [108]. For model-based control, the
authors use two different models calibrated with data obtained in different door states
(opened/closed), and use the door status signal to switch between these two models.

Most approaches in the literature address discrete changes in the building en-
vironment as disturbances, using statistical methods and stochastic frameworks to
create models [120–124] and other closed-loop control strategies [125]. However,
this study conjectures that in many situations, models could be better ad-
justed to context. This dissertation shows that if the boundary conditions that ren-
der some models more appropriate than others are observable and previously known,
a context-based framework as a model selection strategy can be a very flexible so-
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lution for immediate model commutation. This approach can complement, or even
replace, multi-stage model selection strategies, such as those presented by Prívara et
al. [126] and Bacher and Madsen [127,128]. These strategies start with a set of initial
candidate models for the TZ with different orders of complexity. The goal is to find
the most suitable model for prediction. The maximum likelihood estimation is used
to adjust each model’s parameters to optimal values, and the likelihood function value
is used to compare performance between different model structures. Starting the se-
lection from the simplest model, models with gradually higher levels of complexity
are chosen iteratively up to a point at which the likelihood function value does not
increase significantly. These strategies are adaptive and select the lowest-order model
that best describes the model of the TZ. However, they need a certain processing
time and, unlike our context-based framework, models do not immediately adjust to
context changes as necessary for many real-time applications.

Context-based models are a contribution for multimodal thermodynamic model-
ing, whereby the environment is described by a set of distinct continuous time linear
models, as opposed to just being described by a single time-invariant model. To the
best of this researcher’s knowledge, a suitable framework to integrate these different
models is not available in the scientific literature. Therefore, this thesis advances
the state of the art by providing a formal modeling framework based on
hybrid automata that integrates the different models and describes the
range of validity of each model [129, 130]. The term “hybrid” is used to charac-
terize systems that combine time-driven and event-driven dynamics. The former are
represented by ordinary differential equations (ODEs), characterizing the behavior of
continuous-time variables such as temperature, while the latter, characterizing the
switching conditions between contexts, is described through various frameworks used
for discrete event systems, such as finite state automata or Petri nets [131]. In addi-
tion, the proposed framework also unifies hybrid automata semantics with the notion
of context-based modeling from the AmI literature, where contexts represent discrete
system configurations associated with the domain of each model, and context tran-
sition rules are associated with discrete transitions that govern model changes. An
application example is provided to clarify this proposal, with a model for a single-zone
building. Using previous knowledge about the physical characteristics of the building,
lumped resistor-capacitor (RC) models are used to describe the building’s continuous
dynamics in each context, due to their potential application for model MPC, where
simplified and reduced analytical models are preferred. The provided example does
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not address all of the details of HVAC modeling. However, the example is complex
enough to convey the idea that context-based reasoning, hybrid systems, and thermo-
dynamic models can be unified in a single framework. We compare the execution of
the provided example with the simulation outputs of EnergyPlus - a simulator that
uses models with higher complexity - to show that a context-based model can show
comparable performance with more complex thermodynamic models concerning the
prediction results, while keeping an acceptable low-level of complexity that is suitable
for future use in a real-time feedback control loop.

1.3 Contributions

As a result of addressing the above research objectives and the research questions
that they entail, this thesis contributes to advance the state of the art in the following
topics:

• A new reinforcement learning strategy to control the heating ventilation and air
conditioning system which, if implemented, may have a significant impact on
reducing the global energy bill and greenhouse gas emissions over the lifecycle
operation of the building.

• A description of the thermodynamics of a thermal zone using a set of distinct
continuous linear time-invariant (LTI) models.

• A novel thermodynamic modeling framework based on hybrid automata that
unifies the different LTI models that are used to describe the thermodynamic
behavior of a thermal zone.

• Exploitation of the notion of context-based modeling from the AmI literature
for simulation and knowledge organization of continuous LTI models.

• A description of a context-based modeling framework and the discrete event
dynamics that govern context change.

1.4 Publications

This thesis is based on the following articles:
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1. Pedro Fazenda, Paulo Carreira, Pedro Lima. Context-Based Reasoning in
Smart Buildings. Proceedings of the First International Workshop on Infor-
mation Technology for Energy Applications, 923:131-142, Lisboa 2012.

2. Pedro Fazenda, Kalyan Veeramachaneni, Pedro Lima, and Una-May O’Reilly.
Using Reinforcement Learning to Optimize Occupant Comfort and Energy Us-
age in HVAC Systems. Journal of Ambient Intelligence and Smart Environ-
ments, 6(6):675-690, November 2014.

3. Pedro Fazenda, Pedro Lima, Paulo Carreira, Context-Based Thermodynamic
Modeling of Buildings Spaces, Energy and Buildings, 124:164-177, 15 July 2016.

Part of Article 1 is summarized in Chapter 2, and Chapters 3 and 4 were based
on Articles 2 and 3, respectively.

Additional publications, poster presentations and talks

• (Talk) Edifícios Inteligentes, Jornadas de Engenharia Electrotécnica e de Com-
putadores, Lisboa, Março,2010.

• (Poster) Energy Efficiency Monitoring and Management to Promote Sustainable
Behaviors, Second annual Conference for the MITPortugal, Porto, September,
2010.

• (Poster) Context-based Thermodynamic Modeling and Identification of Build-
ing Spaces, LARSyS annual meeting, Lisboa, June, 2013.

• (Poster) Context-based Thermodynamic Modeling of Building Spaces, LARSyS
annual meeting, Lisboa, June, 2014.

1.5 Thesis Outline

In this first chapter, we introduce the motivation, the research questions and objec-
tives that define the scope of this thesis, highlight the contribution to knowledge, and
list a number of support publications. The remainder of this thesis is organized as
follows.

Chapter 2, Related Work. This presents a literature review and a discussion on
related work. This line of work falls within the ambient intelligence domain.
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This chapter gives an overview of the domain and discusses current and emerging
technologies.

Chapter 3, Reinforcement Learning for HVAC Control. The optimization ap-
proach presented in this paper employs Q-Learning RL algorithms. Therefore,
this chapter provides a brief but necessary technical introduction to Markov
Decision Processes, reinforcement learning and sequential decision problems.
Following this introduction, a reinforcement-learning-based controller for the
heating ventilation and air conditioning is introduced. Two versions are pre-
sented. The first, called the Bang-bang Heater, presumes that the heating unit
is controlled by simply turning it on or off. The second version, called the Set
Point Heater, presumes that the unit has temperature set point control. The
controller learns how to operate it in order to minimize a penalty function,
which depends on the amount of energy used and the number of times an oc-
cupant adjusts the system. This chapter explains how Q-Learning can be used
to solve the first problem, and how it can be extended to solve the second. It
concludes with a discussion of scope and limitations.

Chapter 4, Buildings and Context-Based Models. This chapter describes the
definition of context and the operational semantics of the proposed context-
based framework and some important definitions. It then proceeds to describe
resistor-capacitor model structure that was used to model the thermal behavior
of a single-zone building. Illustrative application examples are presented.

Chapter 5, Simulation Setup. This chapter presents the simulation setup envi-
ronment (Matlab, the Buildings Controls Virtual Test Bed, and EnergyPlus) for
the experiments that was developed to evaluate the examples given in Chapters
(3) and (4).

Chapter 6, Results. This chapter presents the results and conclusions of the ex-
periments described in the previous chapter.

Chapter 7, Conclusions and Future Work. This chapter concludes the thesis
and discusses directions for future research.
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1.6 Summary

Energy can be saved in new buildings with more efficient technologies and smart
buildings have been hailed as a solution to increase energy efficiency in the building
sector. This chapter described the motivation for investing in energy efficiency, sup-
ported by smart building technologies. Important concepts were described including
green and zero-net energy buildings, ambient intelligence, and context-based mod-
eling. These concepts are important to understand the future of building research,
and also why the initial research path, focused on optimizing the heating, ventilation
and air conditioning system, was guided towards finding an appropriate modeling
paradigm for knowledge representation and organization, using context-based model-
ing. Two research problems were presented for: automatic HVAC optimization, and
thermodynamic modeling of building spaces. Methods to solve each problem were
discussed, and contributions and publications were presented.
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2
Related Work

“The cheapest energy is the energy you don’t use in the first place.” – Sheryl Crow
(American singer and songwriter).

Over the past three decades, a considerable amount of work has been done on using
building automation strategies for energy savings, which naturally includes optimizing
the operation of various systems, such as the HVAC. In this domain, a recent report
from the U.S. Department of Energy has identified a set of high-priority initiatives
for high-efficiency HVAC technologies that must be included in the HVAC research
and development roadmap [132]. Some of these initiatives are highly focused on using
emerging technologies to create new control schemes for HVAC operation, and de-
veloping open-source and open-architecture platforms to enable grid connectivity for
demand response, and to exchange information with other building systems. Research
supporting these technologies includes work in different research fields, including e.g.,
computational intelligence [133], distributed systems [134–136], context-aware sys-
tems [79], SGs [137], the Internet of Things (IoT) [138], sensor networks [139], control
systems [13], thermodynamic modeling [140], information modeling [56], system iden-
tification [141], hybrid dynamical systems [142], multi-agent systems (MAS) [143] and
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MPC [144]. Each research field is focused on its specific domain and there is no single
field of research capable of addressing all the non-trivial problems that need to be
solved for deploying AmI in SBs. There are a significant number of opportunities for
interdisciplinary collaboration and more theories need to be synergistically integrated
in order to provide better control solutions for building systems and contribute to the
idea of having a rational BAS controlling the HVAC system. This chapter describes
important work and ideas related to this thesis. It starts by describing related work
on energy and comfort management for HVAC systems, and follows with a description
of important concepts that should be taken into account in future research for AmI
and HVAC control.

2.1 Energy and Comfort Management

Most of the past research for energy savings in HVAC systems has been focused on
studying different mechanical designs and configurations to improve energy perfor-
mance [97]. However, as stated by Vakiloroaya et al., “the energy consumption of
an HVAC system depends not only on performance and operational parameters, but
also on the characteristics of the heating and cooling demand and the thermodynamic
behavior of the building” [145]. This demand depends on meteorological conditions,
occupancy, and many other factors, such as the state of doors, windows, lighting
and equipment. Due to these factors, “the actual load of the HVAC systems is less
than it is designed in most operation periods” [146]. Therefore, proper control of
the heating and cooling demand becomes an essential requirement for HVAC energy
reduction. In this domain, Dounis and Caraiscos [147] present a survey with the
state-of-the-art on control systems for energy and comfort management in buildings.
Ahmad et al. [133] also present a succinct review of computational intelligence tech-
niques for HVAC systems. Work has spanned multiples strategies and control tech-
niques, in general, are categorized into hard control and soft controls [148]. Classical
control techniques, such as optimal, nonlinear, adaptive, and proportional–integral–
derivative (PID) controllers are considered hard control. The focus of this thesis is on
soft control techniques, where most AI algorithms are included. Most AI techniques
have somehow been applied in building control strategies. This includes evolutionary
algorithms [149–153], neural networks (NN) [99, 154–156], Bayesian networks [157]
and other algorithms for control and optimization [158–161]. To express occupant’s
preferences using linguistic labels that human operators can understand, a popular
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approach for HVAC control has been to use fuzzy controllers [150, 151, 162]. Fuzzy
logic is useful in capturing and representing imprecise notions, such as “hot” and “very
hot”. However, it has several limitations [163,164]. The fuzzy part is hard to program
and prior knowledge is required to model the fuzzy system. The knowledge base is
usually constructed based on the operators’ experience and requires fine-tuning and
simulation before becoming operational. Their knowledge is often incomplete and
episodic, rather than systematic.

The advantages of using a RL approach to machine learning, as an option over
other paradigms, are well known [165, 166]. RL can be applied in situations where
occupants do not know the correct answers required for supervised learning. A RL
system is expected to learn how to achieve goals, by trial and error, in real-time, with
continual feedback from its environment. This real-time, closed-loop, goal-seeking
behavior, where the BAS automatically improves through experience, seems to be
a crucial aspect of how humans operate, and is an interesting paradigm to be ex-
plored in SBs. Some of the unknown answers in the environment include occupancy
and thermal preferences, as well as the thermodynamic behavior of building spaces.
Moreover, there is also uncertainty concerning how occupants behave. For example,
the BAS will not know if:

• Above a certain temperature, the occupant opens a window instead of using the
HVAC system for cooling.

• The occupant will keep the lights off if the shades are opened before the room
is unoccupied.

Most of these answers play an important role in energy and comfort control. Having
the capability to automatically learn the uncertainties is one of the most important
and desirable features for predicting heating and cooling loads and for smart HVAC
control [99,167,168].

2.1.1 Models for Building Systems and Comfort Evaluation

For HVAC control, and decision support in algorithms, many authors use predefined
models that represent expected behaviors for the occupants and building systems.
Meyer and Emery [169], for example, propose an air conditioning system controller
that generates an optimal plan to use thermal energy storage (the thermal capaci-
tance of the building and a cold storage facility). The authors propose shifting part of
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the daily on-peak cooling loads to the night off-peak hours when electricity prices are
lower, also taking into account various factors, such as weather forecast and indoor
heat gains. All parameters associated with the building’s thermal response function
and HVAC systems have to be previously characterized. However, most building char-
acteristics are not time invariant and the state of windows, for example, affect the
buildings’ thermal capacitance. Although the authors suggest a procedure to identify
system components, the resulting models will be highly prone to noise and modeling
errors. Structures and systems degrade over time and depend on environmental con-
ditions, such as temperature and humidity. In many situations, events in the building
environment may change the context within these models are valid, thus potentially
affecting their predictive performance. A SB must continuously keep learning in order
to maintain building models that are adjusted to operating conditions.

Human thermal Comfort

Another type of model, also used for HVAC control, predicts the thermal sensation of
people. This type of model for thermal comfort can be used by an adaptive controller
to guarantee comfortable temperatures in different buildings spaces that are subjected
to different thermal loads. Dalamagkidis and Kolokotsa [170], for example, developed
a RL environmental controller that sets the cooling/heating level and opens/closes
a window by following a policy that maximizes a reward function based on a fixed
weighted average of three factors: energy used, comfort and air quality. To estimate
thermal comfort, the authors employ the predictive mean vote (PMV)/ predicted
percentage of dissatisfied (PPD) (Fanger’s comfort model) [171,172]. The PMV index
is arguably the most widely used thermal comfort index today. It predicts the mean
thermal sensation vote of a large group of people according to the seven-point thermal
sensation scale, given by Table 2.1, proposed by the American Society of Heating,
Refrigerating, and Air-Conditioning Engineers (ANSI/ASHRAE Standard 55-2010).
The PMV index can be expressed as PMV = (0.303e

�0.036 M

+ 0.028)L, where M

represents the metabolic rate quantifying human body heat production associated
with human activity, and L is the thermal load defined as the difference between the
rate of metabolic heat generation and the heat loss from the body to the surrounding
environment, which depends on various factors, such as clothing, air velocity, air
temperature and humidity.

The PPD index, which is a function of PMV, predicts the percentage of occupants
that will be dissatisfied in a particular thermal environment. Figure 2.1 shows a plot
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Value Sensation
+3 Hot
+2 Warm
+1 Slightly warm
0 Neutral
-1 Slightly cool
-2 Cool
-3 Cold

Table 2.1: The predicted mean vote (PMV) sensation scale.
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Figure 2.1: PPD – Predicted Percentage Dissatisfied.

7730 standard uses limits on PMV to define comfort. PMV values between [�1, 1]
correspond to the range in which 75% of the occupants are satisfied, and between
[�0.5, 0.5] is the range in which 90% of the occupants are satisfied. As a general
rule, comfort conditions are considered acceptable when 85% of the occupants are
satisfied [173]. Although this determination has been satisfactory for many HVAC
applications, the PMV/PPD model is not optimal for every situation [174]. In the
past few years, researchers have discussed its limitations extensively [175,176]. Since
the derived indexes are based on standardized assumptions for clothing, air velocity,
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activities, and other factors, the algorithms that use these models may converge to
temperature values that may not be optimal at all times. The PMV/PPD model
does not take into account the fact that people usually react and adapt to the sur-
rounding environment in order to avoid discomfort. Therefore, the model misses the
fact the comfort can be affected by people’s actions [177]. In fact, occupants use
numerous strategies to achieve thermal comfort e.g., activating ceiling fans, blinds,
and activity level [178]. Moreover, people also adapt to the environment. Concerning
this observation, adaptive comfort is based on the assumption that the comfort per-
ception of people will depend on outdoor climate conditions. To quote from Mathews
et al., “For low outside air temperatures, people will be comfortable if the indoor
temperature is lower. The opposite is true for high outside air temperatures. This
affords us the opportunity to potentially save even more energy. If the indoor tem-
perature can be cooler when the outside air temperature is low, less heating would
be required. During periods of high outside air temperatures, a higher temperature
would imply that less cooling would be required” [179] (p. 153). Williamson and
Riordan point out the fact that “...the reaction of people to a sense of being cold or
hot is not necessarily to operate a heater or cooler, nor is such a reaction generally
the sole response. Adjusting clothing, altering activity levels etc. are also common
responses.” [180] (p.1). To save energy with the HVAC system, SBs should include
adaptive environment controllers with the ability to learn and self-regulate according
to the thermal preferences of occupants. Therefore, SBs need to learn rules of
behavior based on feedback they obtain from occupants, and continually
adapt this knowledge [181].

The RL-based controller developed in this dissertation explores the heating set
points that satisfy human comfort conditions, while minimizing the needs for thermal
energy. No modeling is needed neither for modeling comfort nor building structures
and components. All the necessary information is extracted from the interaction
between the occupant and the BAS, and the cost associated with the conditioning
of the environment. The proposed method takes into account the interaction of the
occupant and the energy used for heating and cooling in the reinforcement signal.
The BAS is penalized in proportion to the amount of energy that it uses to guarantee
the current temperature set point, including an additional penalty if an occupant acts
on the interface at any instant of time.
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2.1.2 Scheduling

The simplest strategy to save energy with an HVAC system includes using ther-
mostats in an efficient manner. A thermostat acts as an interface between the oc-
cupants’ thermal preferences and the operation of the heating and cooling systems
by maintaining the temperature near a desired set point. Figure 2.2 shows an ex-
ample of four different thermostats. Thermostats can range from simple mechanical
control mechanisms (Figure 2.2a) to Internet-enabled programmable devices, offering
programming options that allow tenants to define several set points according to a
predefined schedule [182, 183]. They can also display important information, such
as TZ temperature, ventilation rate, and in some cases, smart metering with pricing
feedback [184]. Unfortunately, it has been shown that many occupants do not ex-
plore most functions of these interfaces, due to the fact that they do not understand
them [182]. Even for people who understand these interfaces, programming setback
schedules for every day of the week and time of year is a tedious task.

(a) Non programmable. (b) Digital programmable with Wi-Fi.

(c) Smart-phone application. (d) Smart with learning capabilities.

Figure 2.2: Thermostat interfaces from Honeywell (a, c), Emerson (b) and Nest (d).
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Building administrators would be satisfied if a BAS could automatically and dy-
namically adjust the HVAC operation to optimal schedules. Therefore, to circumvent
the task of manually programming these schedules, some authors have tried to es-
timate activities and occupancy by observing the environment. This included, for
example, observing CO

2

levels [185, 186], monitoring the electrical load of the house
and the hot water heating pattern over a certain period [187], or even using smart-
phones as tenant-location devices to predict the times of arrival and departure of
occupants, and modifying temperature set points accordingly [188]. Undoubtedly, all
this information can be useful for decision support. However, this dissertation
follows the plausible conjecture that the HVAC optimization problem can
be reduced to learning how to operate within maximum energy efficiency,
while trying to minimize the number of occupant “complaints” . Adaptation
to user inputs is allegedly used by Nest’s (Figure 2.2d) enhanced auto-scheduling
thermostat [167]. However, the company does not disclose any details about its
learning algorithm and, therefore, there are no means to evaluate the advantages and
drawbacks of Nest’s learning algorithms. Nest’s smart thermostat proves, due to its
popularity, that there is tremendous potential in the current market for smart ther-
mostats. In fact, the smart thermostat market is estimated to be worth 5.9 Billion
USD by 2020 [189]. Energy price and consumer environmental awareness will be a key
driver, but widespread adoption of this technology is strongly dependent on network
and platform interoperability [190].

Occupants should be able to express their preferences and satisfaction for building
environmental settings in an easy and intuitive way. Following the same ideas behind
Nest, in this dissertation, the research priority is to avoid demanding the occupant
operate any temperature controller more complicated than the simple, inexpensive
thermostat that is standard in most buildings – one that allows the occupant to
command the temperature to be increased or decreased. Such a thermostat may
optionally provide a temperature gauge, but it is assumed that such a feature is
unnecessary. This is supported by the belief that occupants are perfectly satisfied
with a simple interface if their inputs, using that interface, result in temperature
set points that comply with their comfort requirements. The motive is to effectively
circumvent sophisticated thermostats that require even small amounts of set-up or
direct use, as these features are frequently ignored by and wasted on occupants.
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2.1.3 Building and Occupant Interfaces

A classic and ambitious goal for AI is to have intelligent systems interact with humans
up to the point where they can even engage in dialogue. With this vision, SBs are
expected to include advanced HMIs, eventually with image-processing capabilities,
NLP and speech recognition [191]. One of the drawbacks that hamper the widespread
implementation of MPC is the lack of user-friendliness and occupant interactions
[101,147]. SBs in contrast, aim to be adaptive, sensitive, and responsive to user needs,
habits and emotions. Research in affective computing is enabling systems to recognize
and respond to human emotions, and emotionally, SBs may have a clear advantage
when it comes to human-computer interaction [192,193]. Human emotions can be used
for decision support to help reduce frustration in a sense that if an occupant is angry
or stressed, then the occupant is probably not very receptive to notifications about
energy performance. Building technologies are expected to enable a wide variety
of completely new user-friendly applications that facilitate the process of presenting
information, enhance human decision-making, and increase passive control over the
building environment.

Presenting Information

One of the desired requirements for AmI is to have occupants informed about impor-
tant aspects of their environment. Therefore, building HMIs are expected to present
values of power consumption and real-time information on how energy is being used
with associated financial costs and GHG emissions. If this information is comple-
mented with advice on efficiency improvements, which result in quantifiable savings,
occupants can also assume active roles in promoting energy efficiency. Since buildings
usually have a limited number of effectors that are capable of changing the building
environment, the number of variables that can be automatically set or regulated by
the BAS are limited. To change the environment without direct actuation, a SB can
try to use a human-in-the-loop by giving him smart recommendations [194]. A dili-
gent occupant can follow recommendations, and assume actions that change the state
of the environment, if they are properly justified by showing, for example, that the
same comfort level can be guaranteed using a different or more efficient environment
configuration (e.g., opening windows and blinds to take advantage of natural lighting
and ventilation). Therefore, SBs should be capable of generating these recommenda-
tions and working collaboratively with humans in order to improve living and working
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conditions in an efficient manner.
There is a growing body of literature demonstrating that there is potential for

energy savings through measures targeting occupant behavior [195]. HMIs can be
used to notify occupants with information related to their individual behaviors such
as, for example, unusual energy use patterns in areas of the building that they usually
occupy, or the financial costs of leaving the HVAC and lights on, when the office in
unoccupied. These notifications are important, because with information on indi-
vidual behaviors occupants can be informed of the actual power consumption values
and sensitized through feedback notification of their good behaviors. This behav-
ioral feedback, as a form of self-regulation, has proven to impact the promotion of
sustainable habits [196–198]. To inform occupants, efficient methods are needed for
delivering messages that effectively motivate behavioral change. In a recent study,
500 dwellings in England participated in a social challenge to evaluate the impact that
feedback had on behavior and energy efficiency [199]. The study results showed that
by using a feedback scheme with one of the emotions shown in Figure 2.3, selected
based on the evaluation of energy used by each dwelling ranked against its neigh-
bors, an average daily electricity savings of 8.6% was accomplished. Feedback derives

A “very happy” face if the dwellings performance was in the
lowest 25% of energy use among similar homes.

A “smiley” face if the dwellings performance was in the next
25% of users.

A “neutral” face for the next 25%.

A “sad” face if the dwellings performance was in the highest
25% of energy users.

Figure 2.3: A behavioral feedback scheme (using emotions) to demonstrate the
amount of energy used by each dwelling, ranked against its neighbors (adapted
from [199]).

from the straightforward comparison of their energy usage compared to similar-sized
homes. This normalization is not always possible because houses, offices, and build-
ings have different sizes, configurations and systems, and are subjected to different
environmental factors (e.g., solar radiation and wind), which affect the amount of en-
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ergy used. Therefore, more accurate methods are necessary to generalize these types
of feedback strategies.

In order to provide “smart” advice and send feedback notifications, the BAS needs
to have the ability to reason over what’s happening in the building and have the ability
to measure, predict, compare and find alternative building configurations. The BAS
could execute, for example, some of the following verifications:

• Compare power consumption with design predictions. In the case of
discrepancies, verify if it is because of weather conditions, thermostat settings,
malfunctioning systems, etc.

• How much will power consumption change with different thermostat
settings or ventilation rates?. This can give an estimate of the cost of
comfort.

• How much money can be saved by retrofits of the building shell or
equipment?. If retrofits are implemented, the BAS can verify if the results
align with predictions.

Therefore, the problem of creating meaningful models of building systems that allow
the BAS to characterize, for example, how energy is used in each room – and planning
strategies based on those models that fulfil some expectations, like saving energy –
are fundamental areas of research that need to be addressed to accomplish those
requirements.

In light of the focus this dissertation, thermodynamic models enable a BAS to
predict the thermal loads in different TZs which has, among other things, applica-
tions for MPC, DR, and planning strategies for zero-net energy buildings. Despite
the variety of approaches that exist in the literature for inferring black-box thermo-
dynamic models from time-series data, none are particularly well-suited for building
apt descriptions of TZs, since they provide little or no interpretation of the underlying
physical parameters [127, 128]. To create models with physical interpretation, other
numeric approaches use prior physical knowledge (e.g., grey-box models) of the heat
dynamics of the building to predict the thermodynamic behavior of TZs with suffi-
cient accuracy [128]. However, as described in Chapter 1, models of arbitrary TZs
often require a vast number of parameters, which obfuscates the interoperability of the
inferred models. Therefore, the advantage of context-based thermodynamic models is
that they are composed of a set of simplified models, each capable of fully describing
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a distinct qualitative thermodynamic behavior of the represented TZ. The fact that
these models are simple, and analytical, results in significant advantages for MPC and
other real-time applications, such as planning [200] and model checking [201–203].

Explainable Actions

When interacting with SBs, most users will not engage in trying to understand com-
plex systems and reports or perform complex configurations or any other tasks that
are time-consuming and require some amount of technical expertise. Moreover, when
it comes to AI, humans are not very tolerant of accepting systems intended to per-
form like humans, but fail to do so. Humans will not delegate control to a BAS that
becomes annoying by systematically contradicting their intentions when controlling
the environment by, for example, inexplicably switching the lights or the heater off.
Therefore, SBs should be able to explain automated decisions to facilitate engagement
with occupants, by providing some insight on why algorithms are assuming certain
behaviors. Having “explainable” actions is an important requirement for AmI because
actionable information may be needed by a human operator to trace and understand
the operation of the building, as well as detect malfunctions or undesirable behav-
iors [204]. An occupant or facility manager could ask the BAS, for example, the
following questions:

• Why is the HVAC off?

• What are the costs associated with lighting?

• How much energy is currently being wasted with the HVAC system?

• How much energy will be saved if the HVAC is off and a window is open?

• Will comfort conditions be guaranteed if the HVAC is off and a window is open?

• For how long was the HVAC on on a given date?

• How much energy and money will be spent on heating until the end of the day?

• If a window is closed, how much money will be saved in heating during the
month of December?

Answering these questions includes work on ML for intelligent environmental control
systems, context-aware architectures, and KR. Knowledge should be organized in a
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way that makes it easy for the BAS to reply to such queries. To answer these ques-
tions, the BAS must have a rich understanding of its environment, which includes
the ability to create models from observed data, representing knowledge associated
with these models, and reasoning over that knowledge. Although many parametric
ML techniques, such as NN and support vector machines, are numerically accurate
in predicting building systems, they shed little light on the internal structure of the
system and its governing principles. Therefore, they are not suitable for supporting
explainable actions. Conventional AI attempts to mimic human reasoning using ex-
pressive KR languages that are structured and formally well understood with reason-
ing algorithms capable of dealing with the expressiveness of such languages [205–209].
Although much of this work can be extended to SBs, it is not yet clear how to create
models for building environments that integrate these expressive languages, taking
into account that many building variables are continuous.

In order to have a BAS achieve human-level performance in answering questions
posed by occupants, basic knowledge of the common-sense world will be necessary.
However, in the current state of the art, it is not yet clear how this vision can be
implemented. There is no easy, single solution for creating environments capable of
accomplishing automated common-sense reasoning. Therefore, different approaches
to AI need to be explored and combined in order to create intelligent systems [90].
In light of the current literature in context- and case-based reasoning [78, 210] and
middleware architectures [80], planning in hybrid domains [200], and explicability and
predictability for task planning [211], it is this researcher’s belief that context-based
thermodynamic models can play an important role in supporting explainable actions.
Not only do context-based models provide insight on the internal structure of the
governing principles of the thermodynamics of the TZ, but they also produce accurate
predictions of the TZ temperature, as shown in Chapter 6. Answering questions with
context-based models, by extending the work being done in the current literature, is
future work.

2.2 Context-awareness for Ambient Intelligence

There are many gaps in our understanding of large complex systems and our ability
to engineer them [4]. To cope with such complexity, most software architectures
for AmI are programmed in a modular way. When applied to SBs, this modularity
deals with the complexity of the domain by dividing the operation of the building
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into a number of interdependent modules, which are able to control independent
building systems and services. Following this approach, many authors employ a MAS
approach [212–216] as a decentralized solution to control SBs, with a number of
advantages, including scalability and re-configurability. MAS consists of a collection
of software agents that execute the behavior associated with each of the SB’s modules.
Agents can also be used to represent occupants, in order to maintain their preferences
concerning environmental conditions. The MAS approach is scalable, as new agents
can dynamically enter the scenario and start participating in the operation of the
SB, when new components and services are added. However, although modularity
simplifies the development of AmI software architectures, most agents responsible
for each control logic are largely deployed in isolation, and the interaction between
multiple agents in the MAS may result in undesired emergent behaviors. The term
emergent is frequently used to describe behaviors that arise from the interaction
of subsystems and are not evident from the analysis of each subsystem. Consider
the following example: an agent, programmed to optimize the use of natural lighting
in a room, will open the window blinds and turn off the lights. This action may
inadvertently increase the temperature inside the space due to solar gains. The agent
that manages the HVAC will notice this increase and will try to cool down the room,
thus spending more energy. Without the perception of this causal relation between
lighting, temperature and energy, two agents designed to save energy by managing
each of their isolated domains, may end up spending even more energy when working
together in the MAS.

Recent publications have begun acknowledging the importance of integrating the
control of several different systems. Luigi Martirano [217], for example, recognized
the importance of integrating the lighting control system with HVAC control and
with solar blinds. Therefore, to avoid emergent behaviors, this dissertation discusses
another type of modularity: the operation of each TZ depends on a set of active
contexts. [72–74]. With strategies organized according to context, emergent situations
may be easier to detect because the definition of a context, as described in this disser-
tation, is explicitly associated with the state of the TZ and for each context, a specific
thermodynamic behavior is expected.
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2.3 Context-based Framework

While context-modeling deals with how contexts are represented, stored and pre-
sented, context-awareness is the capability to reason about the context in order to
make decisions about the actions to be triggered [218–221]. Designing a conceptual
context-aware framework includes identifying the set(s) of context and the transition
rules that define how to transition from one context to another. The classical frame
problem is closely related to this issue [222]. The design process has to include the
experience of human experts to model the necessary knowledge associated with the
operation of particular types of buildings, equipment, systems and services. Gonza-
les et al. [75] formalized the definition of context-based reasoning, with applications
for modeling some human behavior that control an autonomous agent performing
a tactical mission in some environment. In their formulation, context is a 3-tuple
(Ak, Tk,Dk) composed of the following three basic elements:

• Ak–Action knowledge. Required for the agent to carry out the behavior
encapsulated within the context. It represents the agent’s functional intelligence
within its given environment for a specific situation.

• Tk–Transitional knowledge. Indicates when a transition to another con-
text is warranted. It can be expressed as IF (conditions) THEN (activation)
transition rules.

• Dk–Declarative knowledge. Describing tactical knowledge (represented as
attribute-value pairs) required to successfully execute the action knowledge.

Exercising the context-based model is the process of activating the set of contexts
that best suits the situation at hand. This activation allows the active contexts to take
over and control the execution of a process, defining behaviors, constraints, and other
context-dependent characteristics. The process may survey the environment, as well
as its internal state (including transitional knowledge), to determine the conditions
where the current context is deactivated and a new context is activated and execution
resumes. This formulation, presented by Gonzales et al., is generic enough to cover
a wide range of applications. Therefore, this dissertation draws inspiration from
their work and explores the similarity that their context-based reasoning model has
with the description of a hybrid system. Although we do not represent and use
action knowledge (reserved for future work), declarative and transitional knowledge
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can be directly extracted from the hybrid system formalism, as described in Chapter
4. For the particular context-based thermodynamic models, given in this dissertation,
the declarative knowledge includes the different models that describe the TZ in each
context, while the transitional knowledge includes the rules that govern the model
changes in the time-variant TZ environment.

2.4 Summary

This chapter discussed some of the literature, related work and ideas that guided the
research presented in this dissertation. It started by discussing some previous work
for energy and comfort management and the advantages of using reinforcement learn-
ing. Models have been used for buildings and for evaluating the thermal sensation of
people. This chapter described the most common model used in the literature, which
is the predictive mean vote (PMV)/predictive percentage of dissatisfied people (PPD)
model. The disadvantages of using the PMV/PPD model were discussed, pointing
out the fact that most model parameters are hard to observe and that users can adapt
to the surrounding environment. Therefore, many methods that use the PMV/PPD
model do not explore the most efficient conditions for heating and cooling. To solve
this problem, this dissertation presents a method for learning the heating set points
that satisfy the occupant’s comfort, while also saving energy. The method is also
capable of learning the occupant’s schedule in order to avoid using energy when the
occupant is out of the office. The chapter proceeded with a discussion of important
requirements for ambient intelligence, centered on building occupant interfaces that
are capable of user-friendly interaction for information feedback presentation, and for
explaining automated decisions. Knowledge representation should take these require-
ments into account. The chapter ended with a discussion and presentation of previous
work on context-awareness for ambient intelligence. This dissertation draws inspira-
tion from previous work and explores the similarity that exists between context-based
reasoning models and hybrid systems.
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3
Reinforcement Learning for HVAC Control

“Civilization advances by extending the number of important operations which we can
perform without thinking about them.” – Alfred North Whitehead (Mathematician and
philosopher).

The BAS is an autonomous system capable of executing actions to change the
building environment. It is autonomous to the extent that its behavior is determined
by its own experiences. Therefore, the BAS should be able to learn and evolve by
evaluating the quality of its actions with regard to certain performance metrics that
are used to track progress when satisfying a set of goals. This chapter discusses
the application of a discrete and a continuous RL approach for HVAC control. The
purpose of this approach is to actively learn how to schedule the HVAC operation
and set the thermostat temperature set points based on feedback obtained from the
occupants and the amount of energy used for heating. The discrete approach, which
we call Bang-bang Heater, presumes that a heating unit is controlled, at a low level, by
a controller that guarantees the environment temperature will converge to a certain
set point when the heater is on. Heating is supplied by an electric space heater with no
thermostatic adjustment and the BAS can only act to turn the heater on/off. In the
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continuous approach, which we call Set Point Heater, we presume the HVAC unit has
temperature set point control and the BAS has to actively learn how to schedule the
HVAC and set thermostat temperature set points. In both applications, performance
metrics include minimizing the energy used by the HVAC system while minimizing
the number of times an occupant interacts with the HVAC control interface to procure
comfort.

We proceed by presenting a brief introduction to RL, with particular focus on the
Q-Learning technique. We then describe how Q-Learning can be applied to solve both
applications and finish the chapter with a discussion of the presented methodologies.
Both the Bang-bang Heater and Set Point Heater problems are demonstrated in
Chapters 5 and 6 by setting up a simulated environment with simulated occupant
and low-level Bang-bang and Set point Heater control behaviors.

3.1 Background

In this thesis the smart BAS is portrayed as an intelligent agent coupled to the
building environment. The BAS model follows the general architecture of a particular
utility-based agent, as described by Russel and Norvig [223]1 and represented in Fig-
ure 3.1. As with any other agent, the BAS perceives and acts upon the environment.
It uses sensors to read environmental variables and acts using effectors to change
building configurations. During the perception process the BAS has to “understand”
the environment and map the often complex and noisy information received from its
sensory inputs to a reduced and simplified internal representation of the environment,
defined as state. As time passes, this representation transitions through a series of
states taken from a set of finite possible states, denoted as S, repeatedly and in un-
predictable ways. If the environment is fully observable, as we assume henceforth,
the BAS is capable of detecting all possible states of the environment with its sensory
inputs and can keep the internal model up to date without uncertainty. This is the
case when percepts are digital inputs to read, for example, the activation state of
electrical equipment or the opening states of doors and windows, and the internal
state representation is a vector containing each input. In some applications, how-
ever, inputs are analogue and the straightforward approach to representing them uses
quantization. In this case, the lower the quantization error, the higher the cardinality
of S and in the limit, state representation can even include continuous components,

1
Chapters 2, 17, and 21.
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as we describe further in Section 3.1.3.
By acting on the environment, the BAS is capable of changing the state of the

environment and consequently its internal state representation. Actions can change
the binary state of outputs to connect/disconnect electrical equipment or change the
value of a discrete variable such as the heating level of a heater, which can be set to
a Low, Medium, or High state. Actions can also be continuous to set temperature set
points or lighting levels. In either case, the main challenge of a utility-based
BAS is to sequentially choose the actions that produce optimal behavior,
considering and balancing the risks and rewards of acting in an uncertain
environment.

B
uilding

E
nvironm

ent

State
What the world

is like nowHow the world evolves

What my actions do
What will the world be

like if I do action a?

How happy will I be
in such a state?

Utility

BAS

(Agent)

Sensors

Effectors

Figure 3.1: The BAS as an intelligent utility-based agent coupled to the building
environment with goal-directed behavior (adapted from Russel and Norvig [223]).

3.1.1 Sequential Decision Problems

A BAS must find ways to adapt to its environment to continuously improve perfor-
mance while manipulating state transitions with actions. As a utility-based agent,
the BAS defines for each particular state a performance measure of how desirable
that state is. This measure is given as a utility function U : S ! R, which maps each
state to a measure that quantifies the prediction of how “happy” the BAS will be in
that state. This measure of “happiness” is directly associated with the rewards the
BAS expects to receive in the states that will follow in the future.

47



CHAPTER 3. REINFORCEMENT LEARNING FOR HVAC CONTROL

During the interaction between the BAS and the environment, RL agents learn
which actions to use through trial and error. Figure 3.2 graphically represents this
interaction. At each time step and state s

t

, the BAS chooses an action a

t

from a finite
set of possible actions, denoted as A, according to a policy function ⇡ : S ! A that
maps each state of the environment to a suitable action. As a result, the environ-
ment’s state is updated to s

t+1

and execution resumes. During this process the BAS
has “knowledge” on how the world evolves, i.e., the BAS knows the set of possible
states that are reachable from s

t

through the outcome of each action a

t

2 A. How-
ever, since most environments are non-deterministic, actions are unreliable. There
is no guarantee that the environment will end up in a specific state. For example,
if the BAS turns a heater off, there is no guarantee that the occupant will not turn
it back on. Therefore, the transition model between states is stochastic and has
to be described as a set of probabilities p(s

t

, a

t

, s

t+1

), denoting the probability of
reaching state s

t+1

if action a

t

is done in s

t

. Transitions are assumed to be Marko-
vian in the sense that probabilities depend only on the current state and not on the
history of earlier states. Depending on this transition model, the environment will
transition through a sequence of unpredictable states [s

0

, s

1

, s

2

, . . .], depending on the
probabilistic outcome of each selected action.

BAS
(Agent)

Heating/Cooling: on/off
Temperature set-points
Opening windows, etc.

Environment
(Thermal Zone)

Energy saved,
Occupant Interaction,etc.

Temperature,
HVAC state, etc.

action at

state st reward rt

r

t+1

s

t+1

Figure 3.2: The interaction between an agent and its environment, represented as a
series of state transitions that are associated with actions and rewards.
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Reinforcement Function

The RL BAS takes actions to maximize some notion of cumulative reward. It follows
that in each state, the BAS receives a reward that may be positive or negative
and is given by a bounded reward (or reinforcement) function R : S ! R. The
utility measure associated with a sequence of states depends on these rewards. For
a specific state and time instant, the utility is associated with the expected sum
of discounted rewards that the BAS will receive in the future while following a
certain policy ⇡, defined as:

U

⇡

t

(s) = E

" 1X

⌧=t

�

⌧

R(s

⌧

) | ⇡, s
t

= s

#

where parameter � 2 [0, 1] is the discount factor that describes the preference of
the BAS for current rewards over future rewards. When � is close to 0, rewards in the
distant future are viewed as insignificant. When � is 1, all rewards are considered with
the same importance. The problem of sequentially choosing appropriate actions in
order to maximize expected rewards is called a Markov Decision Process (MDP) and
is formally defined by the 4-tuple (S,A, P,R) containing the sets of states, actions,
transition model, and rewards.

Learning the Optimal Policy

The task of the BAS is solving a MDP by learning the optimal policy, which is a
function, denoted by ⇡

⇤, that maps each state s

t

to the optimal action to execute in
that state. Considering the future set of states that are reachable from s

t

, and the
respective probabilities associated with each transition, the optimal action is the
one that maximizes the expected utility of the subsequent state:

⇡

⇤
(s

t

) = argmax
a

t

X

s

t+1

p(s

t

, a

t

, s

t+1

)U(s

t+1

) (3.1)

To calculate the optimal policy, the BAS has to calculate the utility of each state,
which depends on the utility of the neighboring states. Assuming that the BAS
follows the optimal policy, the utility of a state is given by the sum of the immediate
reward received and the expected discounted utility of the next state. This sum
is obtained through the following the backward recursive Bellman equation:

U(s

t

) = R(s

t

) + � max
a

t

X

s

t+1

p(s

t
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)
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To solve the MDP problem, the Bellman equation has to be solved for each s 2 S

in order to calculate all the utilities. This can be done using an iterative approach,
where utilities are updated in each iteration using the Bellman update:

U

t+1

(s

t

) R(s

t

) + � max
a

t

X

s

t+1

p(s

t

, a

t

, s

t+1

)U

t

(s

t+1

)

Starting from arbitrary values for utilities, if the transition model is stationary
and the Bellman update is applied repeatedly, all the utilities converge to equilib-
rium. The final utility values are unique solutions for the Bellman equations, and the
corresponding policy obtained using (3.1) is optimal.

3.1.2 Q-Learning

If there are n possible states in the MDP then there are n Bellman equations – one for
each state. The Bellman equations can be solved iteratively if the agent knows the
transition model p(s

t

, a

t

, s

t+1

) and reward function R(s). However, in most cases,
the BAS has no prior knowledge of this information and needs to learn it as it is
executing actions in the environment. Although the transition model can be learned
by calculating transition probabilities (after observing the experienced transitions
between states), this learning procedure can be expensive to execute in real time.
Calculating the transition model and solving the MDP, by finding the solutions of
the Bellman equations for all possible states, can become intractable if the number
of states is too high. Hence, to circumvent this limitation, Q-Learning [224] can be
used in lieu of policy search. A Q-Learning agent learns an action-value function
(Q-function), Q : A ⇥ S ! R, instead of learning utility values. This Q-function
ultimately gives the expected utility (Q-value) of doing an action a in state s, which
is directly related to utility values as:

U(s) =

max

a

Q(a, s)

The utility of a state is equated to the action-value of the most promising action
to execute, which is defined in Q-Learning as the action with the highest Q-value.
With Q-Learning the BAS can compare the Q-values of its available choices in each
state without knowing the outcome of each action. The BAS can perform continuous
updates to the Q-function during the learning cycle by executing the selected action in
a particular state and immediately learning from that experience. This incremental
model-free RL technique facilitates the implementation and deployment of the RL
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agents in real-time applications, which is a fundamental requirement for building
automation and HVAC control.

Temporal Difference Learning

The implementation of the Q-Learning algorithm is accomplished by observing tran-
sitions and rewards and consequently adjusting action-values after each iterative step,
using the temporal difference (TD) learning method [223,225]. The BAS that learns
a Q-function does not need a Markovian transition model for either learning or action
selection. The Q-function is adjusted, after each state transition, using the following
one-step TD update procedure:

Q

t+1

(a

t

, s

t

) 
Old Valuez }| {
Q

t

(a

t

, s

t

)+

Updatez }| {
�Q(a

t

, s

t

) (3.2)

which is calculated whenever action a

t

is executed in state s

t

, leading to state s

t+1

,
with

�Q(a

t

, s

t

) = �


r

t+1

+ �

max

a

t+1 Qt

(a

t+1

, s

t+1

)�Q

t

(a

t

, s

t

)

�
(3.3)

where r

t+1

is the reward observed after performing a

t

,
h
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i
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an estimate of the optimal future utility of s
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, and parameter � is the learning
rate (0 < �  1) that controls convergence to optimal action-values. If each action
is executed in each state an infinite number of times, and � is decreased with an
appropriate schedule, the algorithm converges to equilibrium values, denoted as Q

⇤,
that verify the following constraint equation:
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and the learned policy, which gives the action with the highest expected value, is
provably optimal and given by:

⇡

⇤
(s) =

max

a

Q

⇤
(a, s)

Exploration versus Exploitation

When the BAS starts operating it has no previous knowledge of what actions to select.
The strategy in this case is to explore available options while exploiting whatever
feedback the BAS can get with respect to its objectives. During the learning process,
the Q-Learning BAS must balance its selection of actions that currently appear to
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be the most productive by following a known policy, with the need to further explore
the state-space in order to find a better policy that will bring greater rewards.

Exploration is useful because the model of the environment can change and can
become unadjusted to the learned policy. As an example, consider that the BAS
can learn an optimum set point when a tenant is in the TZ and should exploit its
utility by controlling it consistently. However, it must also expect that the zone
may become unoccupied without any explicit signal. For this possibility, it must ex-
plore set points more appropriate to vacancy in order to learn a tenant occupancy
habit. Therefore, the BAS must make a trade-off between exploitation to maximize
its reward as reflected in its current utility estimates and exploration to maximize
its long-term performance. There are many schemes on how the agent balances this
decision. This thesis uses a simple greedy in the limit of infinite exploration
scheme (GLIE), where the BAS chooses a random action in some selections depend-
ing on an exploration rate parameter, or follows a greedy policy by selecting the
best action otherwise.

3.1.3 Continuous State and Action Spaces

When using the standard Q-Learning algorithm, the BAS can deal solely with a
finite and discrete number of states and actions. The standard Q-function is usually
implemented using a two-dimensional lookup table indexed by state-action pairs.
However, for some applications, the BAS needs to have the ability to respond to
“smoothly” varying states with smoothly varying actions. This requirement imposes
a practical implementation limitation. Solving the smooth variation problem with the
straightforward solution of scaling to large numbers of states and actions, as a means
of covering a range of continuous values, becomes impractical, because learning and
Q-function implementation becomes computationally expensive.

Considering that states and actions are vectors, possibly with a different number
of continuous elements, generalization for the interval values between discrete states
and discrete actions can be introduced to Q-Learning by using function approximation
instead of table-based storage. Therefore, to deal with high-dimensional continuous
states and actions in RL we used the wire fitting method proposed by Baird and
Klopf [226] that has been used by Gaskett for robot control [227,228]. The wire fitting
method uses a function approximation system, such as an artificial feedforward NN,
to map the state vector to a set of n action-value pairs called wires. The set with
all the wires is calculated in real time by propagating the state through the NN as
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illustrated in Figure 3.3. The wire associated with the continuous optimal action with
the highest associated Q-value, denoted by (aMax, qMax), is available at the output of
the NN. The wire fitting method allows aMax to be immediately calculated through the
comparison of Q-value outputs, without any additional computation. This represents
an advantage for real-time action selection and RL.

Neural
Network

Multilayer
Feedforward

s

State vector

a0, q0
a1, q1

ai, qi

an, qn

Wire 0

Wire 1

Wire i

Wire n

Figure 3.3: Using an artificial neural network to map the state vector into a set of
action-value pairs (Wires) (adapted from [228]).

Exploration and Action Selection

When following a greedy policy, the action selected for execution is the optimal action
aMax = ⇡

⇤
(s). Since aMax is a continuous action, exploration can be accomplished

by adding random variable (noise) to the value of this action. The action selected
for execution can be, for example, a random sample drawn from a normal distribu-
tion a ⇠ N (µ, ⇢

2

), with a mean centered at µ = aMax and a standard deviation ⇢

proportional to an exploration rate parameter, denoted by "

Rate

. The additive noise
provides the opportunity to explore the action space centered around the optimal
action, depending on how this space is “stretched” by the "

Rate

.
During the learning phase, the set of wires at the output of the NN need to

be adjusted after each execution step while considering the Q-value of the selected
action. Since noise is added to aMax, the selected action is most likely not part of
the wire set. Therefore, generalizing and obtaining Q-values for action-values other
than the ones included in the set can only be accomplished using a wire fitting
interpolation function, as shown in Figure 3.4. The interpolation function takes
as the input arguments the set of wires and the selected action. The output is the
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locally weighted interpolation of Q-values given by:

Q(s, a) = lim
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norm(s, a)

(3.4)

with,
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where i is the wire number corresponding to the action-value pair (a

i

, q

i

), c is a
“smoothing” factor 1, and " = 0.001 is a value that avoids division by zero.

For any particular action a the interpolator defines Q(s, a) as the weighted average
of q

i

values such that, if the action for evaluation is near a particular a

i

(wire), then
the corresponding q

i

value is given more weight in the calculation of the average.
Using the wire fitting interpolator, the RL algorithm has access to the Q-values of
the entire continuous action-space range. This enables other actions to be used for
execution aside from the ones included in the discrete set of wires. This generalization
is necessary to implement the exploration task that the BAS must execute in order
to adapt to changes that occur in the environment.

As an interpolation example, Figure 3.5 shows a graph with actions vs. Q-values,
with the wire fitting interpolation using three wires placed at the following locations:

{(0.2, 0.3), (0.5, 0.7), (0.8, 0.5)}

The example shows the wire interpolation using two values for the smoothing factor:
c = 0.5 and c = 0.0. A property of the wire fitting interpolator is that in both cases
qMax always coincides with the highest interpolated Q-value. The smoothing factor
defines how strictly the interpolation passes through the other wires. In the limit
where c = 0.0, the interpolation coincides with all the wires.

Learning with Wire Fitting

Learning with the wire fitting method includes adjustment of the wires after each
execution step and training the NN to learn the new state-to-wire mapping [229]. This

1
To simplify the interpretation of (3.4), consider c = 0.
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Neural
Network

Multilayer
Feedforward

Wire
Fitter

(interpolator)
s

State vector

a0, q0
a1, q1

ai, qi

an, qn

Q(s,a)
Expected

value

a

Action for evaluation

action,values

Figure 3.4: Obtaining the Q-value of a specific action a using the wire fitting inter-
polation function (adapted from [228]).

adjustment, represented in Figure 3.6, is accomplished by training the NN through
backpropagation of errors. Since (3.4) is a continuous and smooth function of its
inputs, it is possible to backpropagate errors through the wire fitting block to update
the weights of the NN according to the chain rule. With this rule, wires are adjusted
considering the partial derivatives of the interpolator and the Q-Learning TD update
value given by (3.2), as follows:
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where j selects a term of the selected action vector, and the partial derivatives are
given by:
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The wire fitting method allows smooth variations in actions with smooth changes
in the input state vector. These changes allow fine adjustments to be made to the
selected action as the input state progresses. Moreover, although the method enables
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Figure 3.5: Weighted-nearest-neighbor interpolation with three wires (shown as �)
for c = 0.5 and c = 0.0 (smoothing factor).

action to converge smoothly, it also allows sudden changes in actions to happen in
response to changes in state or policy updates. The method retains the possibility
to “jump” to a totally different action by suddenly changing the selected wire. This
flexibility in the selection of actions represents another advantage of the wire fitting
method since it allows actions to converge smoothly to optimal values while retaining
the possibility to execute immediate changes in action-values if needed. As an exam-
ple, consider the three wires shown in Figure 3.5, where Wire 1 is associated with
the selected action aMax. Updating this wire with �Q(s, aMax) = �0.5 and c = 0.0

results in the three wires being adjusted as shown in Figure 3.7. Arrows show the
update made to Wire 1, with Wire 0 and Wire 2 also being slightly adjusted.
After the update, qMax will be associated with Wire 2, allowing an abrupt change
in the selected action (from aMax = 0.5 to aMax ⇡ 0.8) as described. The practical
value of the update feature is that it makes it possible to adjust actions smoothly
during the learning phase while retaining the capability to explore different areas of
the action-space if the reward penalizes the current selected action. This feature has
applications for HVAC control, because although we expect a temperature set point
to converge to an optimal stable value during most of the hours of the day, there
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Figure 3.6: Wire fitted neural network training algorithm (adapted from [228]).

will be instances of time where the set point needs to change in order to avoid the
occupant feeling uncomfortable or energy being wasted. Retaining the possibility to
discretely select different temperatures for the set point range is an advantage for
learning, because it reduces the convergence time needed to find the range of optimal
temperature values.

3.2 Application Problems

Addressing the requirement that a smart BAS should adapt its operation according
to the cost of energy and comfort level of its occupants, this section proposes two RL
strategies for two different problems. The first problem, which is called Bang-bang
Heater, presumes the heater can be turned on or off but does not have an interface
for the BAS to set the temperature set point. The second problem, called the Set
Point Heater, presumes the HVAC unit has a temperature set point control interface
directly accessible by the BAS.

Both the Bang-bang Heater and Set Point Heater problems are applied to the TZ
(environment) represented in Figure 3.8. In these settings we assume that an occupant
uses a bi-modal interface to indicate to the BAS that s/he would like the temperature
to either be increased (+) or decreased (-). We equate the interface to signaling “I
am cold” or “I am hot”. An occupant can express dissatisfaction with the current
temperature by pressing the “UP” or “DOWN” arrow on the thermostat. We expect
that the occupant will sometimes be impatient and demand a bigger adjustment before
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Figure 3.7: Updating the wires by �Q(s, a) = �0.5 (represented by the arrows) for
the selected action aMax = 0.5, using c = 0.0.

a control action has fully taken effect. We also expect that sometimes the occupant
will be patient but will decide that the controller has not changed the temperature
enough and consequently change it further. Tenancy may change, and the press of
an arrow may also mean that a new standard of comfort is desired. With these two
pieces of information and over repeated interactions, regardless of whether the TZ is
vacant or not, the controller must adjust zonal temperature efficiently – to just the
right temperature and with a maximum amount of energy savings achieved.

Without loss of generality, we assume in this thesis that the outside
temperature is lower than what is desirable if the TZ is occupied. Therefore,
in both problems, it is assumed that the occupant is either comfortable or cold. This
implies that the controller’s operation is to turn on the heating only as frequently as
it is necessary to make the occupant comfortable (Bang-bang Heater), or continuously
set the temperature set points to appropriate values throughout the day (Set Point
Heater). This control must be executed in a manner that minimizes the number
of occupant signals and at the same time also minimizes the costs associated with
heating. The BAS can neglect heating the TZ altogether when the TZ is unoccupied,
but it may be required to “preheat” the zone to guarantee a comfortable environment
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Figure 3.8: The occupant indicates when s/he is feeling cold. The smart Building
Automation System must learn how to best respond to the occupant (by minimizing
the required number of thermostat interactions) while minimizing the energy used for
heating.

when it becomes occupied. Even when the occupant forgets to reset a temperature
for zonal vacancy, the smart BAS must discover and exploit the opportunity made
by the occupant’s absence or seek satisfaction with current environmental conditions
– inferred through the lack of action over the control interface – for more efficient
energy management.

3.2.1 The Bang-bang Heater Problem

The Bang-bang Heater presumes that a heating unit is controlled at a low level by a
hysteresis controller that guarantees that the environment temperature will converge
to a certain set point when the heater is on. That is, it can either be switched on
or off, but it has no temperature range controllability. We assume that the occupant
will adjust the temperature set point to the preferred comfort level and that this
temperature is reached and maintained if the heater is left on for a certain amount of
time. The Bang-bang Heater problem matches the common residential scenario. In
most dwellings it is common to have electric oil heaters and other types of radiators
for heating. These heaters, which are regulated to a certain heating level defined by
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the desired temperature set point, represented by T
d

, can be connected to a smart
power switch that is capable of cutting off the power supply. This switch can be
controlled by a home automation system with occupant feedback obtained through a
smartphone application, as illustrated in Figure 3.9.

Temperature 
Setpoint

Home Automation 
System

Power

Occupant
Feedback

Switch 
On/Off

Smart Switch

Figure 3.9: The Bang-bang Heater problem matches a common residential scenario
where an electric heater can be controlled by the home automation system using a
smart switch.

States, Actions, and Q-values

The Bang-bang Heater heater problem is solved using standard Q-Learning with dis-
crete states and actions. Therefore, the state is represented by a vector s= (t,h),
where t 2 {t

1

, t

2

, . . . , t

N

} represents a discrete instant of time counting from the
beginning of the learning episode, t

N

represents the corresponding time when the
terminal state is reached (i.e., the amount of time the system has been in operation
when the learning episode terminates), and h 2 {0, 1} represents whether the heater
is on (h = 1) or off (h = 0). To operate, we assume that the BAS observes and
controls h and that the action set A = {a | a 2 {0, 1}} includes the possibility to
Maintain (a = 0) or Toggle (a = 1) the current state of the heater.

To evaluate the quality of each action in each state, the array of Q-values used by
the Q-Learning algorithm are stored in the BAS’s memory. For each instant of time,
we have the four different state-action configurations shown in Table 3.1. This table
is updated according to (3.2) and (3.3) in each learning iteration.
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HVAC State - h Action - a
Q

off_M

(t) off Maintain
Q

on_M

(t) on Maintain
Q

off_T

(t) off Toggle
Q

on_T

(t) on Toggle

Table 3.1: Q-values associated with each HVAC state-action configuration for each
instant of time.

Reward Function

The RL BAS must learn to select its actions in order to minimize the energy used
for heating and the number of times an occupant subsequently interacts with the
thermostat. These accomplishments need to be reflected in the form of a reward.
For the HVAC optimization problem, however, it is easier to invert the reward to a
penalty (negative reward). The BAS receives a higher or lower penalty if the
user is uncomfortable or if excess energy is being used. Whenever the heater
is off, because we assume the outside temperature is too cold for the zone and we
want to save energy, at every discrete point in time, no action by the occupant is
considered a reward. When the occupant presses an arrow to increase the heat, the
heater could already be on (without the zone being at the desired level of comfort) or
the heater could be turned off. In both scenarios the pressing of the arrow is negative
feedback. To include this feedback in the reward function, let interaction(t) represent
a predicate on the occupant’s interaction during a certain time interval [t, t+1]. The
predicate evaluates to true (replaced by 1) if the occupant has acted upon the system
and to false (replaced by 0) otherwise. Using this evaluation, the reward/penalty
function is given by the following linear combination:

r

t

= R(t, h) = �w
1

interaction(t)� w

2

h (3.5)

where {w
1

, w

2

2 R | w
1

+ w

2

= 1} are weights that regulate the trade-off between
comfort and energy savings.

3.2.2 The Set Point Heater Problem

The Set Point Heater problem uses Q-Learning with continuous states and actions
to determine the set point temperature at every instant of time. Just as it was
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used in the Bang-bang Heater problem, the state of the Set Point Heater problem
includes the current instant of time {t | t 2 R, 0  t < t

N

} from the finite learning
period (corresponding to a 24-hour cycle). However, in the Set Point Heater, time
is a continuous variable and it is the only variable necessary to represent the state
of the environment. The temperature of the TZ, as opposed to the discrete state of
the heater, was not considered as a state component. It is assumed, without loss of
generality, that the low-level HVAC controller will heat the indoor temperature to
the desired temperature set point, and that the HVAC controller will maintain the
TZ at this temperature until further inputs are received.

Actions and Wires

To obtain the selected action, the instant of time is mapped into wires by the NN
block, as illustrated in Figure 3.10. After selecting aMax 2 [0, 1], random noise is added
for exploration. The thermostat set point temperature, defined by T

s

, uses linear
mapping to describe the relationship between the selected action and the following
temperature interval: T

s

2 [T
a

,T
max

], where T
a

is the outdoor ambient temperature
and T

max

is the upper bound temperature of the HVAC system. Temperature T
max

should be set to a value such that the temperature operation interval includes a range
of temperatures that guarantee comfort.

action,values

Neural 
Network

Selected
Action

Temperature
Setpoint

HVAC
Control InterfaceNoise (exploration)

Figure 3.10: Selecting actions with the Set Point Heater using Q-Learning with con-
tinuous states and actions.

Reward Function

Following the learning method described in Section 3.1.3, wires are updated at regular
time learning intervals. For the Set Point Heater problem, there is a heating cost
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proportional to the amount of heat supplied to the TZ. Heat transfer, governed by
the laws of thermodynamics, is directly proportional to the temperature difference
between the indoor and outdoor temperatures. The greater the difference, the greater
the amount of thermal energy transferred across the boundary of the TZ. Therefore,
after normalizing for the operating temperature range, the heating cost associated
with the desired indoor set point temperature is given by the following expression:

hCost(T
s

) =

1

T
max

� T
a

(T
s

� T
a

) (3.6)

For comfort performance, the reward function, as defined in the Bang-bang Heater
example, only takes into consideration the feedback interaction from the occupant.
The Bang-bang Heater has no direct control over the TZ temperature. On the other
hand, the Set Point Heater has the direct capability to define the set point tem-
perature. Therefore, when the occupant interacts with the thermostat, the reward
function for this application must use a comfort penalty function as a heuristic to
guide the search toward comfortable temperatures. This function, given by (3.7), is
inversely proportional to T

s

and has a maximum value when there is no heat supply
to the TZ, which corresponds to the situation where the indoor temperature is equal
to the outdoor temperature as shown in Figure 3.11.

cPenalty(T
s

) = 1� hCost(T
s

) (3.7)
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Figure 3.11: Comfort penalty function (using T
a

= 15

�C and T
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= 23

�C).
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The resulting reward function is given by the following linear combination:

r

t

= R(t,T
s

) = �w
1

interaction(t)cPenalty(T
s

)� w

2

hCost(T
s

) =

�w
1

interaction(t)�
h
w

2

� w

1

interaction(t)

i
hCost(T

s

)

(3.8)

3.3 Discussion

The methodologies presented in this chapter have included some of the following
important facts that must be considered and discussed.

• Interaction with the occupants. Since the BAS learns by having the oc-
cupant interact with the thermostat, there will be learning periods when the
occupant becomes uncomfortable with the selected temperatures. Depending
on the learning period, it is this researcher’s belief that this might not be a
serious limitation. The BAS learns by observing habits, and the learning and
optimization strategy is solely based on feedback obtained through observation
of these habits. Since these observations take some time to acquire, a certain
degree of system adaptation is expected from the occupants. Humans also need
time to learn and adjust to the preferences and habits of their coworkers, family,
and friends. Therefore, the BAS operates just as humans do and this adaptation
period is natural and normal.

Another consideration about the interaction with occupants is that building
environments are not stationary and learned policies may become irrelevant
when occupants change their behaviors from time to time. Since humans are
not always predictable, when behavioral patterns change, the BAS has to read-
just by learning new policies. These changes impact performance in terms of
finding optimal stable policies. The BAS learns to explore specific behavioral
patterns, which is not different from humans adjusting to humans. It is known
that the better we can predict someone’s behavior, the better we can adjust
to his/her habits. Therefore if the occupant has regular habits, the BAS can
maximize the efficiency of its policy by fitting the policy to those habits. If
the occupant changes his/her behavior frequently and becomes unpredictable,
then for the sake of comfort, energy savings cannot be fully accomplished dur-
ing the occupied periods (unless the environment becomes more observable by
adding the capability to, e.g., predict the mood of the occupant). When the
occupant is unpredictable, savings can only be achieved by learning how to
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minimize the use of energy during time intervals when the occupant usually
does not interact with system, or when s/he is normally out of the office. How-
ever there will always be situations that will disrupt the daily routine. The
occupant can have holidays scheduled for unexpected days or may perhaps be
running late. To increase system performance, some extra steps can be taken by
considering more contextual information in the decision-making process (e.g.,
the occupant’s schedule or location), making some of these occupancy changes
more “predictable.” If the BAS is able to predict that the occupant will not be
following the usual schedule, then it can readjust the control policy according
to a different strategy, defined for each specific situation.

• Multiple occupants. When considering more dynamic environments, such
as rooms shared by several students, the BAS must optimize performance for
multiple occupants by taking into account the fact that there may be different
schedules and thermal preferences. Since our RL algorithm relies on feedback
obtained through actuation on a button interface, the BAS merely learns how
to minimize complaints. Therefore, the occupant that interacts more with the
HVAC comes out as the winner and imposes his/her comfort preferences on
the comfort preferences of other occupants. For energy savings, in the worst
case, the system eventually learns how to minimize energy during time intervals
where nobody is interacting with it. To optimize for multiple occupants, having
access to more information can be beneficial for decision-making support. With
more observability over the environment (by using, e.g., a smart video based
identification system capable of identifying each occupant or by obtaining a
user’s identification information from the HVAC smartphone application), the
boundaries of comfort versus energy optimization can be further explored by
considering the set of learned parameters for each specific tenant.

• Explainability. In order to deploy efficient HMIs, as described in Section 2.1.3,
it is important to have the BAS explain the reason for its actions. With RL,
policies are encoded in Q-Value tables or in NN weights. Therefore, presenting
an explanation to a human operator is not a straightforward process. It is very
difficult to extract semantic information from these policies. For a friendly user
interface it would be desirable the possibility to have an hypothetical dialogue
between a human and the BAS where the human asks the building, for example,
why the HVAC has been turned off, and the BAS responds with something along
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the lines of, “I was expecting that you would be attending the group meeting that
is currently taking place in room 11”. To have such a dialogue, the BAS must
be able to reason at a symbolic level, which is not possible with RL.

• Scalability. The solution of using RL with the current state representation
does not scale well and cannot cope with the complexity of the building envi-
ronment. In most cases, there is additional decision-making support information
that spans out of the “room domain” that could be considered in the optimiza-
tion problem. As an example attending to this fact, consider the situation when
the occupant has an appointment on his/her schedule for a different physical
location in the building. With the BAS predicting that there will be no in-
teraction in the office during that time period, the optimal strategy for energy
savings would be to leave the HVAC settings in a low-power state. With the
current RL approach, adding new information to the optimization problem is
not a simple matter, and this represents a serious limitation for AmI.

The HVAC control problem cannot be viewed as a simple state-space search
strategy. To cope with the complexity of the building environment, the so-
lution must be based on a systems thinking approach [230, 231]. The control
problem cannot be solved by dealing with parts of the problem in isolation
using closed and predefined state-space representations. It must be solved in
concert with many other modules of the BAS that interact to produce behavior.
Therefore, not only should the operation of the BAS be analytically partitioned
into smaller components for simplification, it should also take into consideration
that everything is systemic, i.e., everything interacts, affects, and is affected by
the things around it. However, notwithstanding the fact that occupants in the
future will probably expect this level of integration, addressing this require-
ment in an algorithm is a very complex problem. In many cases, the amount
of information that is included in the decision-making process means that the
optimization problem is computationally intractable. Therefore, only a subset
of this information can be used in the optimization problem, and appropriate
modeling paradigms are necessary to sort and organize what is relevant to use
at each decision-making step. These modeling paradigms are a separate topic
of research and still need to be developed for SBs.
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3.4 Summary

This chapter presented a brief overview of reinforcement learning theory with a de-
scription of how it can be used to optimize the operation of the HVAC system. In this
description the environment is the thermal zone, and the building automation system
is a software agent capable of obtaining feedback on the control actions it executes to
change the thermal zone temperature. These actions are expected to lower the energy
cost associated with heating and cooling, while minimizing the number of occupant
interaction signals in the form of “I am cold” or “I am hot” that are obtained through
the HVAC user control interface. The chapter described the application of a discrete
and a continuous Q-Learning based supervisory control approach for the building au-
tomation system, which actively learns how to schedule the operation of the HVAC
system considering two different problems of low-level heating control: Bang-bang
Heater and Set Point Heater. The Bang-bang Heater problem assumes that zonal
heating is controlled by alternately switching the activation state of a heater. This
problem is solved with straightforward Q-Learning using discrete states and actions.
The Set Point Heater problem, on the other hand, assumes that the building automa-
tion system is capable of learning how to set temperature setpoints. The actions and
states are continuous values: the zonal temperature set point is controlled in minutely
small measures. Therefore, a continuous state and action Q-Learning algorithm was
selected and customized to solve this problem.

The chapter finalizes with a discussion on the presented reinforcement learning
methodologies. This discussion included the fact that reinforcement learning algo-
rithms present limitations when it comes to explaining a system’s actions to humans.
Moreover, the reinforcement learning problem becomes computationally expensive to
solve as more states are added to represent the building environment and the inter-
action with its occupants with more accuracy. Therefore, the research efforts for this
dissertation became focused on finding alternative solutions to represent the state of
the building environment, taking into account that this environment may include an
intractably large set of variables. Thereupon, the research problem changed towards
the goal of finding accurate models for the building environment which can be used,
among other things, for building simulation, model predictive control, and for syn-
thesizing building automation plans that are explicable an predictable to humans.
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4
Context-based Thermodynamic Models

“Minds inhabit environments which act on them and on which they in turn react.” –
William James (Philosopher and psychologist).

Many physical processes in buildings can be modeled by continuous dynamics.
However, there are other building systems, such as TZs, that can exhibit both con-
tinuous and discrete dynamic behavior. Drawing a parallel with the context-based
reasoning framework discussed in Section 2.3, this chapter describes a context-based
framework to represent these systems.

4.1 Operational Semantics of Context-based Models

A context-based thermodynamic model includes all the different dynamic models
that are available to describe the thermal behavior of a TZ. Therefore, a descriptive
framework is required to capture the transitions between these models, with the
different types of continuous and discrete dynamics. For this purpose, we have picked
a suitable modeling formalism called hybrid automata [202, 232]. Context of a TZ,
as defined in this dissertation, is equated to a discrete configuration l 2 L (aka
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control state or mode [233]) associated with and representing a particular thermal
behavior of the TZ. A model for the operation of a TZ can include several contexts,
between which the system evolves in an event-driven manner. In addition to this set
of discrete contexts, there is a continuous state x 2 X ✓ Rn containing the real-
valued time-driven variables (temperatures) that “flow” in continuous time according
to a set of different models. Each of these models, associated with one or more
discrete states, are described using ODEs. The TZ’s full state ⇢ = (l, x) 2 L ⇥ X

(also sometimes called configuration or just simply state) is defined, at a certain
instant in time, by the discrete and continuous part of the model. An open hybrid
automaton/context-based model is a dynamical system, with inputs and outputs, that
describes how ⇢ evolves in L and X. It is given by the following definition (adapted
from Lygeros [202]):

Definition 1 (Context-based model)
A context-based model M is a collection M = (L,X, U, Y, Init,m,m

Y

, D,E,G,Rst),
where:

• L = {l
1

, l

2

, . . . , l

s

} with s 2 N, is a finite collection of discrete system con-
texts.

• X is a finite collection of continuous state variables.

• U is a finite collection of input variables. Assuming U = U

D

[U
C

, where U

D

contains discrete variables and U

C

contains continuous variables.

• Y is a finite collection of output variables. Assuming Y = Y

D

[ Y

C

, where
Y

D

contains discrete variables and Y

C

contains continuous variables.

• Init ✓ L⇥X is a set of initial states.

• m : L ⇥ X ⇥ U ! Rn is a vector field that characterizes the continuous
dynamics in the domain of the corresponding context, which evolve in continuous
time.

• m

Y

: L ⇥X ⇥ U ! Y is a vector field associated with the output of the open
hybrid automaton.

• D : L! 2

X⇥U assigns to each context l 2 L a domain/invariant set.

• E ✓ L⇥ L is a collection of discrete transitions/edges between contexts.

• G : E ! 2

X⇥U assigns to each edge e = (l, l

0
) 2 E a guard.
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• Rst : E ⇥X ⇥ U ! 2

X is a reset map that assigns to each e = (l, l

0
) 2 E and

x 2 X a reset location.

with 2

X denoting the power set (set of all subsets) of X.

For each context l 2 L, there is an associated set of continuous states assigned by
function D(l) ✓ Rn. Starting from an initial state ⇢

0

= (l

1

, x

0

) 2 Init, the continuous
state x flows according to the model that characterizes the continuous dynamics in
the domain of l

1

:
ẋ = m(l

1

, x, u)

x(0) = x

0

while the context l = l

1

remains constant. Continuous evolution can go on as long as
x remains in the domain D(l

1

). Contexts are connected by discrete labeled transitions
(edges) with guards and effects. If at some point the continuous state x reaches the
guard G(l

1

, l

i

) ✓ Rn of some edge (l

1

, l

i

) 2 E, context may change value to l

i

. With
this transition, the continuous state is reset to some value given by Rst(l

1

, l

i

, x, u)

and continuous evolution resumes, according to a new model associated with the
new context l

i

. In this dissertation, context transitions are simulated assuming must
transitions, i.e., transitions are immediately taken when guard expressions become
true. This is a practical refinement of the hybrid system formalism, where guard
expressions just act as enablers and do not force transitions to be made.

By comparing the hybrid system with the context-based reasoning framework
discussed in Section 2.3, it can be assumed that the declarative knowledge equates
to the vector field, and the transitional knowledge is represented by the domain,
transition edges, and guards.

4.2 Example (The Hysteresis Controller)

As an application example of a context-based model, consider the operation of the
heating unit used in the Bang-bang Heater problem described in Section 3.2. This
section simulates the behavior of the hysteresis controller that controls the heating
unit, and the evolution of the indoor temperature using a simple thermodynamic
model to describe the TZ.
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4.2.1 Thermodynamic Model

For this example, the TZ is assumed to be isolated from the outdoor ambient temper-
ature through a single wall, as illustrated in Figure 4.1. When the BAS activates the

Thermal Zone
R

Heater

Setpoint

on/off (h)

Thermal Capacitance

Thermal Resistance

Heat Lost 

Ambient 
Temperature

Supplied Heat

Indoor 
Temperature

Figure 4.1: The Bang-bang Heater in a single thermal zone.

heating controller, by setting the input control signal h = 1 (on), a certain amount of
thermal energy, represented by an input Q

h

2 R+, is supplied to the interior of the TZ
to increase the indoor temperature, denoted by T

in

. Depending on the temperature
difference between the indoor temperature and outdoor ambient temperature (T

a

), a
certain amount of heat is lost through the boundaries of the TZ, given by

Q

o

(t) =

1

R

h
T
a

(t)� T
in

(t)

i
(4.1)

where R represents the thermal resistance associated with those boundaries. Depend-
ing on the amount of heat that remains in the TZ, the indoor temperature evolves as
a function of time. To describe this evolution, we can use a simplified thermodynamic
model given by

˙T
in

(t) =

1

C

h
Q

h

(t)�Q

o

(t)

i
(4.2)

where C represents the total thermal capacitance of the TZ (including the walls and
the interior air). By replacing (4.1) in (4.2), we get the corresponding first order
ODE:

˙T
in

(t) +

1

RC

T
in

(t) =

1

C

Q

h

(t) +

1

RC

T
a

(t) (4.3)

that represents the continuous-time flow of the indoor temperature.

4.2.2 Heater Operation

In order to regulate the TZ temperature to the desired set point, defined by T
d

, the
heater includes a hysteresis controller that is activated/deactivated by the external
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control input h. When activated, this controller operates by repeatedly interchanging
the on/off power state of the heating element (electric coil) in order to maintain the
temperature difference between T

in

and T
d

, within certain boundaries. The controller
switches the heat supply on if the indoor temperature goes below a certain tempera-
ture threshold, defined by T

min

, and switches it back off when the temperature reaches
above another defined threshold, defined by T

max

. Figure 4.2 illustrates this hystere-
sis behavior with arrows representing the direction of the temperature evolution and
the state commutation.

T
min

T
d

T
max

0

4

Temperature T
in

[�C]

Q

h

[k
W

]

on

off

Figure 4.2: Hysteresis behavior of the Bang-bang Heater.

Context-Based Model

The thermal behavior of this heater and TZ can be described formally by a context-
based model with:

• L = {l
1

, l

2

}. A collection of contexts with the following names: Heater off (l
1

)
and Heater on (l

2

).

• X = T
in

2 R. The continuous state, defined by the temperature in the TZ.

• U = U

D

[U
C

= {h}[ {T
a

, Q

h

,T
min

,T
max

}. The input variables that define the
activation state of the heater, ambient temperature, heating energy, and the
hysteresis controller parameters.
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• Vector field given by (4.3), depending on the state of the heater:

˙T
in

(t) = m(l,T
in

, u) =

8
<

:
� 1

RC

T
in

(t) +

1

RC

T
a

(t), for l = l

1

� 1

RC

T
in

(t) +

1

C

Q

h

(t) +

1

RC

T
a

(t) for l = l

2

with u 2 U .

• Y =X. The output variable is given by the state variable.

• Init = {l
1

}⇥ {T
in

= 15} to start with the heater off, and T
in

= 15

�C.

• The domain associated with each context:

D(l

1

) = {T
in

� T
min

}⇥ {h = 0}

D(l

2

) = {T
in

 T
max

}⇥ {h = 1}

• E = {(l
1

, l

2

), (l

2

, l

1

)} edges between turning the heater on/off respectively.

• A guard to switch the heater on if the heater is enabled, and T
in

reaches below
T
min

, and a guard to switch the heater off, if T
in

reaches above T
max

or if the
heater is disabled, given respectively by:

G(l

1

, l

2

) = {T
in

< T
min

}⇥ {h = 1}

G(l

2

, l

1

) = {T
in

> T
max

} [ {h = 0}

• Rst(l

1

, l

2

,T
in

, u) = Rst(l

2

, l

1

,T
in

, u) = {T
in

}. Because the TZ temperature does
not change instantaneously.

The resulting hybrid automaton is represented in Figure 4.3 as a directed graph,
where the vertices of the graph are locations from L and the (labeled) edges are the
transitions from E. The initial state is marked by an incoming edge without a source.

4.3 Hybrid Time Sets and Executions

In order to characterize the evolution of the state of a context-based model, consider
a set that contains the continuous intervals, over which continuous evolution takes
place, and the distinguished discrete points in time when discrete transitions
happen. Such a set is called a hybrid time set (adapted from Lygeros [202]).
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Figure 4.3: Graphical representation of the heating system.

Definition 2 (Hybrid time set [202]) A hybrid time set is a sequence of intervals
⌧ = {I

1

, I

2

, . . . , I

N

} = {I
i

}N
i=1

, finite or infinite (i.e., N =1 is allowed), such that:

• I

i

= [⌧

i

, ⌧

0
i

] for all i < N ;

• if N <1 then either I

N

= [⌧

N

, ⌧

0
N

] or I

N

= [⌧

N

, ⌧

0
N

[;

• ⌧

i

 ⌧

0
i

= ⌧

i+1

for all i.

Discrete transitions are assumed to be instantaneous with ⌧

0
i

= ⌧

0
i+1

. Figure 4.4
illustrates an example of a hybrid time set, labeled with the names of the correspond-
ing contexts, with the automaton jumping from l

1

to l

2

, and then immediately to l

3

and so on.
Hybrid time sets are used to define the time horizon over which M evolves, i.e.,

the time horizon associated with the execution/evolution of the full state ⇢(t) =

(l(t), x(t)) with t 2 ⌧. Considering context and the continuous state, we have the
following definitions:

Definition 3 (Hybrid trajectory [202]) A hybrid trajectory is a triple (⌧, l, x)

consisting of a hybrid time set ⌧ = {I
i

}N
i=1

and two sequences of functions, l = {l
i

(·)}N
1

and x = {x
i

(·)}N
1

with l

i

(·) : I
i

! L and x(·) : I
i

! X.

Definition 4 (Execution of a context-based model (adapted from [202])) An
execution � of a context-based model M is a collection � = (⌧, l, x, u, y) with ⌧ 2 I,
l : ⌧ ! L, x : ⌧ ! X, u : ⌧ ! U , and y 2 Y satisfying the following conditions:

• Initial condition (l(⌧

1

), x(⌧

1

)) 2 Init;

• Continuous evolution: for all i, with ⌧

i

< ⌧

0
i

,
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Figure 4.4: Graph showing a hybrid time set ⌧ = {[⌧
i

, ⌧

0
i

]}4
i=1

, as a sequence of i time
intervals (adapted from [202]).

1. l

i

(·) : I
i

! L is constant over t 2 I

i

, i.e. l
i

(t) = l

i

(⌧

i

) for all t 2 I

i

;

2. x, u and y are continuous over [⌧

i

, ⌧

0
i

];

3. x

i

(·) : I
i

! X is the solution to the differential equation,

ẋ

i

= m(l

i

(t), x

i

(t), u(t))

over I

i

, starting at x
i

(⌧

i

); and,

4. for all t 2 [⌧

i

, ⌧

0
i

[, (x
i

(t), u(t)) 2 D(l

i

(t)).

• Discrete evolution: for all i,

either (l(⌧

0
i

), x(⌧

0
i

)) = (l(⌧

i+1

), x(⌧

i+1

)), or
e

i

= (l(⌧

0
i

), l(⌧

i+1

)) 2 E,

(x(⌧

0
i

), u(⌧

0
i

)) 2 G(e

i

)

x(⌧

i+1

) 2 Rst(e

i

, x(⌧

0
i

), u(⌧

0
i

))

• Output evolution: for all t 2 ⌧, y(t) = m

Y

(l(t), x(t), u(t)).

Example (Execution of the Hysteresis Controller)

Consider the example of the hysteresis controller given in Section 4.2. Algorithm 1
shows the simulation program that executes the context-based model using a specific
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set of model-parameters. In this example, the heater is enabled (h = 1) and inputs
{T

a

, Q

h

,T
min

,T
max

} are constant values. Figure 4.5 shows the resulting execution
with the continuous evolution of T

in

, for a total duration of 7200 s divided between
the hybrid time set {I

0

, . . . , I

13

}, as the Bang-bang Heater switches between l

1

and
l

2

. The Bang-bang Heater maintains T
in

within the pre-set boundaries of the desired
temperature set point T

d

= 22

�C.

Algorithm 1: Simulation program for the hysteresis controller.

N  7200 // 2-hour simulation

@t  1 // time-step (s))
T
a

 15 // Ambient temperature (�C)
Q

h

 4000 // Supplied heat (W)

R  0.0023 // Thermal resistance (K W�1)

C  300000 // Thermal capacitance (JK�1)

h  1 // Heater input enable

l(1) l

1

// Initial context

T
in

(1) 15 // Initial temperature (�C)
T
max

= 23.0 // Maximum Guard temperature (�C)
T
min

= 21.0 // Minimum Guard temperature (�C)
begin

for each t  2 to N do
if l(t � 1) == 1 then

@T
in

= � 1

RC

T
in

(t � 1) +

1

RC

T
a

else
@T

in

= � 1

RC

T
in

(t � 1) +

1

C

Q

h

+

1

RC

T
a

// Update T
in

T
in

(t) = T
in

(t � 1) + @T
in

⇤ @t

// Check Guards and update context

if T
in

(t) > T

max

_ h = 0 then l(t) = 1;
else if T

in

< T

min

^ h = 1 then l(t) = 2;
end

end
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Figure 4.5: Execution of the heating system: continuous evolution of T
in

, as the
Bang-bang Heater switches between discrete states l

1

and l

2

.

4.4 Model Formulation for a Thermal Zone

The thermodynamic state of a multi-zone building consists of temperature variables
associated with many subsystems that are geographically distributed. Each subsys-
tem corresponds to a TZ and the thermodynamic interactions between adjacent zones
occur mainly due to conduction (heat transfer through a medium) or convection (heat
transfer between two different media) [234, 235]. The average temperature of a TZ
(T

in

) evolves according to both heat and mass transfer laws with different modes for
heat transfer, as illustrated in Figure 4.6. These modes include the following: (1) heat
exchanges through zone surfaces that are in contact with the ambient temperature
(T

a

), such as walls, roofs, doors, floors, windows and shades; (2) air exchanges by the
HVAC system ventilation supply, natural ventilation, inter-zonal air-flows, infiltration
and exfiltration; (3) solar gains represented by the rate of solar radiation acting on the
building exterior surface, and transmitted through windows denoted, respectively, by
Q

s

and Q

sw

; (4) internal gains, denoted by Q

i

, representing the rate of heat generated
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Figure 4.6: An illustration of different modes for heat transfer of a thermal zone.
Convection (natural ventilation); solar gains through walls Q

s

and windows Q

sw

;
conduction through zone surfaces, infiltration, interior gains Q

i

, and hydronic/electric
heating Q

h

. The variables T
a

and T
in

denote the ambient and zone air temperatures.

by occupants, electrical appliances, lights, computers, etc.; and (5) heat generated by
heating equipment (Q

h

). All the combined modes for heat transfer present a complex
interaction and TZ thermodynamic models can have different levels of complexity.
Complex simulation strategies of heat transfer include computational fluid dynamic
models that take into account the conservation equation of mass and energy to calcu-
late, with high spatial resolution, the heat-energy transfer through building materials
and ventilation [94,107]. These simulations are computationally intensive and there-
fore inappropriate for online optimization-based control schemes such as MPC. To get
faster responses, simpler models can be employed. These models, based on a ther-
mal network assumption, are generally obtained after the reduction of more detailed
and complex models. In the thermal network model, nodes represent temperatures,
edges represent thermal paths, and nodes influence each other according to energy
balance equations. In building simulation, nodes represent the average temperatures
of the TZs assuming that the air volume in each zone is well mixed with a uniform
temperature [236].
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4.4.1 Full-Scale Lumped RC Thermal Model

Lumped RC networks are commonly used for constructing reduced-order thermal net-
work models to describe the mono-dimensional (1D) heat transfers between network
nodes [115,123,124,127,128,237,238]. Heat transfer by conduction between two media
is proportional to the temperature difference between the two media involved, and
inversely proportional to the resistance of the material layer(s) that separates them.
Heat transfer by convection can also be approximated as a direct proportionality be-
tween the surface temperature of a media, and the temperature of the surrounding
air [239]. The ability that materials (including interior air and materials for building
walls, windows, furniture, etc.) have to accumulate heat is modeled with capaci-
tors. Most building walls consist of several homogeneous layers of different materials.
Depending on the complexity of the thermodynamic model, building walls can be
described with more or less detail depending on the number of RC components used
in the model. Fraisse et al. [240] compare different RC models for multi-layer walls
and demonstrate that the thermophysical characteristics of multi-layer walls can be
modeled using 3 resistors and 4 capacitors (3R4C). This model is sufficient to capture
the conductive transfers between two TZs separated by a single wall, if the temper-
ature distribution within the walls is not necessary (see more in Appendix A). Heat
transfers through the TZ envelope can be modeled by different paths, depending on
the number of surface elements. Figure 4.7 illustrates a RC building envelope model
with heat transfer through walls, windows, roofs and floors. For the sake of simplicity,
it is assumed that the walls and roof are composed of the same construction materials,
and different surface elements are combined to construct the full-scale model of the
TZ. The entire surface area of these elements is represented by a single 3R4C network
with exterior and interior convective resistances R

ext

and R

int

, respectively.
The building’s floor is composed by a single-layer material and is modeled with

a 2R1C network and convective resistance R

gint

, exposed to ground temperature T
g

.
Windows are modeled using a resistance R

W

and, in some cases, shading with operable
coverings like drapes, blinds, screens or pull-down shades, represented by variable
resistance R

WS

, can be used to reduce the amount of solar radiation entering the
windows to reduce daylight glare. They can also be used to reduce heat loss through
windows (movable insulation) using, for example, aluminium roller shutters/shades
with thermal insulation.

The full-scale RC model is influenced by several discrete conditions. For this
purpose, consider the discrete sets Heat,WS,W,D as containing the respective heat-
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C
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R

g1

T

5

R

g2

R

gint

Cg

Walls and Roof

Q

a

Q

in

Windows

Floor

Figure 4.7: RC building envelope model composed by a 3R4C network (wall and roof),
2R1C network (floor), and a thermal path through windows and shutters/shades with
thermal insulation.

ing levels, activation state for window shades, and opening factors (fraction of the
opened area) for windows and doors. Consider a finite discrete set of ventilation lev-
els ˙M

v

✓ R associated with air that passes through openings (windows and doors).
Figure 4.8 shows a full-scale RC model of the entire TZ with several different
context-dependent inputs. In particular:

• Solar radiation. Solar heat gains are an important part of free heat in a
building. Heat inputs from solar radiation enter the building envelope through
an effective area defined by A

e

and, if shades are not active, through the effec-
tive window area defined by A

wind

. The total transmitted solar radiation rate
through windows acts directly on the building mass, and heat is transferred
to the air inside the TZ, which has an associated capacitance represented by
C

Z

. Heat transmission to zone air is modeled using a transmission function
f

sw

(Q

sw

).

• Space heaters. Controllable space heaters feed heat into the TZ according
to a heat level h 2 Heat and a maximum heating power defined by constant
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Q

h

. This can modeled by a current source hQ

h

, a heat capacity C

h

associated
with the heater, and thermal resistance R

ih

which is connected to the interior
temperature node through a switch that is on if h � 0.

• Internal gains. The presence of people and the use of computers and other
office equipment generate internal heat gains. The number of occupants is given
by o, and heat gains are assumed to exist if there is at least one tenant occupying
the TZ (o � 0). It is assumed that each person has the same heat gain defined
by constant Q

i

.

• Ventilation. Airflow is caused by pressure differences and thermal buoyancy.
They are influenced by the distribution of openings in the building shell, open-
ings between rooms, and actions of occupants. Heat exchange by natural ven-
tilation is assumed to be linear with the temperature difference between indoor
and outdoor air. This approximation holds for low wind speed, but it is well
known that for high wind speed, the natural ventilation of buildings becomes
non-linear with both wind speed and direction. The rate of energy transferred
between zones by means of airflow, on a per unit of temperature difference be-
tween them, is given by the expression U

air

= ṁ

v

C

air

, where ṁ

v

2 ˙M
v

is the
ventilation airflow rate and C

air

is the specific heat capacity of air. A single
air exchange between the TZ and the ambient environment is modeled using
an alternative circuit through resistance R

vent

= 1/(ṁ

v

C

air

), which is selected
depending on the opening factor of windows and doors. This selection is based
on the fact that when some windows and doors are open, the energy transferred
by airflow is typically much more significant than the energy transferred by
conduction through windows that are closed.

Model Equations

Consider the indicator function defined on a generic set X, that indicates mem-
bership of an element in a subset A of X:

1
A

: X ! {0, 1}

defined as

1
A

(x) =

8
<

:
1 if x 2 A

0 if x /2 A
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Figure 4.8: Full-scale RC model of a TZ with different heat inputs. Vent is a
ventilation activation condition associated with the state of windows, and o represents
the number of occupants.

Using this function to represent each switch in the full-scale RC thermal model, the
ODEs that describe how temperatures evolve, given by Kirchhoff’s nodal rule, are
given by (4.4).
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= �
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= �
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where RW is the thermal resistance associated with windows and natural
ventilation. This resistance depends on the activation of the natural ventilation
airflow circuit which can depend, for example, on the opening factors of an open
window and door, with Vent being the set:

Vent = {vState = (wof

1

, d

1

) | wof
1

> 0 ^ d

1

> 0, wof

1

2W, d

1

2 D}

or on the ventilation airflow rate with,

Vent = {vState = ṁ

v

| ṁ
v

> 0, ṁ

v

2 ˙M
v

}.

Using the indicator function to model the switch that connects either the resistance
associated with natural ventilation circuit, or the circuit containing with windows
and shades, we obtain:

RW = 1
V ent

(vState)R

vent

+ 1Vent(vState)(RWS

+R

w

).

State-space Representation

The RC thermodynamic model represented in Figure 4.8, with all inputs active, can
be represented by state-space equations [241], given by:

ẋ = Ax + Bu (4.5)

y = Cx +Du (4.6)

where
x =

h
T
1

, T
2

, T
3

, T
4

, T
5

, T
h

, T
in

iT
2 R7 (4.7)

and y 2 R7 are the state and model observed outputs. The exogenous inputs to the
system are given by:

u =

h
T
a

, T
g

, o, h, Q

s

, f

sw

iT
2 R6 (4.8)

and matrices A
7⇥7

and B
7⇥6

are model parameters, extracted directly from (4.4),
which define how the current state and input affects future states. Matrices C

7⇥7

and
D

7⇥6

are the output and feed-through matrices.
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Figure 4.9: Graphical representation of the context transitions of the context-based
model.

4.4.2 Application Example

Consider the operation of a TZ where occupancy, ambient temperature, solar gains,
the opening factor of window shades, airflow rate and heater state are observable
input variables. A heater with two heating levels is switched (on/off) manually.
When the heater is on, a temperature controller automatically regulates its operation
to guarantee a temperature set point of 22 �C. The heater only operates when the
windows are closed, but it can remain on, even when tenants go out for lunch. The TZ
has a hysteresis controller for the solar shading device. To maximize solar heat gains
(and thereby reduce heating loads), while also reducing daylight glare, this controller
pulls the shades all the way up (ws = 0) when Q

s

< 130 Wm�2 and lowers the shades
(ws = 1) when Q

s

� 150 Wm�2. When shades, doors and windows are open, the TZ
is naturally ventilated.

The thermal behavior of the TZ can be described by the context-based model,
represented in the directed graph depicted in Figure 4.9. Formally, the automaton is
described by the following model:

• L = {l
1

, l

2

, l

3

, l

4

, l

5

, l

6

, l

7

}. A collection of contexts that include the initial
context (l

1

), when the TZ is unoccupied (o = 0). This context changes when
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an occupant arrives to l

2

(o � 1), and then immediately transitions between
shades fully closed (l

3

) and shades fully opened (l
4

), depending on solar gains
(Q

s

). When the heater is switched on (h = 1), context changes to l

5

, while
preheating the TZ, and then to l

6

(where the temperature remains at 22

�C),
while the heater remains on. TZ context l

7

is activated when the TZ is naturally
ventilated.

• X = R7. The continuous state, defined by the temperatures in (4.7).

• U = U

C

[ U

D

. The input variables, with

U

C

= {T
a

,T
g

, Q

s

, Q

sw

}, T
a

,T
g

2 R, Q

s

, Q

sw

2 R+

U

D

= {o, h, ws, ṁ
v

}, o 2 N+

0

, h 2 Heat, ws 2WS, ṁ

v

2 ˙M
v

• Init = {l
1

}⇥X. The initial context is marked in the graph of Figure 4.9 by an
incoming edge to l

1

, without a source.

• A vector field assuming that temperatures follow according to the RC model
given by (4.4), depending on input variables of the current context. The vector
field, represented in the state-space form, is given by:

ẋ = m(l, x, u) = A(l)x + B(l)u

with matrices A and B parameterized by h, o, ws and Vent. The exception is
context l

6

, where it is assumed that temperatures do not change with ẋ = 0.
Context l

7

represents a macrostate where parameter R

vent

in A(l
7

) is progres-
sively adjusted according to the natural ventilation airflow ṁ

v

2 ˙M
v

, as shown
in Figure 4.10.

• An output expression to access all temperatures in all contexts:

y = mY(x, u) = Cx

where C is the identity matrix.

• The domain of each context, listed in Table 4.1.

• A set with all the edges represented in Figure 4.9:

E = {(l
1

, l

2

), (l

2

, l

3

), (l

2

, l

4

), . . . , (l

6

, l

4

), (l

7

, l

4

)}
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Figure 4.10: The RC model is adjusted according to the natural ventilation airflow
rate. Context l

7

represents a macrostate where resistance R

vent

is progressively ad-
justed according to ṁ

v

2 ˙M
v

.

l D(l)

l

1

X ⇥ {o = 0, h = 0,1
V ent

(ṁ

v

) = 0}
l

2

X ⇥ {130  Q

s

< 150, o � 1, h = 0,1
V ent

(ṁ

v

) = 0}
l

3

X ⇥ {Q
s

� 130, o � 1, h = 0, ws = 1,1
V ent

(ṁ

v

) = 0}
l

4

X ⇥ {Q
s

< 150, o � 1, h = 0, ws = 0,1
V ent

(ṁ

v

) = 0}
l

5

{T
in

< 22}⇥ {h = 1,1
V ent

(ṁ

v

) = 0}
l

6

{T
in

= 22}⇥ {h = 1,1
V ent

(ṁ

v

) = 0}
l

7

X ⇥ {h = 0, ws = 0,1
V ent

(ṁ

v

) = 1}

Table 4.1: The domain of each context of the automaton represented by the graph in
Figure 4.9.

• The guard conditions associated with each edge e 2 E, listed in Table 4.2.

• A reset map given by: Rst(e, x, u) = {x}, assuming that temperatures do not
change instantaneously when there is a change in context.

Section 5.2 contains the simulation setup of the TZ described in this example, and
section 6.2 shows the execution of the corresponding context-based model.

4.5 Summary

This chapter shows how the thermodynamic behavior of a single thermal zone can be
described by an hybrid automata. The context of a thermal zone, as defined in this
dissertation, is equated to a discrete configuration associated with and representing
a particular thermal behavior of the thermal zone. Based on the hybrid automata
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e G(e)
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) X ⇥ {o � 1}
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) X ⇥ {Q
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� 150}
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) X ⇥ {Q
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) X ⇥ {h = 1}
(l
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2

) X ⇥ {Q
s

� 150}
(l

4

, l

1

) X ⇥ {o = 0}
(l

4

, l

5

) X ⇥ {h = 1}
(l

4

, l

7

) X ⇥ {1
V ent

(ṁ

v

) = 1}
(l

5

, l

6

) {T
in

� 22}⇥ U

(l

6

, l

3

) X ⇥ {h = 0}
(l

6

, l

4

) X ⇥ {h = 0}
(l

7

, l

4

) X ⇥ {1
V ent

(ṁ

v

) = 0}

Table 4.2: Guards associated with each of the edges represented in Figure 4.9.

formalism, the definition of a context-based model is given with some important def-
initions. The chapter uses a resistor-capacitor model to describe the full-scale ther-
modynamic model of a thermal zone and uses this model to describe an application
example of a context-based model.
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5
Simulation Setup

“You’re never going to get the amount of CO2 emitted to go down unless you deal
with the one magic metric, which is CO

2

per kilowatt-hour.” – Bill Gates (American
entrepreneur, philanthropist and programmer).

This chapter describes the simulation setup for the set of experiments that were
devised to validate the examples given in Chapters 3 and 4. The chapter is divided
into two main sections, with each describing, in detail, the simulation environment
associated with each chapter, respectively. The associated simulation results for each
section are presented and discussed separately in Chapter 6.

5.1 Reinforcement Learning Simulation Setup

This section presents a set of experiments to test and validate the RL algorithms
described in Section 3.2 for the BAS. These RL experiments, developed using Mat-
lab, are discrete time event simulations where the thermodynamics of the TZ and
the behavior of a single occupant are both simulated. The duration of each simula-
tion includes the learning phase, which takes several episodes to execute, where each
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episode, corresponding to a 24-hour cycle, is divided into the N discrete time steps:

t 2 I

24

= {t
1

, t

2

, . . . , t

N

}

For each simulation it is assumed that the occupant has a regular working schedule,
and becomes uncomfortable if the indoor temperature is not within a predefined
comfort range. Since heat is lost through the boundaries of the TZ, additional heat
needs to be supplied to guarantee comfort conditions. To control the HVAC system
for comfort and energy savings, policies for the BAS are obtained for the Bang-
bang Heater and Set Point Heater problems. The execution and performance of
each learned policy is evaluated at the end of each learning period, and results are
presented and discussed in Section 6.1.

5.1.1 Occupant Schedule Simulation

For both Bang-bang Heater and Set Point Heater problems the behavior of the oc-
cupant was simulated using a finite state machine (FSM) with the following states:
Out(0), Working(1), and Uncomfortable (2), as shown in Figure 5.1. State transi-
tions between Out and Working, and between Uncomfortable and Out, depend on
the arrive and depart events that occur according to a stochastic schedule that is
generated prior to each simulation period. The time instances of arrival and depar-
ture from the TZ are generated from normal distributions, with mean and variance
variables set according to the occupant’s usual regular schedule.

5.1.2 Modeling Comfort

To model comfort, a fuzzy-set is used to control state transitions between states
Working and Uncomfortable. Uncertainty in occupant’s thermal preferences is ex-
pressed using a ↵-level fuzzy set of temperature values, as described by Dounis and
Cariscos [242]. To model comfort, the desired temperature value or set point is chosen
as a trapezoidal type-1 fuzzy set. The degree of membership, in this type of set, can
take any value in the interval [0, 1]. The membership function, denoted as µ, assigns
a degree of membership to each temperature T

in

2 T, where T represents the entire
range of environmental temperatures.

The fuzzy set used for modeling comfort is described by the membership function
illustrated in Figure 5.2. The set is characterized the by upper and lower bounds
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Out (0)
(interaction = 0)

Working (1)
(interaction = 0)

Uncomfortable (2)
(interaction = 1)

arrive

isUncomfortablecomfort

depart

depart

Figure 5.1: Simulation of the occupant behavior. The occupant is simulated using a
finite state machine.

1

Desired Values

Figure 5.2: Trapezoidal fuzzy set for desired temperature values. The occupant
becomes uncomfortable if the indoor temperature T

in

/2 A

↵ (adapted from [242]).

for comfort defined by the Support(T
d

) = [T
d� ,Td+ ] temperature interval, and it is

assumed that the occupant is always uncomfortable, if T
in

/2 Support.
The interval associated with the most acceptable temperatures, centered around

the most desirable set point T
d

, is given by Core(T
d

) = [T1

d�
,T1

d+
]. This interval

represents the range of temperatures where the occupant is always comfortable. To
evaluate if the occupant is comfortable for temperatures between the limits of Core
and Support, a random evaluation is made to model uncertainty. By using a random
variable ↵ 2 [0, 1] taken from a uniform distribution, and the ↵-cut set A

↵, which
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includes the set of temperatures whose degree of membership in A is no less than ↵:

A

↵

= {T
in

2 T : µ(T
in

) � ↵}

the occupant’s state transitions from Working to Uncomfortable, if the indoor tem-
perature T

in

/2 A

↵.
Figure 5.3 shows the tenant and HVAC state, with no BAS actuation, assuming

full certainty in the occupant’s preferences by setting Core(T
d

) = Support(T
d

) =

[20, 24]

�C, with T
d

= 22

�C. The model assumes that the occupant shows his careless
behavior towards energy use, by always leaving the heating on, even when the TZ is
vacant. The occupant arrives at t = 80 and starts working at instant t = 81. He
becomes Uncomfortable at instant t = 82 and acts on the HVAC system by switching
it on at that instant. The tenant leaves for lunch during the interval I = [135, 175]

and returns home at t = 220. The temperature graph shows the outdoor temperature
T
a

= 15

�C and two lines representing the comfortable set point temperature (T
d

),
and the lower temperature limit for comfort (T

d�).

5.1.3 Performance Evaluation

As the BAS learns how to perform the appropriate actions throughout each learning
episode, it should, on average, receive lower penalty values. To track the progress of
the learning curve, the average reward is calculated for each episode as:

r =

1

N

t

NX

t=t1

r

t

(5.1)

where r

t

is the reward calculated using (3.5) or (3.8). After learning, performance
metrics associated with comfort and heating costs are calculated for each episode to
evaluate the execution of the learned policy.

Duration of Comfort

Comfort is evaluated by taking into account the amount of time the occupant is
comfortable in the Working state, measured in discrete time intervals �

t

, as:

tComf =

t

NX

t=t1

comfortable(t) (5.2)
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Figure 5.3: The HVAC and occupant’s states over a simulation episode with no BAS.
The episode is divided into N = 300 discrete time intervals. The occupant arrives
at time instants {80, 175} and leaves at {135, 220}. The occupant is Uncomfortable
during the interval I = [81, 90], and the HVAC is kept on even when the tenant leaves
the thermal zone. Line [1] represents the desired comfortable set point temperature
(T

d

= 22

�C), and line [2] represents the lower temperature limit for comfort.

with,

comfortable(t) =

8
<

:
1 if occupantState(t) = Working

0 otherwise

For maximum comfort performance, tComf should equate to the total amount of
time that the occupant is in the TZ. However, considering that there will be several
time intervals when the occupant is in the Uncomfortable state, additional perfor-
mance metrics are also calculated to evaluate the minimum, maximum, and mean
duration of these intervals denoted, respectively, by �min, �max and �mean.
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Heating Cost

The evaluation of the total heating cost associated with the duration of each episode
is calculated differently for each RL problem. For the Bang-bang Heater problem, the
heating cost is given by the average amount of time the heater is in the on state,
given by:

thCost

1

=

1

N

t

NX

t=t1

h(t) (5.3)

which is linearly proportional to the amount of energy and monetary costs used for
heating. Energy and monetary costs can be estimated for a specific heater, consider-
ing the heater’s power consumption and price of energy. This estimation is harder to
obtain for the Set Point Heater problem since it uses the HVAC network to supply
heat. Calculating the efficiency of the network and associated costs is not straight-
forward. These costs are, however, directly related to the amount of heat supplied to
the TZ. Therefore, the total heating cost for the Set Point Heater is calculated as:

thCost

2

=

1

N

t

NX

t=t1

hCost(T
in

(t)) (5.4)

where hCost is the heating cost given by (3.6).

Averaged Metrics

To obtain accurate results, each simulation (containing several 24-hour episodes) is
executed 30 times independently to obtain the average values of each performance
metric. The averaged metric is denoted by appending the notation “avg_” to the
associated metric.

5.1.4 The Bang-bang Heater Problem

To test the Bang-bang Heater problem, a single TZ is simulated using the simplified
thermal dynamic model and heater described in Section 4.2.1. The simulation pro-
gram, described by Algorithm 2, executes 250 episodes, with each episode divided
into N = 300 discrete-time intervals. Several simulation parameters are used for
controlling the thermodynamic behavior of the TZ, the occupant, and the learning
algorithm. At the beginning of the simulation, these parameters are set to the initial
values listed in Table 5.1.

94



5.1. REINFORCEMENT LEARNING SIMULATION SETUP

Algorithm 2: Simulation algorithm for the Bang-bang Heater.

Initialize Simulation Parameters;
Execute the Learning Phase;
begin

for each episode 1 to nbrEpisodes do
Initialize Episode Parameters;
Generate the Occupant’s Schedule;
Update (at a certain learning stage) Parameters "

Rate

and �;
// Start a New 24-hour Cycle

for each t  t

1

to t

N

do
Simulate the TZ and Heater (Bang-bang Heater);
Select a;
Execute a;
Simulate the Occupant;
// Execute the Q-learning update

Calculate the Reward value;
Update Q-Values;

end
Calculate |rQoff_M|, |rQon_M|, |rQoff_T|, |rQon_T|

end
end

Simulation Schedule

The simulated occupant follows the regular schedule shown in Figure 5.3 with a
variance of 3 �

t

on the arrival and departure time instances. Q-learning parameters
� and "

Rate

change value as the simulation progresses though each episode. After
episode 50, the BAS follows a greedy policy by setting "

Rate

= 0. The learning rate
that controls convergence to the optimal policy is also decreased, at episode 80, to
lrate = 0.70.
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TZ T
min

21.9

�C
T
max

22.1

�C
T
a

15.0

�C
R 2.30⇥ 10

�3 KW�1

C 3⇥ 10

3 JK�1

Q

h

4 kW

Occupant T
d

22.0

�C
Core(T

d

) [21.0, 23.0]

�C
Support(T

d

) [20.7, 23.3]

�C

Q-Learning � 0.90

� 0.80

"

Rate

0.20

w

1

0.99

w

2

0.01

Table 5.1: Initial simulation parameters used for the Bang-bang Heater simulation
program.

Simulation Outputs

The simulation outputs of the Bang-bang Heater, for the last executed episode, in-
clude: the state of the heater; the state of the occupant; and the TZ temperature,
for the entire I

24

time interval. To obtain an estimate of the amount of learning days
it take for the algorithm to converge, outputs also include the average reinforcement
received, given by (5.1).

The magnitude of Q-value updates is expected to be convergent towards zero as
the policy converges to the optimal policy. The convergence of Q-values is observed
as episodes progress through the simulation. The Q-values for the Bang-bang Heater,
shown in Table 3.1, are represented as N -tuples denoted as Qoff_M, Qon_M, Qoff_T,
Qon_T, containing the corresponding Q-value for each t 2 I

24

. The convergence of
these values, between learning episodes, is recorded by calculating the magnitude of
each N -tuple update, denoted respectively by |rQoff_M|, |rQon_M|, |rQoff_T| and
|rQon_T|. All the output results, including performance metrics, are shown and
discussed in Section 6.1.1.
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5.1.5 Occupant Uncomfortable State Redefined

In the previous section, the occupant FSM executed an extreme non-realistic simula-
tion of behavior by persistently interacting with the BAS when the occupant is in the
Uncomfortable state. In reality, humans are not that pertinacious and, in most cases,
occupants expect a certain delay until comfort conditions are re-established. Occu-
pants may even avoid interacting with the HVAC if they are busy, leaving the TZ,
or if they are dressed appropriately. Therefore, simulation results using the previous
behavior are based on the premises that comfort feedback is always available.

In order to evaluate the effects that more realistic behavior has on performance
metrics, the occupant simulator can be modified to incorporate an additional level
of random behavior for state Uncomfortable, described by the flow chart in Figure
5.4. Variable I

L

represents the time interval that the occupant has been waiting
to interact, I

L

represents a random waiting time drawn from a standard uniform
distribution, and act is a random variable drawn from a Bernoulli distribution with
a given success probability.

New simulations were executed to validate the Bang-bang Heater problem with
the new behavior. These simulations consider that the occupant, when in state
Uncomfortable, decides to act with a probability of 70% and waits, on average, for
an interval of 10 �

t

before deciding to act again. Performance metrics and execution
results are presented and discussed in Section 6.1.2.

5.1.6 The Bang-bang Heater Problem with Less States

Depending on the thermodynamics of the TZ the effects of actions on the state of the
environment present a time delay that must be taken into account in order to increase
learning performance. This conclusion, discussed in Section 6.1.2, shows that the RL
algorithm for the Bang-bang Heater, in its present form, is inefficient in finding the
optimal policy from the information obtained with immediate rewards. In the current
RL methodology, system states are represented for each t 2 I

24

, and the BAS executes
an action in every time instant. To take into account the heating delay, states and
actions can be set further apart in time. In this section, results are evaluated with
state variables represented for time instants t distant 10 �

t

apart, according to the
following set:

s = { (t, h) | t 2 I

24

, t ⌘ 0 (mod 10), h 2 {0, 1}}
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Uncomfortable

depart
state Out

I

L

> I

Wait

Comfort

act

state Working

Update I

L

, I
Last

interaction 1

True

False

False

False

True

True Yes

Figure 5.4: New simulation of the occupant behavior for the Uncomfortable state.
Variable I

L

represents the time interval the occupant has been waiting, I
Wait

repre-
sents a random waiting time, and act is a random variable that controls the willingness
of the occupant to interact with the HVAC system.

The reward function is modified to take into account the average number of interac-
tions received in the time horizon between the selected action and the following state.
The Q-value associated with an action selected at time instant t

i

is updated at time
instant t

i+10

, considering the following reward:

r

t

= R(t, h) = �w
1

avgInt� w

2

h

where avgInt is the average number of occupant interactions that occurred during
the time interval between t

i+10

and t

i

.
The Bang-bang Heater problem with less states is simulated using the simulation

parameters listed in Table 5.1, and the simulation results for a duration of 90 episodes
are shown in Section 6.1.3.

98



5.1. REINFORCEMENT LEARNING SIMULATION SETUP

5.1.7 The Set Point Heater Problem

This section describes the simulation program for the Set Point Heater. The structure
of the program is described by Algorithm 3.

Algorithm 3: Matlab simulation program for the Set Point Heater.

Initialize the Wire Set;
Create the Neural Network;
Initialize Simulation Parameters;
Execute the Learning Phase;
begin

for each episode 1 to nbrEpisodes do
Initialize Episode Parameters;
Generate the Occupant’s Schedule;
Train the Neural Network for the Set of Wires;
Update (at a certain learning stage) Parameters "

Rate

and �;
// Start a New 24-hour Cycle

for each t  t

1

to t

N

do
Calculate the Output (Wires) of the Neural Network;
Select the Wire/Action with the Highest Q-value;
Add exploration noise to the selected action;
Calculate and Set the HVAC Temperature (T

s

);
Simulate the TZ and the HVAC PID Controller;
Simulate the Occupant;
// Execute the Q-learning One-step Update

Calculate the Average Number of Interactions (in the last 4�

t

int.);
Calculate Heating Cost and Reward;
Calculate the New Set of Wires;

end
Save the Average Reward;

end
end
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The Neural Network and Output Wires

The definition of state for the Set Point Heater is a continuous time variable and
the algorithm uses a NN to map each state to its respective set of wires. However,
due to the discrete nature of the simulation with Matlab, the program iterates only
through the discrete time instants included in I

24

, and all the wire sets are stored in
an N-dimensional vector containing N = 300 sets. Without a loss of generality, there
is a set with 6 wires for each t 2 I

24

and these sets are all initialized to the following
values:

Wire 1 = (a
1

,q
1

) = (0.0,0.1)
Wire 2 = (a

1

,q
1

) = (0.2,0.1)
Wire 3 = (a

1

,q
1

) = (0.4,0.1)
Wire 4 = (a

1

,q
1

) = (0.6,0.1)
Wire 5 = (a

1

,q
1

) = (0.8,0.1)
Wire 6 = (a

1

,q
1

) = (1.0,0.1)
Since all the wires are stored in the memory vector, Algorithm 3 can be imple-

mented without the NN. Wires can be immediately accessed and updated without
having to train the NN. This gives the advantage of avoiding the NN training period
and fitting errors. However, some applications may need to control temperature with
higher time resolution. For those applications, the NN option is available to provide
access to the set of wires for any continuous value of t.

To evaluate the effects of fitting errors on the learned policy, a feed-forward back-
propagation NN was included in the Matlab simulation using the NN Toolbox [243].
This NN was created empirically with two hidden layers and one output layer.
The first hidden layer was composed of 10 neurons with a Tan-Sigmoid (tansig)
transfer function, the second hidden layer had 10 neurons with a Log-Sigmoid (logsig)
transfer function, and the output layer included 12 neurons with a linear (purelin)
transfer function. To train the NN the Levenberg-Marquardt (trainlm) algorithm was
used with the epochs training parameter set to 10.

HVAC and Thermal Zone Simulation

To simulate the HVAC for the Set Point Heater, a PID controller was implemented
to regulate the indoor temperature of the TZ [244]. Both the TZ and controller are
simulated. The TZ is described by the thermodynamic model given by (4.3), using
the same RC thermodynamic parameters as the Bang-bang Heater. Figure 5.5 shows
the block diagram of the feedback loop with the model of the TZ and the controller,

100



5.1. REINFORCEMENT LEARNING SIMULATION SETUP

where K

p

, K
i

, and K

d

are non-negative coefficients for the proportional, integral and
derivative terms, respectively.

k
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Figure 5.5: Simulating the thermal zone with a proportional–integral–derivative con-
troller.

Using the gains (k

p

, k

i

, k

d

) = (1500, 200, 10) for the PID controller, Figure 5.6
shows the step response of the system to the following temperature set points, set at
different time instants:

{T
s

(50) = 22,T
s

(100) = 16,T
s

(200) = 20,T
s

(250) = 22}

The resulting controller regulates the temperature with no overshoot, and no offset
error in the final steady-state condition. It is suitable to simulate how the HVAC will
regulate the TZ to a given temperature set point.

Simulation Outputs

The Set Point Heater simulation simulates the occupant with the Uncomfortable
state redefined, and the BAS learns with less states, following the discussions given
in Sections 5.1.5 and 5.1.6. Therefore, the program described by Algorithm 3 updates
each set of wires with a delay of 4 �

t

and the reward function, given by (3.8), now
becomes:

r

t

= �w
1

avgInt� (w

2

� w

1

avgInt)hCost(T
s

)

where avgInt represents the average number of interactions that occurred during the
time interval [t, t + 4 �

t

].
The simulation program sets parameters � = 0.4 and (w

1

, w

2

) = (0.90, 0.10) at
the beginning of the simulation. All the other simulation parameters used for the
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Figure 5.6: Temperature response of the controller and the thermal zone, with differ-
ent temperature set points.

Bang-bang Heater remain constant. With a duration of 60 episodes, the BAS follows
a greedy policy after episode 10, and the learning rate is set to lrate = 0.60 at episode
25. The optimal policy, obtained with the last episode, is executed and the results
are presented and discussed in Section 6.1.4.

5.2 Context-based Modeling Simulation Setup

This section contains a description of the experimental setup used to execute and
evaluate the context-based model described for the example given in Section 4.4.2.
The operational semantics of this model were implemented using the MATLAB sim-
ulation environment, considering the hypothetical TZ enclosed by the box-shaped
building illustrated in Figure 5.7.

The execution of the context-based model was simulated by solving the ODEs
given by (4.4), to obtain the model’s continuous-state signals, while simulating the
discrete context transitions according to the model’s guards and edges. The execution
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TZ1
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Figure 5.7: Detail of the box-shaped building used for the simulation, with multi-layer
walls, windows, and a single thermal zone.

is then compared with the simulation outputs of EnergyPlus [245,246], applied to the
same building. Conclusions are drawn from this comparison about the effectiveness
of the context-based model in obtaining the same results as EnergyPlus.

5.2.1 EnergyPlus

EnergyPlus is a popular simulation tool developed for building performance and en-
ergy analysis that integrates, as shown in Figure 5.8, a set of information about the
simulated building. This information includes the following descriptions:

• Architecture and construction materials. The description of the building’s
architecture and construction details, including all the interior and exterior
walls, floors, roofs, doors, windows, blinds, and construction materials.

• Information about weather and climate. Collected from statistically as-
sembled weather data, to be used as the reference for the typical weather at the
building’s location. This simulation input strongly influences the external loads
from outdoor temperature, humidity, wind and insulation.

• HVAC systems and components. A description that can be detailed enough
to include air and water loops with splitters and mixers, zones, heating and cool-
ing coils, pumps, set point managers, ventilators, furnaces and chillers. Control
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strategies can also be included to describe the behavior of HVAC systems during
the simulation time.

• Internal loads. Associated with occupancy, activity levels, equipment and
lighting.

• Operating strategies. Description of how blinds, temperature set points and
other parameters are set during the simulation time. This item also includes
various schedules that define, during this period, the value of many simulation
parameters, such as occupancy, opening factors of doors, windows and blinds.

• Simulation parameters. Describing, among other simulation parameters,
the simulation time interval, the duration of the simulation time step, numeric
convergence tolerances, and simulation outputs (files and variables).

The input descriptions for EnergyPlus are composed of several input objects in-
cluded in a simulation input definition file1 [247]. EnergyPlus loads this file prior to
simulation and, depending on these objects, executes several algorithms to calculate,
among other things, the heating and cooling loads in different zones, temperatures,
air flow through doors and windows, energy requirements, lighting conditions, and
financial costs. Most of the simulation algorithms are complex and predict these
variables with acceptable accuracy [248]. In order to calculate temperatures through
walls, for instance, the simulation engine divides each material layer within a con-
struction into a number of nodes between 6 and 18 [248]. With this level of detail,
we can assert that the simulation of the associated heat-balance equations, including
the simulation of the energy transmitted through windows and the airflow network,
uses models with much higher complexity than the context-based model used in the
application example. Therefore, the execution of an EnergyPlus simulation is
a suitable validating reference for model performance evaluation.

5.2.2 Simulation Diagram

Modeling, simulation and analysis of buildings and building control systems is becom-
ing increasingly complex. Many systems involve multiple domains, such as thermo-
dynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems
and communication systems [249]. Modeling and simulating such systems not only

1
File with extension .idf
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Figure 5.8: The EnergyPlus simulation engine integrates all the detailed informa-
tion about the building structure and geometry, such as weather conditions, HVAC
systems, internal loads, schedules, etc. Simulation results are used as validating ref-
erences for performance evaluation.

requires a higher level of abstraction and modularisation, but also a proper plat-
form to integrate each simulated system. For this particular experiment, in order
to simulate occupancy, the operation of windows, shades, and heating equipment,
some variables needed to be continuously set during the simulation time. There-
fore, all the inputs for the building simulation, with EnergyPlus, were implemented
using the Buildings Controls Virtual Test Bed (BCVTB) [250–253], which is an open-
source modeling and distributed co-simulation environment, based on UC Berkeley’s
Ptolemy II program [233, 254]. Ptolemy allows different simulation programs and
tools1 to be coupled, in the same coherent simulation work-flow, by synchronizing
and exchanging data between them as the simulation time progresses. Programs and
tools are abstracted as actors and connected (using TCP/IP sockets) in a diagram us-
ing the Ptolemy II graphical environment [233,254,255]. This diagram has data-flow
semantics: actors are invoked/triggered when data is available at their input.

In the experimental setup, the BCVTB environment is used to control an ac-
tor that wraps around EnergyPlus for a building simulation, as illustrated in the
example of Figure 5.9. The EnergyPlus actor is parameterized with the input defini-
tion file describing the simulated building and receives, during the simulation time,

1
The BCVTB includes a library for simulating FSMs, signal sources, and sinks, among other

things.
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Figure 5.9: Example of a Buildings Controls Virtual Test Bed (BCVTB) simulation
model using the Ptolemy II graphical environment. Actors simulate occupancy, the
state of windows (wof

1

, wof

2

) and heater. The EnergyPlus simulation actor (at the
center) outputs a vector of temperatures at each step of the simulation.

a vector of inputs {o, ws, h, wof, . . .} which condition the building’s energy balance
equations. The actor then makes available, also during the simulation time, the sim-
ulation outputs {T

a

,T
in

, Q

s

, ṁ

v

, . . .} that are used by other actors. Behaviors such as
the feedback control loop associated with the operation of the thermostat, occupancy,
and the opening and closing of windows are implemented by different actors, such as
as FSMs, which simulate schedules and other conditioned actions, such as changing
the state of the heater, depending on T

in

.
By changing the conditions that define context during the simulation time with

EnergyPlus, we can observe the effects of these changes on T
in

in Figure 5.10. The
output for a 24-hour simulation example starting on the 1st day of January shows
how temperature T

in

depends on the evolution of temperature T
a

throughout the day,
and how it changes when the heater is switched on, the windows are open, and the
space is unoccupied. As intuitively expected, context has a significant impact on the
evolution of T

in

. We can observe, for example, that when windows are open, T
in

tends
to approximate T

a

as heat is lost through natural ventilation (which depends on wind
behavior). This interrupts the previous behavior where T

in

increases at a certain rate,
with the heater on. Using a context-based model, each of these behaviors is modeled
separately.
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Figure 5.10: EnergyPlus 24-hour simulation output for the thermal zone showing how
temperatures T

a

and T
in

evolve in different contexts depending on the heater being
on, the windows open, and occupancy (simulation for January 1st, in Lisbon).

5.2.3 Building Site and Construction

The meteorological data of the typical meteorological year of the location1 in Lisbon,
Portugal, was used as the input for the building zone simulation. The theoretical
building is exposed to solar radiation and wind and encloses a single TZ. It has four
external walls, a floor area A

floor

= 144 m2 (12 m west and south walls), and a
volume of 432 m3 (zone height of 3 m). The building has a window (4⇥ 1.5 m each)
on each wall and no internal partitions. The envelope, made by the surrounding walls
and roof, is composed of stucco over common brick and gyp-board, and the floor is
composed of a single-layer of concrete. The properties of the various construction
elements, used in EnergyPlus and in our RC model, are shown in Table 5.2. Each
layer of a material is defined by its thickness z, thermal conductivity �,
specific heat capacity C

p

, and density ⇢.
1
INETI, GPS: 38.73,-9.15
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Element Layering Thickness Thermal Specific heat Density
(m) conductivity capacity

(Wm�1 K�1) (J kg�1 K�1) (kg m�3)
External Stucco 0.0254 0.690 837 1858.0
Walls and Roof Brick 0.1000 0.730 837 1922.0

Plaster 0.0190 0.726 837 1602.0

Floor (144 m2) Concrete 0.2000 1.730 837 2242.6

Windows (24 m2) Glass 0.0025 0.700

Shades Insulation 0.0200 0.050

Table 5.2: Properties of the constructive elements for the box-shaped building pre-
sented in Figure 5.7.

5.2.4 Parameters of the RC Model

Because model RC parameters have intuitive physical meaning, all values can be
determined from the material properties and geometry of the surfaces surrounding
the simulated building. For a surface area A, the conductive thermal resistance
and the thermal capacitance that characterizes a specific layer i in a steady-state
regime are given, respectively, by:

R

i

=

R-Value
A

(KW�1

) (5.5)

C

i

=⇢C

p

zA, (JK�1

) (5.6)

where R-Value = z/� is the unit thermal resistance of the material in that layer.
Walls exchange thermal energy with the surrounding air in each TZ. Convection

is the heat transfer between these two different mediums. The heat flow between a
wall surface at temperature T

wall

, and the surrounding air at temperature T
a

, is given
by Fourier’s Law [256]:

Q

conv

= h

c

A(T
wall

� T
a

),

where h

c

is the convective heat transfer coefficient. The convective resistance is given
by:

R

c

=

1

h

c

A

. (5.7)
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The following sections describe how the parameters of the full-scale lumped RC
thermal model were calculated using these expressions.

Walls and Roof

The total resistance and capacity of a multi-layer construction are calculated, taking
into account the resistance and capacitance of each of the n layers, as follows:

R =

nX

i=1

R

i

+R

ext

+R

int

(5.8)

C =

nX

i=1

C

i

(5.9)

where the walls and roof are assumed to be composed of the same materials. There-
fore, a single 3R4C model represents the combination of these constructions for their
total combined surface area, subtracting the area of the windows:

A

wr

= A

walls

+ A

roof

� A

wind

= 264 m2

where A

walls

, A
roof

and A

wind

represent the total area of the building envelope, roof
and windows, respectively.

Model parameters R

1

, R

2

, R

3

, C

2

, C

3

are obtained from the 3R2C model for the
multi-layer construction, as described by Fraisse et al. [240] (see appendix A). Therein,
the authors calculate the truncated second-order transmission matrix of a wall com-
posed by a single-layer material with an equivalent resistance and capacity given by
R and C, and equate this matrix with the transmission matrix of the 3R2C wall
model to extract its parameters. They then propose the 3R4C model to avoid having
temperature pairs (T

a

,T
1

) and (T
4

,T
in

) instantly coupled, by transferring 5% of each
of the two internal capacities C

2

and C

3

, to C

1

and C

4

, respectively. However, to
account for the effects of solar gains, simulation results showed that this value can go
up to 70%.

Floor

The entire floor area of the building is composed of a single layer of concrete with
resistance R

g

and capacitance C

g

, modeled using a 2R1C network with the following
resistances:

R

g1

= R

g2

=

R

g

2

.
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Surface Heat transfer coefficient (Wm�2 K�1)
Walls and roof
Exterior (h

ext

) 10.22

Interior (h
int

) 3.076

Floor
Interior (h

g

) 1.000

Table 5.3: Convective heat transfer coefficients.

Convective Resistances

Exterior and interior convective resistances R
ext

and R

int

,R
gint

are calculated using the
convective heat transfer coefficients for exterior and interior surfaces of the envelope,
and the interior surface of the floor, denoted respectively by h

ext

, h
int

, and h

g

, listed
in Table 5.3.

Zone Air

The thermal capacitance C

Z

of the total volume of air inside the TZ is calculated
with (5.6), considering the following specific heat and density:

C

air

= 1.005 kJ kg�1 K�1

⇢

air

= 1.205 kg m�3

(at ⇡ 20

�C).

Windows

Windows are composed of a single layer of glass with the following thermal transmit-
tance and Solar Heat Gain Coefficient:

U-value = 3.071 (Wm�2 K�1

)

SHGC = 0.258

The thermal resistance per unit area (R-Value = 1/U-Value) of the simplified window
combines the interior and exterior surface heat transfer coefficients and the glass-to-
glass resistance. The total thermal resistance of the effective window area is given
by:

R

W

=

R-Value
A

wind
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Shades

Exterior shades with insulation are used on the outside of each window. Shades
are operated with a window cover that ranges from fully open to fully closed. Fig-
ure 5.11 shows the evolution of outdoor and indoor temperatures obtained from the
EnergyPlus simulation. Figure 5.11a shows the effects that ws has on the indoor
temperature, considering that the building is not exposed to sun radiation. The in-
door temperature is affected by the opening factor ws because shades contribute to a
small increase in the thermal resistance of all window areas. Therefore, T

in

is slightly
higher when shades are closed. The total thermal resistance of the shades R

WS

is
calculated using A

wind

and the physical properties given in Table 5.2, multiplied by
ws. Shades also affect the amount of solar radiation entering through the windows.
Thus, Figure 5.11b shows the effects of shades when the building is exposed to sun
radiation. Indoor temperature T

in

is higher during daylight hours, when shades are
open.

Heater

The heater, represented in Figure 5.12, consists of a 75 W constant volume fan with
an air volume ṁ

vh

= 1.194 kg s�1 and an 8 kW electric heating coil. Resistance R

ih

is
given by: R

ih

= 1/(ṁ

vh

C

air

) and C

h

is calculated from samples of T
h

and T
in

, taken
from the initial heating time interval, and is given by:

C

h

=

Q

C

h

I

s

˙

T

h

Q

C

h

= Q

h

� T
h

�T
in

R

ih

where I

s

is the sampling period of the simulations, set to 60 s.

Occupancy

Occupancy is simulated by considering that 5 people will occupy the TZ between
8h00 and 12h00, and between 13h00 and 18h00. EnergyPlus assumes the metabolic
rate to a value of Q

i

= 132 W/person.

Solar Gains

Due to many uncertain factors that influence solar gains in real buildings (solar an-
gles, surrounding buildings, reflections, etc.), a detailed calculation of Q

s

is rather
elaborate. For this experimental setup, Q

s

is obtained from EnergyPlus by averaging
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(a) No sun and no wind exposure.

(b) Exposed to sun and wind.

Figure 5.11: Evolution of outdoor temperature (T
a

), and indoor temperature (T
in

),
when shades are open (ws = 0) and closed (ws = 1), contrasting the scenario without
sun and without wind (a) to the scenario with sun and wind exposure. (b).
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M

8kW

75W

Figure 5.12: Detail of the unit heater with a constant volume fan and an electric
heating coil of 8 kW, used for simulation.

the solar heat gain per area, incident on each of the four external walls and the roof
surface. The total solar radiation rate transmitted through the windows, Q

sw

, is also
obtained from EnergyPlus. This radiation acts directly on the internal building mass
and heat is then transmitted to the zone air. To simulate this transmission func-
tion, f

sw

(Q

sw

) implements as a 6th order low-pass Butterworth filter to smooth Q

sw

and simulate the mass-to-air thermal transmission delay. This filter is described by
coefficient vectors C

A

and C

B

using the standard difference equation:

C

A

(1)f

sw

(n) = C

B

(1)Q

sw

(n) + C

B

(2)Q

sw

(n� 1) . . .+ C

B

(7)Q

sw

(n� 6) . . .

�C
A

(2)f

sw

(n� 1) . . .� C

A

(7)f

sw

(n� 6) (5.10)

with C

A

and C

B

obtained using the Matlab filter design tool:

[C_B,C_A] = butter(N,Wn)

where N represents the order of the filter and W

n

is the normalized cutoff frequency.
Equation (5.10) was executed using the Matlab function:

fsw = G*filter(C_B,C_A,Qsw)

with G representing the filter attenuation. Filter parameters N = 6, G = 0.18, and
W

n

= 0.0099, were empirically adjusted to minimize model errors.
Figures 5.13a and 5.13b show Q

s

and Q

sw

, f

sw

(Q

sw

), during a 48-h simulation
interval. Shades are closed when Q

s

� 150 and open when Q

s

< 130.

Natural Ventilation

Although the discrete sets W and D include several values for opening factors for
windows and doors, in this simulation we opted to model the extreme case of on/off
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(a) Averaged solar gains Q
s

.

(b) Q
sw

, and heat transmission output to zone air (f
sw

).

Figure 5.13: 48-h simulation of solar gains incident on the building envelope (a), and
through building windows with heat transmission to zone air (b).
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Figure 5.14: Airflow rate when two openings (door and window) are fully open, be-
tween 11h00 and 15h00.

modeling. Natural ventilation is activated when both window W
1

and door D

1

are
open. Figure 5.14 shows the airflow rate obtained from EnergyPlus when both open-
ings are fully open (wof

1

, d

1

) = (1, 1) the first day between 11h00 and 15h00. The
airflow is then uniformly quantized over ˙M

v

, with | ˙M
v

| = 100.
Considering a more sensible window opening, Figures 5.15a and 5.15b show the

results of how the airflow rate and temperatures change with different opening fac-
tors for just window W

1

(hold constant, during the entire simulation interval), with
everything else closed. The airflow is significantly lower, and is proportional to the
temperature difference between T

in

and T
a

.

5.2.5 Model Performance Evaluation

The simulation execution with the BCVTB and EnergyPlus, denoted by �

EP

=

(⌧, l, x)

EP

, is used as validating reference for model performance evaluation. This
execution is compared with the execution of the corresponding context-based model
implemented using MATLAB, denoted by �

Model

= (⌧, l, x)

Model

, while sharing con-
tinuous and discrete input variables U = U

C

[ U

D

between both simulations. Since
the purpose of the context-based model is its prediction capability, performance is

115



CHAPTER 5. SIMULATION SETUP

(a) Airflow rate.

(b) Indoor (T
in

) and Outdoor (T
a

) temperatures.

Figure 5.15: Airflow and indoor temperature depending on different opening factors
for window W

1

(eveything else closed)
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evaluated on this aspect. For the execution of a hybrid automaton, the sequence of
the prediction errors in continuous evolution is given by: "

x

(t) = x(t)

Model

� x(t)

EP

.
A model is said to be “good” if it produces “small” absolute prediction errors as com-
pared to the simulation. The simulation uses n discrete time-steps, and to quantify
this measure, the mean absolute error (MAE) is used, given by:

MAE =

1

n

t

nX

t=t1

k"(t)k

considering that the hybrid time set and discrete evolution is the same for both
executions with ⌧

EP

= ⌧

Model

and l

EP

(t) = l

Model

(t), 8t 2 ⌧.
The mean absolute error is applied to a reduced dimension of x, by considering

only the temperature T
in

and its associated prediction error "T
in

, due to its relevance
for control. Following Lin et al. [108], this study requires that models reproduce
observed data with a prescribed degree of accuracy, quantified by the following bound:

MAX = k"T
in

k1  1.6

�C

with "T
in

= ["T
in

(t

1

), . . . , "T
in

(t

n

)]. This condition derives from the fact that temper-
ature distribution inside a room can have a spatial variation higher than 1.6 �C (3
oF) [100]. Requiring more accuracy is, therefore, unreasonable. Simulation results
are presented and discussed in Section 6.2

5.2.6 Simulation Files

To enable the reproducibility of the results described in this Chapter, the simulation
files used in this dissertation for Matalab (RL and Context-based modeling), En-
ergyPlus (including the simulated building “.idf” description), and the the BCVTB
project, are made available at the following location:

http://mediawiki.isr.ist.utl.pt/wiki/CtxtBasedMod.

5.3 Summary

This chapter described the simulation setup environment developed to evaluate both
the reinforcement learning methods proposed in this dissertation and the context-
based model example given in the previous chapters. The Bang-bang Heater and
Set Point Heater problems were simulated using the Matlab simulation environment.
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CHAPTER 5. SIMULATION SETUP

This chapter described how the occupant was simulated (with schedules and comfort
preferences) and how the results were evaluated. Two situations were described: a
situation where the occupant is unrealistically persistent, and a more realistic simula-
tion, where the occupant does not always provide the required feedback. The chapter
then described an improvement to both methods, where rewards are delayed in order
to account for the thermodynamic inertia of the thermal zone.

Following this set of experiments, the chapter described in detail the simulation
setup for a context-based model. To evaluate the performance, the execution of the
model was compared with the simulation outputs of EnergyPlus, which is a simulator
that creates and uses models with much higher complexity.
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6
Results

“The environment is where we all meet; where all have a mutual interest; it is the one
thing all of us share.” – Lady Bird Johnson (First Lady of the United States).

This chapter contains the simulation results of the experiments described in Chap-
ter 5. The following sections show the results of the different experiments performed to
evaluate the proposed RL methods, and the execution of the proposed context-based
model. The results are discussed and conclusions are drawn for each simulation.

6.1 Reinforcement Learning Simulation Results

This section presents the simulation results for the simulation setup described in
Section 5.1 for the Bang-bang Heater and Set Point Heater problems, with the per-
formance metrics described in Section 5.1.3.
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6.1.1 The Bang-Bang Heater

After executing each simulation (250 episodes) 30 times, the average performance
metrics listed in Table 6.1 were obtained. Results show that the occupant is present
in the TZ during an average of 100 �

t

time instances. During this period, the
occupant is comfortable 74.77% of the time and, when uncomfortable, remained in
that state for an average duration of �mean = 2.40 �

t

. To guarantee this comfort
level, the heater was on during 28% of the 24-hour (300 �

t

) simulation interval.

Parameter (�

t

)

Avg. Occupancy 100.00
avg_tComf 74.77
avg_�min 1.00
avg_�max 6.07
avg_�mean 2.10
avg_thCost

1

83.00/N

Table 6.1: Average time of occupancy and performance metrics for comfort and en-
ergy. Values for the following averages: comfort; minimum, maximum and mean size
of the intervals of discomfort; total time the heater is on.

Q-Values and Average Reward

The convergence of the Q-values, and the average reward received throughout 250

episodes are shown in Figure 6.1. The Q-value updates converge to zero, as expected
and shown in Figure 6.1a, and the average reward, shown in Figure 6.1b, converges
to r ⇡ �0.05. Results show the average reward decreasing with exploration up to 50,
when "

Rate

is set to zero, and increasing afterwards.

Policy Execution

The state of the heater, the state of the occupant, and the temperature of the TZ
after executing the learned policy during the last episode are shown in Figure 6.2.
Line (1) represents the ideal temperature desired by the occupant. Results show that
during the execution, the BAS switches the heater off as often as possible to minimize
the use of energy, while switching it on to guarantee comfort during working hours
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(a) The convergence of Q-values: |rQ|! 0.

(b) Average reward.

Figure 6.1: The convergence of the Q-values and the average reward received through-
out 250 episodes.
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Figure 6.2: Policy application results. Line (1) represents the comfortable set point
temperature (22

�C), and line (2) represents the lower temperature limit of comfort.
The BAS learns how to maintain the temperatures within limits that explore the
boundaries of comfort, while also saving energy when the thermal zone is unoccupied.

(anticipating the occupant’s interaction). The occupant remains in the Uncomfortable
state while the temperature is below the comfort limit, represented by the line (2).

6.1.2 Simulation Results With the Uncomfortable State Re-
defined

Performance metrics and execution results were obtained for the Bang-bang Heater
problem with the occupant’s Uncomfortable state redefined. Performance metrics,
averaged over 30 executions, are shown in Table 6.2 and the execution of the learned
policy is shown in Figure 6.3. Simulation results show that when the occupant be-
comes less persistent in interacting with the HVAC, there is a significant penalty in
terms of comfort. There is a decrease in the average time the occupant is comfort-
able in the Working state, and an increase in the mean time the occupant is in the
Uncomfortable state. This concludes the idea that the amount of feedback
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received by the BAS, in many real-life situations, may not be enough to
maintain comfort requirements.

For practical applications, the BAS should be able to learn from the sparse in-
teractions that occur during the occupant’s regular schedule. However, an important
limitation was identified in the current methodology that limits this capability. We
verified that when the occupant interacts with the system in a certain state, and the
heater is toggled to the on position, the selected action does not have an immediate
effect on the TZ temperature due to thermal inertia. Consequently, the occupant
will most likely remain uncomfortable for a certain time interval. As a result, not
only does the BAS perceive that there is no immediate reward for comfort associ-
ated with the Toggle action, but it also receives a penalty for using energy in that
state. Therefore, the BAS will eventually select the Maintain action in that state,
thus compromising future rewards. This conflicting situation has a negative impact
on learning performance.

In this section, we conclude that the reward function, in its current form, is not
fully effective to optimize comfort, since it does not take into account the time delay
associated with selected actions. The Bang-bang Heater RL algorithm needs to be
modified to take this delay into account.

Parameter (�

t

)

Avg. Occupancy 101.00
avg_tComf 58.60
avg_�min 1.00
avg_�max 13.53
avg_�mean 4.18
avg_thCost

1

74.33/N

Table 6.2: Average time of occupancy and performance metrics obtained with the
occupant not interacting with the BAS so persistently, when uncomfortable (more
realistic simulation). By comparing with Table 6.1, we can verify a significant penal-
ization in comfort.

6.1.3 Bang-bang HeaterResults Using Less States

The simulation results for the Bang-bang Heater show a significant improvement in
comfort performance when using less states. Performance metrics were obtained for
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Figure 6.3: Policy application results showing a penalization in comfort, when the
occupant is not persistently interacting with the heating system.

both situations: when the occupant persistently interacts with the HVAC system,
and when the occupant’s Uncomfortable state is redefined. In both cases, the results,
listed in Table 6.3, show a significant increase in the amount of time the occupant is
comfortable in the TZ, as compared to the previous results shown in Tables 6.1 and
6.2.

Figure 6.4 shows the convergence of Q-values and the average daily reinforcement
for the worst case, when the occupant does not interact as often. Results show that
the learning time decreased significantly to approximately 50 episodes. The execution
of the learned policy is shown in Figure 6.5. Results show that the learned policy is
effective in guaranteeing comfort conditions, while still maintaining the heater in the
off state, during the time instances the TZ is usually vacant.

6.1.4 The Set Point Heater Heater

This section discusses the simulation results of the Set Point Heater. The average
reward received in each episode is shown in Figure 6.6 (converging to r ⇡ �0.04).
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(a) The convergence of Q-values.

(b) Average reward.

Figure 6.4: The convergence of Q-values and the average reward, when using less
states. The policy converges faster to a more stable solution.
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Parameter (�

t

) (�

t

)

Persistent Less Persistent
Avg. Occupancy 100.47 103.50
avg_tComf 100.47 102.90
avg_�min 0.00 0.60
avg_�max 0.00 0.60
avg_�mean 0.00 0.60
avg_thCost

1

160.66/N 158.66/N

Table 6.3: Average time of occupancy and performance metrics with less states for
both situations: a persistent occupant, and a less persistent occupant (as described
in Section 6.1.2). Comparing metrics with Tables 6.1 and 6.2, in both cases, results
show that there is a significant improvement in comfort performance when using less
states.

After learning, the policy execution results are shown in Figure 6.7. Results show
that the BAS learns the occupancy pattern and tries to minimize the supply of heat,
while keeping the TZ temperature within the limit of comfort. Due to the lack of
interactions on the part of the occupant, the BAS learns how to reduce the supply of
heat during the intervals when the TZ is usually unoccupied.

Comfort vs Heating Cost

This section shows the effects trade-off between comfort and the cost of heating. The
performance metrics (averaged over 30 simulations) for the Bang-bang Heater and
Set Point Heater problems (with the occupant’s state Uncomfortable redefined) are
presented in Table 6.4 for different weights values w

1

and w

2

. Results show that,
although there no direct linear map between metrics and weights, there is a direct
proportional impact in the balance between comfort and the heating cost.
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Figure 6.5: Policy application results with less states. The Bang-bang Heater is
more effective in guaranteeing comfort conditions. The heater is off during the time
instances the thermal zone is usually vacant.

127



CHAPTER 6. RESULTS

Figure 6.6: Average reward received daily with the Set Point Heater.

Figure 6.7: Policy execution results for the Set Point Heater.
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w

1

w

2

avg_tComf avg_�min avg_�max avg_�mean avg_thCost

1

(�

t

) (�

t

)/N

Bang-bang Heater
0.10 0.90 2.00 42.93 54.43 48.68 0.00
0.20 0.80 2.00 40.00 55.76 47.88 0.00
0.30 0.70 2.00 42.00 54.53 48.27 0.00
0.40 0.60 2.00 43.23 52.33 47.78 0.00
0.50 0.50 2.00 42.36 55.13 48.75 0.00
0.60 0.40 2.00 42.96 55.86 49.41 0.00
0.70 0.30 4.40 34.40 53.60 44.56 3.67
0.80 0.20 24.23 9.33 33.03 19.88 33.67
0.90 0.10 92.50 3.66 5.33 4.5 118.33
0.99 0.01 100.50 0.50 0.50 0.51 150.67

Set Point Heater thCost

2

0.10 0.90 2.50 33.90 53.70 43.36 22.76
0.20 0.80 3.00 24.73 49.97 36.89 25.65
0.30 0.70 3.23 20.20 52.57 35.61 25.69
0.40 0.60 2.43 32.33 51.60 42.13 21.57
0.50 0.50 19.03 1.07 16.77 5.63 54.58
0.60 0.40 59.10 1.00 5.63 1.73 86.46
0.70 0.30 76.10 1.00 3.37 1.33 100.84
0.80 0.20 85.20 1.00 2.06 1.13 113.16
0.90 0.10 95.53 0.87 1.13 0.96 126.38

Table 6.4: Performance metrics obtained with different values for w
1

and w

2

, showing
the trade-off between comfort and heating cost in both Bang-bang Heater and Set
Point Heater problems.
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6.2 Context-based Thermodynamic Modeling

The example given in Section 4.4.2 describes a context-based model with guards that
are conditioned by occupancy, solar gains, the state of the heater and the airflow rate
shown in Figure 5.14. Using the calculated RC values listed in Table 6.5, the execution
of this example was simulated for the 1st day of January over a 48-hour time horizon
between ⌧

0

= 00h and ⌧

N

= 48h. Figure 6.8 shows the outdoor temperature T
a

and
the resulting indoor temperatures obtained from the model and EnergyPlus, denoted
respectively by T

in

_Model and T
in

_EP. The hybrid time set and discrete trajectory
are listed in Table 6.6. Results show that both trajectories for T

in

and T
in

_EP overlap
throughout most of the execution interval. Figure 6.9 shows the associated histogram
of errors. The predictive accuracy of the model is within acceptable limits, with
MAE = 0.1134

�C and MAX = 0.9018

�C.

Discussion

The correlation shown in Figure 6.8 resulted from an iterative and incremental design
where the full building model was incrementally created and simulated from its simple
envelope to the full simulation example. Although the applied heat balance principles
are the same as EnergyPlus and, therefore, this correlation is somehow expected, the
heat transfer model presented in this dissertation is significantly more reduced than
the models used by EnergyPlus. Moreover, not all of the heat balance equations used
in the context-based thermodynamic model are the same as the ones used in Ener-
gyPlus. In fact, some of these equations (e.g., the Navier-Stokes equations used to
simulate computational fluid dynamics of the airflow network), cannot be expressed
using simple linear state-space equations. Therefore, the complexity of the models
used by EnergyPlus limit the application of most classical control techniques. The
proposed context-based model, on the other hand, uses simple LTI models to sim-
ulate airflow (with all its limitations) and other thermodynamic behaviors such as
the indoor solar-air transmission function, that uses a Butterworth filter as a very
rough approximation to more elaborate solar radiation calculations. The resulting
LTI models are much simpler and appropriate for real-time control applications.

There are not many articles in the literature that show how RC models can be
used to model variations in the TZ’s thermodynamic behavior. An additional proce-
dure to validate the importance of using context, as a model simplification strategy,
could be comparing the performance of a context-based model against the situation
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Table 6.5: RC values for the model that was used in the application example (repre-
sented in Figure 4.8).
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Table 6.6: The hybrid time set and discrete trajectory of the running example.
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Figure 6.8: Execution and simulation results showing the outdoor temperature (T
a

)
and indoor temperatures obtained using the model (T

in

_Model) and with simulation
using EnergyPlus (T

in

_EP). Both curves T
in

_Model and T
in

_EP overlap almost
exactly.
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Figure 6.9: Histogram of the error distribution for the example in Figure 6.8.

where just a single RC model is used for every configuration of the TZ. However,
the importance of modeling the variations in the TZ’s thermodynamic behavior can
be inferred directly from Figures 5.11, 5.14 and 5.15b, where model parameters are
shown to have a direct implication on the evolution of the indoor temperature. A
single RC model, with the same number of parameters as the LTI models used by
a similar context-based model, will not correlate so well with EnergyPlus because it
would have to find a compromise to model all configurations with a single set of RC
parameters. Context-based models have the advantage of using several LTI models
with different RC parameters adjusted to each particular context. To represent the
TZ with a single RC model, that has the same level of accuracy as a context-based
model, more complexity must be added to the RC model and in some cases (e.g., when
using variable resistances and switches), this level of accuracy is not even possible.
This concludes that context-based models are a more flexible and accurate solution
for representing variations in the thermodynamic behavior of a TZ, when compared
to the RC models used in the past literature.
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6.3 Summary

This chapter presented the simulation results of the experiments described in Chap-
ter 5. Results for the reinforcement learning section show that the BAS is capable of
learning, for both Bang-bang Heater and Set Point Heater problems, how to minimize
the supply of heat while guaranteeing comfort. In both cases, the BAS is capable of
exploiting the lower limits of the temperature that the occupant is capable of sup-
porting, without interacting with the system. Several experiments were tested: a case
where the occupant is persistent, and a more realistic situation, where the occupant
does not always interact when uncomfortable. Results show that, in order to increase
learning performance, the BAS must take into account the average number of interac-
tions that occur in a certain time horizon, in order to account for the thermodynamic
inertia of the thermal zone. Simulation results show a trade-off between comfort and
the cost of heating, depending on the weights set in the reinforcement function. By
setting w

1

and w

2

, the learning algorithm will tend to converge to a heating strategy
that minimizes the penalty (negative reward) according to those weights. After a
certain learning period, the BAS adjusts the zone temperature according to the oc-
cupant’s preferences and occupancy schedules. This temperature can be adjusted to
a minimum set point where the occupant, usually, no longer complains.

The second section of this chapter showed the execution of the context-based
thermodynamic model described in the example given in Chapter 4. The execution
of the model was compared with the simulation outputs of EnergyPlus, which is
a simulator that creates and uses models with much higher complexity. This fact
validates the proposed context-based model, at least empirically, opening doors for
future real-time control applications.
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“It seems to me that the natural world is the greatest source of excitement; the greatest
source of visual beauty; the greatest source of intellectual interest. It is the greatest
source of so much in life that makes life worth living.” – David Attenborough (English
broadcaster and naturalist).

People spend a substantial amount of their time inside buildings which are respon-
sible for 40% of global energy usage and 33% of the total greenhouse gas emissions.
Advances in technology for the architecture, construction, and building operations
are foreseen to promote up to 70% of energy savings in this sector by the year 2030.
To meet these requirements, smart buildings are expected to integrate more efficient
building technologies and use state-of-the-art machine-learning techniques in their
building automation systems for various building applications. These techniques will
be used to model and predict building variables, and for evaluating the quality of au-
tomated decisions by controlling internal systems and effectors while trying to satisfy
certain goals such as reducing energy wastage, operating costs and occupant discom-
fort. However, there is still a huge set of challenges for machine-learning that are not
easy to address with current building technologies. Smart buildings are currently still
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an open problem for research.

7.1 Reinforcement Learning for HVAC Control

Buildings are very large complex systems that integrate several energy systems.
Since the heating, ventilation and air conditioning system is among the most energy-
demanding systems in a building, this dissertation started by targeting this system
and exploring how a well-known reinforcement learning algorithm - Q-learning - could
be used to optimize the operation of the heating/cooling system. This research was
guided by the following idea: since different building spaces can have different condi-
tioning requirements (depending on occupancy schedules, comfort preferences, envi-
ronmental conditions associated with lighting, equipment, solar gains, etc.), a building
automation system should be able to automatically explore and find the optimal re-
quirements for each space. Temperature set points for example must be set according
to an optimization strategy that takes into account goals such as energy savings and
comfort. Therefore, to execute this idea, a novel reinforcement learning method was
proposed for learning the optimal temperature set point scheduling strategy. The
heating scenario was assumed as an example, and a reward function was devised to
penalize the building automation system when the heating was on (proportional to
the amount of energy used for heating), or when an occupant acted upon the heating
user control interface to signal that he/she is feeling “cold”.

Two application examples were given for two different problems of low-level heat-
ing control: Bang-bang Heater and Set Point Heater. The Bang-bang Heater problem
assumes that zonal heating is controlled by alternately switching the activation state
of a heater (there is no temperature set point control). This problem is solved with
straightforward Q-Learning using discrete states and actions. The Set Point Heater
problem on the other hand assumes that the building automation system is capable
of learning how to set temperature set points. The actions and states are continu-
ous values: the zonal temperature set point is controlled (or changes) in minutely
small measures. Therefore, a continuous state and action Q-Learning algorithm was
selected and customized to solve this problem. For both problems simulation results
showed that the building automation system was capable of learning how to adjust
the heating system for energy savings, while also taking into account the occupant’s
preferences and schedules (also learned through experience and observation) in order
to keep the occupant comfortable and satisfied with the building environment. When
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considering the amount of energy used globally for heating, it is this researcher’s be-
lief that both control strategies can have a significant impact on reducing the global
energy bill and greenhouse gas emissions.

Following these results the dissertation proceeded with a discussion on the pre-
sented reinforcement learning methodologies. This discussion included the fact that
reinforcement learning algorithms present limitations when it comes to explaining
the system’s automated actions to humans. Since policies are encoded in Q-Value
tables or in neural network weights, presenting an explanation to a human opera-
tor is not a straightforward process. Moreover, the reinforcement learning problem
becomes computationally expensive to solve as more states are added to represent
the building environment and the interaction with its occupants with more accuracy.
Therefore, the research efforts for this dissertation became focused on finding alterna-
tive solutions to represent the state of the building environment taking into account
that this environment may include an intractably large set of variables. Thereupon,
the research problem changed towards the goal of finding accurate models for the
building environment which can be used, among other things, for building simula-
tion, model predictive control, and for synthesizing building automation plans (using
task planning algorithms) that are explicable an predictable to humans.

7.2 Context-based Thermodynamic Models

Developing efficient computational models that accurately describe the thermody-
namics of building spaces to optimize the energy efficiency of the heating, ventilating,
and air conditioning systems is of the utmost importance. For this application, a sig-
nificant part of the literature over the past twenty years has been using time-invariant
reduced models to represent the thermodynamic connection between different ther-
mal zones. A limitation of this solution lies in the fact that building environments are
not time-invariant. Indeed, there are many conditions in a thermal zone that change
over time. The occurrence of events such as doors, windows and blinds being opened
or closed, can drastically affect the underlying processes that govern the dynamics
of temperature evolution of building spaces, rendering these standard time-invariant
models less effective for control and prediction. Recent literature has shown that a
single reduced model cannot efficiently cover all the different contextually-dependent
conditions. Such a model would have to be sufficiently complex to describe the
thermodynamics of a thermal zone for every situation making it computationally ex-
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pensive for real-time applications. To solve this problem this thesis describes the
evolution of temperatures in building spaces by capturing discrete changes in the
thermal zone through the concept of context. Context is defined as a discrete state
conditioned by a set of variables such as the opening factor of windows, shades, natu-
ral ventilation, and other variables that affect the thermodynamics of building spaces.
A context-based model contains a set with several linear time-invariant models, each
effective in representing the thermal behavior of a building space in an associated
set of contexts. Therefore simpler models can selected according to certain specific
conditions that are relevant for the building thermodynamics during a certain time
frame. The descriptions in this thesis denote a context-based model implemented as
an open hybrid automata, whose transitions between different contexts and models
are described by a set of context-connecting edges, with guards and effects associated
with the domain and range of the validity of each context and associated model.

The merit of this study’s approach lies in the fact that many building models
are expected to become conditioned by more contextual-information as building en-
vironments become more observable (e.g., to include the state of windows, doors and
blinds) for computation. Therefore, it becomes important the development of mod-
els that can accurately describe the coexistence and interaction between the discrete
and continuous dynamics of context and temperatures. Up until now, most of these
environment changes were treated as disturbances in the literature. Considering the
current available options for thermodynamic modeling: complex linear and nonlin-
ear models that are accurate and suitable for off-line simulation but computationally
expensive; simple lumped models that are appropriate for real-time applications but
have limited accuracy. This dissertation advances the state of the art by showing
that context-based models combine the best of both options. By using the concept
of context several reduced models can be used to represent the thermodynamics of a
building space while retaining similar prediction capabilities as models with higher
complexity. To clarify and validate this thesis’ proposal a simulated example was
presented using Matlab and EnergyPlus, integrated with the Buildings Controls Vir-
tual Test Bed software environment. Using the outputs of EnergyPlus as a ground
truth, results show that the context-based model can effectively predict the evolution
of temperatures in a simulated zone through different context changes if context is
observable and synchronized with the model.
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7.3 Future Work

It is this researcher’s belief that this dissertation establishes a landmark connection be-
tween hybrid systems, thermodynamic modeling, and context-based reasoning. This
connection opens an enormous amount of possibilities for research. For system mod-
eling, context-based models can be extended to include other environment variables
such as illumination, CO

2

, humidity, energy and power. These models can also be
used to model other building systems such as elevators, mechanical ventilation and
energy storage devices. A direction for research includes automatic identification of
context-based models based on the observation of environmental variables, and the
application of these models for model-predictive control. Furthermore, we speculate
that by pairing models with contextual information machine-learning and reasoning
algorithms can be used to find optimal conditioning plans for the thermal zones.
Context-based models can be used to provide building managers and occupants with
a better insight into building thermodynamics and they represent an important re-
search step towards the possibility of providing humans with better explanations on
how thermal zones are conditioned. We envision an application output that would
show, for example, that by leaving a door open, a thermal zone can be heated by tak-
ing advantage of solar gains in another thermal zone; or that a certain window should
be closed for energy savings. To accomplish this level of planning and reasoning,
machine-learning and planning algorithms in hybrid domains need suitable represen-
tations for the building environment and we believe that context-based models are
suitable candidates. The following sections include examples of recent work and op-
tions of research that can extend the work presented in this dissertation towards these
objectives.

Planning and Model Checking in hybrid domains

• Bogomolov, Sergiy and Magazzeni, Daniele and Podelski, Andreas and Wehrle,
Martin. (2014) Planning as model checking in hybrid domains. In: Proceedings
of twenty-eighth AAAI Conference on Artificial Intelligence and the twenty-
sixth Innovative Applications of Artificial Intelligence Conference (AAAI 2014)
: 27-31 July 2014, Québec City, Québec, Canada, Vol. 3. Palo Alto, Calif., S.
pp 2228-2234.

• Bogomolov, Sergiy V; Magazzeni, Daniele; Minopoli, Stefano; Wehrle, Martin,
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PDDL+ Planning with Hybrid Automata: Foundations of Translating Must
Behavior. In: Proceedings of the Twenty-Fifth International Conference on
Automated Planning and Scheduling (ICAPS 2015): 7-11 June 2015, Jerusalem,
Israel, pp. 42-46.

• Nicolò Giorgetti, George J. Pappas and Alberto Bemporad, Bounded Model
Checking in Hybrid Dynamical Systems, Proceedings of the 44th IEEE Confer-
ence on Decision and Control, and the European Control Conference, December
2005, Seville, Spain, pp. 672-677.

• Thomas A. Henzinger, Pei-Hsin Ho, Howard Wong-Toi, HyTech: A Model
Checker for Hybrid Systems, Software Tools for Technology Transfer, 1997,
1, pp. 460-463.

Control with Hybrid Systems

• Daniele Corona, Alessandro Giua, Carla Seatzu, Stabilization of switched sys-
tems via optimal control, Nonlinear Analysis: Hybrid Systems, January 2014,
Volume 11, pp. 1-10.

• E.F. Camacho, D.R. Ramirez, D. Limon, D. Muñoz de la Peña, T. Alamo, Model
predictive control techniques for hybrid systems, Annual Reviews in Control,
April 2010, Volume 34, Issue 1, Pages 21-31.

• Vassilis M. Charitopoulos, Vivek Dua, Explicit model predictive control of
hybrid systems and multiparametric mixed integer polynomial programming,
AIChE Journal, July, Vol. 62, No. 9, 2016, pp. 3441-3460.

Model Identification

• Daniel L. Ly, Hod Lipson, Learning Symbolic Representations of Hybrid Dy-
namical Systems, Journal of Machine Learning Research, Dec 2012, Vol. 3. 1,
pp 3585-3618.

• Kersting, S.; Buss, M., Online identification of piecewise affine systems. In: Pro-
ceedings of the International Conference on Control (CONTROL), July 2014,
UKACC, pp. 86-91.
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• M. Tabatabaei-Pour, M. Gholami, H. R. Shaker and B. Moshiri, Recursive
Identification of Piecewise Affine Hybrid Systems, 9th International Conference
on Control, Automation, Robotics and Vision, Singapore, 2006, pp. 1-6.

• Seyed Mojtaba Tabatabaeipour, K. Salahshoor, Behzad Moshiri, A k-plane
Clustering Algorithm for Identification o Hybrid Systems, Proceedings of the
8th WSEAS Int. Conference on Automatic Control, Modeling and Simulation,
Prague, Czech Republic, March 12-14, 2006, pp 334-339.

• Daniel L. Ly, Hod Lipson, Learning Symbolic Representations of Hybrid Dy-
namical Systems, Journal of Machine Learning Research, 13, 2012, pp 3585-
3618.

Context-based Reasoning

• Gary Stein, Aveline J. Gonzalez, Learning in context: enhancing machine learn-
ing with context-based reasoning. Journal of Applied Intelligence, 2014, Vol.
41, 3, pp. 709-724.

• Duen-Ren Liu; Chih-Kun Ke; Mei-Yu Wu, Context-based knowledge support
for problem-solving by rule-inference and case-based reasoning, in: 2008 Inter-
national Conference on Machine Learning and Cybernetics, 12-15 July 2008,
Vol. 6, pp. 3205-3210.

• Akshay Krishnamurthy, Alekh Agarwal, John Langford, Contextual-MDPs for
PAC-Reinforcement Learning with Rich Observations, CoRR, 2016.
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A
Heat Transfer Through Building

Constructions

This Appendix describes the 1-D Heat transfer process through the building envelope.
It provides an explanation of the equations and some examples using the building
envelope described in Section 5.2.

A.1 Heat Transfer Through a Material Layer
Heat transfer by conduction through the building envelope is one of the principal
components of space cooling/heating loads and energy requirements. Most building
walls consist of several homogeneous layers of different materials; each material layer,
depending on the thermal properties, can transfer and accumulate a certain amount
of heat. To characterize these thermal properties, a material layer, represented in
Figure A.1, is defined by its thickness (z-axis), section area A, thermal conductivity
�, specific heat capacity C

p

and density ⇢. The specific heat capacity is the energy
required to raise a unit mass of the material one unit in temperature, and the thermal
conductivity is the property of a material to conduct heat. Heat (or thermal energy)
of a body with uniform properties is given by:

Heat energy = mC

p

T [J]

where m is the body mass and T is the body temperature.

A.1.1 Fourier’s Law of Heat Transfer
Heat flux is usually modeled as a one-dimensional transient process with constant
material properties. Heat flux from regions of higher temperature to regions of lower
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Figure A.1: Heat flux Q

a

and Q

in

at the different sections of a material layer with
thickness l, section A, thermal conductivity �, specific heat capacity C

p

, and density
⇢, placed between two temperatures T

a

and Tin (z = 0 and z = l).

temperature is proportional to the negative temperature gradient and the conductiv-
ity of the material:

Q = ��A@T
@z

(A.1)

A.1.2 Conservation of Energy
Consider that the layer in Figure A.1 is uniform (�,C

p

and ⇢ are all constant) with
non-uniform temperature lying on the z-axis. Also assume that the sides are insulated
and only the ends on the z-axis are exposed, with no heat source withing the layer.
Consider an arbitrary thin slice of the layer of width �z between z and z + �z,
such that the temperature thoughout the slice is assumed constant and represented
as T(z, t). Thus,

Heat energy of the slice = ⇢A�zC

p

T(z, t).

By conservation of energy,

Change of heat energy
of slice in time �t

=

Heat from
left boundary +

Heat from
right boundary

From (A.1) we get,

⇢A�zC

p

T(z, t +�t)� ⇢A�zC

p

T(z, t) = �t

✓
��A@T

@z

◆

z

��t

✓
�A

@T
@z

◆

z+�z

Rearranging yields,

T(z, t +�t)� T(z, t)
�t

=

�

C

p

⇢

0

B@

⇣
@T
@z

⌘

z+�z

�
⇣

@T
@z

⌘

z

�z

1

CA

Taking the limit �t, �z ! 0, gives the following Fourier continuity equation,

@T(z, t)
@t

= ↵

@

2T(z, t)
@z

2

(A.2)
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where
↵ =

�

⇢C

p

[m2 s�1

]

represents the thermal diffusivity that measures the ability of the layer material
to conduct thermal energy relative to its ability to store thermal energy.

A.1.3 Laplace Transform
Considering the heat conduction equation given by (A.2) in the form:

@

2T(z, t)
@z

2

� 1

↵

@T(z, t)
@t

= 0

with initial conditions
T (x, 0) = 0,

the Laplace tranformation yields

@

2T(z, s)
@z

2

� s

↵

T(z, s) = 0. (A.3)

The general solution of the differential equation (A.3) is

T(z, s) = b

0

cosh

✓r
s

↵

z

◆
+

b

1p
s

↵

sinh

✓r
s

↵

z

◆
(A.4)

with
b

0

= T(0, s) = T
a

and b

1

=

@T(0, s)
@z

= �Q

a

�A

From (A.1) and (A.4) we obtain the following heat flux expression:

Q(z, s) = ��A
"
b

0

r
s

↵

sinh

✓r
s

↵

z

◆
+ b

1

cosh

✓r
s

↵

z

◆#
(A.5)

A.1.4 Transmission Matrix
The material layer, represented in Figure A.1 with thickness l, can be represented
by the two-port network/quadripole represented in Figure A.2 [257]. The resulting
transmission equation, given by (A.4) and (A.5), relates the temperatures and heat
fluxes at both sides of the layer:


T
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in
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� 1
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(A.6)
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Figure A.2: Thermal two-port associated with a construction layer.

A.1.5 Electrical Analogy
Considering the electrical analogy using the conductive thermal resistance and ther-
mal capacitance given by (5.5) and (5.6), the resulting transmission equation, given
by (A.6), becomes:


T
in
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Q

in

(s)

�
=
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cosh(

p
sRC) � Rp

sRC

sinh(

p
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R
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p
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p
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# 
T
a

(s)

Q

a

(s)

�
. (A.7)

By rearranging (A.7) (inverting the transmission matrix), we obtain:

T
a

(s)

Q

a

(s)

�
= M(s)


T
in

(s)

Q

in

(s)

�
, (A.8)

where M(s) is the transmission matrix in terms of Laplace variable s, given by:

M(s) =


A (s) B(s)

C (s) D(s)

�
=

"
cosh(

p
sRC)

Rp
sRC

sinh(

p
sRC)

p
sRC

R

sinh(

p
sRC) cosh(

p
sRC)

#
(A.9)

A.1.6 Model Reduction
Taking into account that the elements of the transmission matrix M can be expressed
as Taylor series:

A (s) = D(s) = 1 +

sRC
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a reduced model of M can be obtained from the truncated Taylor series of its elements
[240]. The second-order limited developments of the transmission matrix are given
by:

A (s) = D(s) ⇡ 1 +

sRC

2

+

(sRC)

2

24

B(s) ⇡ R

⇣
1 +

sRC

6

+

(sRC)

2

120

⌘

C (s) ⇡ sC

�
1 +

sRC

6

�

(A.10)

A.2 Multi-Layer Walls
Most building walls consist of more than three layers as shown in Figure A.3 and can
also be represented by the two-port network represented in Figure A.2. Heat transfer
through a n-layer wall can also be given by (A.8), with the transmission matrix M

being the product of all layer transmission matrices including the superficial heat
transfers M

ext

and M

int

at both sides as follows:

M(s) = M

in

(s)M

n

(s) . . .M

1

(s)M

ext

(s) (A.11)
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Figure A.3: Heat transfers and construction of a multi-layer wall.

The total resistance R and capacitance C of the wall, given respectively by (5.8)
and (5.9), include the resistance and capacitance of each of the n layers including
the exterior and interior convective resistances R

ext

and R

in

, calculated according to
(5.7). If all transmission matrices M

i

, i = 1, . . . , n are reduced and given by (A.10),
then the second-order matrix M can be directly written in the form:

M(s) =


1 + sm
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+ s

2

m

2

R + sn

1

+ s

2
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2
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2

o
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2
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(A.12)

and parameters m

1

,m

2

, n

1

, n

2

, o

2

are calculated and obtained directly from (A.11).
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Figure A.4: 3R2C Wall model.

A.2.1 Modeling of a Multi-Layer Wall using a 3R2C Model
A multi-layer can be modeled using two internal capacities with the 3R2C wall model
illustrated in Figure A.4. Adjusting the 3R2C model to represent the heat transfer
through the all the layers of the wall (with the total resistance R and capacitance C)
equates to finding parameters ↵

1

,↵

2

,↵

3

, �

1

, �

2

such that:
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where in steady state conditions verify:
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+ ↵

3

= 1
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+ �

2

= 1

(A.14)

Considering the two different two-port networks represented in Figure A.5 and
their associated transmission matrices, the transmission matrix of the 3R2C model is
given by the product of the matrices relating to each component as follows:

M

3R2C
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1 R
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0 1

� 
1 0

sC

1

1

� 
1 R

2

0 1

� 
1 0

sC

2

1

� 
1 R

3

0 1

�

=


1 ↵

1

R

0 1

� 
1 0

s�

1

C 1

� 
1 ↵

2

R

0 1

� 
1 0

s�

2

C 1

� 
1 ↵

3

R

0 1

�

= . . . =


1 + sRCx

1

+ (sRC)

2

x

2

R + sR

2

Cx

3

+ s

2

R

3

C

2

x

4

sC + s

2

RC

2

x

5

1 + sRCx

6

+ (sRC)

2

x

7

�

(A.15)

172



A.2. MULTI-LAYER WALLS

Q

a

Q

in

Z

T
a

T
in

1 2

3 4

M

a

(s) =


1 0

1/Z 1

�

Q

a

Z

Q

in

T
a

T
in

1 2

3 4

M

b

(s) =


1 Z

0 1

�

Figure A.5: Two-port network configurations with their associated transmission ma-
trices below.
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Parameters ↵

1

,↵

2

,↵

3

, �

1

, �

2

are directly obtained by identifying matrices M

3R2C

(s)

and M(s), given by (A.12) as follows:
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by dividing x

2

by x

4

we obtain:

↵
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= n
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/(m
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R)

by dividing x

4

by x

5

we obtain:

↵

1

= n

2

/(↵

3

R

2

o

2

)

and ↵

2

is obtained by the condition linked to steady state given by:

↵

2

= 1� ↵

1

� ↵

3

.

Parameter �
2

can be obtained from x

1

and �

1

= 1� �

2

.
Resistors R

1

and R

3

include R

ext

and R

int

, since they were added to M(s) in
(A.11). The final values of R

1

and R

2

, according to the full model shown in Figure
A.4, are obtained by subtracting R

ext

and R

int

, respectively.
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Figure A.6: 3R4C Wall model.

A.2.2 Modeling of a Multi-Layer Wall using a 3R4C Model
For shorter simulation time steps, it is necessary to consider the effects of the thin
layer on the surfaces of the wall. For this purpose, the model 3R2C must be updated
so that temperatures pares T

a

/T
1

and T
4

/T
in

are not instantly coupled. Fraisse et
al. [240] proposes transferring 5% of the two internal capacities to each of the surfaces
of the wall using the 3R4C model shown in Figure A.6.

A.3 Simulation Results
In this section a multi-layer wall is simulated for the building described in Section
5.2.3, with no doors and no windows. Walls and roof are composed by the materials
listed in Table 5.2. Simulation results are presented for both the 3R2C and 3R4C
models.

A.3.1 3R2C Wall Model
The thermophysical characteristics of the multi-layer walls are modeled using the
3R2C model represented in Section A.2.1. For the entire TZ, the model is illustrated
in Figure A.7. In this model temperatures T

1

,T
2

,T
3

and T
4

and T
in

evolve according
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Figure A.7: TZ model using a 3R2C RC model for the envelope.

to the following set of equations:
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To obtain the second-order reference matrix M(s) given by (A.12), the transmis-
sion matrix was calculated using (A.8) with the second order limited developments
given by (A.10) for each transmission matrix M

1

,M

2

and M

3

. By following the proce-
dure described in Section A.2.1, and using the Matlab symbolic toolbox, we obtained
the following values for the 3R2C model:

R

1

⇡ 175.428⇥ 10

�6 KW�1

R

2

⇡ 350.605⇥ 10

�6 KW�1

R

3

⇡ 168.303⇥ 10

�6 KW�1

C

1

⇡ 33.618⇥ 10

6 JK�1

C

2

⇡ 31.426⇥ 10

6 JK�1

Figure A.8 shows the resulting temperatures T
in

,T
1

and T
4

, given by the 3R2C
model (T

in

_Model,T
1

_Model,T
4

_Model) and by EnergyPlus (T
in

_EP,T
1

_EP,T
4

_EP).
Figure A.9 shows the histogram of errors between T

in

_Model and T
in

_EP, were
MAE = 0.0612

�C and MAX = 0.1683

�C.
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(b) Wall surface temperatures.

Figure A.8: Temperature evolution for a multi-layer wall obtained with the 3R2C
model (_Model) and EnergyPlus (_EP).
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Figure A.9: Histogram of errors between T
in

_Model and T
in

_EP using the 3R2C
model.

A.3.2 3R4C Wall Model
In this section the walls are modeled using the 3R4C network shown in Figure A.6.
For this purpose, we calculated the new capacitors as follows:
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In the 3R4C model temperatures T
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and T
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evolve according to the
following set of equations:
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Figure A.10: Histogram of errors between T
in

_Model and T
in

_EP using the 3R4C
model.

Using the 3R4C model, Figure A.11 shows the resulting temperatures T
in

,T
1

and
T
4

, given by the model and by EnergyPlus. Figure A.10 shows the histogram of
errors between T

in

_Model and T
in

_EP, were MAE = 0.0556

�C and MAX = 0.1405

�C.
Compared to the 3R2C model, the error is slightly smaller as expected. Therefore, this
model is selected to represent the building walls in the full-scale RC model described
in Chapter 4.
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(b) Wall surface temperatures.

Figure A.11: Temperature evolution for a multi-layer wall obtained with the 3R4C
model (_Model) and EnergyPlus (_EP).
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