
UNIVERSIDADE TÉCNICA DE LISBOA

INSTITUTO SUPERIOR TÉCNICO
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Abstract

This thesis introduces novel methods for cooperative perception (CP) in a multirobot team.

CP involves cooperatively estimating the position of a tracked object by a team of mobile

robots or/and cooperatively estimating the localization of the tracking robots in the team.

The central feature of these methods is their integrated design, where different issues, such

as sensor fusion, disagreement among sensors, inconsistent sensor measurements, occlu-

sions and sensor failures, are handled within a single Bayesian framework. The introduced

CP methods are based on particle filters and graph-based optimization, and address sce-

narios where: i) either the individual robot’s localization or the object tracking by each

individual robot is assumed to be determined by other existing methods; and ii) the track-

ing robot’s pose, teammates’ poses and the tracked object’s positions are estimated in a

unified framework.

The theoretical formulation of the CP methods and the results of their implementation

on real robots are presented. The case studies compare the features and provide quantita-

tive analysis of the introduced methods, including robustness tests, when applied in real

robot experiments. We also demonstrate the utilization of one of the CP methods as a

feedback module in a closed loop multirobot formation control system that minimizes the

uncertainty of the cooperatively tracked object’s position estimate.

The prerequisites of the experimental evaluations led to the development of a novel de-

tection algorithm for spherical objects, the implementation of a stereo vision-based ground

truth system and the creation of real robot datasets on which the proposed CP methods

were implemented. The datasets are made publicly available for the benefit of the robotics

community at large.
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Resumo

Nesta tese são apresentados novos métodos de percepção cooperativa (PC) numa equipa

com múltiplos robôs. A percepção cooperativa envolve estimar (cooperativamente) a

posição de um objecto monitorizado por uma equipa de robôs móveis e/ou estimar a local-

ização dos robôs que executam a monitorização. A caracteŕıstica central destes métodos é

a abordagem integrada, onde diferentes problemas, tais como a fusão de dados sensoriais,

o desacordo entre sensores, os dados sensoriais inconsistentes, as oclusões e as falhas de

sensores, são tratados através de um enquadramento Bayesiano único. Os métodos de PC

propostos são baseados em filtros de part́ıculas e optimização baseada em grafos, e são

concebidos para cenários em que: i) ou a localização de cada robot ou a monitorização

de objectos por cada robot é assumida como sendo determinada por outros métodos ex-

istentes, e ii) a postura (posição + orientação) do robot que executa a monotorização,

as posturas dos seus companheiros de equipa e a posição do objecto monitorizado são

estimadas usando um enquadramento unificado.

A formulação teórica dos métodos de PC e os resultados da sua aplicação em robôs

reais são também introduzidos. Os estudos de caso visam comparar as caracteŕısticas dos

métodos introduzidos e fornecer uma análise quantitativa dos mesmos, incluindo testes

de robustez, quando aplicados em experiências com robôs reais. Também se demonstra

a utilização de um dos métodos de PC como um módulo de retroacção num sistema de

controlo de formações de múltiplos robôs, em cadeia fechada, que minimiza a incerteza da

posição estimada do objecto seguido cooperativamente.

Os pré-requisitos das avaliações experimentais levaram ao desenvolvimento de um novo

algoritmo para detecção de objectos esféricos, à implementação de um sistema de ground

truth baseado em visão estéreo, e à criação de conjuntos de dados de robôs reais em que os

métodos de PC propostos foram implementados. Estes conjuntos de dados estão dispońıveis

para o benef́ıcio da comunidade de robótica em geral.
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Chapter 1

Introduction

1.1 Motivation

T
he field of sensor fusion, including its use for single and multiple target tracking [1] [2]

[3] [4] [5] [6] [7] is now very mature. However, it does frequently address situations

where the sensors are static, know their location in a global frame with no uncertainty, and

occlusions occur rarely. When sensors are mobile, e.g., mounted on the top of mobile robots,

their knowledge of their own localization may degrade over time and/or during time periods

due to a number of reasons (e.g., absence of known environment features, bad odometry)

and this impacts the uncertainty in the determination of the target position in the global

frame, where it is fused with the estimates from the other sensors. Furthermore, occlusions

can occur more frequently, as they are due not only to the target object(s) path but also

to the motion of the different sensors/robots. Therefore, the problem of cooperatively

detecting and tracking a moving object by a team of mobile sensors is an extension of sensor

fusion in which one has to handle occlusions, disagreements between sensors, and dynamic

changes of the observation models due to frequent spatial changes. The inconsistency or

disagreement among various mobile sensor observations can occur primarily due to the

following factors: i) difference in each sensor’s observation model ii) global localization

uncertainty of the robots, the mobile platforms on which the sensors reside. Developing a

Bayesian approach to cooperatively track an object by a team of mobile robots and use it

to improve the tracking robots’ localization, where the aforementioned inconsistencies or

disagreements are addressed in an integrated manner is the central theme of this thesis.
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1.2 Contributions

The novel contributions of this thesis are as follows:

• A particle filter-based (PF) algorithm for unified cooperative multi-robot localiza-

tion and object tracking (PF-UCLT) in an integrated framework. The framework is

decentralized and designed for online implementation on real robots.

• A pose graph optimization-based method for cooperative multi-robot localization

and object tracking in an integrated framework. The framework is centralized and

designed for offline implementation on previously collected robots’ measurements

datasets. It has been accepted as a full length-article [8] to be published in the

proceedings of the 2013 IEEE International Conference on Robotics and Automation

(ICRA 2013).

• A PF-based multirobot cooperative object tracking (PF-MCOT) algorithm which

fuses the information from teammates by taking into account their localization con-

fidences to reduce the tracked object’s position estimate uncertainty while effectively

handling inconsistent global frame observations of the poorly localized robots in the

team. The algorithm is decentralized and designed for online implementation on real

robots. It was initially published in the European Conference on Mobile Robotics

(ECMR 2011) [9]. It was later voted as one of the best papers presented in the

conference and invited for a special issue article in the Robotics and Autonomous

Systems (RAS) journal, where it was accepted for publication [10]. PF-MCOT was

successfully applied as a feedback module in a closed loop multirobot formation con-

trol system that minimizes the uncertainty of the cooperatively tracked object. This

has been accepted as a full length-article [11] to be published in the proceedings of

the 2013 IEEE International Conference on Robotics and Automation (ICRA 2013).

• A PF-based multirobot cooperative robot localization (PF-MCRL) algorithm where

a visually shared object is used for regaining the poorly localized robot’s correct

localization. The algorithm is decentralized and designed for online implementation

on real robots. It was published as a chapter in the book RoboCup 2010: Robot Soccer

World Cup XIV. Lecture Notes In Artificial Intelligence, Lecture Notes in Computer

Science [12].

• A mathematical proof for a bijection principle stating that the 3D position of a

spherical object of known radius (the object tracked in the real robots experimental
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evaluation of the CP approaches mentioned above) can be uniquely detected using

only a single image from a fish-eye lens-based camera. It has been submitted as a

full length article to the Journal of Real-Time Image Processing: Special Issue on

Robot Vision and is currently under review.

1.3 State of The Art

Object tracking is a field of research where multiple techniques are currently being re-

searched and developed extensively [13]. PFs are one of the most popular methods em-

ployed for tracking [14]. PF is a non-parametric filter. Non-parametric filters can efficiently

handle multi-modal beliefs. In a generic tracker the motion model of the object being

tracked can be completely unknown and might change over time hence using a parametric

filter can lead to failures quite often. If one uses any standard motion model for the object

in a parametric filter, the tracker can quickly result in low confidence on the posterior when

the object motion changes to a different one or switches randomly. This makes it essential

to have beliefs with multiple modes scattered over the whole state space which makes the

use of a non-parametric filter appropriate. An interesting approach of fusing the Extended

Kalman Filter (EKF) and Monte Carlo PF has been described in [15] where an integrated

self-localization and ball tracking method is presented. In [16] a method for simultaneously

estimating ball position and velocity using Monte Carlo Localization (MCL) is developed.

An efficient implementation of Rao-Blackwellised PF which was successfully demonstrated

on Sony AIBO robots in the four-legged league of RoboCup is presented in [14]. None

of these works use the information from more than one sensor/robot, therefore being less

robust to occlusions and very dependent on the relative state of the robot and the object

tracked.

The authors in [6] presented an efficient solution for multiple static platforms tracking

a moving target while the authors in [17] introduced an interesting approach for the case of

a single moving platform tracking multiple moving moving targets. One important focus

of this thesis is to combine significant parts of both these challenges under a common

unified framework, i.e., to track a moving target using multiple moving sensor platforms.

Including multiple targets with known data association can be viewed as its straightforward

extension. However, the case of multiple moving platforms tracking multiple targets that

occur with unknown data association is not addressed in this thesis but identified as one

of the most prominent future work.

In [18], relationships between fixed world objects and moving objects is explored for
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global object localization. These relationships are communicated to teammates where they

form a set of constrained relations, solving which gives object location estimates. The au-

thors in [7] present a cooperative PF based tracker for Sony AIBO robots, where the fusion

of information involves communicating a reduced set of particles between the robots over

the wireless network, which still remains a huge data set causing inefficient communication.

Our approach overcomes this problem, explained in the subsequent chapters of this the-

sis. In [19] a new cooperative perception architecture is developed and tested on multiple

UAVs for forest fire detection and localization. A substantial effort is put on developing the

fire detector and fusion of data from various sensors used on-board a single and multiple

UAVs. The errors that creep in due to the self-localization of the UAVs themselves are

unaccounted for. They are addressed in this thesis.

In [4],[5] a decentralized PF for multiple target tracking is developed and deployed

on flight vehicles. The communication bandwidth problem is solved by transforming the

particle set into a Gaussian mixture model (GMM). In our approaches, we communicate

only the observation measurement vectors and an associated noise covariance matrix be-

tween two robots. This not only further reduces the bandwidth usage but also prevents

the recursive propagation of the estimation errors to the teammates. This problem occurs

when sharing particles (or a parametrized form of it) among the teammates. Recently in

[1], Tim Bailey et al. presented an efficient mechanism for cooperative robot localization

which is an alternative method to overcome the recursive propagation of errors. This is

done by centralizing the cooperative estimation. In their method, each robot first esti-

mates its own pose and then communicates it, along with an inter-robot measurement,

to a central data server. These data, received from all the robots in the team, are then

fused to compute consistent relative localization of every robot. However, this implicitly

means that the robots need to measure the relative distances to other robots in the team.

This assumption could often be implausible, e.g, a scenario where the distance between

the teammates is too large or the environment is too cluttered to use line-of-sight-based

methods for inter-robot measurements.

In [20], a PF based tracker is presented with a unique and novel 3-D observation model

based on color histogram matching. Each robot has an individual tracker and its most

notable feature is that the tracking could be performed in 3-D space without the object

color information, but at the cost of a heavy computational expense. In order to solve

this issue, a novel 3D detector for spherical objects is developed. In [21], a sensor fusion

technique for cooperative object localization using particle filters is presented. Parameters

of a GMM approximating a teammate’s tracker’s particles are communicated to the other

robots. Particles at a robot’s tracker are then sampled using own belief and the received
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GMM.

Another important focus of this thesis is on cooperative localization using a commonly

tracked object by a team of robots. Self-localization is one of the most relevant topics of

current research in robotics. Estimation-theoretic approaches to self-localization, as well as

to self-localization and mapping (SLAM) have produced significant results in recent years,

mainly for single robots, providing effective practical results for different applications. One

of the research frontiers in this topic concerns now cooperative localization (and possibly

mapping) using a team of multiple robots [22] [23] [24] [25] [26].

One of the earlier works on cooperative localization [27] addresses cooperative local-

ization within a Kalman filter framework, where the relative positions of the robots are

the observations of the filtering part of the algorithm, and the state includes the positions

of all the robots. Fox et al introduced an extended version of the general Markov Local-

ization algorithm [28], where two robots use measurements of their relative distance and

bearing to insert an extra step in the belief update algorithm based on the Bayes filter.

They used the Monte Carlo Localization (MCL) sampled version of Markov Localization

algorithm to influence the weights of the particles of the observed robot from the particles

sampling the inter-robot distance and bearing measurement model of the observing robot.

Other authors address multi-robot localization using similar approaches, so as to provide

relative localization of the team members in one of the team robots local frame from inter-

robot distance measurement [29],[30]. None of these works uses environment information

commonly observed by the team robots to improve their localization.

Other works attempt to take advantage of environment features and landmarks to help

a multi-robot team to improve the pose estimates of its own team members, while simulta-

neously mapping the landmark locations. Fenwick et al [31] focus on convergence properties

and performance gain resulting from the collaboration of the team members on concurrent

localization and mapping operations. Jennings et al [32] describe a stereo-vision-based

method that uses landmarks whose location is determined by one of the robots to help the

other robot determining its location. The first approach addresses a general model that

does not take advantage of particular features of the estimation-theoretic methods used

(e.g., particle filters) to improve the robustness and to speed up cooperative localization,

while the second is focused on a particular application.

Some of the subsequent chapters in this thesis include a brief section describing the state

of the art relevant to the algorithms described therein.
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1.4 Thesis Overview and Organization

In this section, we present the structural organization of this thesis. Figure 1.1 presents a

graphical overview for the same1.

In the cooperative perception algorithms presented here, object tracking is performed in

3D. However, it is not obvious that object detection in 3D is possible using only a dioptric

vision system consisting of a single fish-eye lens-based camera. Therefore a parallel work

on 3D object detection using a single dioptric camera system was done. The 3D detector

and the principle on which it is based, along with its mathematical proof, is presented in

Chapter 2.

In Chapter 3, a cooperative approach for tracking a moving object, by a team of

mobile robots equipped with sensors, in a highly dynamic environment, is introduced.

The tracker’s core is a PF, modified to handle, within a single unified framework, the

problem of complete or partial occlusion for some of the involved mobile sensors, as well

as inconsistent estimates in the global frame among sensors, due to observation errors

and/or self-localization uncertainty. Designed in a decentralized fashion, it fuses the object

observation measurements from all the teammates at each robot while taking into account

the teammate’s localization uncertainties as a basis of assigning trust measure on their

object observation measurements. This makes the cooperative tracking resistant to poor

localization of teammates, occlusions and perception errors.

Chapter 4 describes a cooperative localization algorithm based on a modification of the

Monte Carlo Localization algorithm. When a robot detects that it is lost, particles are

spread in the state space not uniformly, but according to the information on the global

location of a visually shared object obtained from a teammate, assuming that the same

object is also visible to the lost robot. The lost robot receives the tracked global position of

the visually shared object from the well-localized robots which have a high confidence on

their estimate of the object’s position. If the lost robot is also tracking the same object in

its local frame, it uses this additional information to help re-localize itself. This algorithm

assumes that the visually shared object is being tracked by each robot individually, using

an object tracking method separate from the robot localization method.

In the first part of Chapter 5, a unified method is presented for cooperative target

1Please note that in Figure 1.1 and the rest of this thesis, detection refers to the process of classifying

an object in a single frame without using any previous (in time) information about that object, whereas

tracking refers to the process of estimating the position or/and velocity of the object based on the most

recent detected position, its previously estimated position(s), object’s motion model and the associated

noise with them.
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Figure 1.1: A flow diagram representing the organization of chapters in this thesis. Each

blue box represents a separate chapter or appendix.

tracking from multiple moving robot frames while simultaneously localizing these robots

using the tracked target as a moving landmark in addition to the known and static land-

marks in the environment. We model this as a least squares minimization problem and
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Figure 1.2: An Illustration of the testbed used in the case study of this thesis. Diffused

colors around the robots represent the uncertainty in their position estimates. In addition

to the ball, shown in its correct position, a blurred ball is shown at its measured position

from each individual robot. Noise in that measurement is shown by diffused colors around

that measured ball position.

show that it can be efficiently solved using sparse optimization methods. This is done by

first constructing a pose graph representation of the problem, where the nodes are robots

and target poses at individual time-steps, and the edges are their relative measurements.

Static landmarks at known positions are used to define a common reference frame for the

robots and the target. A least squares error function is derived from this graph and sub-

sequently minimized by invoking an optimization solver. The g2o [33] framework, which

is used here for the graph optimization, is extended for the multi-robot localization and

target tracking scenario. Note that, as opposed to the other CP frameworks developed in

this thesis, this algorithm is an offline solver. It operates only on a previously collected

dataset of observations and odometry and process all of it in a single batch.

The second part of Chapter 5 presents an online PF-based algorithm of a unified frame-

work for multi-robot cooperative localization and object tracking. The algorithm works

in a decentralized fashion, meaning each robot estimates its own pose, teammates’s poses

and the tracked object’s position, which also corresponds to the state of each particle of

the PF. At every time-step each robot operates on the odometry, static landmarks’ obser-
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vations and the target observation obtained by its own sensors as well as the ones obtained

by its teammate’s sensors and communicated to it using explicit wireless communication.

Essentially, it unifies the algorithms developed in Chapter 3 and 4 while eliminating the

problem of using any relative measurement twice, which would occur if the algorithms

in Chapter 3 and Chapter 4 would run in parallel on a robot team. A novel method is

proposed to substantially reduce the number of PF particles required for this algorithm,

which otherwise would grow exponentially with the number of robots in a team.

Chapter 6 presents the results and analysis of a case study in which the unified CP

algorithms developed in Chapter 5 are implemented on the same dataset for a fair compar-

ison. To achieve this, a dataset was collected on the testbed, both of which are described

in Appendix A. The analysis shows the algorithms’ robustness to various scenarios, e.g,

hardware problems and communication failures. The dataset is made publicly available2

for the benefit of the robotics community at large. Various algorithms ranging from robot

localization, object tracking to simultaneous localization and mapping (SLAM) can be

implemented on this dataset.

The algorithm for multi-robot cooperative object tracking developed in Chapter 3 was

implemented as the feedback module in a multi-robot closed loop formation control frame-

work. This is presented as a case study in Chapter 7. Its goal was to accomplish the final ob-

jectives of the Portuguese project ‘PCMMC: Perception Driven Coordinated Multi-Robot

Motion Control3’. The project aimed to “conceive and implement an active approach to

cooperative perception through coordinated vehicle motion control where the vehicle for-

mation geometry would change dynamically so as to maximize the accuracy of cooperative

perception of a static or dynamic target by the formation vehicles”4. One of its tasks dealt

with the probabilistic methods for formation state estimation, co-operative localization and

tracking of targets, while another task was focused on the integration of the cooperative

tracking with the formation control algorithms on the soccer robots test-bed (Appendix A).

Since the implementation of the algorithms developed in this thesis are done on real

robots, it becomes essential to fully describe the test-bed and the robot’s architecture. This

is presented in Appendix A. The ground truth (GT) system implemented for performance

evaluation of the CP algorithms is presented in Appendix B.

2LRM Dataset download link: http://datasets.isr.ist.utl.pt/lrmdataset/4 Robots DataSet/
3(FCT PTDC/EEA-CRO/100692/2008)
4(http://mediawiki.isr.ist.utl.pt/wiki/PCMMC: Perception-Driven Coordinated Multi-

Robot Motion Control)
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Chapter 2

3D Spherical Object Detector

2.1 Introduction and Related Work

I
n recent years, omni-directional vision involving cata-dioptric [34] and dioptric [35] vision

systems has become one of the most sought-after technology being employed in mobile

robots. The primary reason of this success is a much wider field of view compared to a

perspective projection lens-based camera. A dioptric vision system uses only a fish-eye lens

camera instead of a perspective projection camera/parabolic mirror arrangement which is

used in a cata-dioptric vision system. The calibration parameters of a cata-dioptric system

are susceptible to variations, owing to physical vibrations and impact force when such a

system is installed on a mobile robot platform and subjected to fast motion and unexpected

collisions. The dioptric system overcomes this problem by having a more robust physical

setup. Although we focus on a dioptric vision system (DVS) in this chapter, the algorithm

developed here can be easily modified for cata-dioptric vision systems (CVS) by using the

appropriate projection model and following the steps similar to the ones described further

in this chapter.

Spherical object position estimation is a functionality required by innumerable appli-

cations in the areas ranging from mobile robotics, biomedical imaging, machine vision

to material sciences. In mobile robotics, detection and tracking of spherical objects has

gained substantial attention [36][37], including the use of omni-directional vision systems

to do so. In [34], the authors present a circular Hough transform (HT) based spherical

object detection using a CVS. Although they use a single camera to perform the detection

in real-time, their algorithm assumes that the object maneuvers on a fixed and known

ground plane hence the detection is performed in a 2-dimensional space. They extend the

detection to the 3D space by using a stereo vision system (SVS) on their robots consisting
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of a CVS and a perspective camera installed on the same robot [38]. A similar approach

is taken by authors in [37], where an SVS comprising of a CVS and a perspective camera

looking in the forward direction is used. Here, instead of using an HT-based detection,

the authors use a set of heuristics such as the color of the projected blobs in the image,

the roundness of the blobs, etc., to detect pixel position in each individual image from

both the cameras and later process them using the SVS calibration parameters to obtain

the spherical object’s 3D position. The authors in [39] present an interesting method of

using the rotational invariance of the spherical object in a structure tensor technique to

remove the use of color in the detection process. However, they still use a single perspective

camera and perform detection only in the 2D space, assuming that the spherical object is

on a fixed and known ground plane. Furthermore, in all these works, the diameter of the

spherical object is known beforehand, which is an acceptable assumption for a variety of

mobile robot tasks.

Most of the existing methods in literature make use of an SVS to detect the spherical

object’s position in 3D even when its diameter is known beforehand. Our work however

shows that if the diameter is known, then it is possible to perform the detection in 3D

using only a single camera image. Some of the authors in our research group have earlier

presented a method to do so using a color histogram mismatch-based algorithm [20], how-

ever the concept of uniquely detecting the 3D position using only a single camera image

was not theoretically proven and the method was computationally heavy, often making it

unsuitable for real-time applications.

In this work we present a spherical object detection algorithm for dioptric vision systems

equipped with a fish-eye lens-based camera. The aim is to estimate the 3D world position of

a spherical object’s center using only a single image, given that the diameter of the object

is known beforehand. Since it is not obvious and to the best of our knowledge neither

proposed nor proved in the existing literature that the 3D position of a known sized sphere

can be estimated using a single camera image, we propose and prove a bijection principle for

it before describing the detection algorithm. The bijection principle, formally stated and

proved later in this chapter, proposes that for every given position of a known size spherical

object in the 3D world, there is a unique 2D projected image curve. Hence if in an image a

curve satisfies the criteria of belonging to the family of spherical object projection curves, it

is possible to uniquely identify the spherical object’s 3D world position which was projected

into that image curve. Exploiting this principle, we present a 3D detection algorithm based

on a model fitting approach. This 3D-detector is then plugged into a particle filter-based

(PF) tracker to perform a continuous spherical object tracking. A theoretical analysis of

the run-time computational complexity for our 3D-detector is presented and compared with

12
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that of a Hough transform (HT) based detector, followed by experimental comparisons for

both detectors. An SVS consisting of 2 high resolution cameras is used for the ground

truth (GT) evaluation during the experiment. The GT estimates are used to quantify the

accuracy of our proposed method.

The rest of the chapter is structured as follows. In Section 2.2 we overview the projec-

tion model of the fish-eye lens-based camera used in this work which is essential for the

description of the bijective principle detailed in Section 2.3. The details of an HT-based

3D detector and our model fitting approach-based detector are presented in Section 2.4

and 2.5 respectively. This is followed by Section 2.6 where the experimental results are

presented including a comparison with the GT. We conclude the chapter with final remarks

in Section 2.7.

2.2 Fish-eye Lens Equidistant Projection Model

Figure 2.1: 3-D World frame to image frame transformation due to equidistant projection

model. The camera lens is facing upwards in the positive Z direction in this figure but it

should be noted that when the camera is installed on the robot, the lens faces downwards

in the direction of ground plane on which the robot manoeuvres.

In Figure 2.1, A is a point in the 3-D world frame which after being projected through

the fisheye lens, falls on the point M which lies on the image plane (blue color plane in

Figure 2.1). The projection follows a non-linear transformation function when expressed

13
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in the Cartesian coordinate system, but is linear in the spherical coordinate system (2.1)

and is called the equidistant projection model.

d = fΘ, (2.1)

where the 3D world frame follows a spherical coordinate system with coordinate variables

denoted by r,Θ and Φ and the 2D image frame follows a polar coordinate system with

coordinate variables d and Φ. Since Φ remains unchanged after the transformation it is

denoted by the same variable. f is the field of view (FOV) constant of the lens computed

using the camera’s intrinsic parameters.

2.3 The Bijection Principle

In this section we propose and prove the 3D spherical object to 2D image bijection principle

which states that the periphery of a spherical object of known radius when observed through

a fish-eye lens which follows the equidistant projection model (2.1), always projects into a

unique curve in the image frame for each possible 3D position of that object. Conversely,

each curve in the image, which satisfies the condition of being projected from the periphery

of a known sized spherical object, back projects into a unique 3D position of that spherical

object.

In order to prove this principle, we first introduce the coordinate reference frames for

the 3-D spherical object and the image and the transformation from one frame to the other.

We then find the expression for the curve (later referred as Cs) of the outer periphery of the

sphere in 3D in the object reference frame, which the camera can observe. The projection

model (2.1) is then applied to the curve Cs to obtain the projected curve Ci on the image

plane in the image coordinate frame. This is followed by the proof of uniqueness of the

curve Ci for any 3-D position of the sphere’s (initial spherical object which was observed)

center and vice-versa hence proving the bijection principle.

2.3.1 Co-ordinates and Transformations

The origin of both the image frame (polar) and the reference plane of the world frame

(spherical) is at O in Figure 2.1. The camera’s lens which faces upwards in the positive Z

axis direction is centred at the origin O in this figure. The Z axis is the zenith direction

and the X-Y plane is the reference plane of the world frame as well as the plane which

contains the image plane. M is the projected image point of A in the image frame, the
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distance of which from O is given by d = fΘ where f is the FOV constant of the fish-eye

lens and Θ (in radians) is the inclination angle, the angle which the ray joining the point

A(r,Θ,Φ) in 3-D world frame and the lens’ optical center (O in Figure 2.1) makes with

the optical axis of the lens (Z axis in Figure 2.1). The azimuth angle Φ of the point A in

the world frame is equal to the polar angle of its projected point on the image plane. The

equidistant projection model (2.1) can also be written as a transformation equation in the

matrix form (2.2). [
0 f 0

0 0 1

]
r

Θ

Φ

 =

[
d

Φ

]
(2.2)

The rest of the equations and figures in this proof use these coordinate frames and trans-

formations consistently. (r,Θ,Φ) are henceforth used as the spherical coordinate variables

(world frame’s coordinate system in which the 3-D object resides) and (d,Φ) are hence-

forth used as the polar coordinate variables (image frame’s coordinate system). Note that

the variable Φ is the same in both coordinate systems because the equidistant projection

model (2.1) keeps it unchanged and hence a common variable can be used without any loss

of generality.

Figure 2.2: 3D object to 2D image projection
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2.3.2 Projection Model Applied to a Spherical Object

In Figure 2.2 a spherical object So of a known radius Ro is centred at the point A, the

coordinates of which are (ro,Θo,Φo) in the 3-D world frame. The outer periphery of

So visible to the camera is the circle Cs which is a circle formed by the contact of So’s

tangential cone Q from O on to So itself (see Figure 2.2). The visible periphery Cs is a

circle in 3D world frame which forms the base of the cone Q and has a radius R1 (R1<Ro)

(see Figure 2.3). According to the projection model (2.1), each point on Cs is projected

into the image plane forming a curve Ci. In order to prove the proposed bijection principle,

it is essential to find the equation of the curve Ci in terms of the polar coordinate variables

(d,Φ). The sphere So’s center’s 3-D coordinates: ro,Θo,Φo will serve as the parameters

for Ci’s curve equation. The lens’ FOV constant f and the So’s known radius Ro will be

the fixed constants in Ci’s curve equation. To do so we first find the equation of Cs in

terms of the world frame’s spherical coordinate variables (r,Θ,Φ) and then apply (2.1) on

the coordinate variables in its equation to find Ci. Next, in order to prove the bijection

we will show that for a given triplet of parameters (ro,Θo,Φo), i.e., for a given position of

the sphere So the curve equation Ci represents a unique curve on the image plane. This is

followed by proving the converse, i.e., if there exists a curve of the form Ci in the image

plane, the coefficients of the terms in Ci’s expression will uniquely represent a single point

in the world frame’s 3D space at which the original spherical object So is centred.

2.3.3 Derivation of The Equation of Curve Cs

Observing from Figure 2.2 and 2.3, Cs is a circle which lies on the intersection of the plane

PQ (observed as a line in the cross section Figure 2.3) and the sphere So. The equation

of the the sphere So (2.3) in the world reference frame’s spherical coordinate system is

obtained by transforming a sphere’s standard equation in the Cartesian coordinate system

into spherical coordinate system.

So(r,Θ,Φ) = {(r,Θ,Φ) : r2 + r2
o

−2rro(sin Θ sin Θo cos(Φ− Φo)

+ cos Θ cos Θo)−R2
o = 0}

(2.3)

Since the cone Q is tangential to the sphere So, all points on the curve Cs are at the

same distances from the apex O of the cone Q (see Figure 2.3). As per this argument, in

equation (2.3), where r is the coordinate variable denoting the distance of any point on So

from the origin O, substituting r with the value of l will generate the equation of the curve
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Figure 2.3: Cross-section of Figure 2.2 along the plane perpendicular to X-Y plane and at

an azimuth of Φ0. m̂ is the vector along the azimuth of Φ0 on the reference plane of the

world frame in Figure 2.2.

Cs. From Figure 2.3, the value of l in terms of the sphere’s parameters and constants is

derived as:

l =
√
r2
o −R2

o (2.4)

Performing the substitution of r with the value of l in the equation of So (2.3), we obtain

the equation of the curve Cs as follows:

Cs(r,Θ,Φ) = So(r,Θ,Φ)|r=l

⇒ Cs(r,Θ,Φ) = {(l,Θ,Φ) : r2
o

−ro
√
r2
o −R2

o(sin Θ sin Θo cos(Φ− Φo)

+ cos Θ cos Θo)−R2
o = 0}

(2.5)
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2.3.4 Obtaining Ci from Cs

Applying (2.1) on the coordinate variables of the equation of Cs we obtain

Ci(d,Φ) = {(d,Φ) : r2
o

−ro
√
r2
o −R2

o(sin( d
f
) sin Θo cos(Φ− Φo)

+ cos( d
f
) cos Θo)−R2

o = 0}

(2.6)

which is expressed in the image’s polar coordinate variables d and Φ, the parameters

ro,Θo,Φo which are the spherical coordinates of the sphere So’s center and the fixed con-

stants f (lens’ FOV constant) and Ro (sphere So’s known radius). We represent the curve

Ci(d,Φ) as a function F(d,Φ) with constraints on the variables and parameters in the

following way:

F(d,Φ) = {(d,Φ) : r2
o

−ro
√
r2
o −R2

o(sin( d
f
) sin Θo cos(Φ− Φo)

+ cos( d
f
) cos Θo)−R2

o = 0;

0 < d ≤ f π
2
; − π ≤ Φ ≤ π}

(2.7)

where Ro, f > 0; ro > Ro; 0 ≤ Θo ≤ π
2
;

− π ≤ Φo ≤ π and d,Φ, ro,Θo,Φo, f, Ro ∈ R
The restricted positive limit of d in (2.7) is due to the fact that the image projection of

any real point in the 3-D world frame can attain a maximum value of d = f π
2

due to the

projection model (2.1). The limits of Θo in (2.7) are due to the fact that only the points

on the positive side of the Z axis can form a real image if the camera’s lens is placed at

the origin O and is pointing in the positive Z axis direction. The fixed constants: camera

lens’ FOV constant f and the sphere’s radius Ro represent positive valued quantities by

definition. ro, the distance to the center of the sphere from the principal point of the image

(which is also the origin of the spherical coordinate system) is greater than the radius of the

sphere implying that the camera is always outside the sphere So. The rest of the limits on

the variables and parameters in (2.7) are simply equivalent to the limits of the coordinate

variables in a standard polar or spherical coordinate system.

2.3.5 Proof of Bijection

Principle 1. 3D spherical object to 2D image bijection: The periphery of a

spherical object of known radius, when observed through a fish-eye lens that follows the

equidistant projection model (2.1), always projects into a unique curve in the image frame

for each possible 3D position of that object. Conversely, each curve in the image, which
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satisfies the condition of being projected from the periphery of a known sized spherical

object, back projects into a unique 3D position of that spherical object.

Mathematical Formulation

The bijection principle, as stated above, can be mathematically formulated in the following

way: A map G : S→ C is bijective where

S = {(ro,Θo,Φo) : ro > Ro, 0 ≤ Θo ≤
π

2
, − π ≤ Φo ≤ π;

ro,Θo,Φo ∈ R}, (2.8)

C = {Ci : Ci ≡ F(d,Φ)} (2.9)

for fixed values of f and Ro.

In order to prove the bijection principle we need to establish the following two state-

ments:

• The map G : S→ C is injective.

• The map G : S→ C is surjective.

Proof of Injection

Simplifying (2.7) we get:

F(d,Φ) = {(d,Φ) : 1− α sin( d
f
) cos(Φ)

−β sin( d
f
) sin(Φ)− γ cos( d

f
) = 0}

(2.10)

where

α = ro sin Θo cos Φo√
r2o−R2

o

;

β = ro sin Θo sin Φo√
r2o−R2

o

;

γ = ro cos Θo√
r2o−R2

o

(2.11)

assuming the restrictions on the variables and the parameters to be the same as in (2.7)
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In order to prove that the map G is injective, we need to show that any given triplet

(ro,Θo,Φo), for all ro > Ro, 0 ≤ Θo ≤ π
2
, − π ≤ Φo ≤ π, maps to a unique curve of the

form Ci which implies that the mapping is one to one. Since a curve is a set of points,

it implies that we need to show that a given triplet (ro,Θo,Φo) maps to a unique set of

points in the polar space of (d,Φ) for all 0 < d ≤ f π
2
; − π ≤ Φ ≤ π.

The forward mapping of G is trivial. Considering the simplified equation (2.10), we can

find a set K of all the points in the polar space (d,Φ) which satisfy (2.10) for a given triplet

(ro,Θo,Φo). A given triplet (ro,Θo,Φo) implies that the values of the coefficients α, β and

γ are given.

The mapping G is one to one, i.e., injective if and only if the set of points K maps back to

the unique triplet (ro,Θo,Φo). For the inverse mapping of G, assume that we are given the

set of points K such that all the points (d, φ) ∈ K satisfy the equation of the form (2.10).

Let us pick three distinct points ((d1,Φ1), (d2,Φ2), (d3,Φ3)) ∈ K. In order to show that

three distinct points exist on the curve (2.10), we will first prove that at least four distinct

points exist on (2.10).

Notice that in the family of equations represented by (2.10), the function equated to

0 can be seen in two forms; either Φ as a function of d or d as a function of Φ. By

differentiating such representations of this function w.r.t. d in the first form and w.r.t Φ in

the other and then separately equating both differentials to zero we can obtain the values

for d and Φ at which the function has the maxima and minima. Equations (2.12-2.15)

represent these extrema.

dmax = f(Θo + arcsin
Ro
ro

) (2.12)

dmin = f(Θo − arcsin
Ro
ro

) (2.13)

Φmax = Φo + arcsin
Ro

ro sin Θo
(2.14)

Φmin = Φo − arcsin
Ro

ro sin Θo
(2.15)

At the extremum of d, the corresponding value of Φ and at the extremum of Φ, the

corresponding value of d can be obtained by plugging the values of the extremum back

into (2.10). These points in polar coordinates will be given by (f(Θo + arcsin Ro
ro

),Φo),
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(f(Θo−arcsin Ro
ro

),Φ0), (f(arccos ro cos Θo√
r2o−R2

o

),Φo+arcsin Ro
ro sin Θo

) and (f(arccos ro cos Θo√
r2o−R2

o

),Φo−

arcsin Ro
ro sin Θo

). It can now be verified that these represent four distinct points assuming

the constraints on the constants of (2.10) explained earlier in this section.

Proceeding with the proof of injection, since by initial assumption all the points in the

set K satisfy the curve equation (2.10), the following three equations are true:

α sin(
d1

f
) cos(Φ1) + β sin(

d1

f
) sin(Φ1) + γ cos(

d1

f
) = 1 (2.16)

α sin(
d2

f
) cos(Φ2) + β sin(

d2

f
) sin(Φ2) + γ cos(

d2

f
) = 1 (2.17)

α sin(
d3

f
) cos(Φ3) + β sin(

d3

f
) sin(Φ3) + γ cos(

d3

f
) = 1 (2.18)

In the case of inverse mapping of G, K is given and hence known but the triplet (ro,Θo,Φo)

is unknown, hence α, β, γ become variables. Equations (2.16) to (2.18) can now be seen as

a system of 3 equations in 3 variables: α, β, γ. Expressing this system in matrix form:

Aρ = 13 (2.19)

where

A =


sin(d1

f
) cos(Φ1) sin(d1

f
) sin(Φ1) cos(d1

f
)

sin(d2
f

) cos(Φ2) sin(d2
f

) sin(Φ2) cos(d2
f

)

sin(d3
f

) cos(Φ3) sin(d3
f

) sin(Φ3) cos(d3
f

)

 , (2.20)

ρ =
[
α β γ

]T
and 13 =

[
1 1 1

]T
.

The system in (2.19) has a unique solution for ρ if and only if A is invertible. Also,

from (2.11) it can be easily verified that the triplet (ro,Θo,Φ0) can be uniquely obtained

from the triplet (α, β, γ). Hence in order to show that the map G−1 will map from a set

K to a unique triplet (ro,Θo,Φ0) and therefore prove that the map G is injective, it will

suffice to show that A is invertible under the initial assumptions of the problem.

In the expression of A−1 (2.21), the inverse of matrix A, it can be verified that under

the previously mentioned variables and constants limits, all elements of A−1 will have a

finite value thus proving its existence. Hence the map G is injective.

Proof of Surjection

The proof of surjection is now trivial. A function is surjective if its image is equal to

its codomain. We have already shown that any set of points K = {(d,Φ)} in the polar
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A−1 =



sin(
d3
f

) sin(φ1)

tan(
d2
f

)
−cos(

d3
f

) sin(Φ2)

sin(
d1−d3
f

) sin(Φ1−Φ2)

sin(φ1)

sin(
d2
f

) sin(Φ1−Φ2)

−
sin(

d1
f

) sin(φ1)

tan(
d2
f

)
+cos(

d1
f

) sin(Φ2)

sin(
d1−d3
f

) sin(Φ1−Φ2)

− sin(
d3
f

) cos(φ1)

tan(
d2
f

)
+cos(

d3
f

) cos(Φ2)

sin(
d1−d3
f

) sin(Φ1−Φ2)
− cos(φ1)

sin(
d2
f

) sin(Φ1−Φ2)

sin(
d1
f

) cos(φ1)

tan(
d2
f

)
−cos(

d1
f

) cos(Φ2)

sin(
d1−d3
f

) sin(Φ1−Φ2)

− sin(
d3
f

)

sin(
d1−d3
f

)
0

sin(
d1
f

)

sin(
d1−d3
f

)


(2.21)

coordinate space which satisfies the equation of the form (2.10) (i.e., K is in the codomain

C of the mapping G) maps back to a unique triplet (ro,Θo,Φo) ∈ S implying that K is also

in the range of G. Therefore the codomain of the map G is equal to its image. Hence the

map is surjective.

A mapping is bijective if and only if it is injective and surjective at the same time. By

establishing that the map G is injective and surjective, we conclude that it is bijective.

Hence proving the proposed bijection principle, Q.E.D.

Concluding from this and the previous sub-sections in this section, it is possible to

uniquely identify the position of a known dimension spherical object in 3D using a single

equidistant projected image. Using the proposed principle and its proof, in Section 2.5

we will describe a fast algorithm to detect curves of the form Ci (henceforth referred to

as tear-drop curves because of their visual appearance) in the image and then find the

parameters of those. The 3D position of the center of the spherical object can be found

using these parameters in a straight forward manner.

In order to experimentally validate the correctness of the tear drop curve’s function,

derived mathematically in this section, we implemented a Hough transform-based (HT)

curve detector for curves of the form Ci on a synthetic image generated for few known 3D

positions of a spherical object. We also evaluate, if such a detector is feasible for real-time

tear drop curve detection. This is presented in Section 2.4.

2.4 Hough Transform (HT) for Tear-drop Curves

HT is a very well known tool for curve or shape detection [40]. An HT-based Ci-type curve

detector was applied on a synthetically generated binary image (see, e.g, Figure 2.4) which

contains the tear drop curves. The results show that the parameters found using such a
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detector, correctly correspond to the 3D positions of the sphere’s center (those initially

used to generate the synthetic image).

Figure 2.4: Binary edge image containing the projected tear-drop curves for a set of random

3D positions of a known-diameter sphere.

2.4.1 Computation Time Analysis of The HT-based Detector

To verify if an HT-based approach was suitable for real-time detection of tear drop curves, a

computation time analysis was done. Consider the HT-based detector applied on an image

containing N pixels out of which Ne pixels are considered to be edge points. If the number

of parameters describing the curve to be detected is p and the implementation assumes n

discretization levels for each parameter for the construction of the accumulator bin, then

the run-time complexity for the worst-case scenario of the HT-based detector is O(Nen
p).

In the tear-drop case the parameters are r,Θ and Φ, hence p = 3 therefore the run-time

complexity will be O(Nen
3), i.e., cubic time with respect to the number of discretization

levels for each parameter and linear time with respect to detected edge points.

To experimentally find the computational speed of the HT-based detection, a synthetic

image with only one tear-drop curve was constructed and subjected to the HT-based detec-

tion. This was implemented on a quad-core Intel(R) Core(TM) i3 CPU M 350 @ 2.27GHz

with a 2.9 GiB of RAM. The time taken to perform the detection was 0.43 seconds when one

of the coordinates of the sphere’s center was fixed. This clearly highlights the inefficiency

23



Chapter 2 3D Spherical Object Detector

of using the HT-based detection in real-time. Without fixing any of the sphere’s center’s

coordinate, computation time would further increase. It is worth mentioning that the HT-

based detector works on an an edge image, meaning that an edge detection algorithm must

be applied on the real camera images which will further slow down the detector.

2.5 Model-Fitting Approach

From the previous section we conclude that an HT-based detector for tear-drop curves

is not suitable for detecting a sphere in 3D space in real-time. Hence a new detector is

created based on a model-fitting approach to solve this problem. This approach exploits

the geometrical structure and the curve equation (2.6) of the tear-drop in an efficient way

which is explained in the further subsections. It should be noted that in this approach

the need for edge detection is removed since it works directly on a color-segmented binary

image. This further increases the detection speed.

2.5.1 Algorithm

Algorithm 2.1 Model Fitting Algorithm(Io)

1: Apply color segmentation on Io and obtain image Iseg.

2: Apply erosion and dilation on Iseg.

3: Find connected components in Iseg and mark them as blobs.

4: Find and fit convex hulls on each blob present in Iseg.

5: Find the radial and azimuthal extremities of each convex hull found in Step 4.

6: Use the extremities, found in Step 5, in (2.12-2.15) to solve for ro, Θo and Φo for each

convex hull to classify blobs as a tear-drop.

7: Calculate mismatch factor for each tear-drop.

8: Choose the tear-drop with the least mismatch factor below a pre-defined threshold and

return ro, Θo and Φo corresponding to it.

The model fitting approach algorithm is presented in Alg. 2.1. After grabbing an

image frame, color-segmentation is applied on it to generate a binary image where pixels

corresponding to the sphere’s known color are rendered white and the rest are rendered as

black. Subsequently, erosion and dilation are performed on the segmented binary image

in order to remove spurious noise and to obtain distinct blobs in it by finding connected

components (or contours). Each such blob obtained is a candidate for the projection of
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Figure 2.5: The curve PRQS in the figure is an illustration of the tear-drop curve which

forms the outer periphery of a candidate blob in the image plane (note that it is not

an ellipse although it appears to be so in this synthetic figure). Φ and d are the polar

coordinate representations.

the sphere in 3D onto the image. Note here that the tear-drop curve (2.6) is the equation

of the outer periphery of the projection. This is the reason why in the HT-based detection

we needed the edges of these blobs to perform the detection. However, in this approach

we do not need the edges exclusively. In the next step a convex hull is fit around each

candidate blob. All further computations are performed on these convex hulls.

Before proceeding with the explanation of the next step of the algorithm, it is necessary

to explain the geometrical properties of the tear-drop which are exploited using the convex

hulls obtained so far. In Figure 2.5 a tear-drop (curve PRQS) is illustrated which represents

the periphery of a candidate blob obtained in the step 3 of Alg. 2.1. The tear-drop equation

(2.6) assumes the center of the image to be the origin of the polar coordinates. Using (2.6)

we can find the extremities of it in terms of the curve’s parameters ro, Θo and Φo. These

parameters eventually denote the sphere’s center in 3D space. The extremities are the

points on the tear-drop curve having the maximum and minimum values of the d and Φ

coordinates. In Figure 2.5 they are R, S, P and Q respectively. Equations (2.12-2.15)

express these extremities in terms of ro, Θo, Φo, f , the lens’ known FOV constant and Ro,

the known radius of the spherical object. This is done by differentiating the function in

(2.10) with respect to d and Φ and then separately equating both differentials to zero, as

explained in sub-section 2.3.5 when proving the proposed bijection principle.
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Further in Alg. 2.1, the extreme points in d and Φ for each convex hull is computed. If

the blob enclosed by a convex hull is the actual projection of the sphere on to the image,

then its convex hull’s extremities should be equal to the tear-drop curve’s extremities. This

is the property which we exploit here. The extreme points of the convex hull are plugged

in the equations (2.12-2.15) in order to have a system of 4 equations in 3 variables. Solving

any 3 of these equations and checking for redundancy using the extra fourth equation

leads us to characterize the blob either as a projected tear-drop curve or as a random blob

obtained from some other object of similar color.

The mismatch factor of the blob’s classification as a tear-drop curve is influenced by

the ratio of the number of pixels in the blob to the area of the convex hull as well as the

distance to the blob from the image center. Experimentally finding practical thresholds for

the mismatch factor, spuriously classified tear-drop curves are eliminated from classification

in step 6 of Alg. 2.1.

The convex hull, which is classified as a proper tear-drop curve’s convex hull as per

step 6 and has the minimum mismatch factor as per step 7 of Alg. 2.1, is classified as the

actual projection of the sphere in 3D space. Again using the equations (2.12-2.15) for the

extremities of this convex hull, the parameters ro, Θo and Φo are obtained which was the

desired result of the detection algorithm.

2.5.2 Computation Time Analysis

Consider the model fitting algorithm applied on an image containing N pixels. The color

segmentation, erosion and dilation steps, each have a run-time complexity for the worst-case

scenario of O(N). The step 3 of Alg.2.1 uses a method for finding connected components

to identify distinct blobs in a binary image which was proposed by Suzuki and Abe in

[41]. This method’s worst-case scenario run-time complexity is also O(N). For fitting a

convex hull around each blob, a method from Sklansky [42] is used which has a worst-case

run-time complexity of O(bNv) where b is the number of blobs in the image and Nv is

the average number of vertex points of each blob. Theoretically the maximum possible

value of the product bNv is N . The equation solving, likelihood assigning and finally

searching for maximum likely tear-drop steps in Alg.2.1, each have a worst-case run-time

complexity of O(b). Summing all of them and considering the highest order term while

dropping the constants, the worst-case run-time complexity of the model fitting algorithm

is O(N) where N is the total number of pixels in the image. This shows that the proposed

algorithm is clearly much faster compared to the HT-based approach which not only has

an additional edge detection step with the run-time complexity of O(N) but also the rest
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of the algorithm has a complexity of cubic time in the number of discretization levels of the

curve parameters. In the model fitting algorithm there is no such restriction of discretizing

the parameters.

The model fitting algorithm was implemented on the same machine as the one used

for the HT-based approach and mentioned in the previous sub-section. It took ∼ 38

milliseconds to run the whole algorithm (Alg. 2.1) on a real image frame compared to the

HT-based approach which took 430 milliseconds to perform only the detection of a single

tear-drop curve on a synthetic image (Note that a synthetic image has zero noise so there

is no need for erosion or dilation for it). This makes the model fitting algorithm at least

11 times faster than the HT-based approach. With this computation time, we were able

to perform detection at ∼ 26 image frames per second. It is evident that the HT-based

approach will be even slower if it was implemented on noisy real images after performing

color segmentation and edge detection on them before proceeding to the detection step.

2.6 Experimental Setup and Results

A particle filter-based (PF) tracker was constructed which involved the classical PF’s pre-

dictor and resampler along with the model fitting approach as the classifier, introduced

as one of the novel contributions of this thesis. The prediction and the resampling steps

inherit directly from the original PF [43]. The model fitting approach-based detector is

used for assigning weights to the particles in the update step.

We implemented the tracker in the robot soccer scenario (see Appendix A for a detailed

description of the testbed). One of the primary requisites for any robot to be able to play

soccer is to continuously track the soccer ball. In robotic soccer’s dynamic environment

the ball maneuvers in a 3D space which makes the robot soccer scenario an interesting and

suitable test bed for the experimental validation and performance check of our approach.

The robot tracks an orange colored ball (standard FIFA size 5) and move towards it while

the ball is manually moved around in the 3D space.

In order to evaluate the results of our approach’s implementation, we compare the

results with the GT (see Appendix B for the GT system’s details). The results presented in

this chapter is of the experiment performed in the LSA lab facility of ISEP Porto, Portugal,

where a GT system was already installed. Later a similar GT system was installed in

ISR/IST and used for experiments presented in the later chapters of this thesis. Figure 2.6

shows one of the frames of the video footage from the GT system at ISEP, Porto.
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Figure 2.6: Snapshot from the stereo vision system installed for GT evaluation of the robot

and the ball’s 3D positions. Result presented in this chapter is of the experiment performed

in the LSA lab facility of ISEP Porto, Portugal.

2.6.1 Results

Figure 2.7 shows the comparison of the Z-coordinate of the tracked 3D position of the ball

against the ground truth for approximately 570 iterations of the PF. On an average, each

iteration of the PF takes around 0.1 seconds hence the experiment presented here spans a

duration of about 1 minute.

In Figure 2.8 the 2D positions are plotted for the estimated ball position by the robot,

robot’s self-localization estimate and the ground truth positions of both as estimated by the

GT system. It should be noted that the GT system detects only the 2D ground positions

of the robot and the 3D positions of ball but not the orientation of the robot, hence a

direct X or Y coordinate comparison of the estimated ball position by the robot against

its ground truth is not possible. However, a comparison of the estimated radial distance

of the ball from the robot with the distance between the GT positions for both can be

done. In Figure 2.9 and 2.10 the plots present the error values computed as the absolute

value of the Euclidean distance between the estimated and the GT positions. The mean

and variance of these errors are presented in Table 2.1.

2.7 Summary

In this chapter we proposed and proved a bijection principle which states that the 3D

position of a spherical object of known diameter, when projected onto an image frame of
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Z-coordinate Radial distance of the

ball from the robot

mean error (m) 0.049 0.093

variance of error (m2) 0.001 0.013

Table 2.1: Results of the 3D tracking using the model fitting approach as the 3D spherical

object detector.

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Time−Step

Z
 C

o
o

rd
in

a
te

 (
in

 m
e

te
r)

Z Coordinate of the estimated
ball position(in green) compared with the ground truth(in red)

Figure 2.7: Comparison of the tracked position of the ball’s Z coordinate (green) against

the ground truth’s Z coordinate (red). X-axis in the figure represents PF iteration. Y-axis

in figure represents the Z-coordinate of the tracked ball positions and the corresponding

ground truth.

a fish-eye lens-based camera, can be uniquely identified using only a single image frame.

We presented a detailed mathematical proof for this principle and then later used it to

construct a fast algorithm for the 3D detection of a spherical object of known diameter.

We also gave the run-time computational complexity for it and compared with an HT-

based approach. This detector was implemented as a classifier in a PF-based tracker to

perform continuous tracking of a FIFA standard size 5 ball by a mobile robot installed

with a fish-eye lens-based camera. The results of the tracking were compared against the

GT obtained using a stereo vision system consisting of high resolution ethernet cameras.

We achieved a high degree of accuracy using our proposed method, supported by the mean

error of ∼ 0.05m in the Z coordinate, ∼ 0.09m in the radial distance to the ball from
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Figure 2.8: Comparison of the tracked position of the ball and the robot’s XY coordinate

(green,blue) against the ground truth’s XY coordinates for the same (red,black). The X

and Y-axis in the figure respectively denote the X and Y coordinates of the ball’s tracked

and ground truth positions.
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Figure 2.9: Error in the estimated ball position’s Z coordinate at each step of the PF

iteration.
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Figure 2.10: Error in the estimated radial distance of the ball position from the robot at

each step of the PF iteration.

the tracking robot and variance in both ∼ 0.0014m2. Ongoing work includes developing

algorithms to remove the need of color in the detection process and to include generic

objects with more complex 3D geometry.
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Chapter 3

Multi-Robot Cooperative Object

Tracking

3.1 Introduction

I
n this chapter we introduce an approach to multi-robot cooperative object tracking

(MCOT) through a particle filter-based (PF) tracker [9]. For each observing robot

(i.e., a mobile robot with a sensor), we determine confidence factors associated to the

tracked target from two origins: i) the confidence on the observation measurement itself

and ii) the confidence on the self-localization estimate of the observing robot. Each robot’s

self-localization method itself is completely decoupled from the PF-based cooperative ob-

ject tracker running on it. The observation measurements obtained by the robots’ sensors

are parametrized (e.g., a Gaussian with a mean and a covariance). The parametrized ob-

servation measurements of the team robots are shared by all of them in a pool. At each

robot, the PF-based cooperative tracker selects, for a particle, a measurement from the

pool with a probability proportional to the measurement’s confidence and uses it to assign

weight to that particle. Repeating this for every particle, the filter eventually fuses all

the measurements in the pool. The parametrization also intends to reduce significantly

the amount of data communicated among the teammates. This approach to MCOT han-

dles, within a common framework, inconsistencies (disagreements) between sensors due to

observation measurement errors and/or robots’ self-localization uncertainties.

The rest of the chapter is organized as follows. In Section 3.2 we introduce a standard

individual PF-based object tracker. In Section 3.3 we introduce the fusion step and explain

how we incorporate it in a standard PF to construct the PF-based cooperative tracker, the

core of this chapter. Section 3.4 presents the proposed method’s implementation details
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and real robots experiment results compared with the ground truth. A summary with

comments on the results is presented in Section 3.5.

3.2 A standard Particle Filter-based Tracker

Let us consider a team of N robots, r1, . . . , rN . Robot ri has pose (position + orientation)

coordinates Lri
t = [xri

t yri
t θri

t ]> in a global world frame at the tth timestep (in this

chapter we implicitly assume to know the robots’ poses obtained through a self-localization

algorithm running separately from the object tracker on the same robots1).

In this section we briefly introduce a standard PF-based object tracker running on

a robot ri and tracking the object O without cooperating with any other robot in the

team. The state vector corresponding to the 3D global-frame position of an object at

the tth timestep, which our tracker running on the robot ri estimates, is denoted by Ori
t =

[xo,rit yo,rit zo,rit ]>. We assume that the object’s state evolution over time is a Markov process

with a uniform initial distribution p(Ori
0 ) and a transition distribution p(Ori

t |Ori
t−1,v

ri,o
t ),

where vri,o
t is the velocity input to the tracked object’s motion model. The observation

measurements {zri,o
t ; t ∈ N}, which are the detected 3D positions of the tracked object by

the robot ri, are conditionally independent given the process {Ori
t ; t ∈ N} with distribution

p(zri,o
t |Ori

t ).

The posterior belief bel(Ori
t ) = p(Ori

t |z
ri,o
1:t ,v

ri,o
1:t ) is a probability distribution of the

posterior at the tth timestep over the state space, given all the control (object’s velocity

in this case) and the observation measurements up to that timestep. To estimate this

posterior distribution, we use a recursive Bayesian filter, with the Markovian assumption

of the state’s completeness, formulated as:

p(Ori
t |z

ri,o
1:t ,v

ri,o
1:t ) ∝ p(zri,o

t |Ori
t )

∫
p(Ori

t |Ori
t−1,v

ri,o
t )p(Ori

t−1|z
ri,o
1:t−1,v

ri,o
1:t−1)dOri

t−1 (3.1)

In the rest of the chapter we refer to p(Ori
t |Ori

t−1,v
ri,o
t ) as the tracked object’s motion

model and p(zri,o
t |Ori

t ) as the tracked object’s observation model.

For solving the problem as formulated above we use a PF-based tracker on the robot

ri. A PF is a non-parametric Bayesian filter where, contrary to a parametric Bayesian

filter, the state’s posterior probability distribution is represented by a set of M particles

X o
t , {〈x[m],o

t , w
[m],o
t 〉}Mm=1. The components of any mth particle 〈x[m],o

t , w
[m],o
t 〉 are x

[m],o
t ,

a hypothesis (and a concrete instantiation) of the state Ori
t and an associated weight

1The robot localization algorithm (cooperative and non-cooperative) is discussed in Chapter 4
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w
[m],o
t which, ideally, should be proportional to its Bayes filter posterior bel(Ori

t ) [43]. A

standard PF-based object tracker consists of a prediction-update-resample loop, where the

prediction of all the particles’ state hypothesis component is performed by the following

sampling equation:

x̄
[m],o
t ∼ p(Ori

t |x
[m],o
t−1 ,vri,o

t ), (3.2)

using the particle set X o
t−1 resulting from an immediate previous iteration of the standard

PF-based tracker and the most recent control input vri,o
t . The update step computes the

weight component w̄
[m],o
t of all the temporary predicted particles, subsequently stored in a

temporary particle set X̄ o
t , {〈x̄[m],o

t , w̄
[m],o
t 〉}Mm=1. The weight component is computed by

w̄
[m],o
t ∝ p(zri,o

t |x̄
[m],o
t ), (3.3)

where the most recent observation measurement zri,o
t is incorporated. Eventually the re-

sampling step selectively draws with replacement particles from the temporary set X̄ o
t with

probability proportional to the weight components of those particles and stores them in

the new particle set X o
t , the final output of the standard PF-based tracker.

3.3 Particle Filter-based Cooperative Tracker

In this section we present our PF-based cooperative tracker algorithm (see Algorithm 3.1).

It involves the original (standard) PF algorithm [43], explained in the previous section,

augmented with the fusion step which we introduce as a novel contribution. Following the

notations introduced in the previous section, here the superscript ri is modified to denote

variables corresponding to other robots in the team.

The prediction and the resampling steps of the PF-based cooperative tracker (lines 2–4

and line 26 of the Algorithm 3.1, respectively) inherit directly from the original PF [43].

We introduce a fusion step (lines 5–25) which modifies the particles’ weight generation

process in a way such that the tracked object’s observation measurement made by the

robot running the Algorithm 3.1 is fused with those made by the teammate robots.

For a clear description of the algorithm, ri denotes the robot on which the Algorithm 3.1

is running. The first input to the Algorithm 3.1 is X o
t−1 , {〈x[m],o

t−1 , w
[m],o
t−1 〉}Mm=1. It is the

set of particles resulting from the immediate previous iteration of the algorithm itself.

At the tracker’s first timestep initialization, X o
t−1 could be distributed on the state space

according to any choice, e.g, a uniform distribution. vri,o
t denotes the velocity input to

the motion model of the tracked object. M is the total number of particles, the value of

which depends on the available computational resource. The larger the value of M , the
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Algorithm 3.1 PF Cooperative Tracker(X o
t−1,v

ri,o
t ,M, ri,N)

1: X̄ o
t , {〈x̄[m],o

t , w̄
[m],o
t 〉}Mm=1 = NULL

2: for m = 1 to M do

3: x̄
[m],o
t = sample object motion model (x

[m],o
t−1 ,vri,o

t )

4: end for

5: {The Fusion step starts here}
6: Perform sensor observation and generate zri,o

t and Σri,o
t , where zri,o

t is the object’s mea-

surement vector in the world frame and Σri,o
t is the noise covariance matrix associated

with this measurement.

7: Compute object observation confidence Cri,o
t , self-localization confidence Cri

t and Send

zri,o
t , Σri,o

t , Cri,o
t , Cri

t to the teammate robots.

8: for n = 1 to N do

9: if n == i then

10: αrn = Crn,o
t

11: else

12: receive zrn,o
t , Σrn,o

t , Crn,o
t , Crn

t from the teammate robot rn

13: αrn = Crn
t C

rn,o
t

14: end if

15: end for

16: for n = 1 to N do

17: αrn = αrn∑N
n=1 α

rn
{Normalization step}

18: end for

19: for m = 1 to M do

20: draw rk from [r1, ..., rN ] with probability αrk

21: w̄
[m],o
t ∝ p(zrk,o

t | x̄[m],o
t )

22: X̄ o
t = X̄ o

t + 〈x̄[m],o
t , w̄

[m],o
t 〉

23: end for

24: {The Fusion step ends here}
25: X o

t = Resample (X̄ o
t )

26: return X o
t

better is the approximation of the target’s a posteriori distribution. The algorithm is fully

computationally decentralized, meaning that each robot rn in [r1, ..., rN ] where N is the

total number of robots in the team, will run its own instance of the algorithm. We assume

that each robot can communicate with every other robot in the team.
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In line 1 of the Algorithm 3.1, a temporary particle set X̄ o
t , {〈x̄[m],o

t , w̄
[m],o
t 〉}Mm=1

is initialized with null values. In lines 2–4, the prediction step is performed, where the

particles from the set X o
t−1 are propagated based on the tracked object’s motion model and

the velocity input vri,o
t to it and stored in X̄ o

t . The velocity should be calculated using

a separate object velocity sensor, e.g, a velocity sensor based on a linear regression of a

certain number of previously estimated object’s position.

In line 6, the robot ri performs the object observation measurement in the global refer-

ence frame (recall that we assume that the robot’s pose is given) and stores the measure-

ment vector in zri,o
t and the associated noise covariance matrix in Σri,o

t .

Line 7 computes Cri,o
t and Cri

t . Here, Cri,o
t represents the robot ri’s confidence on its

observation measurement which can be calculated in various ways depending on the im-

plementation and the scenario. In our implementation, we calculate this as :

Cri,o
t ∝ |Σri,o

t |−1, (3.4)

Note that the observation measurement’s noise covariance matrix Σri,o
t depends on several

other factors based on the implementation’s underlying object detection mechanism, e.g,

distance and bearing to the object from the observing robot and the part of the object

visible due to occlusions, facilitating the observation confidence measure to incorporate all

those factors.

Cri
t represents the robot ri’s confidence on its own pose obtained from its own self-

localization mechanism, implemented separately from Algorithm 3.1. If, for example, the

Monte Carlo localization (MCL) mechanism is used for the robot’s self-localization, a good

approach to do this is to consider the number of effective particles (see equation (4.1)) in

the MCL’s particle set as a measure of the robot’s self-localization confidence2 [44][45].

In line 12, the robot ri receives zrn,o
t , Σrn,o

t , Crn,o
t and Crn

t from every other robot rn

in the team where n = [1, ..., N ] and n 6= i (since ri is the receiver robot itself). It is

important to note that zrn,o
t and Σrn,o

t , obtained from any of the teammate robots, are

already expressed in the world frame. This leads us to form a set Pri
t which we call an

observation measurement pool (OMP) for the robot ri in the world frame. The elements

of Pri
t denote each team robot’s individual observation measurements.

Pri
t = {zrn,o

t | n = 1, ..., N} (3.5)

In lines 10 and 13 of the Algorithm 3.1, we associate an element-weight (EW) to each

2In Chapter 4, where we present a novel cooperative robot localization technique, the self-localization

confidence is discussed in more detail.
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Figure 3.1: In the figure above, illustration of an OMP is presented for the following

example. Consider a team of 4 robots cooperatively tracking an object in 2D space, each

running its own instance of the Algorithm 3.1 and their object observation measurements

are 2D vectors plus a Gaussian noise with zero mean and 2 × 2 covariance matrix. The

figure above illustrates an OMP generated by the robot r1 at the tth timestep. The X and

Y -axis represent the 2D world coordinates of the space in which the object is being tracked.

The Z-axis represents αrn , calculated as per (3.6) and (3.7). In the figure above, the robot

r1 receives observation measurements from its teammate robots r2, r3 and r4 and generates

the OMP. The OMP elements zrn,o
t are represented above as bar graphs positioned at

the measurement vector represented by zrn,o
t and height equal to their normalized element

weights (EW) αrn for all n = [1 : 4]. Consider an mth temporary particle x̄
[m],o
t . For this

particle, the OMP element zr3,o
t is drawn with probability αr3 (hence the bar representing

zr3,o
t is colored differently). Subsequently, the temporary particle’s weight w̄

[m],o
t is obtained

as w̄
[m],o
t ∝ p(zr3,o

t |x̄
[m],o
t ). Similarly, for every other temporary particle, an OMP element

will be drawn with probability equal to the element’s EW and subsequently used to generate

the temporary particle’s weight.

element in the set Pri
t (Note that the OMP element’s EW, denoted further by the variable

αrn , should not be confused with the mth particle’s weight denoted by w
[m],o
t elsewhere).

For the robot ri’s OMP Pri
t , only the elements in it due to other teammates’ observation

measurements are weighted using their self-localization confidences and their observation
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measurement confidences. The element in Pri
t due to ri’s own observation measurement is

weighted only by its observation measurement confidence. The reason for this is discussed

later.

αri = Cri,o
t (3.6)

αrn = Crn,o
t Crn

t ; n = 1, ..., N ; n 6= i (3.7)

Lines 16–18 of the Algorithm 3.1 perform the OMP elements’ EW normalization.

αrn =
αrn∑N
n=1 α

rn
; n = 1, ..., N (3.8)

The most crucial step of the fusion is in lines 19–23 of the Algorithm 3.1. For every

mth temporary particle resulting from the prediction step of the algorithm, the following

two steps are performed:

Step 1: Draw an element zrk,o
t from the OMP Pri

t with probability αrk . Recall that zrk,o
t

is the object observation measurement vector obtained by the robot rk in the team

where k ∈ [1 : N ].

Step 2: Calculate the weight w̄
[m],o
t of the mth temporary particle using the observation

measurement zrk,o
t as w̄

[m],o
t ∝ p(zrk,o

t |x̄
[m],o
t ).

These two steps are further clarified in Figure 3.1 with the help of an illustration of the

OMP.

Since the above two steps are performed for every temporary particle at a given iteration

of the Algorithm 3.1, it fuses the information from all the elements of the OMP according

to their respective EW. After this, in line 25, the particle set X o
t is obtained and returned

as the output of the Algorithm 3.1 by resampling the temporary particle set X̄ o
t . This can

be done by any established method for resampling in the literature (see, e.g, low variance

sampler in [43]). The association of the OMP elements to the temporary particles is done

in every iteration of the PF-based cooperative tracker. Due to the sampling process in step

1, as mentioned above, a few temporary particles always get associated with the low EW

elements of the OMP, which is a good way of maintaining the spread of the particles. This

avoids the PF-based cooperative tracker from falling into the ‘particle depletion’ problem,

which often occurs after resampling, where the general tendency of the particles is to get

cloned to the highest weight temporary particle.

The PF-based cooperative tracker tackles the following issues in a generalized manner:
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• The first problem which the tracker solves is that of a partial or complete occlusion.

A partially occluded object’s observation measurement by the robot ri may lead to

a low EW of the OMP element zri,o
t , generated by its own observation measurement.

In case if the same object is being fully observed by another teammate robot rn, it

will lead to a high EW in the OMP element zrn,o
t , contributed by the robot rn to the

OMP Pri
t of the robot ri, and hence a greater chunk of particles will get associated

to the OMP element zrn,o
t . Therefore, the robot ri would still be able to make a

good approximation of the target’s posterior distribution after the resampling step.

• A problem that often spoils multi-robot cooperative perception is the poor quality

of self-localization of the team robots. The OMP elements refer to the world frame.

If a robot is wrongly localized, its observation of the object in the world frame will

be incoherent with another correctly localized robot’s observation of the same object

in the world frame, although both might be observing the object correctly in their

respective local frames. The incoherency here is due to the frame transformation

carried out by the wrongly localized robot, of its observation in local frame to the

world frame. In our approach this problem is solved by weighting the OMP elements

by the associated robot’s self localization confidence multiplied by its object obser-

vation measurement confidence. Also, this is done differently for the OMP elements

corresponding to the recipient robot and the sender robots (3.6),(3.7). By doing this

we ensure two major advantages:

– A wrongly localized robot’s good object observation measurement hardly influ-

ences other robot’s OMP.

– The wrongly localized robot would still have a high confidence in its own good

observation, leading to a high EW of the OMP element due to its own obser-

vation measurement, which is necessary if we want to carry out visual tracking

in its local frame. In such a task, it will not be affected by the object observa-

tion measurements of well localized teammates which are incoherent with the

wrongly localized robot’s local frame. This enables the wrongly localized robot

to keep tracking the object with its local information during visual tracking,

without relying on the incoherent world frame information.

• The third major advantage that we get in this tracker is that we do not have to

deal with robot’s motion directly. This is taken care in situ when we construct the
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OMP in world frame, using the self-posture of the robot which inherently involves

odometry or motion update of the robot.

It must be noted that the PF-based cooperative tracker does not, in any way, affect the

self-localization estimates of the observing robots. The cooperative tracker estimates only

the tracked object’s position in the world frame for each robot that runs the tracker. It

does not estimate the relative localization of the teammates. Each observing robot’s self-

localization needs to be obtained from a separate algorithm, e.g., Monte Carlo localization.

3.4 Implementation and Results

3.4.1 Testbed

We applied the algorithm proposed here to the robot soccer scenario. Our test-bed is the

RoboCup Middle Sized League (MSL) (see Appendix A for a detailed description of the

testbed). In robot soccer, one of the basic necessities is to continuously track the ball. A

major concern is that the robots tend to lose their localization on the soccer field because

of low-range vision and field symmetry. Moreover, since the field is too large as compared

to a robot’s camera vision field, a ball far from the robot (> 4m) is scarcely visible, and

very often a nearby lying ball is occluded by a teammate or an opponent robot. Thus it

becomes a very interesting and appropriate test-bed for our proposed algorithm. In order

to evaluate the results of our approach’s implementation we compare the results with the

ground truth system (GTS) as explained in Appendix B.

From the datasets collected on the testbed (see Appendix A for the details of the

datasets), we used the measurement logs of the dataset named ‘4 robots dataset’. The

measurement log of this dataset contains the odometry, 10 static landmark observation and

the orange ball’s observation measurements for the 4 robots: OMNI1, OMNI2, OMNI3 and

OMNI4. From this log, along with the odometry and ball observation measurements, only

6 landmarks’ observation measurements were used in the experiment described further in

this section. Cooperative tracking results of the orange ball from all the four robots are

presented.

3.4.2 Implementation

In our implementation, the individual robot’s observation measurement is a 3D vector

corresponding to the detected position (through the 3D detection mechanism presented in

Chapter 2) of the ball in the global frame. The noise of this measurement is modeled as a
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trivariate Gaussian with zero mean and covariance matrix Σri,o
t , which is a function of the

observed distance to the ball and the part of the ball visible in the camera image.

To predict the ball’s (target object) motion (lines 2–4 of the Algorithm 3.1), we use the

approach (3.9) as in [20],

x̄
[m],o
t = x

[m],o
t−1 + vri,o

t ∆t+ ari,o
t (

∆t2

2
), (3.9)

which is a constant velocity model with normally distributed acceleration noise about zero

mean. x̄
[m],o
t , as mentioned previously, is the mth temporary particle’s state vector compo-

nent (recall that the other component of the mth particle is its weight w̄
[m],o
t ), representing

the 3× 1 state vector of the temporary particle’s 3D position x̄
[m],o
t = [x̄

[m],o
t ȳ

[m],o
t z̄

[m],o
t ]>.

∆t is the time interval between the two consecutive timesteps t − 1 and t (corresponding

to the two consecutive iterations of the Algorithm 3.1). vri,o
t = [vri,o

xt vri,o
yt vri,o

zt ]> is the

3 × 1 velocity vector of the target object at the tth timestep which is calculated using a

separate velocity sensor based on a linear regression method over a number of previously

estimated ball’s positions. ari,o
t is a 3× 1 white zero mean random vector corresponding to

an acceleration disturbance. For resampling we applied the low variance sampling method

[43].

Since the PF-based cooperative tracker (Algorithm 3.1) is dependent on the self–

localization confidence of the individual robots, the robot localization method implemented

here is worth mentioning. Each robot uses the regular MCL algorithm [43] to estimate

its own pose. To avoid notational and symbol complexity we skip the MCL algorithm’s

description in this chapter. However, since Chapter 4 deals with a modified MCL method

for cooperative localization of robots, the regular MCL algorithm is presented there in the

Algorithm 4.1 and the mechanism to obtain the robot localization confidence is given by

(4.1) in that chapter.

Summarizing the implementation, we applied our proposed PF-based cooperative tracker

(Algorithm 3.1) and the MCL-based localization (Algorithm 4.1), for each robot on the

time-synchronized measurement logs. The logs of the ball observation measurements in 3D

were obtained by applying Algorithm 2.1 on the raw images of the dataset ‘4 robots dataset’.

3.4.3 Experiments and Results

In order to compare our cooperative tracker’s performance we implemented a non-cooperative

PF-based tracker on the same measurement logs (of the same dataset ‘4 robots dataset’).

The algorithm for the non-cooperative tracker on any robot resembles Algorithm 3.1 with
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the fusion step replaced by a normal update step where the robot uses only its own obser-

vation measurement to weigh the particles.

In the video3 accompanying this chapter we present the experiment’s footage composed

by concatenating the stream of images from one of the GTS cameras. Each robot has a

different colored hat placed on top of it (OMNI1:Magenta, OMNI2:Brown, OMNI3:Red

and OMNI4:Blue). The GTS uses these hats for detecting the robots’ positions. The

GT estimates by the GTS are marked in the video frames with an overlaid black circle

around the robots’ hat and the orange ball, except for the instances during which any of

the robot’s marker or the ball gets occluded from the GTS and it could not detect that

robot’s or the ball’s position. The MCL estimates of the robot positions are marked in

the video frames by overlaying a circle of the same color as the robot’s hat. These circles

are centred at the MCL’s position estimate for the particular robot and are placed at

the same height as that of the robot’s hat from the ground level to facilitate easy visual

comparison. The robot’s orientation estimate by the MCL is marked by a radial line from

the circle’s center. Additionally, each robot’s name along with a tag ‘OK’ or ‘LOST’ is

continuously displayed above the robot’s MCL estimated position. The tag is ‘LOST’

when its localization confidence falls below 0.5 and ‘OK’ when above 0.5. In this video

we display the result of the Algorithm 3.1’s implementation on OMNI1. The orange ball’s

3D position estimates by the Algorithm 3.1 running on OMNI1 are marked by an orange

circle overlaid on the video frames.

In Figure 3.2, we present a set of error plots comparing the results of the proposed coop-

erative approach with the comparative non-cooperative approach. The error is computed

as the Euclidean distance between a tracker’s estimated 3D position and the corresponding

GTS’s 3D estimate of the orange ball. From Figure 3.2, it can be visualized that when

using the non-cooperative approach, none of the robots could track the ball for the total

duration of the experiment, owing mainly to occlusions or because of being too far from the

ball. Using our proposed cooperative approach this issue was not only solved but we also

achieved an overall higher tracking accuracy which can be seen in the Table 3.2, where the

percentage reduction of the mean tracking error by all the robots is presented. A notable

exception is in the case of OMNI1, where we see a slight increase in the world frame mean

error when using cooperative tracking over the non-cooperative approach (notice that the

reduction of the world frame mean error for OMNI1 is −8.46% in the Table 3.2), but a

substantial decrease in its local frame mean error of the tracked ball’s position (The re-

3Video of the experiment: Application of the Algorithm 3.1 on ‘4 robots dataset’.

http://users.isr.ist.utl.pt/∼aahmad/PhDThesisVideos/Chap 3 MCOT/PF MCOT.mpg
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duction of the local frame mean error for OMNI1 is 36.86% in the Table 3.2). The reason

is as follows. OMNI1’s own observation measurements of the ball are better than all other

robots as well as the ball is within its vision range for ∼ 90% of the experiment’s duration.

When performing the cooperative tracking, OMNI1’s benefit lies in tracking the ball during

the rest ∼ 10% of the experiment duration (during which the ball was out of its vision field

but in the vision field of any teammate robot). However, since the teammates’ observation

measurements are received by OMNI1 for the whole duration of the experiment during the

cooperative tracking, a slight importance is given to the OMP elements due to them. This

leads OMNI1 to incorporate more noisy observation measurements in addition to its own

less noisy observation measurements causing a slight overall increase in the world frame

error of its tracked ball position. Nevertheless, since the teammates of OMNI1 receive the

less noisy observations from it, they are able to substantially reduce the world frame errors

of their tracked ball positions (supported by the fact that all other teammates’ reduction

of mean tracking errors are positive in the Table 3.2).

Table 3.1 presents the statistics of all the errors displayed in the plots of the Figure 3.2.

It must be noted that the variance of error achieved by the non-cooperative tracker, apart

from being low, is further reduced by ∼ 15 to 40% when using the proposed cooperative

approach, denoting a more consistent tracking throughout the experiment.

The errors in the plots of Figure 3.2 are computed for each robot’s tracker’s world

frame estimates of the ball position, hence these errors are offset by the tracking robot’s

localization errors. Since the GTS, apart from estimating the ball’s world position, also

estimates the robots’ positions (but not their orientations), it was possible to compute the

range error of the ball’s tracked position in each tracking robot’s local frame. A histogram

representation of the local frame range errors for each robot’s cooperative and the non-

cooperative PF-based tracker is presented in the Figure 3.3. The statistics of these errors

are presented in the Table 3.1 alongside the statistics of the world-frame errors. Note

that both the cooperative and the non-cooperative PF-based tracker were implemented on

the exact same datasets/measurement logs. The median of the local frame range errors

gets significantly reduced when using the cooperative approach over the non-cooperative

tracking and is consistent with the histogram plots in the Figure 3.3 for the same.
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Figure 3.2: The plots in the left column present the orange ball world-frame tracking

error by each robot’s PF-based non-cooperative tracker in 3D. The corresponding plots on

the right column present the same for the PF-based cooperative tracker (Algorithm 3.1).

Both tracker’s object observation measurements were done using the Algorithm 2.1. If any

tracker loses the ball, the error is not computed and its plot omitted.
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Reduction of Position Error (%)

Robot World Frame Local Frame

OMNI1 -8.46 36.86

OMNI2 14.13 25.23

OMNI3 1.78 26.47

OMNI4 16.74 5.33

Table 3.2: Percentage reduction of mean error when using the proposed cooperative ap-

proach over the non-cooperative approach for tracking.

During the experiment, except for OMNI4, all the robots were well localized ∼ 95% of

the time. This can be visualized in the accompanying video where the robots’ localization

estimates are marked. OMNI4, owing mainly to its spurious landmark observations and a

high odometry noise, often remained poorly localized. Furthermore, as it can be seen in

the experiment’s footage, the ball was often away from OMNI4. As a consequence, when

running the non-cooperative tracker, OMNI4 could not track the ball for most of the time

but was able to do so when running the cooperative tracker, which is also supported by

the error plots for OMNI4 in Figure 3.2. It must be noted that for those few instances

when OMNI4 had the ball in its own vision field, while being poorly localized, its own

ball observation measurements did not significantly affect the other robots’ cooperative

tracking.

Because of its poor localization and not observing the ball itself most of the time,

OMNI4 could only slightly benefit in its local frame tracking by using our proposed coop-

erative approach. This is supported by the fact that the local frame range error reduction

was only ∼ 5% compared to the non-cooperative tracking approach (Table 3.2). Never-

theless, it could track the ball well in the world frame. This is supported by the fact that

the ball observation measurements it received was from the other well-localized robots,

facilitating OMNI4 to reduce the mean of its world frame tracking error by ∼ 16%.

3.5 Summary

In this chapter, we introduced a particle filter-based algorithm for cooperative object track-

ing by a team of mobile robots. We implemented the algorithm for cooperatively tracking

a spherical object (soccer ball) in 3D space by a team of soccer robots. Supported by the

real robots experiments and their results, we conclude that our algorithm provides a robust

approach for tracking an object cooperatively by a team of mobile robots. A few major

48



Chapter 3 Multi-Robot Cooperative Object Tracking

points can be enumerated:

• The approach is a solution for continuously tracking an object which is likely to be

occluded or partially occluded quite often.

• If the object is confidently located by a wrongly localized robot, after fusion it would

track it correctly in its own local frame and affect other teammates’ fused observation

measurements quite insignificantly.

• By sharing a compact representation of the observation measurements (in which only

the measurements’ parameters are enough to construct its compact representation),

we significantly reduce the use of bandwidth and communication time which facili-

tates real-time tracking of the object.

• Reference frame-incoherent object observation measurements across the teammates

are taken into account within a common framework.

• Self-localization confidence of the observing mobile robots are taken into account.

Ongoing work includes extending our method of cooperative tracking to multiple sensors

on the same robot as well as to relax colored object tracking assumptions. Tracking a

random colored object in 3-D space will require a different observation measurement model

without any changes in our current cooperative tracker. This is because the Algorithm 3.1

is independent of measurement models used.

3.6 Related Publications

The work presented in this chapter was initially published [9] in the European Conference

on Mobile Robotics (ECMR) 2011, Örebro, Sweden (submitted: April 2011, accepted:

June, 2011). It was later voted as one of the best papers presented in the conference and

invited for a special issue article in the Robotics and Autonomous Systems (RAS) journal,

where it was accepted for publication [10].
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Chapter 4

Multi-Robot Cooperative Robot

Localization

4.1 Introduction

I
n this chapter, we introduce a modification of Monte-Carlo Localization (MCL) algo-

rithm that changes the particle spreading step (used when a robot detects it is lost),

using information provided by other robot(s) of the team on the location of an object

commonly observed by the lost robot and the other robot(s). This modification speeds up

the recovery of the lost robot and is robust to perceptual aliases, namely when environ-

ments have symmetries, due to the extra information provided by the teammates. The

introduced method enables cooperative localization in a multirobot team, using visually

shared objects, taking advantage of the specific features of particle filter (PF) algorithms.

Each robot is assumed to run MCL for its self-localization, and to be able to detect when

the uncertainty about its localization drops below some threshold. An observation model

that enables determining the level of confidence on the tracked object position estimate is

also assumed to be available at each robot of the team. Though these assumptions are,

to some extent, stronger than those assumed by cooperative simultaneous localization and

mapping methods, they allow global robot and object localization. Though other authors

have explored the use of observations to initialize and/or reset particle filters adequately

[46],[47], the use of shared observations of common objects to cooperatively improve each

team robot’s localization using MCL is novel, to the best of our knowledge.

The chapter is organized as follows: in Section 4.2, we describe our cooperative localiza-

tion method. Results of experiments with real soccer robots in the RoboCup Middle-Size

League (MSL), that use a soccer ball as the visually shared object, are presented in Sec-
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tion 4.3. A summary of the chapter is presented in Section 4.4.

4.2 Cooperative Localization Using a Visually Shared

Object

Let us consider a team of N robots, r1, . . . , rN . Robot ri has pose (position + orientation)

coordinates Lri
t = [xri

t yri
t θri

t ]> in a global world frame at the tth timestep, and estimates

them using an MCL algorithm.

Each robot can determine the position of an object O in its local frame, therefore

being able to determine its distance and bearing to that object as well. Robots can also

determine if they are lost or kidnapped, i.e., if their confidence in the pose estimate drops

below some threshold. If a robot is not lost, it can also determine the object position in the

global world frame using the transformation between its local frame and the global world

frame that results from the knowledge of its pose. The estimate of the object position

in any frame is determined based on a probabilistic measurement model that includes

the uncertainty about the actual object position. When the global world frame is used,

additional uncertainty is caused by the uncertain pose of the observing robot.

The object is assumed to lie always on the ground plane where the robot moves. The

position of the object as determined by robot ri at the tth timestep in the global world

frame is denoted by Ori
t = [xo,rit yo,rit ]>, while the distance and bearing of the object with

respect to the robot, as measured by the robot, are given by do,rit and ψo,ri
t , respectively.

4.2.1 Overall Description

The original MCL algorithm [43] used by a robot ri in the team to estimate its pose is

presented in Algorithm 4.1.

X ri
t−1 , {〈x[m],ri

t−1 , w
[m],ri
t−1 〉}Mm=1 is the set of M particles resulting from the immediate

previous timestep t− 1 of the algorithm’s iteration process. uri
t is the robot ri’s odometry

reading at timestep t. zri
t is the robot’s observation measurements at timestep t, concerning

its self-localization. map is a map of the robot world (e.g., a set of landmarks or other) and

wfast, wslow are auxiliary particle weight averages, with 0 6 αslow � αfast, such that wslow

provides long-term averages and wfast provides short-term averages. The algorithm uses a

sample motion model and a measurement model to update, at each timestep, the

robot pose, from the odometry uri
t and observation measurements zri

t information and stores

it in a temporary particle set X̄ ri
t , {〈x̄[m],ri

t , w̄
[m],ri
t 〉}Mm=1. It adds random particles to X ri

t ,
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Algorithm 4.1 : MCL(X ri
t−1,u

ri
t , z

ri
t ,map)

1: static wslow, wfast

2: X̄t
ri = X ri

t = NULL

3: wavg = 0

4: for m = 1 to M do

5: x̄
[m],ri
t = sample motion model (x

[m],ri
t−1 ,uri

t )

6: w̄
[m],ri
t = measurement model(x̄

[m],ri
t , zri

t ,map)

7: X̄t
ri = X̄t

ri + 〈x̄[m],ri
t , w̄

[m],ri
t 〉

8: wavg = wavg + 1
M
w̄

[m],ri
t

9: end for

10: wslow = wslow + αslow(wavg − wslow)

11: wfast = wfast + αfast(wavg − wfast)
12: for m = 1 to M do

13: with probability max{0.0, 1− wfast/wslow} do

14: add random pose to X ri
t

15: else

16: draw k ∈ {1, ....,M} with probability ∝ w̄
[k],ri
t

17: add 〈x̄[k],ri
t , w̄

[k],ri
t 〉 to X ri

t

18: end with

19: end for

20: return X ri
t

the particle set obtained after applying re-sampling step on X̄ ri
t (where the probability of

cloning an existing temporary particle is proportional to its weight), with a probability

that increases with the deviation of the short term wfast average from the long-term wslow

average. In the limit case, when all the temporary particle weights tend to zero in the

short-term, all particles are reset according to a uniform distribution.

When cooperative localization in a multirobot team, using visually shared objects, is

intended, MCL running in a given robot ri must be modified so as to use information from

other robot(s) in the team, when wfast/wslow drops below a given confidence threshold

Cthreshold, meaning that ri is lost or was kidnapped. That information comes in the form

of the object position determined by the other robot(s). Assuming ri (the lost/kidnapped

robot) can observe the same object, the re-sampling is then based on a spatial probability

distribution which depends on the distance and bearing of the lost robot to the object

and on the uncertainty associated to the object position measurement provided by the
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other robot(s). This way, while a uniform distribution is still used to keep a certain

level of exploration of the pose space to make the algorithm robust to measurement and

motion errors, if those errors influence becomes too high, the particles are completely reset

according to the cooperative information from teammates about a visually shared object.

The new cooperative MCL algorithm used by robot ri from the team to estimate its

pose is presented in Algorithm 4.2, where the right superscript index ri is used for local

estimates, odometry readings, observations and the particle sets.

Algorithm 4.2 : Cooperative Shared Object MCL(X ri
t−1,u

ri
t , z

ri
t ,map)

1: static wslow, wfast

2: X̄ ri
t = X ri

t = NULL

3: wavg = 0

4: for m = 1 to M do

5: x̄
[m],ri
t = sample motion model (x

[m],ri
t−1 ,uri

t )

6: w̄
[m],ri
t = measurement model(x̄

[m],ri
t , zri

t ,map)

7: X̄ ri
t = X̄ ri

t + 〈x̄[m],ri
t , w̄

[m],ri
t 〉

8: wavg = wavg + 1
M
w̄

[m],ri
t

9: end for

10: wslow = wslow + αslow(wavg − wslow)

11: wfast = wfast + αfast(wavg − wfast)
12: if wfast/wslow < Cthreshold and info about object position in global world frame avail-

able from teammate(s) rj 6= ri and object visible to ri then

13: draw X ri
t according to object pose spatial probability distribution determined from

ri and rj’s information

14: else

15: for m = 1 to M do

16: with probability max{0.0, 1− wfast/wslow} do

17: add random pose to X ri
t

18: else

19: draw k ∈ {1, ....,M} with probability ∝ w̄
[k],ri
t

20: add 〈x̄[k],ri
t , w̄

[k],ri
t 〉 to X ri

t

21: end with

22: end for

23: end if

24: return X ri
t
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In the Cooperative Shared Object MCL algorithm one needs to further detail how

to handle the following issues:

1. Information about object position in global world frame available from teammate(s)

rj 6= ri;

2. How to draw X ri
t according to object pose spatial probability distribution determined

from ri and rj’s information.

The first issue concerns O
rj
t = [x

o,rj
t y

o,rj
t ]>, i.e., the object position in the global world

frame, as determined by the robot rj (in general, rj may be any robot but ri, or several

such robots, in which case the object position from one of them is selected depending on

whether that robot is well localized or not). Furthermore, we assume that, associated

with O
rj
t , rj provides a confidence measure regarding that information. That confidence

measure depends on rj’s

• object observation model and

• self-localization estimate uncertainty.

Assuming a bivariate Gaussian object observation model for rj centered on O
rj
t and

with a covariance matrix Σ
o,rj
t dependent on the distance and bearing to the object from

rj, this item contributes to the confidence measure with |Σo,rj
t |−1.

The self-localization estimate confidence factor of the robot rj must be determined

from the particle set of the Cooperative Shared Object MCL algorithm running on

the robot rj. One good approach to do this, as presented by the authors in [44][45], is to

consider the number of effective particles (denoted further by N rj
t ) in rj’s particle set X rj

t .

This is given by

N rj
t =

1∑M
m=1(w

[m],rj
t )2

(4.1)

after the weights {w[m],rj
t }Mm=1 are normalized.

Considering both factors, the measure of confidence Crj ,o
t of the robot rj on its own

estimate of the object’s position O
rj
t is given by

Crj ,o
t = η(N rj

t |Σ
o,rj
t |−1) (4.2)

where η is a normalization factor.

Regarding the second issue and assuming that the object is visible to the lost robot ri,

this robot determines the distance and bearing of the object in its local frame, (do,rit , ψo,ri
t ).
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Figure 4.1: Typical spatial probability density function from which particles are drawn,

after a decision to reset MCL.

The distance do,rit is used to parametrize the spatial probability density function (pdf)

from which particles representing the robot position in polar coordinates are drawn, after

a decision to reset MCL. This bivariate (using polar coordinates d and ψ centered at O
rj
t ,

the global world position of the object as estimated by the robot rj and communicated to

the robot ri) pdf is:

• Gaussian in the d variable, with mean value do,rit and variance inversely proportional

to the confidence factor Crj ,o
t ;

• uniform in the ψ variable, in the interval [0, 2π[ rad.

An example of this pdf is shown in Figure 4.1.

One can trivially map the polar coordinates onto Cartesian coordinates, thus obtaining

x
[m],ri
t and y

[m],ri
t , the position components of the mth particle x

[m],ri
t in the resultant particle

set X ri
t .

The orientation component θ
[m],ri
t of x

[m],ri
t is computed from the bearing angle ψo,ri

t of

the object, i.e., the angle between the robot ri’s longitudinal axis (the one pointing towards
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Figure 4.2: Computing the orientation of an mth particle representing a robot pose hypoth-

esis. On the left, bearing of the object with respect to the robot. On the right: relevant

angles for the computation of the orientation component of the mth particle as per (4.1).

its “front”) and the line connecting its center with the object center (see Figure 4.2 - left),

and the actual angle ψ of this line with respect to the x-axis of a frame centered on the

object, i.e., the particle angle in polar coordinates centered on the object (see Figure 4.2 -

right). We add random noise θrand with a zero mean Gaussian pdf representing the bearing

measurement error model. Hence, from Figure 4.2:

θ
[m],ri
t = ψ + π − ψo,ri

t + θrand. (4.3)

In summary, the Cooperative Shared Object MCL algorithm, presented in Algo-

rithm 4.2, modifies the plain MCL Algorithm 4.1, replacing the “standard” particle reset,

using a spatially uniform pdf, by a particle reset based on the information about the posi-

tion, in the global world frame (determined by one or more teammates), and the distance

and bearing, in the local frame of the lost/kidnapped robot, of an object visible to all

the intervening robots. Additional input parameters of this algorithm are (assuming ri as

the lost/kidnapped robot and rj as any of the robots providing information to improve its

localization):

• Cthreshold to determine if the robot is lost or was kidnapped;

• determinant of the object measurement model covariance matrix |Σo,rj
t |, sent by rj

to ri when ri detects it is lost and requests support from teammates;

57



Chapter 4 Multi-Robot Cooperative Robot Localization

• the number of effective particles N rj
t in rj’s Cooperative Shared Object MCL

algorithm, sent by rj to ri when ri detects it is lost and requests support from team-

mates;

• distance and bearing of the object in ri’s local frame, (do,rit , ψo,ri
t ), measured by ri

when it is lost and receives the above information from teammate(s);

• variance of the zero mean Gaussian pdf representing the bearing measurement error

model at ri (see previous item).

The regular procedure for each of the team robots is to run Algorithm 4.2. When

wfast/wslow < Cthreshold at ri, this robot requests for help from the teammates. One or

more teammates rj send the object position in global world coordinates and the associated

confidence factor Crj ,o
t . Then, ri’s particles are spread uniformly over a circle centered

on the object, with nominal radius equal to do,rit , the distance to the object measured

by ri, added to a Gaussian uncertainty around this value, with variance proportional to

Crj ,o
t . The orientation component of the particle results from the bearing ψo,ri

t of the object

measured by ri in its local frame, including an uncertainty proportional to the variance of

the Gaussian representing the bearing measurement model.

Practical issues to be considered are:

• After a robot detects it is lost and spreads its particles over a circle centered with the

visually shared object, it should run the regular MCL algorithm (Algorithm 4.1) in

the next steps (a number of steps dependent on the application), so that it does not

keep resetting its particles over a circle around the object, while its pose estimate

has not converged to the actual value;

• The decision on which teammate(s) can contribute with useful information can be

taken considering their confidence factor(s) Crj ,o
t , and only using the information

provided by the robot with the highest Crj ,o
t (if above some given threshold). In

general, all teammates can contribute, but in some cases their information may be

highly uncertain.

4.2.2 Particle Spreading Validation

There is a specific situation where the proposed algorithm requires some improvement,

e.g., when a robot is kidnapped to a pose where it observes the object at approximately

the same distance of where the robot was before. In this case, when the robot detects
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it is lost by checking its wfast/wslow value, it will still spread new particles over a circle

centered with the object, including a region around where the robot wrongly estimates its

pose. To prevent such situations, the algorithm must include a restriction that requires

all the re-spread particles to be out of a region (e.g., a circle) that includes the majority

of the particles at the MCL step when the robot detected it was lost. Nonetheless, it is

important to note that particles may be correct in the old pose, if they just have similar

positions but fairly different orientations. Because of this, the algorithm must also check

if the orientation hypothesis associated to each particle is within a small range of values

around the orientation at kidnapping detection time. If they are not, the restriction above

does not apply.

4.3 Results of Implementation in Real Soccer Robots

We have applied the Cooperative Shared Object MCL (Algorithm 4.2) to real robots

in RoboCup Soccer Middle-Size League (MSL), in which the robots use the ball to regain

their pose when they are kidnapped and detect to be lost on the field. Figure 4.3 provides

an example that illustrates the algorithm application in this scenario.

4.3.1 Experimental Setup 1

In this setup, tests were made by kidnapping a robot to nine different positions, in one

quarter of the whole soccer field, as depicted in Figure 4.4. The other field regions would

not provide extra information, due to the soccer field symmetry. One teammate stopped

in a random position always sees the ball and informs the kidnapped robot of the ball’s

position on the global field frame. Both robots use MCL with 1000 particles, as described

in a previous paper [21]. The standard deviation of the Gaussian used to model the bearing

angle measurement error at the kidnapped robot was adjusted experimentally as π/12 rad.

We kidnapped the robot five times for each of the nine positions. Kidnapping was

carried out by picking up the robot and moving it to another location with MCL on and

after its convergence to a correct estimate. After kidnapping, the increase of uniformly

distributed particles was visible, turning quickly to a re-spread over circle centered with

the ball position, as estimated by the teammate.

The algorithm runs on a NEC Versa FS900 laptop with a Centrino 1.6GHz processor

and 512Mb of memory, using images provided by a Marlin AVT F033C firewire camera,

and in parallel with the other processes used to make the robot play soccer. The camera
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Figure 4.3: Cooperative robot localization in RoboCup Soccer MSL: (a) The white robot

determines the ball position in its local frame but its estimated pose (based on field line

detection - lines observed by robot are dashed and do not coincide at all with the actual solid

field lines) is incorrect, because the robot was kidnapped. (b) Teammates (green robots)

communicate the ball position in the global world frame, as well as the corresponding

confidence factor. (c) Lost robot measures its distance and bearing to the ball and re-

spreads the particles according to this and to the ball position team estimate. (d) The

previously lost robot regains its correct pose.

is mounted as part of an omnidirectional dioptric system, using a fish-eye lens attached to

it.

Figure 4.5 shows the actual position of the robots disposed as in position 4 of Figure 4.4.

4.3.2 Experimental Setup 2

In this setup, the teammate which observes the ball tracks and follows the ball by main-

taining a fixed orientation and distance with respect to ball. We kidnapped the other robot

in the following 4 cases during this setup:

• Case 1: Both observer robot and the ball moving when the ball is in the field of view

(FOV) of both robots. Robot kidnapped twice in this case.
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A B

Kidnapped robot Positions

Static observer robot

Ball

9 8 7

6 5 4

3 2 1

Figure 4.4: Layout of experiments. A ) The black numbered spots correspond to the

positions to where one of the team robots was kidnapped. The red circle represents a

static robot, always well localized, and watching the ball (smaller yellow circle). B) The

figure in B is an example snapshot of the global frame interface which plots real robot and

ball positions as well as particles used by MCL in real-time. Here it shows the kidnapped

robot spreading particles after getting lost and using the shared ball

Field position Successes Iterations to converge

1 5 14.6

2 5 14.8

3 5 7.2

4 5 19.5

5 4 25.5

6 4 10

7 4 15.3

8 5 21

9 5 16

Table 4.1: Results of kidnapping a robot to 9 different positions on the field in experimental

setup 1 (third column is the average of 5 experiments per location)

• Case 2: Observer robot stopped and the ball is moving while the ball is in the FOV

of both robots. Robot kidnapped once in this case.

• Case 3: Both observer robot and the ball stopped when the ball is in the FOV of

both robots. Robot kidnapped twice in this case.
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Figure 4.5: Real robot view for one of the layout locations: the robot on the left is the

robot that informs the correct ball position to the other, while the robot on the right is

the kidnapped robot which uses that information, in location 4 of Figure 4.4.

• Case 4: Both observer robot and the ball moving when the ball moves away from the

FOV of the kidnapped robot during the time of kidnapping and then later reappears

in its FOV. Robot kidnapped once in this case.

The rest of the details for this setup is similar to experimental setup 1. Results of this

experiment is presented in Table 4.2 and can also be visualized in the video1 accompanying

this chapter.

Case Situation Result Iterations to converge

1 1 Success 17

2 Success 26

2 1 Failure 18

3 1 Success 15

2 Success 19

4 1 Success 61

Table 4.2: Results of kidnapping as explained in the experimental setup 2.

1Video of the experiment: Application of the Algorithm 4.2 on 2 SocRob robots.

http://users.isr.ist.utl.pt/∼aahmad/PhDThesisVideos/Chap 4 MCRL/PF MCRL.mpg
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4.3.3 Results and Discussion

Results of experiments in setup 1 are shown in Table 4.1. In the table, successes corre-

spond to the number of experiments where the robot could regain its correct pose after

kidnapping occurred. Iterations to converge refer to the mean value of iterations required

by the algorithm to converge after a kidnapping, over 5 experiments for a given kidnapping

location. Note that one prediction and one update iteration of MCL take approximately

0.1s each, therefore the mean value of iterations should be multiplied by 0.2s to have an

idea of the time taken by the algorithm in each case. Overall, the algorithm performed

quite well in real situations, including cases where we kidnapped the robot to a position

where its distance to the ball remained the same. Some field locations are clearly more

demanding than others (e.g., 5, 6, 7) causing the robot to fail to regain its posture in one

of the tests, possibly due to perceptual aliasing relatively to other field positions.

In the experimental setup 2, the robot successfully recovers and re-localizes itself in 5

situations (3 Cases) and fails in 1. The number of iterations performed by the algorithm to

converge are presented in Table 4.2. In case 4 of this setup, the robot performs a very high

number of iterations to converge mainly due to the absence of the ball from kidnapped

robot’s FOV for a while before it comes in the FOV of both robots.

In all the sets of experiments, communication delay between the robots was consistently

monitored during the run-time of the algorithm. Older data (> 2seconds) was discarded.

A chunk of iterations performed by the robot to converge to the right posture is attributed

to this communication delay.

4.4 Summary

In this chapter we presented a modified MCL algorithm for cooperative localization of

robots from a team, where an object visually observed by all the team members involved

in the cooperative localization is used. The algorithm takes advantage of the information

on the visually shared object, provided by teammates, to modify the particle reset step

when a robot determines it is lost (e.g., because it was kidnapped). The algorithm was

applied to real robots in RoboCup Soccer MSL with considerable success.

The major issue with this approach is the situation which can arise due to false positive

identification of the shared object. A proper approach to solve it would be to use a fused

information of the shared object, where the fusion algorithm can discard false positives

detected by teammates. Secondly, a fast moving ball creates larger uncertainty about its

position which also affects the robustness of the approach, presented in this chapter, to
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some extent. These are among the problems addressed in later chapters where a unified

multi-robot localization and object tracking approach is taken.

Ongoing work will include testing the algorithm in more demanding situation, such

as during actual games, with the robots continuously moving. Also, Algorithm 4.2 could

further benefit by modifying the original MCL in a way such that a fraction of the particles

is always spread over a circle, depending on the ratio between the short-term average and

long-term average of their weights, instead of checking when this ratio drops below a given

threshold. Other objects, such as the teammates, can also be shared to improve cooperative

localization, as long as one can determine their position and track them.

4.5 Related Publications

The algorithm presented in this chapter was initially published in the proceedings of

RoboCup Symposium 2010, Singapore (submitted: February 2010, accepted: March,

2010). It was later included as a chapter in the book RoboCup 2010: Robot Soccer World

Cup XIV. Lecture Notes In Artificial Intelligence, Lecture Notes in Computer Science [12].
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Cooperative Robot Localization and

Target Tracking: A Unified

Framework

5.1 Introduction

O
ne of the approaches for multi-robot cooperative object tracking is to explicitly share

information among the robots. This would include sharing self-localization estimates

and environment observations to enrich other robot’s observations but, for this purpose,

one needs a well calibrated self-localization confidence measuring technique to avoid ref-

erence frame inconsistencies. Algorithm 3.1, presented in Chapter 3, deals with such a

situation in an efficient manner. However, since the confidence measuring mechanisms are

often based on heuristics, e.g, using the number of effective particles [44] as a measure of

robot localization confidence, it might still result in false positives (e.g, a situation where

the self-localization confidence of a robot is high in spite of it being wrongly localized).

Similarly, cooperative robot localization can also be performed by explicitly sharing infor-

mation regarding a mutually observed common object but would still be much dependent

on the teammate robots’ self-localization confidences as well as their object observation

confidence measures when using the teammate’s observation or estimates. We presented

such a method (Algorithm 4.2) in Chapter 4 which suffers from the aforementioned depen-

dency [12]. In a scenario where a team of robots needs to localize themselves as well as track

an object, cooperative methods for doing both can benefit from using a single framework

because this would eliminate the need for separate self-localization/object-observation con-

fidence measurements. Note that this does not mean first performing cooperative object
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tracking, and then using the tracked object for improving self-localization (i.e, a two step

process), which some authors have explored before[18]. In a unified framework, both pro-

cesses of cooperative localization of robots and cooperative estimation of the target need to

be performed in a single step to avoid propagation of estimation error from one process to

the other, which is inevitable in a two-step process. This idea does not seem to be explored

much in the literature. In this chapter we present two novel methods for such a unified

framework of multi-robot cooperative localization and object tracking in a systematic way

and present mathematical formulations for both. The first method operates in an offline

manner, processing the whole experiment dataset at once as a batch. Hence it can only be

applied on a previously collected experimental dataset. The second method is an online

algorithm. It is designed to operate in real-time on data acquired continuously by robots’

sensors. Furthermore, it is important to note that both methods assume that the robots

can only communicate information data among themselves. They cannot measure each

others’ positions directly, e.g, measuring inter-robot distances using vision. Extending the

methods presented here to incorporate such information is not straightforward and would

require significant adaptation, which we comment on as future work.

5.1.1 Offline Method

In the offline approach, we pose the problem as a multi robot cooperative pose graph

optimization problem where the tracked object is treated as a moving landmark and its

state, namely its position and velocity, is included in the parameter set to be estimated.

Although the basic idea of having a moving landmark itself is not new and has occasionally

appeared in the literature [48] where it has been studied to separate the static landmarks

from the dynamic ones (e.g, a piece of furniture that could be moved around in the office),

extending this concept to track a fast maneuvering object through a team of mobile robots

and treating this object as a moving landmark along with other static landmarks for

localizing each robot in the team is novel to the best of our knowledge. More specifically

our approach of multi-robot moving landmark graph optimization (O-MMLG) consists of

the following steps:

• Creating a graph for the problem described in the above paragraph representing the

robots’ poses and the moving landmark’s (tracked object) positions and velocities at

each time step as nodes whereas the odometry and observation measurements made

by the robots as edges.

• Stacking all the odometry and observation measurements together to create a single
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non-linear least squares error function.

• Invoking an optimization solver routine for which we use g2o [33], an open-source

C++ framework to find the minimum of the function which is the optimal configu-

ration of the nodes that best describes all the measurements made by all the robots.

5.1.2 Online Method

The online approach is a PF-based algorithm for multi-robot unified cooperative localiza-

tion and tracking (UCLT). In the online UCLT problem, the goal is to estimate the state,

including all the the robots’ poses and the object position, at a certain timestep, given all

the control and observation measurements made by the robots only up to that timestep.

Since PFs, at their core, are recursive Bayesian filters and assume the Markovian prop-

erty of the state’s completeness, the state at a certain timestep is computed from a belief

distribution (represented by a set of particles), using the belief distribution at the imme-

diate previous timestep (set of particles resulting from the immediate previous iteration of

the PF algorithm) and the control and observation measurements obtained only at that

timestep. In the solution (henceforth referred to as the PF-UCLT algorithm), presented

later in Section 5.4, a particle’s state hypothesis component (the other component of a

particle is its weight) represents the pose of the robot running the algorithm, the poses

of the teammate robots and the position of the tracked object. The algorithm’s update

step systematically overcomes the problem of error propagation from the target position

estimate to robots’ pose estimates which happens in a two-step process as mentioned pre-

viously. We also demonstrate how the PF-UCLT algorithm drastically reduces the space

and time complexity of a standard PF-based solution for the online UCLT problem.

The rest of the chapter is organized as follows. We first discuss some related work in the

literature which is followed by Section 5.3, where we present the graph optimization-based

offline method for unified cooperative localization and object tracking. It consists of a brief

overview of graph-based optimization and g2o, our problem formulation of the O-MMLG

and real robot experimental results along with its analysis. Section 5.4 first describes the

mathematical formulation of the online UCLT problem, the PF-UCLT algorithm in detail

and then presents its implementation results on the same dataset as used in the O-MMLG’s

case. We conclude with comments on future work in Section 5.5.
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5.2 Related Work

Robot localization, object tracking and environment mapping have been areas of extensive

research in mobile robotics [49]. An extensive number of techniques based on Kalman filter,

particle filter and so on have been proposed for object tracking and robot localization. For

unknown environments, where the robots need to perform mapping, many simultaneous

localization and mapping (SLAM) approaches have been studied. In recent years multi-

robot systems have received much popularity in the field of mobile robotics. Cooperative

localization, mapping and cooperative target tracking in such systems has gained a lot of

attraction by researchers in this area [50],[2],[18].

In the previous decade several techniques for data fusion and cooperation have been

investigated for multi-robot systems. Durrant-Whyte et al. have done extensive research

in the area of cooperative target tracking in multi robot teams. One of their works [50]

introduces a decentralized particle filter (DPF) where the particles are transformed into

Gaussian mixture models for communication and fusion which ensures lesser bandwidth

usage while at the same time providing individual robot’s particle set summaries to the

whole team. Later in [51] they present a generalized formulation for DPF accounting for the

correlated estimation error arising from the common past information being communicated

among the robots in a team. In [18] the authors present a novel approach for cooperative

target tracking and localization by using visual relations of static objects and moving

target as a means of tracking the object locally in a non-robot-centric frame, which when

communicated to other robots is independent of the localization uncertainty however the

method gets constrained to a small environment where most of the robots need to perceive

the static objects continuously at all times. Furthermore, it is a two-step approach in which

the errors of target estimation are propagated to self-localization of the robots, although

not recursively since target observations are in non-robot-centric frames. The usage of

non-robot-centric frames can sometimes be difficult, e.g., large outdoor scenarios with few

observable landmarks at a given instant, robot-centric observations are necessary. In such

a case, using a two-step approach, like in [18], would then lead to recursive propagation of

errors .

Scenarios in multi robot systems where mapping is required, several techniques in the

form of Cooperative SLAM (C-SLAM) [3] have been proposed. A recent work by B. Kim

et al. [52] introduces graph SLAM for cooperative mapping and in [53] H. Wang et al.

put forward a mathematical proof for the existence of optimal pose configurations for pose

graphs consisting of multiple robot pose nodes. In [48] the authors propose an extension

for a single robot SLAM to include movable objects and factor them out from the map

68



Chapter 5 Cooperative Robot Localization and Target Tracking: A Unified Framework

where as in our O-MMLG method we consider a fast maneuvering object, treated as a

moving landmark, being tracked cooperatively by multiple robots formulated as a graph

optimization problem.

5.3 Graph Optimization-based Approach: An Offline

Method

5.3.1 Graph Optimization and g2o

In a graph-based optimization approach, the problem is represented as a graph where the

nodes consist of the set of parameter vectors to be estimated, e.g., poses of the robot,

positions of the landmarks and so on while the edges connecting these nodes represent raw

sensor measurements (robot observations), more specifically a probability distribution over

the relative node locations conditioned by their mutual observations [33]. Assuming these

observations to be affected by Gaussian noise and a known data association, the goal of

graph optimization is to find the configuration of nodes that maximizes the likelihood of

all the observations which are represented as edges. In order to to so, a nonlinear error

function is obtained representing the whole graph, which is then solved as a constrained

optimization problem or more specifically as a nonlinear least squares problem.

g2o is a general framework developed in [33] for performing the optimization of nonlinear

least squares problem that can be represented as a graph. A generalized mathematical

description of the graph optimization problem formulation, which can be applied directly

to a single robot with static landmarks, and the g2o framework is presented in [54] and [33]

respectively. In the next section we use this as a basis for developing the mathematical

formulation of O-MMLG.

5.3.2 Multi-Robot Moving Landmark Graph Optimization

(O-MMLG)

In this section, we follow a notational scheme similar to that of [33] to provide a mathe-

matical description of the O-MMLG problem in terms of least square minimization of a

sparse system. Let N be the number of robots tracking O objects, treated as a moving

landmarks, for T time steps in an environment consisting of L static and known landmarks.

The nth robot is denoted by rn. Without loss of generality, the formulation could easily be

extended for unknown landmarks, given known data associations.
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Figure 5.1: An example of the pose-graph representation of the O-MMLG depicting the

robot rn in the team, the oth object (moving landmark), static and known landmarks

numbered l1 and l2 and the edges connecting all these nodes. The notations are as described

in Section 5.3.2.

Let Lrn
t be the pose of the robot rn in the team at the tth timestep, Oo

t the position

and velocity of the oth object at timestep t and ll the position of the lth static and known

landmark. Let zrn
t,t+1 and Ωrn

t,t+1 be the mean and information matrix of a virtual measure-

ment between the pose at timestep t and t+ 1 of the robot rn. This can be either coming

from odometry or local matching algorithms. Let ẑrn(Lrn
t ,Lrn

t+1) be the prediction of the

measurement between them. the error term described by the edge ern
t,t+1 is:

ern
t,t+1 = zrn

t,t+1 − ẑrn(Lrn
t ,Lrn

t+1). (5.1)

Let zrn,l
t and Ωrn,l

t be the mean and information matrix of a virtual measurement of

the landmark l from the robot rn at timestep t. Let ẑl(Lrn
t , l

l) be the prediction of the

measurement, the error term of the edge is ern,l
t :

ern,l
t = zrn,l

t − ẑl(Lrn
t , l

l). (5.2)

Similarly, the error term between the object o’s virtual and predicted measurements made

by the robot rn at timestep t is:

ern,o
t = zrn,o

t − ẑo(Lrn
t ,O

o
t ). (5.3)

The motion of the objects is modeled using a constant velocity motion model with ran-

dom acceleration, leading to the following term for the edge between consecutive object
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positions, eot,t+1:

eot,t+1 = Oo
t+1 −AOo

t − ν, (5.4)

where A is the matrix modeling discrete-time constant velocity and ν is a zero mean error

with information matrix Ωo
t,t+1.

Let now X be the vector obtained by stacking all the variables which consists of the

pose Lrn
t of all the robots r1, .., rN and the object position Oo

t of all the tracked objects

(moving landmarks) 1 to O, both from timestep t = 1 to t = T . The solution of the

O-MMLG is the x that minimize the following function

X∗ = arg min
X

F(X) (5.5)

F(X) =
N∑
n=1

T−1∑
t=1

ern
t,t+1

>Ωrn
t,t+1e

rn
t,t+1+

+
N∑
n=1

∑
l,t∈Sl

ern,l
t

>
Ωrn,l
t ern,l

t +

+
N∑
n=1

∑
o,t∈So

ern,o
t
>Ωrn,o

t ern,o
t +

+
O∑
o=1

T−1∑
t=1

eot,t+1
>Ωo

t,t+1e
o
t,t+1, (5.6)

where Sl and So are respectively the set of all the observations between any robot and

any static landmark or any tracked object (moving landmark). See Figure 5.1 for a visual

explanation on how the graph is built. Green nodes represent the static and known land-

mark locations, black nodes represent the robot poses and red nodes represent the tracked

object’s positions. Red arrows indicate the motion of the individual tracked objects. Robot

observations of static landmarks and moving objects are shown respectively with green and

blue arrows.

The formulation of the final objective function (5.6) is similar to the one obtained

in [54] and [33]. Hence following their procedure, we can approximate it using Taylor

expansion around an initial guess for x and applying error minimization via iterative local

linearizations or least squares on a manifold.
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5.3.3 Experiments and Results

5.3.3.1 Testbed and Experimental Scenario

We applied the O-MMLG, proposed here, to the robot soccer scenario. Our testbed is the

RoboCup Middle Sized League (MSL) (see Appendix A for a detailed description of the

testbed). The primary requisites for a team of robots playing soccer are : i) individual

robot localization and ii) continuous tracking of the soccer ball. The localization and/or

ball tracking failures in such a scenario owe much to the field size and symmetry, limited

sensor range, occlusions as well as dynamic and fast movements of the robots and/or

the ball. This makes the robot soccer scenario an interesting and suitable testbed for

evaluating the performance of the O-MMLG. From the datasets collected on the testbed

(see Appendix A for the details of the dataset), we used the one, containing 4 robots’ data.

From the logs of this dataset, only 6 landmarks out of 10 were used in this experiment.

The O-MMLG was then implemented on the odometry and observation data logs and

the results were evaluated against the the ground truth system (GTS) estimates as ex-

plained in Appendix B. The GTS estimates all the robots’ and the ball’s global positions

(X and Y ). It does not estimate the robot’s orientation. Hence the comparisons with the

GT consists of comparing the positions of the robots and the ball but not the orientation

of the robots. In order to compare the O-MMLG’s results, we implemented an extended

Kalman filter (EKF) for cooperative localization and object tracking. In the EKF the state

vector estimated at any time step t consists of all the robots poses (Lr1
t , ...,LrN

t )> ∈ R3×N

and the ball’s 2D position and velocity Oball
t ∈ R4. In the prediction step we used for the

the odometry information for the robot poses and for the ball positions we implemented a

constant velocity and zero mean white Gaussian acceleration noise model [55]. In the up-

date step, observations of static landmarks and the ball from each robot are synchronized

to obtain a joint measurement vector (for a detailed description of the EKF formulation,

please refer Appendix C).

In sub-subsection 5.3.3.2 we present the results of the O-MMLG compared with the

EKF-based approach implemented on the data logs of the 2 robots OMNI1 and OMNI2 for

localization and ball tracking. The aim of this experiment is to present a proof of concept

of the O-MMLG and the higher accuracy achieved by it compared with the EKF-based

approach.

In sub-subsection 5.3.3.3 we extended the implementation of both the approaches to all

the 4 robots OMNI1 to OMNI4. The aim here is to show the scalability of our approach

while still achieving a higher degree of accuracy over the EKF-based approach.
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Figure 5.2: 2 robots experiment : The X-axis in these plots represent the number of time-steps

between two consecutive GTS frames. If for a particular robot or the ball the GTS could not

estimate the GT, error w.r.t. it is not computed at that time step and hence omitted from the

plots. The Y-axis represents the position error which is the Euclidean distance between the GT

position estimates and the O-MMLG (left) or EKF (right) estimates of the robot and the orange

ball positions.

In the video1 accompanying this section we present the 4 robots experiment’s footage

composed by concatenating the stream of images from one of the GTS’s cameras. Each

robot has a uniquely colored hat placed on top of it (OMNI1:Magenta, OMNI2:Brown,

OMNI3:Red and OMNI4:Blue). The GTS uses these hats for detecting the positions of

the robots. The GT estimates by the GTS are marked in the video frames with an overlaid

black circle around the robot’s hat and the orange ball except for the instances during

which the robots’ markers or the ball gets occluded from the GTS and it could not detect

the robots’ or the ball’s positions. The O-MMLG estimates of the robot positions are

1Video link of the O-MMLG 4 robots experiment.

http://users.isr.ist.utl.pt/∼aahmad/PhDThesisVideos/Chap 5 O-MMLG/O MMLG.mpg
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marked in the video frames by overlaying a circle of the same color as that of the robot’s

hat. These circles are centred at the O-MMLG’s position estimate for the particular robot

and are placed at the same height as of the robot’s hat from the ground level to facilitate

easy visual comparison. The robot’s orientation estimate by the O-MMLG is marked by

a radial line from the circle’s center. The O-MMLG’s orange ball position estimates are

marked by an orange circle overlaid on the video frames.

5.3.3.2 2 Robots Experiment

In this sub-subsection the results of the O-MMLG and EKF-based approaches implemented

on the data logs of OMNI1 and OMNI2 are presented. The plots in the left column of

Figure 5.2 display the error of both robots’ positions and the ball positions as estimated by

the O-MMLG w.r.t. the GT. The axes in the plots are explained in Figure 5.2’s caption.

The plots in the right column of Figure 5.2 display the errors of the EKF-based approach’s

estimates w.r.t. its GT counterparts. Table 5.1 shows the statistical estimates of the error

plots presented in Figure 5.2.

From Figure 5.2 and Table 5.1 we infer that the O-MMLG is able to reduce the mean

error in position estimates for OMNI1 by a factor of 4, for OMNI2 by a factor of 2 and for

the ball by a factor of 1.3 compared to the EKF-based approach.

O-MMLG Cooperative EKF

Mean Median Variance Mean Median Variance

(m) (m) (m2) (m) (m) (m2)

OMNI1 0.069 0.066 0.001 0.274 0.123 0.272

OMNI2 0.147 0.127 0.006 0.294 0.261 0.077

Ball 0.426 0.240 0.314 0.583 0.356 0.357

Table 5.1: Statistical estimates of the 2 Robots experiment results.

5.3.3.3 4 Robots Experiment

Figure 5.3 presents the error plots of all the four robots and the orange ball for the O-

MMLG in the left column (green-colored plots) of the figure and the EKF-based approach

in the right column (red-colored plots). In the EKF-based approach, the robots (most

notably OMNI4) often tend to lose their correct localization due to noisy observation

and odometry measurements. However, as soon as better measurements arrive, the EKF

recovers the robots’ position estimates and the error gets reduced. This effect is mitigated
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Figure 5.3: 4 robots experiment : The X-axis in these plots represent the number of

time-steps between two consecutive GTS frames. If for a particular robot or the ball

the GTS could not estimate the GT, error w.r.t. it is not computed at that time step

and hence omitted from the plots. The Y-axis represents the position error which is the

Euclidean distance between the GT position estimates and the O-MMLG (left) or EKF

(right) estimates of the robot and the orange ball positions.
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O-MMLG Cooperative EKF

Mean Median Variance Mean Median Variance

(m) (m) (m2) (m) (m) (m2)

OMNI1 0.077 0.070 0.002 0.298 0.118 0.295

OMNI2 0.141 0.120 0.006 0.296 0.265 0.075

OMNI3 0.090 0.086 0.003 0.166 0.124 0.024

OMNI4 0.267 0.221 0.030 0.493 0.276 0.327

Ball 0.399 0.226 0.327 0.528 0.315 0.334

Table 5.2: Statistical estimates of the 4 Robots experiment results.

in O-MMLG thanks to the iterative relinearizations. This can be observed in the EKF-

based approach’s error plots of these robots in Figure 5.3, when compared to O-MMLG.

The latter is able to maintain an acceptable estimate for all these robots even in the case

of highly noisy measurements and observations. From Figure 5.3 and Table 5.2 we infer

that O-MMLG outperforms the EKF-based approach by a factor of 3.8 for OMNI1, 2.1 for

OMNI2, 1.8 for OMNI3, 1.8 for OMNI4 and 1.3 for the orange ball.

5.3.3.4 Computation Time Comparison

O-MMLG EKF

2 Robot Exp. 13.75s 13.38s

4 Robot Exp. 19.38s 137.95s

Table 5.3: Comparison of the total computation time taken by the O-MMLG and the cooperative

EKF approach on the full dataset.

We implemented both the O-MMLG and the EKF based approach on the same machine

(Quad Core Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz, 8GB RAM) for a fair comparison

of the approaches’ computation time. Table 5.3 presents the total time taken by both

implementations on the same dataset. For the O-MMLG, this reflects the total time taken

by the g2o’s optimization process for the whole graph of the dataset. The graph consists

of 50000 nodes in the case of 4 robots and 30000 nodes in the case of 2 robots. For

the EKF based approach it reflects the total time taken to iterate once over the whole

dataset. The O-MMLG required 87 iterations for the 30000 node graph and 60 for the

50000 node graph to converge. The time required by the O-MMLG grows linearly with
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respect to the number of robots. On the other hand, in the EKF based approach, the

required computation time grows quadratically. Compared to the EKF-based approach’s

slow execution speed and higher degree of inaccuracy, O-MMLG’s scalability and accuracy

makes it a choice of higher value for cooperative localization and object tracking.

5.4 Particle Filter-Based Approach: An Online

method

In this section we present a PF-based algorithm to solve the problem of online unified

cooperative localization and tracking (UCLT). Henceforth we refer to this solution as the

PF-UCLT algorithm. It is designed in a decentralized manner, such that each robot runs

its own instance of the algorithm where it receives all the measurements made by its own

sensors and by the teammate robots’ sensors, assumed to be transmitted to it through

a wireless communication system. Since the sensor observation models are usually repre-

sented in a compact way by a mean vector and a covariance matrix, only a small amount

of information is communicated among the robots, instead of the whole particle set. The

PF-UCLT algorithm’s particles represent the state (position and orientation) of the robot

running the algorithm, the states of all the teammate robots and the state (position) of the

tracked object. The crux of this algorithm lies in the particles’ weight generation step (the

update step where the observation measurements are incorporated). Here we exploit the

properties of conditional and/or total independence of the involved variables (e.g, the con-

trol/sensor measurements and the individual robot/objects’ state) in the problem. These

properties are enumerated further in this section, as we proceed with the online UCLT

problem’s mathematical formulation. Since all the measurements (static landmark obser-

vation for the robots’ localization and the tracked object observation made by the robots)

made by the sensors at a given timestep cumulatively influence the weight of a particle,

it makes sure that the two-step process, of estimating the target first and then using it to

localize the observing robots, is avoided and hence there is no propagation of error from

the tracked object’s estimate to the robots’ pose estimates or the other way around.

5.4.1 Online UCLT Problem Formulation

In this subsection we formulate the online UCLT problem, described above, using a recur-

sive Bayesian filter. Let there be N robots r1, .., rN in a team tracking an object O in an

environment consisting of L known and static landmarks represented as a set Lmap. The
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state (pose in the world frame) of the robot rn is given by Lrn
t = [xrn

t yrn
t θrn

t ]> and the state

(3D-position in the world frame) of the tracked moving object is given by Ot = [xot y
o
t z

o
t ]>

at the tth timestep. The velocity of the object is measured by a velocity sensor, imple-

mented separately from the PF-UCLT algorithm. It is given by vot = {vo
t ,Σ

o
t } where

vo
t = [vo

xt vo
yt vo

zt ]
> is the mean velocity vector at timestep t and Σo

t is a zero mean white

Gaussian acceleration noise. The 2D-position of the lth known and static landmark is given

ll = [llx lly]
>. The landmarks are assumed to be fixed on the ground plane on which the

robots move.

The odometry measurement made by the robot rn at the tth timestep is given by the

vector urn
t and an associated noise with zero mean and covariance matrix Rrn

t . The static

landmark observation measurement of the lth landmark made by the robot rn in its local

frame at the tth timestep is given by the vector zrn,l
t and an associated noise with zero mean

and covariance matrix Qrn,l
t . Similarly, the moving object O’s observation measurement

made by the robot rn in its local frame at the tth timestep is given by the vector zrn,o
t and

an associated noise with zero mean and covariance matrix Σrn,o
t .

We now define xt as the full state vector being estimated by stacking all individual

states at the tth timestep as follows.

xt =
[
Lr1
t
> . . . LrN

t
> Ot

>
]>

(5.7)

ut is obtained by stacking all control measurements (robot odometry and the tracked

object’s velocity) available at the tth timestep as follows.

ut =
[
ur1
t
> . . . urN

t
> vo

t
>
]>

(5.8)

zt is obtained by stacking all the observation measurements available at the tth timestep

as follows.

zt =
[
zr1,1
t

>
. . . zr1,L

t

>
. . . zrN ,1

t

>
. . . zrN ,L

t

>
zr1,o
t
>
. . . zrN ,o

t
>
]>

(5.9)

The online UCLT problem seeks to estimate bel(xt), the posterior belief of the state xt

at the tth timestep, given all the measurement data up to that timestep. This is given by a

probability distribution over the state space bel(xt) = p(xt |z1:t ,u1:t), conditioned on the

available measurement data. The recursive Bayesian filter equation, under the Markovian

assumption of the state’s completeness [43], for the problem is as follows:

p(xt |z1:t ,u1:t)
Bayes

= η p(zt |xt, z1:t−1 ,u1:t) p(xt | z1:t−1 ,u1:t) (5.10)
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Markov
= η p(zt |xt) p(xt | z1:t−1 ,u1:t)

TPT
= η p(zt |xt)

∫
p(xt | xt−1, z1:t−1, u1:t) p(xt−1 | z1:t−1 ,u1:t) dxt−1

Markov
= η p(zt |xt)

∫
p(xt | xt−1, ut) p(xt−1 | z1:t−1, u1:t−1) dxt−1

where η is the proportionality constant and TPT stands for the “total probability theorem”.

5.4.2 PF-UCLT Algorithm: A Solution to The Online UCLT

Problem

In this subsection we first discuss a standard PF solution to the recursive Bayesian formula-

tion of the online UCLT problem given by (5.10). We show how the weight generation step

of a traditional PF solution could cause it to have an exponentially high computational

complexity. Subsequently, the PF-UCLT algorithm is presented which modifies the PF’s

weight generation step in a way such that the computational complexity is substantially

reduced.

PF approximates bel(xt) by a set of M particles Xt , {〈x[m]
t , w

[m]
t 〉}Mm=1. The com-

ponents of any mth particle 〈x[m]
t , w

[m]
t 〉 are x

[m]
t , a hypothesis about the state xt and an

associated weight w
[m]
t which, ideally, should be proportional to its Bayes filter posterior

bel(xt) [43]. In a standard PF implementation to solve the online UCLT problem formu-

lated in (5.10), the goal is to estimate the particle set Xt, given the particle set Xt−1, all the

control measurements ut, all the observation measurements zt and the static landmarks’

known map Lmap. The standard PF solution is described in the following four steps.

Step 1: A temporary particle set X̄t , {〈x̄[m]
t , w̄

[m]
t 〉}Mm=1 is initialized with null values

(zeros).

Step 2: The state hypothesis component x̄
[m]
t , of an mth temporary particle is obtained

by the sampling process in (5.11) which incorporates all the control measurements:

x̄
[m]
t ∼ p(xt|x[m]

t−1,ut) (5.11)

Step 3: The weight component w̄
[m]
t , of an mth temporary particle is obtained as per

(5.12) which incorporates all the observation measurements.

w̄
[m]
t ∝ p(zt|x̄[m]

t ,Lmap) (5.12)
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Step 4: After Steps 2 and 3 are performed for all the M particles, the resulting temporary

set X̄t is resampled to obtain Xt. Resampling is the process where M particles are

drawn with replacement and the probability of drawing a particle is proportional

to its weight. This can be done using various resampling techniques existing in the

literature, e.g, low variance sampler [43]. Lastly, the state estimate xt is obtained

from the resampled particle set Xt.

The performance of a PF is heavily dependent on the number of particles [56] [57] [58]

[59] [60] [61]. In practice, to achieve a good approximation of the posterior belief bel(xt)

by a PF-based method and to not quickly fall into the particle deprivation problem [43],

the number of particles depends exponentially [56] [60] on the dimension of the state space

represented by a particle. The particle deprivation problem, as described in [43], refers

to a situation where none of the particles are in the vicinity of the correct state. This

is more likely to happen as the dimension of the state space grows. In [56], Quang et

al. formally prove that the PF error increases exponentially with the estimated state’s

dimension and therefore, to maintain a given accuracy, the number of particles used in a

PF must increase exponentially with the state’s dimension. We further discuss the role of

state’s dimensionality in the context of the UCLT problem.

Let us assume that in case of a single robot localization problem, where the robot moves

on a plane causing the state space dimension to be 3 (robot’s 2D position and orientation),

the required number of particles for an acceptable accuracy by a PF-based localization

method is M (in practice, M is usually tractably small, i.e, M in the order of thousands

results in an acceptable accuracy and computational speed). However, when the state

space consists of N robots’ poses tracking O objects’ 3D positions, the number of particles

required must be M (N+O) for a similar accuracy to that obtained by M particles in case of

a single-robot localization. This renders the usage of a standard PF implementation very

inefficient for the UCLT problem. Even with N = 2 and O = 1, which is the minimum

requirement for a UCLT scenario, the required number of particles will be in the order of

millions.

In the PF-UCLT algorithm (Algorithm 5.1), we overcome this issue by utilizing the

properties of conditional and total independence of some of the involved variables and

accordingly modify the weight association process of the temporary particles (Step 3 of the

standard PF solution described above), eventually causing the required number of particles

(and hence the space complexity of the PF-UCLT algorithm) to grow only linearly with

N +O, which otherwise would grow exponentially with respect to that. More specifically,

if M is the required number of particles to maintain a given accuracy for a PF-based
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Figure 5.4: Tabular representation of the particles, sub-particles and the associated nota-

tions defined in Section 5.4 and used in Algorithm 5.1 and subsequently.

single robot localization, then for the UCLT problem with N robots and O objects, the

PF-UCLT algorithm would require only (N +O)M particles instead of M (N+O) particles.

However, the time complexity, as described further, will reduce from exponential to linear

only w.r.t N and not w.r.t O. Despite this limitation, the proposed solution is able to

perform efficiently for realtime applications when the number of tracked objects O is low.

PF-UCLT Algorithm Description

The Algorithm 5.1 and its description here considers the number of tracked objects O = 1

for the sake of notational simplicity, with no loss of generality

Before describing the PF-UCLT algorithm, it is important to introduce the concept of

sub-particles used throughout the rest of the chapter. Since the state hypothesis component

x
[m]
t of an mth particle 〈x[m]

t , w
[m]
t 〉 is composed of the states of all robots r1, .., rN and the

tracked object O at the timestep t, we define a particle to be an (N + 2)-tuple as follows:

〈x[m]
t , w

[m]
t 〉︸ ︷︷ ︸

mthparticle

def.
= 〈x[m],r1

t , ..., x
[m],rN
t , x

[m],o
t , w

[m]
t 〉︸ ︷︷ ︸

(N+2)-tuple

, (5.13)

where the first N elements of the (N + 2)-tuple, henceforth designated as the robot sub-

particles of the mth particle, form an N -tuple 〈x[m],r1
t , ..., x

[m],rN
t 〉 and represent the state
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hypothesis of the robots r1, .., rN . The (N + 1)th element x
[m],o
t , henceforth designated as

the object sub-particle of the mth particle, represents the state hypothesis of the tracked

object O. The last (N + 2)th element w
[m]
t represents the weight of the full mth particle.

Similar sub-particle notations for temporary particles or particles at timestep t − 1 will

follow.

We now expand (5.11) and (5.12) to further facilitate Algorithm 5.1 description. Using

the concept of sub-particles and the variable definitions in (5.7) and (5.8) we can expand

the prediction step (5.11) as

x̄
[m]
t ∼ p(xt|x[m]

t−1,ut) (5.14)

⇒ 〈x̄[m],r1
t , ..., x̄

[m],rN
t , x̄

[m],o
t 〉 ∼ p(Lr1

t , ...,LrN
t , Ot | 〈x[m],r1

t−1 , ...,x
[m],rN
t−1 ,x

[m],o
t−1 〉,ur1

t , ...,u
rN
t ,v

o
t )

Property 1: Since all the control measurements reflect individual entities’ (robots’ or

tracked object’s) measurements only and are independent from each other, the pre-

diction steps of each sub-particle can be done separately.

Using Property 1 , (5.14) can be written as the following set of equations:

x̄
[m],r1
t ∼ p(Lr1

t | x
[m],r1
t−1 , ur1

t ) (5.15)

.

.

x̄
[m],rN
t ∼ p(LrN

t | x
[m],rN
t−1 , urN

t )

x̄
[m],o
t ∼ p(Ot | x[m],o

t−1 , vo
t )

Using (5.7) and (5.9), we can expand (5.12) as

w̄
[m]
t ∝ p(zt | x̄[m]

t ,Lmap) (5.16)

∝ p(zr1,1
t , ..., zr1,L

t , ..., zrN ,1
t , ..., zrN ,L

t , zr1,o
t , ..., zrN ,o

t | 〈x̄[m],r1
t , ..., x̄

[m],rN
t , x̄

[m],o
t 〉,Lmap)

∝
N∏
n=1

L∏
l=1

p(zrn,l
t | 〈x̄[m],r1

t , ..., x̄
[m],rN
t , x̄

[m],o
t 〉,Lmap)

N∏
n=1

p(zrn,o
t | 〈x̄[m],r1

t , ..., x̄
[m],rN
t , x̄

[m],o
t 〉,Lmap)

∝
N∏
n=1

L∏
l=1

p(zrn,l
t | x̄[m],rn

t ,Lmap)
N∏
n=1

p(zrn,o
t | x̄[m],rn

t , x̄
[m],o
t )

The third line of (5.16) is derived from the second line of (5.16) using the following

property of conditional independence.

82



Chapter 5 Cooperative Robot Localization and Target Tracking: A Unified Framework

Property 2: All static landmarks’ observation measurements and the moving object ob-

servation measurements are independent of each other given the predicted poses of

the observing robots and the predicted position of the tracked object.

The final expression of (5.16) is obtained from the third line expression of (5.16) using

the property of mutual independence for some (and not all) of the involved variables. These

properties are as follows:

Property 3: The observation measurement for a given static landmark made by any robot

rn is dependent only on the predicted pose of the robot rn and the fixed position of

that static landmark. It is independent of the pose of all the other robots and the

position of the tracked object.

Property 4: The tracked object’s observation measurement made by any robot rn de-

pends only on the predicted pose of the robot rn and the predicted position of the

tracked object. It is independent of the pose of all the other robots and the fixed

positions of the static landmarks.

Using i) the notations defined and described earlier in this section ii) the Properties

1-4 stated above and iii) the prediction and update step equations’ expanded forms ((5.15)

and (5.16), respectively), we now proceed to a step-wise description of the Algorithm 5.1.

The Algorithm 5.1, which is a recursive predict-update loop, requires a separate in-

stance of it to run on each robot in the team. Further in the description we assume that

Algorithm 5.1 runs on the robot rk. The algorithm’s first input is Xt−1, the particle set

returned from the immediate preceding iteration of the algorithm. The other inputs, as

defined previously in this section, are ut, zt,Lmap and rk, all the control and observation

measurements, the static landmarks positions and the robot number running the algorithm.

In lines 1 − 2 of the Algorithm 5.1, the robot rk transmits its control and observation

measurements to all the other robots in the team and receives the same from every other

teammate. Lines 3− 4 define temporary variables X̄t andWt, both of which are initialized

with null values (zeros) and later used in the algorithm to contain intermediate step values.

Variable X̄t , {〈x̄[m]
t , w̄

[m]
t 〉}Mm=1

def.
= {〈x̄[m],r1

t , ..., x̄
[m],rN
t , x̄

[m],o
t , w̄

[m]
t 〉}Mm=1 is a temporary

particle set, where any temporary particle is an (N + 2)-tuple, similar to the one described

in (5.13). Variable Wt is defined as a set Wt , {〈w[m],r1
t , ..., w

[m],rN
t , w

[m],o
t 〉}Mm=1 to hold

temporary weight values for the corresponding robots’ and tracked object’s temporary

sub-particles in the set X̄t.
In lines 5 − 10 of the Algorithm 5.1, X̄t stores, after computing, the predicted values

of all particles by applying the appropriate robot motion model and the moving object’s
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Algorithm 5.1 PF-UCLT(Xt−1,ut, zt,Lmap, rk)

1: Transmit {zrk,o
t , urk

t and zrk,l
t for all l = 1, ..., L}

2: Receive {zrn,o
t , urn

t and zrn,l
t for all l = 1, ..., L} for all n = 1, ..., N ; n 6= k

3: X̄t , {〈x̄[m]
t , w̄

[m]
t 〉}Mm=1

def.
= {〈x̄[m],r1

t , ..., x̄
[m],rN
t , x̄

[m],o
t , w̄

[m]
t 〉}Mm=1 = NULL

4: Wt , {〈w[m],r1
t , ..., w

[m],rN
t , w

[m],o
t 〉}Mm=1 = NULL

5: for m = 1 to M do

6: for n = 1 to N do

7: x̄
[m],rn
t = sample robot motion model(x

[m],rn
t−1 ,urn

t )

8: end for

9: x̄
[m],o
t = sample object motion model(x

[m],o
t−1 ,vo

t )

10: end for

11: for m = 1 to M do

12: for n = 1 to N do

13: w
[m],rn
t ∝

L∏
l=1

p(zrn,l
t | x̄[m],rn

t ,Lmap)

14: end for

15: end for

16: for n = 1 to N do

17: {〈x̄[m],rn
t , w

[m],rn
t 〉}Mm=1 ← sort descend ({〈x̄[m],rn

t , w
[m],rn
t 〉}Mm=1) w.r.t. {w[m],rn

t }Mm=1

18: end for

19: for m = 1 to M do

20: Choose index m∗ ∈ [1 : M ] such that the value of w
[m∗],o
t ∝

N∏
n=1

p(zrn,o
t | x̄[m],rn

t , x̄
[m∗],o
t )

is maximum for all possible indices m∗ ∈ [1 : M ].

21: x̄
[m],o
t = x̄

[m∗],o
t

22: w̄
[m]
t = w

[m∗],o
t

N∏
n=1

w
[m],rn
t

23: end for

24: normalize {w̄[m]
t }Mm=1

25: Xt = resample(X̄t)
26: return Xt

motion model on the input particle set Xt−1. This is done by separately incorporating the

individual robot’s odometry measurements and the object’s velocity input (the control mea-

surements) on the robot sub-particles x
[m],r1
t−1 , ..,x

[m],rN
t−1 and the object sub-particle x

[m],o
t−1 ,

respectively. The separate prediction of the sub-particles is as per (5.15) and Property 1 ,
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as stated previously.

Lines 11− 23 present the core of the Algorithm 5.1. The fusion of the correlated obser-

vation measurements is done here in an efficient way such that the need of an exponentially

high number of particles is avoided. In a PF, the weight generation does not modify the

predicted particle set (the predicted state hypothesis of the particles remain unchanged).

It only associates a weight to each predicted particle, which is used by the resampling step

of the PF. The weighting mechanism presented in the lines 11−23 also does not modify the

predicted particle set. It only associates weights to the predicted particles. To this effect,

a rearranging technique of the sub-particles is used which allows the required number of

particles M to be much lower than what would be required otherwise.

Lines 11−15 perform the following: For each robot rn, its predicted sub-particle x̄
[m],rn
t

is separately assigned a weight w
[m],rn
t ∝

L∏
l=1

p(zrn,l
t | x̄

[m],rn
t ,Lmap) corresponding to their

static landmarks’ observation measurements. The separate weighting of the sub-particles

is due to Property 3 , as stated previously.

In lines 16 − 18, each robot’s predicted sub-particle set {x̄[m],rn
t }Mm=1 is sorted in de-

scending order w.r.t. to its temporary weight set {w[m],rn
t }Mm=1, generated in lines 11− 15.

This means that the highest weighted sub-particle, separately for each robot, is assigned

the particle index 1 and so on. It is crucial to understand why this is done. Given that

a robot’s ‘good’ predicted sub-particles approximate better the correct posterior of that

robot’s state than its ‘bad’ sub-particles, consider the following situation. If we were us-

ing the straightforward particle weighting mechanism, i.e, the first expression in (5.16),

it would be very likely that a robot’s ‘good’ sub-particle would get coupled with a ‘bad’

sub-particle from another robot when computing the weight of a particle leading to a lower

overall weight of that particle, even though a sub-particle in it was ‘good’. It is due to this

loss of ‘good’ sub-particles and eventually the loss of ‘good’ particles that an exponentially

high number of particles are required to not fall into the particle deprivation problem when

using the first expression of (5.16) directly. By sorting the individual robot’s sub-particles

and then clubbing the ‘best with the best’ robots’ sub-particles, we make sure that the

particle deprivation problem is solved partially (because we still haven’t considered the

object observation measurements). Furthermore, recall that any robot rn’s sub-particle

set {x̄[m],rn
t }Mm=1 was predicted and weighted independently of all other robots’ sub-particle

sets which implicitly means that rearranging the robot sub-particle sets does not modify

the distribution represented by the predicted particle set X̄t.
Finally, lines 19− 23 incorporate the robots’ observation measurements of the tracked

object. Following from Property 1, the prediction of the tracked object’s sub-particles
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{x̄[1],o
t , ..., x̄

[M ],o
t } was performed independently of the robots’ sub-particles prediction. This

enables the freedom to rearrange the tracked object’s sub-particles before incorporating the

object observation measurements in the particle’s weight.

We perform this rearrangement of the object’s sub-particles to fully solve the problem of

particle deprivation (recall that earlier by rearranging only the robot’s sub-particles it was

partially solved) as follows. For an mth previously-rearranged set of the robots’ predicted

sub-particles {x̄[m],r1
t , ..., x̄

[m],rN
t }, obtained after the execution of lines 16 − 18, we choose

the tracked object’s sub-particle2 x̄
[m∗],o
t such that w

[m∗],o
t is maximum for all possible

indices m∗ ∈ [1 : M ]. Here3, w
[m∗],o
t is computed as w

[m∗],o
t ∝

N∏
n=1

p(zrn,o
t | x̄

[m],rn
t , x̄

[m∗],o
t ).

At this point, the combination of all the predicted sub-particles (robots’ and the tracked

object’s) for an mth particle is complete. Subsequently in line 22, the weight w̄
[m]
t of the

mth particle x̄
[m]
t is calculated as w̄

[m]
t = w

[m∗],o
t

N∏
n=1

w
[m],rn
t . Note that this is in accordance

with the final expression obtained in (5.16). This is done for every mth set of the robots’

predicted sub-particles. The selection of the tracked object’s sub-particle, in a way such

that the ‘good’ object sub-particle gets coupled with the ‘good’ sub-particle set of the

robots, ensures that the particle deprivation problem is fully solved. This concludes the

weight generation step (and therefore the incorporation of all correlated or uncorrelated

observation measurements) of the Algorithm 5.1.

Line 24 performs the particle weight normalization followed by the resampling step in

line 25. The resampling of the particle set X̄t is performed to obtain Xt, which is eventually

returned as the final output of this algorithm. This can be done using standard available

methods, e.g, low variance resampling [43].

Space and Time Complexity Analysis of PF-UCLT

In this sub-subsection, worst-case space and time computational complexity analysis of

the Algorithm 5.1 is presented and compared with a scenario in which, instead of Algo-

rithm 5.1, the traditional PF method (described at the beginning of this section) would

be used. We assume the same notations, as introduced previously, that the total number

of robots in the team is N and the total number of tracked objects is O. Note that in

the Algorithm 5.1’s description, we assumed O = 1. Therefore, in the complexity analysis

presented here, we need to consider that lines 20 − 22 are repeated O times for O > 1.

2Object sub-particle at the index m∗ where m∗ ∈ [1 : M ]
3This expression follows from Property 4
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Furthermore, this complexity analysis will also assume that M is the number of particles

required to obtain a reasonably good accuracy by a PF-based method for a single robot

localization where the robot’s state consists of a 2D pose and an orientation (or for a single

object tracking case where the state is the 3D position of the object)4.

Space Complexity : In a traditional PF-based method for the online UCLT problem

the worst-case space complexity will be in the order of O
(
MN+O

)
, since the number of

particles required would grow exponentially with the increase in dimensions of the full state

being estimated [56] [57] (increase in number of robots or objects). The exact reasoning

for this was given earlier in this subsection. However, the weight generation mechanism

of Algorithm 5.1 limits the worst-case space complexity to O
(

(N + O)M
)

, since only M

particles, with (N + O) sub-particles in each particle, are required. This feature of the

PF-UCLT algorithm makes it scalable to a large number of robots and the tracked objects,

where the robots might have low-memory capacities. Nevertheless, it implies more com-

munication among the robots and a higher bandwidth usage.

Time Complexity : Although a traditional PF-based method would require only one

iteration over the whole particle set for the weight generation step, given the high number

of particles used, the worst-case time complexity (WCTC) for it would be in the order

of O
(
MN+O

)
, i.e, growing exponentially with the number of robots and objects. Algo-

rithm 5.1 substantially reduces the time complexity. The WCTC of the weight generation

step due to the fixed landmarks observation measurements (lines 11− 15 of the algorithm)

is in the order of O
(
NM

)
. The WCTC of the sorting performed in lines 16− 18 (assum-

ing merge sort algorithm used for sorting) will be in the order of O
(
NM logM

)
. For the

weight generation step due to the tracked objects’ observation measurements (lines 19−23

with lines 20 − 22 repeated O times for O objects), the WCTC will be in the order of

O
(
NMO+1

)
. Summing all the individual steps’ WCTC and considering only the highest

order term, while assuming that M � (N +O), the WCTC of the weight generation step

in Algorithm 5.1 will be in the order of O
(
NMO+1

)
. This is linear in terms of the number

of robots N in the team, which would otherwise be exponential in a traditional PF solution

for the online UCLT problem. Therefore, scaling the Algorithm 5.1 to a larger number

of robots is possible, however, the scalability is still limited in terms of O, the number of

4Note that, since the required number of particles depends on the state space dimension [56] [57],

a higher dimensional space for a single robot’s pose or the object would simply require M to increase

exponentially with the dimension.
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objects being tracked which exponentially increases the required computation time.

5.4.3 Experiments and Results

5.4.3.1 Testbed and Experimental Scenario

PF-UCLT (Algorithm 5.1) was implemented on the same testbed and dataset as in the

case of O-MMLG, described earlier in this chapter in sub-subsection 5.3.3.1 (the dataset

containing 4 soccer robots’ data, their odometry logs as well as 6 landmarks’ data and the

orange ball data from their observation logs). Since the O-MMLG-based approach is an

offline method, it uses the whole dataset at once as a batch for each iteration of the graph

optimization process. However, the PF-UCLT approach is an online method, therefore an

iteration of its algorithm uses only the data at the corresponding timestep, causing the

whole dataset to be used only once.

Algorithm 5.1 was first implemented on only 2 of the robots’ data logs to verify the

algorithm’s proof of concept and run-time feasibility. The results and analysis for it are

presented in sub-subsection 5.4.3.2. Later the implementation was extended to all the 4

robots’ data logs to analyze the algorithms scalability. The results for it are presented

further in sub-subsection 5.4.3.3.

Note that, unlike the O-MMLG method, the velocity of the tracked object in PF-UCLT

is not a part of the estimated state. Here, the ball velocity at every timestep is measured

using a separate velocity sensor which performs a linear regression over the tracked ball

positions during a fixed number of previous timesteps. Subsequently, this ball velocity

measure, along with a zero mean Gaussian acceleration noise, is used in the PF-UCLT

prediction step as per the last equation of (5.15).

5.4.3.2 2 Robots Experiment

For its proof of concept, Algorithm 5.1 needs to be implemented in a scenario where at least

2 robots are cooperatively localizing and tracking 1 object. To this effect, we implemented

Algorithm 5.1 on the robot named OMNI1 (recall that the algorithm is computationally

decentralized) assuming that it acquires its own measurement data of odometry, landmarks

and orange ball observation and receives the measurement data for the same from the robot

OMNI2. In order to emulate communication between the two robots, at every iteration

of the algorithm on OMNI1, we chose the closest timestamped data from OMNI2’s data

log. The data logs of both robots used in this experiment correspond to ∼ 6 minutes of

real-time data acquisition (For complete details regarding the data logs, see Appendix A).
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PF-UCLT at OMNI1

Mean error Median error Variance of error

(m) (m) (m2)

OMNI1 0.106 0.105 0.003

OMNI2 0.161 0.146 0.006

Ball (global position) 0.369 0.282 0.068

Ball (local position 0.246 0.181 0.047

in OMNI1’s frame)

Table 5.4: PF-UCLT: Statistical estimates of the 2 Robots experiment results.

Table 5.4 and Figures 5.5 – 5.7 present the results of this experiment. The left column

plots in Figure 5.7 present the error in the global estimated position of the orange ball. The

right column plots in Figure 5.7 correspond to the error in local frame range estimates of

the orange ball in OMNI1’s frame of reference. Error in global position is computed as the

absolute value of the difference in the ball’s 3D position estimated by Algorithm 5.1 running

on OMNI1 and the corresponding GT estimates for the same. The error in OMNI1’s

local frame is computed as the absolute value of the difference of i) distance between

Algorithm 5.1’s estimate of OMNI1’s position and the ball’s position and ii) distance

between the corresponding GT estimates of OMNI1 and the orange ball. The error in local

frame is in the terms of range (radial distance) of the ball from the observing robot and

not explicitly in the local 2-D coordinates X and Y of the observing robot because the GT

system provides only the 2D positions of the robots, not the GT orientation of the robots.

In Figure 5.5, localization confidence values of both OMNI1 and OMNI2 are presented.

The localization confidence of a robot is inversely proportional to the spatial variance of

the sub-particles associated to it in Algorithm 5.1. It must be noted that, also mentioned

in the introduction of this chapter, a unified method for cooperative tracking and localiza-

tion must be independent of such confidence measures since they are purely heuristic-based

measures and can often result in false positives. The localization confidence values pre-

sented here are not used in the PF-UCLT algorithm anywhere. These are presented for a

quick evaluation of the localization performance achieved by Algorithm 5.1 and must be

viewed in conjunction with the robot localization error plots of Figure 5.6. The plots in

Figure 5.6 present the errors in each robot’s localization estimates and are computed as the

absolute value of the difference of i) the robot’s 2D position (out of 2D position and ori-

entation estimates) estimated by Algorithm 5.1 running on OMNI1 and ii) corresponding

2D position of the robot obtained by the GT system. The robots often get occluded from
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the GT system, hence the localization error values in Figure 5.6 are not available at all

timesteps of the experiment. Therefore a heuristic-based confidence value of localization

helps, to some extent, better visualize the localization performance by PF-UCLT. In case

of the 4 robots experimental results, presented in the next sub-subsection, the localiza-

tion performance can be visualized even better using the video accompanying this section.

All the plots, except the histograms, have a common X-axis scale and limits since they

correspond to the same timesteps of Algorithm 5.1.

Table 5.4 presents the statistical estimates of the aforementioned errors. These re-

sults show that PF-UCLT (Algorithm 5.1) was able to cooperatively localize OMNI1 and

OMNI2 and track the orange ball with good accuracy, comparable to that of the O-MMLG

approach. The mean error of localization for both robots is only slightly more (∼ 0.03m)

than what was achieved using the offline method O-MMLG for the 2 robots experiment

in sub-subsection 5.4.3.2. The mean error in the estimated global position of the ball is

0.369m which in comparison with the O-MMLG method is less by 0.06m. The mean error

of the estimated local position of the ball in OMNI1’s reference frame is 0.246m, much

less than its global position mean error, which reflects that the error in the global position

of the ball incorporates the observing robots’ localization errors. The variance of error in

both robots’ localization estimates is similar to their O-MMLG counterpart. However, it

must be noted that the PF-UCLT method results in a much smoother trajectory of the

estimated ball positions than the O-MMLG method. This is evident by the fact that the

variance of error in the global positions of the ball is 0.068m2 when using the PF-UCLT

method, while it is 0.314m2 when using the O-MMLG method.
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Figure 5.5: PF-UCLT: robots’ localization confidence plots for the 2 robots experiment.
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Figure 5.6: PF-UCLT: robot’s estimated position error plots for the 2 robots experiment.
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5.4.3.3 4 Robots Experiment

PF-UCLT at OMNI1

Mean error Median error Variance of error

(m) (m) (m2)

OMNI1 0.103 0.101 0.003

OMNI2 0.159 0.157 0.006

OMNI3 0.126 0.120 0.003

OMNI4 0.339 0.239 0.069

Ball (global position) 0.338 0.279 0.050

Ball (local position 0.225 0.169 0.042

in OMNI1’s frame)

Table 5.5: PF-UCLT: Statistical estimates of the 4 Robots experiment results.

In this experiment we extend the PF-UCLT’s implementation to the all the 4 robots’

data in the dataset. The aim is to analyze the scalability of Algorithm 5.1 in terms of

required computation time and its ability to improve the estimates of each entity (robots’

pose and tracked object’s position estimates) with the increase in number of robots. The

robots are henceforth mentioned as OMNI1 – OMNI4. Algorithm 5.1 is implemented on

OMNI1 and in addition to its own measurement data, it receives the same from OMNI2,

OMNI3 and OMNI4. The communication among the robots is emulated in the same way

as explained for the 2 robots experiment in the previous sub-subsection. Table 5.5 and

Figures 5.8 – 5.10 present the results of this experiment. The plots in these figures represent

the same quantities as that of the 2 robots experiments, explained in the previous sub-

subsection. The errors in the local position of the ball is estimated in OMNI1’s reference

frame. Computation time comparisons for the 4 robot and 2 robot experiments are done

in subsequent sub-subsection 5.4.3.4.

In comparison with the 4 robots experiment made using the O-MMLG approach (sub-

subsection 5.3.3.3), we observe that Algorithm 5.1 results in slightly more erroneous lo-

calization of all the robots, although it is still acceptably good, given that PF-UCLT is

an online approach whereas O-MMLG performs the estimations offline. However, the ball

tracking accuracy obtained by Algorithm 5.1 is improved by 0.06m when compared to the

O-MMLG approach.
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Figure 5.8: PF-UCLT: robots’ localization confidence plots for the 4 robots experiment.
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Figure 5.9: PF-UCLT: robots’ estimated position error plots for the 4 robots experiment.
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OMNI4 has a much higher localization error compared to the rest of the robots. This

can be observed in the error plots for it in Figure 5.9 and the localization confidence plots

in Figure 5.8. This is due to the highly noisy measurement data (both odometry and visual

observatrions) acquired by it during data acquisition. The O-MMLG approach was able

to localize it much better (where OMNI4’s mean error = 0.267m) than PF-UCLT (where

OMNI4’s mean error = 0.339m). This is because the O-MMLG approach is an offline

optimizer, where the whole dataset is processed at once and used in every optimization

iteration. The iterative re-linearization and batch processing helps mitigate the effect of

noisy measurements. This is not possible in a PF-based approach. If noisy measurements

exist for a significant period of time, the PF-based tracker estimates poorly during that

period. However, it recovers to better estimates when less noisy measurements arrive.

Unlike the offline approach of O-MMLG, PF-UCLT is not designed to update the previous

trajectory at a given timestep, hence the mean error of localization tends to be higher in

its case.

The video5 accompanying this section displays the 4 robots experiment’s results. The

overlaid attributes of the video show PF-UCLT and GT estimates in a similar manner

as that of the O-MMLG experiment video, explained previously in section 5.3.3. The

additional attributes in this video are: i) on top of each robot the word ‘OK’ or ‘LOST’

is overlaid depending on whether the associated robot’s localization confidence is above a

threshold (0.3) or not (see Figure 5.8 for localization confidence values), ii) sub-particles

corresponding to each robot and the ball are overlaid in a color corresponding to the

robot hat’s color and the ball’s color, respectively. The overlaid orange circle, representing

the ball’s estimated position by PF-UCLT, can be observed to perform a much smoother

trajectory as compared to the O-MMLG experiment video. An interesting observation is

that with OMNI4, the robot with poor localization. Whenever the ball is out of the vision

range (∼ 3m) of OMNI4, its localization tends to degrade, however, the moment the ball

is observed by OMNI4 again (while being simultaneously observed by any other robot),

OMNI4’s localization is recovered. This visually demonstrates, one of the key features of

the PF-UCLT algorithm, that a cooperatively tracked object enables the poorly localized

observing robots to recover from localization failures without actually losing the quality of

the cooperatively tracked object’s estimate.

5Video link of the PF-UCLT 4 robots experiment.

http://users.isr.ist.utl.pt/∼aahmad/PhDThesisVideos/Chap 5 PF-UCLT/PF UCLT.mpg
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5.4.3.4 Computation Time Comparison

Both the 2 robots and 4 robots experiment were performed on a machine (Quad Core

Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz, 8GB RAM), same as the one used for the

O-MMLG approach. As expected according to the theoretical analysis of PF-UCLT’s

computational complexity, presented earlier in this section, the 4 robots experiment took

nearly twice the time (0.05s) per iteration of the PF-UCLT algorithm, compared to the 2

robots experiment in which it took 0.027s to perform an iteration. One iteration refers to

the execution of the full Algorithm 5.1 at one timestep. This experimentally establishes

that the computational time complexity of Algorithm 5.1 grows only linearly w.r.t. the

number of robots in the team.

Average Time (in seconds)

(for 1 iteration of PF-UCLT at OMNI1)

2 Robots Experiment 0.027

4 Robots Experiment 0.050

Table 5.6: Computation time of the PF-UCLT (Algorithm 5.1) method.

5.5 Summary

In this chapter we presented two novel approaches for unified cooperative localization of

a team of robots tracking a moving object cooperatively while using it in turn to improve

their own localization.

In the first approach (Section 5.3), which is an offline method, we did this by posing

it as a multi-robot moving landmark graph optimization problem (O-MMLG), where the

moving landmark is the cooperatively tracked object. A mathematical formulation of this

problem was presented which verifies its validity and its applicability in the g2o framework

for graph optimization. The results of this approach applied in a robot soccer scenario and

its comparison with an EKF-based approach highlights its increased accuracy as well as its

scalability to a higher number of robots without losing on the accuracy and the required

computation time. We also displayed that in the situations of highly noisy measurements

and observations, where the EKF-based method performs poorly, the O-MMLG approach

was able to produce reasonably good estimates.

In the second approach (Section 5.4), which is an online method, we introduced the

PF-based unified cooperative localization and tracking (PF-UCLT) algorithm. This in-
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cluded the mathematical formulation of the online UCLT problem, a recursive Bayesian

filter solution and description of a standard PF-based method to solve the problem. Subse-

quently, we presented the details of the PF-UCLT algorithm, describing its novelty, which

lies in its update step (particles’ weight generation step). We demonstrated that PF-

UCLT algorithm reduces the exponentially growing computational and space complexity

of a standard PF-based method to linear w.r.t the number of robots in the team. The

approach was implemented on the exact same testbed and dataset as the one used in the

O-MMLG’s case. Results show that the PF-UCLT’s accuracy of the full state estimation

is reasonably good. However, its accuracy is slightly worse than the O-MMLG approach’s

accuracy. As pointed out before, since the O-MMLG performs the estimation of the full

state’s complete trajectory by iteratively optimizing over the whole measurement dataset

in every iteration, its higher accuracy over the PF-UCLT algorithm (online approach) is

explicable. We analyzed the runtime computational space and time complexity for the

PF-UCLT method, both theoretically and experimentally, and concluded that it is well-

suited for realtime applications. We also presented a one to one comparison of both the

approaches while highlighting their capabilities and execution speed.

In Chapter 6, we present a more detailed experimental comparison of both the unified

methods presented here by applying them in various experimental failure situations, e.g,

communication failure between robots and sensor breakdown.

5.6 Related Publications

The work related to O-MMLG method for offline unified cooperative localization and object

tracking (UCLT), presented in Section 5.3, was accepted as a full length-article [8] to be

published in the proceedings of the 2013 IEEE International Conference on Robotics and

Automation (ICRA 2013), Karlsruhe, Germany (submitted: September 2012, accepted:

January, 2013).
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Chapter 6

Case Study 1: Comparative Analysis

of the Cooperative Perception

Algorithms

I
n this case study, we present a comparative analysis of the cooperative perception (CP)

algorithms developed in this thesis. The feature comparison, in section 6.1, presents

a chart summarizing the requirements, advantages/disadvantages, failure situations, etc.,

of the CP algorithms. The comparison highlights which particular CP algorithm is more

suitable for implementation in a certain scenario.

The quantitative analysis, presented in section 6.2, explores the robustness of the unified

CP algorithms, PF-UCLT and O-MMLG, developed in Chapter 5. This is done through

a series of experiments, where we emulate failure situations, eg., communication loss and

vision system’s hardware failure. The testbed and dataset used for these experiments are

described in Appendix A.

6.1 Feature Comparison

Inferring from the algorithm descriptions and the experimental results presented in the

preceding chapters, Table 6.1 presents a comprehensive feature list of the following CP

algorithms/methods:

• A PF-based algorithm for multi-robot cooperative object tracking (PF-MCOT), de-

scribed in Chapter 3.

• A PF-based algorithm for multi-robot cooperative robot localization (PF-MCRL),
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described in Chapter 4.

• Multi-robot moving landmark graph optimization (O-MMLG) method for multi-

robot unified cooperative localization and object tracking, described in Chapter 5,

Section 5.3.

• A PF-based algorithm for multi-robot unified cooperative localization and object

tracking (PF-UCLT), described in Chapter 5, Section 5.4.

Feature PF-MCOT PF-MCRL O-MMLG PF-UCLT

Necessity of a separate robot localiza-

tion method
Yes No No No

Necessity of a separate object tracking

method
No Yes No No

Integrated robot localization and ob-

ject tracking
No No Yes Yes

Heuristics-based robot localization con-

fidence necessary
Yes Yes No No

Heuristics-based object tracking confi-

dence necessary
Yes Yes No No

Recursive error propagation No No No No

Robust to communication failures Yes Yes Yes Yes

Robust to sensor failures of teammates Yes Yes Yes Yes

Fully decentralized Yes Yes No Yes

Scalable to a large number of robots Yes Yes Yes Yes

Suitable for online implementation Yes Yes No Yes

Full trajectory estimation No No Yes No

Table 6.1: Feature Comparison of the CP algorithms

6.2 Quantitative Analysis

We performed unified cooperative multi-robot localization and object tracking experiments

using the O-MMLG and PF-UCLT methods on the “4 robots dataset” (one of the datasets
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described in Appendix A) for localizing the robots and to track the orange ball. All

4 robots’, OMNI1–OMNI4’s, odometry log and 6 landmarks observation logs were used

along with their observation logs for the orange ball. The corresponding ground truth

(GT) logs were used to quantify errors in the robots’ 2D position estimates and the ball’s

3D position estimates. The dataset used here corresponds to ∼ 6 minutes of realtime data

acquisition.

In order to do a robustness check and analyze the algorithm’s behavior in various fail-

ure scenarios, a set of 12 experiments (3 experimental situations in 4 different scenarios1)

were designed and both the O-MMLG method and the PF-UCLT algorithm were imple-

mented in each experiment. Since the PF-UCLT method is decentralized, results of its

implementation on the robot OMNI1 is analyzed. The scenarios are as follows:

• Permanent communication failure (results presented in subsection 6.2.1)

• Temporary communication failure (results presented in subsection 6.2.2)

• Permanent vision failure (results presented in subsection 6.2.3)

• Temporary vision failure (results presented in subsection 6.2.4)

Each of the above scenarios consists of 3 different experimental situations1, which corre-

spond to different number of failed robots in that scenario. To emulate the communication

or the vision failure, the data logs (both odometry and camera observation logs in case

of communication failure and only camera observation logs in case of vision failure) cor-

responding to specific timestamps were skipped from the algorithm’s execution process.

In the subsequent sub-sections, we present the results of all the experiments, grouped

according to the failure scenarios. Along with a table of results for each experiment, the

box-style plots in Figures 6.1 – 6.8 help visualize the evolution of estimation errors with the

increasing number of failed robots. In the box-style plots, for each experiment, the center

of the rectangular box is positioned at the X-coordinate corresponding to the experiment

(X = 1 for OMNI2’s failure experiment situation, X = 2 for OMNI2 and OMNI3’s failure

experiment situation and X = 3 for OMNI2, OMNI3 and OMNI4’s failure experiment sit-

uation) and the Y -coordinate corresponding to the mean error of estimation (mean error

of a robot’s or the ball’s position estimate) in that particular experiment. A horizontal

line inside the box denotes the median of the error, while the lower and higher edge of the

1A scenario corresponds to the kind of failure, e.g, communication failure between robots or a particular

robot losing its vision sensor. An experimental situation corresponds to the number of robots failing in a

particular scenario.
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box correspond to the 25th and 75th percentile error of estimation, respectively. The end

points of the ‘whiskers’ projecting out from either sides of the box, depict the highest and

lowest errors of the experiment. These statistics for each experiment are of the O-MMLG

or PF-UCLT’s estimates (and errors calculated by comparing these estimates with the

ground truth) on the dataset corresponding to 6 minutes of realtime data acquisition, as

mentioned previously in this section.

Prior to the analysis of results, it is worth mentioning that in the dataset used in all

the experiments here, the individual robot’s odometry noise and observation measurement

noise were much higher in the case of OMNI4 where as quite low in the case of OMNI1.

This was mainly due to to the high slippage in OMNI4’s motors causing a poor odometry

reading from it and poor color segmentation calibration for its vision system causing noisy

observation measurements.

6.2.1 Permanent Communication Failure

This sub-section details the following 3 experimental situations (in increasing order of the

number of failed robots) under the scenario of a permanent communication failure.

1 Failed Robot: OMNI2 loses communication with OMNI1 from ∼ 80ths up till the end.

2 Failed Robots: OMNI2 loses communication with OMNI1 from ∼ 80ths up till the end

and OMNI3 loses communication with OMNI1 from ∼ 85ths up till the end.

3 Failed Robots: OMNI2 loses communication with OMNI1 from ∼ 80ths up till the end,

OMNI3 loses communication with OMNI1 from ∼ 85ths up till the end and OMNI4

loses communication with OMNI1 from ∼ 92nds up till the end.

The end of all the experiments here and in the subsequent sub-sections is at ∼ 360s.

Table 6.2 and the plots in Figures 6.1 and 6.2 present the results of the PF-UCLT algorithm

and the O-MMLG method applied in this scenario.

Primarily, we observe that for all the three experiments here, the errors for all the

robots’ and the ball’s position estimates are lower when the O-MMLG method is applied

in comparison with the PF-UCLT algorithm’s implementation. As previously mentioned

in Chapter 5, this is due the fact that the O-MMLG method, being an online full trajectory

estimator, iterates over the whole dataset multiple times to achieve the optimal configura-

tion of nodes in the pose graph. On the other hand, PF-UCLT is an online estimator which

process a measurement data only once. Therefore, while gaining on computational speed
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and realtime execution ability, PF-UCLT compromises on accuracy to some extent. Nev-

ertheless, the accuracy of both methods are reasonably good even after the communication

loss.

In both the unified CP approaches, PF-UCLT and O-MMLG, we observe from the plots

in Figure 6.2 that the position estimation accuracy of the ‘disconnected’ robots (those

robots which lose communication with OMNI1) degrades while at the same time the posi-

tion accuracy of the ‘connected’ robots (those robots whose communication with OMNI1

has not failed) is maintained. It is notable that OMNI1, on which the algorithm runs in

the case of PF-UCLT or whose self measurement/observation data is never lost in case of

the O-MMLG approach, is able to maintain its position estimate accuracy when one or

more teammates’ communication fails. This particularly highlights the robustness of both

the unified CP approaches in the case of permanent communication loss. It is interesting

to observe that when OMNI4 is ‘disconnected’ (loses communication), OMNI1 slightly im-

proves its own position estimate accuracy (mean error reduces from 0.100m to 0.093m in

the case of PF-UCLT and from 0.64m to 0.62m in the case of O-MMLG approach) while

OMNI4’s position accuracy reduces drastically (mean error increases from 1.40m to 2.76m

in the case of PF-UCLT and from 0.187m to 2.153m in the case of O-MMLG approach).

The main reason behind it is that OMNI4’s measurements are corrupted with high noise.

Such a phenomena highlights a beneficial feature of our unified CP approaches. The posi-

tion estimates of the robots, with highly noisy measurements, improve quite significantly

in the presence of robots with less noisy measurements, while at the same time the latter

robots’ position accuracy is only slightly compromised.

The accuracy of the ball’s position estimate degrades with the number of robots losing

communication. This is due to the fact that once a robot is ‘disconnected’ there are less

ball observation measurements, (recall that in this dataset a robot observes a ball only

up to ∼ 3m distance from it) hence for significant periods of time, the ball might simply

not be visible, causing an increase in the overall mean error of its position estimation.

The changes in the median of the ball’s position errors show another interesting feature

of our methods. In both the CP approaches, the median of the ball’s position errors in-

creases significantly when OMNI3 and OMNI2 are ‘disconnected’ (median error increases

from 0.365m to 0.628m in the case of PF-UCLT and from 0.202m to 0.250m in the case

of O-MMLG approach) and only slightly decreases when OMNI4 is also ‘disconnected’

along with OMNI2 and OMNI3 (median error decreases from 0.628 to 0.587 in the case

of PF-UCLT and from 0.250m to 0.248m in the case of O-MMLG approach). This shows

that while the less noisy observations of OMNI2 and OMNI3 (their noise was comparable

to that of OMNI1’s) were improving the overall ball’s estimate, the more noisy ball ob-
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Figure 6.1: The box plots in this figure present the statistical estimates of the ball’s global

(and local in OMNI1’s frame) position estimation errors for the PF-UCLT and the O-

MMLG experiments performed in the scenario of permanent communication failure. The

X-axis represents the three experimental situations, described in the sub-section 6.2.1, of

this scenario.

servation measurements of OMNI4 were only slightly degrading the overall ball’s position

estimate. Therefore establishing that our unified CP approaches are robust to more noisy

measurements and effectively handle them as outliers.
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PF-UCLT O-MMLG

Entity Failed Robot(s) Mean Median Std.dev. Mean Median Std.dev.

(m) (m) (m) (m) (m) (m)

OMNI2 0.096 0.090 0.056 0.064 0.062 0.035

OMNI1 OMNI2,3 0.100 0.097 0.055 0.064 0.063 0.034

OMNI2,3,4 0.093 0.083 0.054 0.062 0.057 0.035

OMNI2 0.243 0.236 0.075 0.273 0.269 0.023

OMNI2 OMNI2,3 0.243 0.236 0.075 0.274 0.270 0.023

OMNI2,3,4 0.243 0.236 0.075 0.274 0.270 0.023

OMNI2 0.152 0.130 0.102 0.123 0.119 0.068

OMNI3 OMNI2,3 0.295 0.170 0.267 0.138 0.110 0.111

OMNI2,3,4 0.294 0.170 0.266 0.138 0.110 0.111

OMNI2 1.547 0.601 1.616 0.201 0.104 0.434

OMNI4 OMNI2,3 1.400 0.645 1.513 0.187 0.107 0.393

OMNI2,3,4 2.765 2.944 1.715 2.153 2.114 1.536

OMNI2 0.657 0.365 0.697 0.334 0.202 0.413

Ball Global OMNI2,3 0.904 0.628 0.778 0.607 0.250 0.744

Position OMNI2,3,4 0.959 0.597 0.870 0.662 0.248 0.788

OMNI2 0.429 0.226 0.531 0.244 0.137 0.344

Ball Local OMNI2,3 0.583 0.326 0.608 0.403 0.190 0.537

Position OMNI2,3,4 0.598 0.328 0.647 0.465 0.202 0.590

Table 6.2: Error statistics in the situation of permanent communication failure.

6.2.2 Temporary Communication Failure

This sub-section describes the following 3 experimental situations (in increasing order of

the number of failed robots) under the scenario of a temporary communication failure.

1 Failed Robot: OMNI2 loses communication with OMNI1 from ∼ 80ths up to ∼ 120ths.

2 Failed Robots: OMNI2 loses communication with OMNI1 from ∼ 80ths up to ∼ 112nds

and OMNI3 loses communication with OMNI1 from ∼ 85ths up to ∼ 120ths.

3 Failed Robots: OMNI2 loses communication with OMNI1 from∼ 80ths up to∼ 112nds,

OMNI3 loses communication with OMNI1 from ∼ 85ths up to ∼ 120ths and OMNI4

loses communication with OMNI1 from ∼ 92nds up to ∼ 128ths.
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Table 6.3 and the plots in Figures 6.3 and 6.4 present the results of the PF-UCLT algorithm

and the O-MMLG method applied in this scenario.

Similar to the previous scenario, the mean errors in the position estimates of all the

robots and the ball are comparatively lesser in the case of O-MMLG method than the PF-

UCLT, although both methods were able to effectively localize the robots and track the

ball. An important inference from the experimental results in this scenario is the stability of

errors. With the increase in the number of failed robots, the mean/median errors of all the

robots and the ball position estimates change only slightly (0−10%). This means that both

the unified CP methods, O-MMLG and PF-UCLT, are robust to temporary communication

failures and able to recover the temporarily ‘disconnected’ robot’s localization estimates,

once they get ‘re-connected’ (regained communication).
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Figure 6.3: The box plots in this figure present the statistical estimates of the ball’s global

(and local in OMNI1’s frame) position estimation errors for the PF-UCLT and the O-MMLG

experiments performed in the scenario of temporary communication failure. The X-axis represents

the three experimental situations, described in the sub-section 6.2.2, of this scenario.
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PF-UCLT O-MMLG

Entity Failed Robot(s) Mean Median Std.dev. Mean Median Std.dev.

(m) (m) (m) (m) (m) (m)

OMNI2 0.107 0.102 0.056 0.064 0.061 0.035

OMNI1 OMNI2,3 0.099 0.094 0.055 0.064 0.061 0.035

OMNI2,3,4 0.104 0.100 0.058 0.063 0.061 0.035

OMNI2 0.208 0.210 0.145 0.215 0.248 0.104

OMNI2 OMNI2,3 0.254 0.222 0.169 0.233 0.229 0.169

OMNI2,3,4 0.253 0.222 0.177 0.232 0.229 0.169

OMNI2 0.149 0.127 0.105 0.123 0.118 0.068

OMNI3 OMNI2,3 0.181 0.126 0.171 0.117 0.092 0.095

OMNI2,3,4 0.174 0.122 0.164 0.117 0.092 0.095

OMNI2 0.718 0.345 0.852 0.184 0.102 0.376

OMNI4 OMNI2,3 1.472 0.765 1.502 0.183 0.100 0.374

OMNI2,3,4 0.927 0.480 0.953 0.341 0.103 0.625

OMNI2 0.621 0.356 0.649 0.282 0.188 0.333

Ball Global OMNI2,3 0.621 0.369 0.650 0.298 0.188 0.391

Position OMNI2,3,4 0.594 0.351 0.632 0.286 0.186 0.359

OMNI2 0.429 0.224 0.521 0.202 0.129 0.272

Ball Local OMNI2,3 0.384 0.231 0.454 0.205 0.133 0.273

Position OMNI2,3,4 0.410 0.223 0.506 0.198 0.131 0.260

Table 6.3: Error statistics in the situation of temporary communication failure.

6.2.3 Permanent Vision Failure

This sub-section describes the following 3 experimental situations (in increasing order of

the number of failed robots) under the scenario of a permanent vision failure.

1 Failed Robot: OMNI2 loses camera vision from ∼ 80ths up till the end.

2 Failed Robots: OMNI2 loses camera vision from ∼ 80ths up till the end and OMNI3

loses camera vision from ∼ 85ths up till the end.

3 Failed Robots: OMNI2 loses camera vision from ∼ 80ths up till the end, OMNI3 loses

camera vision from ∼ 85ths up till the end and OMNI4 loses camera vision from

∼ 92nds up till the end.

111



Chapter 6 Case Study 1

Table 6.4 and the plots in Figures 6.5 and 6.6 present the results of the PF-UCLT algorithm

and the O-MMLG method applied in this scenario.

The evolution of all the errors in this scenario’s experiments are very similar to those

in the case of permanent communication failure, except for the fact that in this case, the

mean/median errors of the robots’ positions are slightly higher. This is because, in the

case of vision failure, the unified CP algorithms still try to localize the ‘faulty’ robot (i.e,

the robot which loses camera vision) based only on its odometry measurements (which are

often very poor, e.g, OMNI4’s highly noisy odometry deteriorated the mean of its position

error upto ∼ 3m in both PF-UCLT and O-MMLG methods). However, in the case of

permanent communication failure, the ‘disconnected’ robots are simply not considered for

localization after they lose communication.
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Figure 6.5: The box plots in this figure present the statistical estimates of the ball’s global

(and local in OMNI1’s frame) position estimation errors for the PF-UCLT and the O-MMLG

experiments performed in the scenario of permanent vision failure. The X-axis represents the

three experimental situations, described in the sub-section 6.2.3, of this scenario.
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PF-UCLT O-MMLG

Entity Failed Robot(s) Mean Median Std.dev. Mean Median Std.dev.

(m) (m) (m) (m) (m) (m)

OMNI2 0.096 0.090 0.056 0.064 0.062 0.035

OMNI1 OMNI2,3 0.100 0.097 0.055 0.064 0.063 0.034

OMNI2,3,4 0.093 0.083 0.054 0.062 0.057 0.035

OMNI2 0.248 0.236 0.090 0.298 0.261 0.210

OMNI2 OMNI2,3 0.257 0.240 0.110 0.297 0.261 0.210

OMNI2,3,4 0.243 0.236 0.075 0.271 0.263 0.151

OMNI2 0.152 0.130 0.102 0.123 0.119 0.068

OMNI3 OMNI2,3 0.208 0.134 0.194 0.233 0.157 0.232

OMNI2,3,4 0.191 0.131 0.167 0.245 0.156 0.242

OMNI2 1.547 0.601 1.616 0.201 0.104 0.434

OMNI4 OMNI2,3 1.400 0.645 1.513 0.187 0.107 0.393

OMNI2,3,4 3.052 3.253 2.000 3.344 3.160 2.787

OMNI2 0.657 0.365 0.697 0.334 0.202 0.413

Ball Global OMNI2,3 0.904 0.628 0.778 0.606 0.251 0.744

Position OMNI2,3,4 0.959 0.597 0.870 0.661 0.247 0.788

OMNI2 0.429 0.226 0.531 0.244 0.137 0.344

Ball Local OMNI2,3 0.583 0.326 0.608 0.403 0.190 0.537

Position OMNI2,3,4 0.598 0.328 0.647 0.464 0.200 0.590

Table 6.4: Error statistics in the situation of permanent vision failure.

6.2.4 Temporary Vision Failure

This sub-section describes the following 3 experimental situations (in increasing order of

the number of failed robots) under the scenario of a temporary vision failure.

1 Failed Robot: OMNI2 loses camera vision from ∼ 80ths up to ∼ 120ths.

2 Failed Robots: OMNI2 loses camera vision from ∼ 80ths up to ∼ 112nds and OMNI3

loses camera vision from ∼ 85ths up to ∼ 120ths.

3 Failed Robots: OMNI2 loses camera vision from ∼ 80ths up to ∼ 112nds, OMNI3 loses

camera vision from ∼ 85ths up to ∼ 120ths and OMNI4 loses camera vision from

∼ 92nds up to ∼ 128ths.
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Table 6.5 and the plots in Figures 6.7 and 6.8 present the results of the PF-UCLT algorithm

and the O-MMLG method applied in this scenario.

The mean/median errors of the experiments in this case reflect the property of the

unified CP algorithms to robustly handle the temporary vision failures in the participating

robots. All the errors are similar to those in the case of temporary communication failure

and even lower for some entities, e.g, mean errors of OMNI2 (O-MMLG), OMNI3 (PF-

UCLT) and the ball (both PF-UCLT and O-MMLG). This highlights the ability of our

methods to recover ‘faulty’ robots’ localization and object tracking estimates, once their

vision system is restored.
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Figure 6.7: The box plots in this figure present the statistical estimates of the ball’s global

(and local in OMNI1’s frame) position estimation errors for the PF-UCLT and the O-

MMLG experiments performed in the scenario of temporary vision failure. The X-axis

represents the three experimental situations, described in the sub-section 6.2.4, of this

scenario.
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PF-UCLT O-MMLG

Entity Failed Robot(s) Mean Median Std.dev. Mean Median Std.dev.

(m) (m) (m) (m) (m) (m)

OMNI2 0.100 0.094 0.055 0.064 0.061 0.035

OMNI1 OMNI2,3 0.102 0.099 0.056 0.064 0.061 0.035

OMNI2,3,4 0.100 0.096 0.055 0.063 0.061 0.035

OMNI2 0.259 0.241 0.148 0.224 0.252 0.077

OMNI2 OMNI2,3 0.270 0.255 0.135 0.176 0.163 0.084

OMNI2,3,4 0.235 0.232 0.133 0.176 0.163 0.084

OMNI2 0.148 0.125 0.106 0.123 0.118 0.068

OMNI3 OMNI2,3 0.151 0.125 0.111 0.143 0.122 0.113

OMNI2,3,4 0.150 0.121 0.112 0.143 0.122 0.113

OMNI2 1.307 0.557 1.400 0.184 0.102 0.376

OMNI4 OMNI2,3 0.700 0.348 0.855 0.183 0.102 0.376

OMNI2,3,4 1.519 0.633 1.580 0.188 0.105 0.375

OMNI2 0.582 0.347 0.626 0.282 0.188 0.333

Ball Global OMNI2,3 0.525 0.329 0.549 0.297 0.187 0.388

Position OMNI2,3,4 0.607 0.343 0.653 0.286 0.185 0.362

OMNI2 0.383 0.221 0.468 0.202 0.129 0.272

Ball Local OMNI2,3 0.368 0.205 0.451 0.203 0.131 0.273

Position OMNI2,3,4 0.388 0.219 0.471 0.197 0.128 0.261

Table 6.5: Error statistics in the situation of temporary vision failure.

6.3 Summary

In this chapter we presented a case study performing a feature comparison of all the CP

algorithms developed in this thesis and a quantitative comparison of the two unified CP

methods, O-MMLG and PF-UCLT, presented in Chapter 5. In the feature comparison,

we outlined the specific requirements of the CP methods that enables a reader to chose a

particular method for a certain application scenario. The quantitative analysis explores the

behavior of the unified CP methods in communication and vision sensor failure situations.

It highlights that the methods are robust to such failures by not allowing the faulty robots

(robots that have lost communication or vision) affect the faultless robots’ (robots that have

communication and vision sensors intact) localization estimates and the tracked object’s

position estimates. If the object remains unobserved by the faultless robots, its tracked
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position estimate’s error grows, however, the tracked object’s correct position estimate is

recovered as soon as it becomes visible again to the faultless robots.

118



Chapter 7

Case Study 2: Cooperative

Perception With Closed Loop

Formation Control

7.1 Introduction

M
ost of the past and current work on motion coordination of multiple (possibly het-

erogeneous) vehicles focuses on controlling a vehicle formation with a given nominal

geometry and a pre-determined trajectory or a static destination location, possibly com-

pliant with the presence of obstacles on the formation trajectory. Such methods typically:

• assume full knowledge of the formation state, expressed as the relative distances and

bearings among all the vehicles, and/or

• rely on local memory-less interactions, often jeopardizing global formation stability.

A vehicle formation is supposed to serve one or more mission objectives [62]. One such

interesting case concerns localizing or tracking relevant objects, here and henceforth de-

nominated as targets. Available formation control methods often give little relevance to the

requirements imposed by target tracking to the formation geometry, so as to improve the

target detection and the tracking quality (e.g., accuracy). Active cooperative perception

methods in sensor and robot networks [2] concern precisely this problem: how to actively

move mobile sensors so as to improve the accuracy of target detection by the network,

as the result of (spatially and temporally) fusing the information from all the static and
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mobile sensors which observe the target during a step sequence. In this case study we pro-

pose a solution for the “target localization and tracking by a vehicle formation” problem

by integrating the following modules:

• the Algorithm 3.1 developed in Chapter 3 for cooperative target tracking based on a

particle filter (PF) which estimates the target’s position and velocity;

• a formation controller (FC)1, with the control objective of minimizing the uncertainty

of a cooperatively target while simultaneously achieving other criteria, e.g, keeping

a pre-set distance to the target and/or avoid collisions between teammates in the

formation while tracking the target. This was developed as the subject of an another

PhD thesis within the frame of a joint national project2 between ISR/IST and INESC-

TEC .

Therefore the solution integrates two basic modules: i) a controller and ii) an estimator.

The control module consists of a nonlinear model predictive formation controller (NMPFC).

Recent approaches for active cooperative target tracking by a robot team formation such as

[2] rely on computationally heavy optimization process. By introducing the Gauss-Seidel

relaxation in an iterative algorithm to detect the next best sensing location for the mobile

sensors, the authors in [2] achieve a linearly growing computational complexity over meth-

ods like grid-based exhaustive search which have similar tracking accuracy but where the

complexity grows exponentially with the number of sensors. The novelty in our approach

of integrating the control and estimator modules to achieve a formation that minimizes

the joint uncertainty covariance of the tracked target, lies in the fact that the control mod-

ule of each robot performs an optimization over an already fused target’s posterior which

makes the computational complexity of the optimization process constant with respect to

the number of mobile sensors in the team. Furthermore the decoupling of the optimization

problem from the cooperative target estimation makes the approach more reliable in case

of individual sensor or inter robot communication failures.

1The controller was developed and implemented by Tiago Nascimento et al. in [63] as one of the ‘Task

Modules’ of the project PCMMC: Perception Driven Coordinated Multi-Robot Motion Control (Reference

No: FCT PTDC/EEA-CRO/100692/2008). For a detailed description of the controller, please see [64],

PhD thesis of Tiago Nascimento. In this case study chapter, excerpts from [64] are used to briefly describe

the formation controller.
2PCMMC project homepage:

http://welcome.isr.ist.utl.pt/project/index.asp?accao=showproject&id project=157
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On each robot, the estimator module acts as a feedback module providing the position

and velocity estimates of the tracked target to the control module which in turn uses these

estimates as well as the teammates’ positions to generate velocity set points for that robot.

The rest of the chapter is organized as follows. After a brief overview of both the control

and the estimator module in Section 7.2, we describe their integration in Section 7.3.

This is followed by the implementation details of this approach on our testbed and the

experimental results in Section 7.4. A summary of this chapter is presented in Section 7.5.

7.2 The Control and Estimator Modules

7.2.1 Control Module

The NMPFC, acting as the control module in this work, has its roots in the non-linear

model predictive controller (NMPC) developed and implemented in [63]. NMPC has a

partially distributed architecture where each robot calculates its own control inputs by

solving its own optimization problem having a central unit only as a communication bridge.

In the fully distributed architecture of the NMPFC, the communication is performed by

a real-time data base (RTDB) system [65]. This enables the robots to be communication

failure tolerant ensuring the formation’s stability. Furthermore, even in the rare case of

a communication failure, the robots use their predictive open-loop strategy to determine

their teammates’ states making the NMPFC even more robust.

The NMPFC’s ability to create and maintain a formation is due to the fact that the

cost functions used by the controllers of each robot in the team are coupled. This coupling

occurs when the teammates’ states (position and velocity) are used in the cost function

of each robot’s controller to penalize the formation geometry or the deviation from the

desired objective thus the actions of each robot affect every other teammate. The NMPFC

iterates the following two components:

• Optimizer - Uses an online numeric minimization method to optimize the cost func-

tion and generate the control signals. The resilient propagation (RPROP) method,

that is used here, guaranties quick convergence.

• Predictor - Performs the state evolution of a particular entity based on its pre-

defined model. The entity could be the robot itself, its teammates in the formation

or another object in the environment essential to the formation’s objective such as a

static obstacle or a moving target.
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The optimizer, in each iteration of the controller, after receiving the predicted states of the

entities in the formation from the predictor, provides the control signal back to the predic-

tor to perform the formation state evolution for a fixed number of prediction horizons and

generate a cost value with respect to that control signal. These iterations continue until

the minimum of the cost function is reached.

7.2.2 Estimator module

The estimator module is a cooperative target estimator (CTE) which consists of the PF-

based cooperative tracker algorithm (Algorithm 3.1) developed and presented in Chapter 3.

Instead of the traditional update step in the CTE’s PF [43], a fusion step is performed. The

fusion involves the communication of the target observation measurements in the global

frame, observation measurement confidences and the self-localization confidences among

all the robots in the team. Through a process of confidence-based selection, each robot

performs an update over its particle set in a way such that the information from all its

teammates is accounted for without getting corrupted by their poor self-localization or

target observation. The CTE functions in a decentralized manner enabling each robot in

the team to run its own instance of the CTE and therefore suitable for integration with

the NMPFC.

7.3 Module Integration

The central objective of the formation control in this work is to minimize the total uncer-

tainty of the target’s cooperative estimate as perceived by the formation which is achieved

by integrating the control and the estimator modules. It is done by formulating the

NMPFC’s cost function incorporating the fused target estimate obtained from the CTE

along with the other formation criteria parameters such as inter-robot distances, distance

to the target, etc.

A flow diagram describing the integration of the control and the estimator modules

is presented in Figure 7.1. Each robot runs an instance of the NMPFC and the CTE.

The CTE, represented as a single block in Figure 7.1, communicates to the NMPFC the

cooperatively estimated target’s position, covariance matrix and the target’s velocity. The
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Figure 7.1: The formation control loop describing the control-estimator module integra-

tion. The above flow diagram represents the architecture of robot r1 in a team of N robots

where the nth robot is denoted by rn. Prn denotes the robot rn’s world frame pose (posi-

tion + orientation) as obtained by its self-localization mechanism (implemented separately

from the formation control loop) and Crn denotes its localization confidence. rnPtgt denotes

the target observation measurement made by the robot rn in the world frame and rnΣtgt

denotes the covariance matrix of zero-mean Gaussian noise associated with this measure-

ment. wldPtgt and wldVtgt denote the target’s cooperatively estimated world frame position

and velocity, respectively. wldΣtgt denotes the target’s cooperatively estimated position

covariance matrix. The vector
[
vx vy ω

]>
r1

denotes the velocity set points for the robot

r1, which is the output of the NMPFC at that robot. The block named ‘other modules of

robot r1’ denotes that robot’s low level control and sensor units, e.g, robot wheel controller

and target detector (using camera images). This flow diagram is reprinted from page 45

of [64] with modifications in the variable nomenclature.
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NMPFC’s cost function3 (for the details of the cost function please refer to [64]) at each

robot also requires the teammates’ positions. This is achieved through an additional layer of

the RTDB’s shared memory where all the robots write their own pose estimates (positions

and orientation) and read their teammates’ poses.

The FC’s cost function involves seven terms (each term has an associated penalization

weight) which are described as follows.

• The first term concerns the target’s fused uncertainty matrix determinant penal-

ization which brings the robots in a geometric configuration w.r.t. the target more

adequate to reduce the uncertainty of the target observation.

• The second term prevents the robots from colliding with the target.

• The third term keeps the robots’ poses oriented towards the target position.

• The fourth term orients the robots’ velocity direction w.r.t. that of the target ac-

cording to a predefined orientation.

• The fifth term prevents any inter-robot collisions.

• The sixth prevents the robots from colliding with the static obstacles in the environ-

ment.

• The seventh and last term is the control effort penalization which restricts significant

changes and oscillations in the control signal.

The first term, involving the target’s fused uncertainty matrix determinant penalization,

is initialized with the fused target position covariance matrix received from the CTE.

Subsequently, over the rest of the prediction horizons, NMPFC’s predictor uses a predefined

covariance evolution model3, to predict the target position’s covariance matrix evolution

for the iterative minimization of the full cost function. Once the minimum is reached,

the NMPFC sends the velocity signals to the robot’s wheel controllers so that the robot

reaches the next best location maximizing the cooperative perception of the target while

maintaining a preset threshold distance between teammates, between itself and the target

as well as between itself and the obstacles in the environment.

3For the sake of brevity and to avoid notational confusion in this thesis, the controller’s cost function

and the target’s position covariance evolution model is not presented in this chapter. Please refer to pages

43–56 of Tiago Nascimento’s PhD thesis [64] for a complete description of these.
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7.4 Implementation, Experiments and Results

The formation control’s implementation was performed on two separate RoboCup soccer

middle size league (MSL) teams: i) 5dpo and ii) SocRob, both of which are described in

Appendix A. The tracked target was a standard FIFA size 5 soccer ball for both teams.

Implementation details, simulations and real robot results with an analysis are presented

further.

7.4.1 Implementation

The FC’s cost function, as mentioned in the previous section, has several terms with

changeable penalization weights. In order to understand the behavior and influence of the

covariance term (and therefore of the Algorithm 3.1) that minimizes the determinant of

the target’s fused uncertainty covariance matrix, the following three situations were tested

both in simulations and in real robots:

1. Penalizing the determinant of the target position’s uncertainty covariance matrix

(first term of the FC’s cost function) and the control effort (seventh term of the

FC’s cost function). This situation is further referred to as ‘only target covariance’

situation.

2. Penalizing the distances between the robots and the target (second term of the FC’s

cost function), the collision between the teammates (fifth term of the FC’s cost func-

tion) and the control effort (seventh term of the FC’s cost function). This situation

is further referred to as ‘only mates ’ situation.

3. Penalizing every term in the FC’s cost function by giving a positive penalization

weight to all the terms. This situation is further referred to as ‘all terms ’ situation.

Simulation experiments were conducted with both the 5dpo and the SocRob robot

soccer teams for all the three situations described above. For each team, we conducted

two separate sets of experiments. The first set involved 2 robots while the second involved

3 robots. Results of all these simulations are presented. The maximum allowed velocity in

the 5dpo simulations was 1.4m/s while in the SocRob simulations was 0.5m/s due to the

differences in the dynamics of the robots. Each team uses its own target position covariance

evolution model3 [64]. The 5dpo robots’ simulations were made using the software SimTwo4

4SimTwo: http://paginas.fe.up.pt/ paco/wiki/index.php?n=Main.SimTwo
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and that of the SocRob robots’ were made using the software Webots simulator5. Robots’

trajectory plots and target’s fused position covariance matrix determinant plots of selected

simulation experiments are presented in Figure 7.2. Table 7.1 presents the results for both

the team’s first set of the experiments involving 2 robots and Table 7.2 presents the results

for both the team’s second set of experiments involving 3 robots.

Real robot experiments were performed using a team of 2 SocRob robots for all the

three situations mentioned previously. The video6 accompanying this chapter shows the

simulation and real robot experiments’ footage where the trajectory for each robot and

the formation can be visualized. Results of the real robot experiments are presented in

Table 7.4.

7.4.2 Simulation Results

5dpo - 2 robots case

Situation |wldΣtgt| (m2)

Only target covariance 0.2252

Only mates 0.3145

All terms 0.2201

SocRob - 2 robots case

Situation |wldΣtgt| (m2)

Only target covariance 0.3356

Only mates 0.4205

All terms 0.3415

Table 7.1: Results of all three situations in the simulation experiments with 2 5dpo robots

and 2 SocRob robots. |wldΣtgt| denotes the target’s cooperatively estimated position co-

variance matrix determinant’s final value.

Tables 7.1 and 7.2 show, for all the three experimental situations described previously,

the final values of the target’s cooperatively estimated position covariance matrix determi-

5Webots: http://www.cyberbotics.com/overview
6Video link of Case Study 2’s experiments.

http://users.isr.ist.utl.pt/∼aahmad/PhDThesisVideos/

Chap 7 Perception driven formation/Perception Formation.mpg
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Figure 7.2: The plots in the left column show the robots’ trajectories in the formation and their final poses

during the simulation experiments, where as the plots in the right column, next to the trajectories, show the

corresponding evolution of the cooperatively estimated target position’s covariance matrix determinant.

The plots in the first row are for SocRob’s 2 robot case for the ‘only target covariance’ situation. The

second row plots are for 5DPO’s 3 robots case for the ‘all terms’ situation. The third row plots are for

SocRob’s 3 robot case for the ‘only target covariance’ situation. These plots are reprinted from [64].
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5dpo - 3 robots case

Situation |wldΣtgt| (m2)

Only target covariance 0.1017

Only mates 0.1095

All terms 0.1074

SocRob - 3 robots case

Situation |wldΣtgt| (m2)

Only target covariance 0.0742

Only mates 0.0646

All terms 0.0924

Table 7.2: Results of all three situations in the simulation experiments with 3 5dpo robots

and 3 SocRob robots. |wldΣtgt| denotes the target’s cooperatively estimated position co-

variance matrix determinant’s final value.

nant (denoted by |wldΣtgt|) after the formation achieves convergence. Table 7.3 summarizes

the penalization weights used for each term of the FC’s cost function during the experi-

ments. It should be noted that the SocRob’s target position covariance model is derived

from its observation model (2.1) and hence it naturally finds the best position w.r.t. the

target for minimizing |wldΣtgt|, whereas the 5dpo’s model is built empirically [64] for which

the minimization would theoretically occur when the robots’ and target’s positions coin-

cide. Therefore in the FC’s cost function, the penalization weight for the second term,

which prevents the robot-target collision, is always a positive value in the case of 5dpo

robots but not for the SocRob robots.

From the results of all the three experimental situations in the simulations for both the

5dpo and the SocRob robots, we infer that the final minimized value of |wldΣtgt| achieved

in the 3 robots case was lower than in the 2 robots case. This highlights that the PF-based

cooperative tracker (Algorithm 3.1) achieves better accuracy of the target perception with

the increase in the number of robots.

In most cases (2 robot’s case for both the 5dpo and the SocRob robots and the 3

robots case for the 5dpo robots), we observe that the ‘only mates ’ situation results in a

higher value of |wldΣtgt| as compared to the other two situations ‘only target covariance’

and ‘all terms ’. This signifies that the FC’s objective to minimize the target’s cooperative
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Only target Only mates All terms

covariance

FC’s Cost function 5dpo SocRob 5dpo SocRob 5dpo SocRob

term number

1 3000 300 0 0 3000 300

2 1500 0 1500 1500 1500 1500

3 0 0 0 0 300 200

4 0 0 0 0 100 100

5 0 0 500 600 500 600

6 0 0 0 0 600 600

7 5 100 5 100 5 100

Table 7.3: The table presents the penalization weight values for each term of the FC’s cost

function. These penalization weights were used for both the 2 and 3-robots cases and for

the simulation and real robots experiments. These values were automatically found using

a gradient search method. It finds the set of penalization weights in a given experimental

situation which minimizes an objective function. The objective function’s arguments are

the set of penalization weights, the convergence time taken by the robots and the minimized

value of the FC’s cost function. This was developed by Tiago Nascimento et al. and is

described in the pages 61–63 of [64].

perception is better achieved only when the FC’s cost function’s target position covariance

term is enabled (has a positive penalization value). It is also notable that the value of

|wldΣtgt| is lower in the ‘only target covariance’ situation as compared to the ‘all terms ’

situation. This is because when all the terms in the FC’s cost function are penalized,

the robots tradeoff the better cooperative perception of the target in order to improve on

other formation criteria, e.g, maintaining a predefined inter-robot distance and predefined

threshold distance to the target.

An exception is identified in the 3 robots case for the SocRob robots. Here the value of

|wldΣtgt| is higher in the ‘only target covariance’ situation as compared to the ‘only mates ’

situation. The reason for it is as follows. Due to the covariance merging method using

Smith and Cheeseman’s formulation [66] (pages 50-51 and Appendix A of [64]) in these

experiments, theoretically two global minima would exist for a formation of 3 robots in
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order to achieve convergence in the ‘only target covariance’ situation. In one of these global

minima, 2 of the 3 robots’ converged positions will coincide with each other whereas in

the second global minima, these positions will be on the diametrically opposite sides of the

target. Since, in the ‘only target covariance’ situation, the term concerning the inter-robot

collisions is not penalized, the robots tried to achieve convergence while colliding with each

other and thus never actually attained the theoretically correct convergence position. This

led to a higher value of |wldΣtgt|. This can also be graphically visualized in the left column

third row trajectory plot of Figure 7.2 where the situation of ‘only target covariance’ for

the 3 robots in the SocRob’s case is presented. However, in the 3 robots case for the 5dpo

robots, a lower value of |wldΣtgt| was achieved in the ‘only target covariance’ situation as

compared to the ‘only mates ’ situation because the robots converged in the diametrically

opposite sides of the target.

7.4.3 Real Robot Results

Situation |wldΣtgt| (m2)

Only Target Covariance 0.687

Only Mates 0.703

All terms 0.233

Table 7.4: Results of all the three situations for SocRob’s 2 real robots case. |wldΣtgt|
denotes the target’s cooperatively estimated position covariance matrix determinant’s final

value.

The video accompanying this chapter also presents the footage of the 2 SocRob real

robots’ experiments. The penalization weights for each term in the FC’s cost function were

the same as in the simulations. Table 7.4 shows the value of |wldΣtgt| after the formation’s

convergence. It should be noted that in the experiment situation ‘all terms ’ for the real

robot’s case, a lower value of |wldΣtgt| is obtained as compared to the other two situations.

This is because in the other two situations, the chances for the formation to get stuck in a

local minimum are higher, hence introducing the other terms in the cost function such as

teammate avoidance and orientation towards the target helps converging the formation to

a global minima.
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7.5 Summary

A method for perception-driven multi-robot formation control was proposed and imple-

mented in this case study. Particle filter-based cooperative object tracking (Algorithm 3.1),

developed in the Chapter 3, was applied as a feedback module in a vehicle formation control

loop. The simulation and real robot results demonstrate the success of its implementation

on two different kinds of robot teams. The penalization weight-based minimization of the

formation controller’s cost function lets us control different objectives like better target

perception, inter-robot/target-robot collision avoidance, etc., while creating and maintain-

ing the robot-team formation. We demonstrated the applicability of Algorithm 3.1 as well

as the formation control loop by achieving formation convergence in robots with different

dynamics and target observation models.

7.6 Related Publications

The work presented in this chapter was accepted as a full length-article [11] to be published

in the proceedings of the 2013 IEEE International Conference on Robotics and Automation

(ICRA 2013), Karlsruhe, Germany (submitted: September 2012, accepted: January, 2013).
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

I
n this thesis, we presented novel techniques for cooperative perception methods to ad-

dress the issues, such as, sensor fusion, disagreement between sensors, localization errors

of the mobile platforms on which the sensors are mounted, and occlusions, within an inte-

grated Bayesian framework. Based on the desired objective and the given scenario, in the

context of cooperative perception, we proposed the following methods:

• For a scenario where the aim is to cooperatively track a moving object through a team

of mobile robots, equipped with sensors, and the pose of the robots is given through a

self-localization system running on them, we presented a particle filter-based multi-

robot cooperative object tracking algorithm (PF-MCOT). Here, teammates share

object observation measurements in the global frame, their measurement confidence

and their self-localization confidence. By incorporating these confidences while fusing

the teammates’ measurements, PF-MCOT handles sensor disagreement, occurring

due to poor localization of the robots or poor observations made by them, within an

integrated framework.

• For a scenario where the aim is to cooperatively localize a team of robots, given that

there is a visually shared object being tracked by the robots, we presented a PF-based

multi-robot cooperative robot localization algorithm (PF-MCRL). Here, the robots

communicate to their teammates the global frame tracked position of the visually

shared object, a confidence on that position and their self-localization confidence. If

a team robot detects that its self-localization confidence is below a certain threshold

(i.e, it is lost), its PF-MCRL particles are reset according to the visually shared
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object’s global position received from its teammates as well as its own local frame

information regarding that object. This enables the lost robots to regain their correct

localization.

• For a scenario where the aim is to cooperatively localize a team of robots as well as

cooperatively track a moving object through those robots, given that the environment

consists of fixed and known static landmarks and the robots do not measure inter-

robot distances, we presented the following unified approaches.

– Multi-robot moving landmark graph optimization (O-MMLG) method. Here,

we represented the above-mentioned problem through a pose graph and consid-

ered the tracked object as a moving landmark, in addition to the known and

static landmarks. The nodes of this graph represent the states (poses of all

the robots and the position of the object) to be estimated whereas the edges

represent the measurements made by the robots. A least squares error function

is obtained from the pose graph and solved using a state-of-the-art non-linear

least squares solver [33]. The solution is the configuration of the nodes (and

therefore all the the states) that best describe all the measurements. This is an

offline method where all the measurement data is processed in a batch.

– PF-based unified cooperative robot localization and object tracking (PF-UCLT)

algorithm. Here, at every timestep, each robot shares its odometry and obser-

vation measurements with its teammates. It is an online method where the

filter, at each robot, estimates its own pose, the pose of all its teammates and

the position of the tracked object. We showed that our PF-UCLT algorithm

requires a number of particles that grows linearly with the number of robots,

instead of exponentially, as would otherwise be required [56] by a standard PF

solution to this problem. This was achieved by utilizing the properties of con-

ditional/mutual independence of some of the involved variables.

PF-MCOT and PF-MCRL are designed to operate in an online manner for realtime

applications. We experimentally validated PF-MCOT in scenarios where a robot loses the

vision of the tracked object, observes it poorly or is not well localized while observing the

object. In all such situations the robot was successfully able to keep tracking the object

due to the fusion of its measurements with that of its teammates. PF-MCRL was tested

in situations where a robot, running this algorithm, was intentionally kidnapped. It was

successfully able to re-localize itself if that robot and at least one of its teammates were

simultaneously tracking a visually shared object.
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Formal descriptions of all of the above-mentioned cooperative perception methods were

presented. Experimental results for each method demonstrated its proof of concept, accu-

racy as well as scalability to higher number of robots. For a fair comparison of the unified

methods O-MMLG and PF-UCLT, we used the exact same dataset for their experimental

evaluation. Results show that PF-UCLT is slightly outperformed by O-MMLG due to the

latter’s iterative re-linearization and batch processing mode. However, the computational

speed of the PF-UCLT method, in addition to its high accuracy, makes it suitable for

realtime applications.

In the first case study, we presented a one-to-one comparison of the O-MMLG and PF-

UCLT methods through a series of experiments conducted in various failure scenarios, such

as, inter-robot communication failure and camera vision failure. Results demonstrated the

methods’ robustness to such failures. While the failed robots do not contribute much to the

cooperative estimates of the other robots, they also did not degrade the functional robots’

(the robots that did not fail during the experiment) estimates. In the second case study,

we demonstrated the ability of PF-MCOT algorithm to integrate, as a feedback module, in

a multi-robot formation control system that minimizes the uncerainty of the cooperatively

tracked target.

8.2 Future Work

Despite the effectiveness of the proposed cooperative perception approaches in this thesis,

relaxation of many subtle assumptions will extend the range and realism of application

scenarios. This forms the central theme of our ongoing and future work. Some of those

are enumerated as follows.

• Throughout this thesis, the tracked object was considered with known data asso-

ciation. This assumption is often void in many real scenarios. Furthermore there

could be more than one object in the environment for a multirobot team to track,

all with unknown data association, e.g, a team of robots interacting with multiple

unknown people in a public place. Extending our cooperative perception approaches

to include multiple tracked objects with unknown data association is identified as a

major offshoot of this thesis.

• The traced object’s motion model is one of the key factors in determining the accuracy

and reliability of the tracker. In our work, we considered a constant velocity model

with added zero mean Gaussian acceleration noise. Such a model is effective in many
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situations. However, in order to model the random changes in the positions of the

tracked object, a more complex and self-adapting model is required. This could even

include predicting the motion model of the object itself, in addition to using that

motion model to predict the next position of the object.

• The static and known landmark assumption is also not valid for many real scenarios.

This implies extending our cooperative perception approaches in the direction of

simultaneous localization and mapping (SLAM). SLAM is an extensively researched

and well established topic. However, an approach which includes cooperative SLAM

through a team of mobile robots while at the same time tracking moving objects in

an unknown environment is an extension of the work accomplished in this thesis.

• Ongoing work includes extending our approaches to a heterogeneous team of robots.

This requires incorporating different sensor and motion models into our integrated

framework. This will further experimentally validate the effectiveness of the proposed

cooperative perception approaches.

• Another significant offshoot of this thesis would be to extend the cooperative percep-

tion methods to multi-sensor human activity recognition. Consider a scenario where

multiple robots cooperate to achieve cognitive tasks in cooperation with humans in

their surrounding with on-board sensors on the robots in addition to a network of

static sensors. This could involve multiple issues, e.g, continuously tracking persons

and their activities without losing temporal information regarding that, ability to

uniquely identify and track a person all the time. Cooperation among robots and

network of static sensors to perform such tasks would significantly enhance the ability

and effectiveness of each individual robot.
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Appendix A

Soccer Robots Testbed and Datasets

The main testbed for the implementation of all the cooperative perception (CP) algorithms

developed in this thesis is the RoboCup Middle Sized League (MSL)1. A team of robots,

specifically designed to play robotic soccer and which participates regularly in the annual

RoboCup world championship, was used. The ongoing ‘SocRob2’ project in the IRSLab of

ISR, Lisbon holds the origin of these robots. Figure A.1 shows the team of robots placed

on the robot soccer field of IRSLab.

Subsequent sections describe the robot’s physical details, the vision system used on

these robots and the dataset collected using them.

A.1 Soccer Robot Description

The robots used here are omnidirectional robotic soccer platforms as shown in Fig. A.2. It

was developed by ISR/IST, in a joint venture with IdMind and ServiLog, two Portuguese

SMEs. The most relevant details regarding the capabilities of its sensors and actuators are

as follows:

1RoboCup MSL: http://wiki.robocup.org/wiki/Middle Size League
2SocRob Project: http://socrob.isr.ist.utl.pt/
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Figure A.1: OMNI robots at the robot soccer field of IRSLab, ISR, Lisbon.

• Sensors:

– A dioptric vision system consisting of a camera providing omnidirectional vision

trough a fish-eye lens

– Each of the robot’s motors is coupled to a 500 CPR encoder for motor control

and odometry.

– A rate-gyroscope (XRS300EB) to improve self-localization.

– Temperature sensors for detecting overheated motors/batteries.

– A digital compass

• Actuators:

– Each robot consists of three omni wheels, actuated by a MAXON DC motor

(model RE35/118776), through a MAXON gear box (model 203118) with a
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Figure A.2: OMNI (soccer robot) at ISR, Lisbon.

reduction of 21:1, providing the robotic platform with a maximum translational

speed of approximately 3.5 m/s and maximum rotational speed of 20rad/s;

– In order to kick the soccer ball, an electromagnetic strength controlled kicker is

installed;

– To aid in ball dribbling, a rolling drum is present near the kicker, with control-

lable rolling speed and elevation.

All of the above components are powered by two packs of 12V, 9Ah NiMH batteries per

robot. In this robotic platform, the software architecture (which accounts for most of the

required computational power) runs on a Sony Vaio laptop, equipped with an Intel Core

i3 2.2GHz (quad core) CPU and 4GB of RAM, which is connected to the robot’s sensors

and actuators through plug-and-play connections (USB and Firewire).

A.2 Dioptric Vision System

The robot’s vision system is based on an AVT Marlin F-033C firewire camera, which is

equipped with a fish-eye lens providing a field-of-view of 185 ◦, facing downwards. This

dioptric system endows the robot with omnidirectional vision, capable of detecting relevant
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objects (such as the ball or obstacles) at a distance of up to 3.5 meters. This particular

setup is also less sensitive to vibrations caused by the robot’s motion than the previously

used catadioptric system. An image acquired from this vision system is presented in

Fig. A.3. The mathematical details for the projection model of this camera is presented in

Chapter 2.

Figure A.3: Example image from the OMNI robot’s on-board diotric vision system.

A.3 Datasets of Soccer Robots

In order to have a fair comparison of all the CP algorithms, datasets were collected using

the ‘SocRob’ testbed described above. 4 OMNI robots, with colored markers placed on top

of each of them, were used for the raw data collection. Two soccer balls (of different colors

and FIFA standard size-5), connected to a thin string, were moved around in the IRSLab

soccer field in a way such that their positions over time vary in 3D space. 10 distinct

colored landmarks were placed at known locations on the field. The robots were manually

manoeuvred in such a way that they do not collide with each other as well as come far

and close to the ball positions at different times. A ‘ZigBee’-based wireless localization

module was placed on every robot to measure the inter-robot distances. A ground truth

system (GTS), explained in detail in Appendix B, was used to save stereo image pairs

while the raw data collection was done. Each robot’s laptop, which was placed inside the

140



Appendix A Soccer Robots Testbed and Datasets

robot during the raw data collection, was used to log the following raw data with along

with their associated timestamps (in microseconds):

1. Camera images from the dioptric vision system of the robots at ∼ 25 frames per

second (FPS).

2. Odometry readings from the motors at ∼ 40 Hz.

3. Inter-robot distance measurements using ‘ZigBee’ modules at ∼ 4 Hz.

The GTS was connected to an external desktop computer which logged stereo image

pairs at ∼ 20 FPS. All the robots’ laptops and the GTS were synchronized using a time-

synchronization software called ‘chrony’. The raw data collection was performed 4 times,

starting from 1 robot only and subsequently increasing the number of robots in the team

each time. Hence 4 separate raw datsets were made and named accordingly. These are as

follows.

• 1 robot dataset

• 2 robots dataset

• 3 robots dataset

• 4 robots dataset

Once the raw data was collected, 3D detection algorithm (as described in Chapter 2) for

one of the balls (orange colored) and color based static landmark detection was performed

on the images saved by each robot’s vision system. Orange Ball’s 3D position detection

using its color and all the robot’s 2D position (not the pose) detection using the colored

marker placed on top of them were performed on the GTS’ stereo pair images. Subse-

quently, the logs containing the following items were generated and used by all the CP

algorithms:

1. The orange ball’s 3D positions in each robot’s local frame with timestamps.

2. All landmark’s 2D positions (landmarks are fixed on the ground plane) in each robot’s

local frame with timestamps.

3. Each robot’s odometry readings with timestamps.

4. The ground truth (GT) 3D positions of the orange ball and the 2D positions of all

the robots with timestamps.
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Note that the items enumerated above are less than all the measurement data that could

be extracted from the raw data in the datasets made during the data collection. This is

because the implementation of CP algorithms presented in this thesis made use of only the

enumerated data herein.

The datasets described above, along with the measurement logs obtained from the raw

data, are made publicly accessible3. It can be used by researchers in related areas to

implement, test and verify various algorithms ranging from object detection, robot local-

ization, cooperative methods for them, simultaneous localization and mapping, cooperative

mapping and many more. This is identified as an additional contribution of this thesis.

A.4 5DPO Robot Soccer Platform

In case study 2, presented in Chapter 7, two separate soccer robot teams were used. The

first being the ‘SocRob’ team as described previously here while the second is the robot

soccer team: 5DPO4 from the robotics laboratory of FEUP, Porto5

Figure A.4: 5DPO soccer robot at FEUP, Porto.

Figure A.4 shows one of the 5DPO robots. While its locomotion system is similar to the

OMNI robots, i.e., consists of 3 omni wheels, there is a significant difference in its vision

system. 5DPO has a cata-dioptric vision system which consists of a perspective lens-based

camera facing upwards and pointing to the center of a parabolic mirror. The mirror faces

downwards (towards the field) and is held in a fixed position w.r.t. the camera and the

robot by supports connecting it to the robot’s chassis.

3LRM Dataset download link: http://datasets.isr.ist.utl.pt/lrmdataset/4 Robots DataSet/
45DPO soccer team: http://paginas.fe.up.pt/∼robosoc/en/doku.php
5FEUP: http://sigarra.up.pt/feup/pt/web page.inicial
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Appendix B

Ground Truth System Details

In order to evaluate the results of all the cooperative perception (CP) algorithm’s imple-

mentation, comparison is done with the ground truth (GT) values of the corresponding CP

estimates. To obtain the GT, an overhead stereo vision system was used which detects the

near-exact 2D positions of the robots and the 3D world positions of the soccer ball which

the robots in our test-bed (Appendix A) are tracking. Fig. B.1 shows one of the frames

of the video footage from the GT system (GTS). The GTS was installed in the Mobile

Robotics Lab (LRM - Laboratório de Robótica Móvel) of ISR (Instituto de Sistemas e

Robótica), IST (Instituto Superior Técnico), Lisbon, Portugal. Without any significant

modifications, except for the stereo baseline length, the GTS is based on a similar setup

([67]) in the LSA lab facility of ISEP Porto1, Portugal.

B.1 GT System (GTS) Technical Details

Figure B.1: Snapshot from the GTS installed for ground truth evaluation of the ball’s 3D

positions and the robots’ 2D positions.

1LSA (Laboratório de Sistemas Autonómos), ISEP http://www.lsa.isep.ipp.pt/
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Appendix B Ground Truth System Details

The GTS consists of 2 gigabit ethernet cameras in a stereo baselines. The GTS cam-

eras were positioned looking towards the test-bed with a baseline of ∼ 11.11 meters and

connected to a machine with Quad Core Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz, 8GB

RAM, running a Linux operating system. The cameras used are : Basler acA1300-30gc at

∼ 25 frames per second, each of which has a pixel resolution of 1294× 964.
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Cooperative Extended Kalman Filter

In this appendix, we present the cooperative extended Kalman filter (EKF) formulation

for a team of N robots tracking an object O in an environment with L known and static

landmarks. The formulation can be extended to multiple tracked objects with known data

association in a straightforward manner.

We denote the robots as r1, .., rN . The state (pose in the world frame) of the robot rn

is given by Lrn
t = [xrn

t yrn
t θrn

t ]>.

The state (3D-position and velocity in the world frame) of the tracked moving object

is given by Ot = [xot y
o
t z

o
t vo

xt vo
yt vo

zt ]
> at the tth timestep.

The 2D-position of the lth known and static landmark is given by ll = [llx lly]
>. The

landmarks are assumed to be fixed on the ground plane on which the robots move.

The odometry measurement made by the robot rn at the tth timestep is given by urn
t ,

and an associated Gaussian noise with zero mean and covariance matrix Rn
t .

The static landmark observation measurement of the lth landmark made by the robot

rn in its local frame at the tth timestep is given by zrn,l
t and an associated Gaussian noise

with zero mean and covariance matrix Qrn,l
t .

Similarly, the moving object O’s observation measurement made by the robot rn in its

local frame at the tth timestep is given by zrn,o
t and the associated Gaussian noise with

zero mean and covariance matrix Σrn,o
t .

The motion of the object is modeled using a constant velocity motion model with

random acceleration. Let Ot = AOt−1 + ν, where A is the matrix modeling discrete-time

constant velocity and ν is a zero mean error with covariance matrix Σo
t .

We now define xt as the full state vector being estimated by stacking all individual

states at the tth timestep as follows.

xt =
[
Lr1
t
> . . . LrN

t
> Ot

>
]>

(C.1)
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ut is obtained by stacking all robots’ odometry measurements available at the tth

timestep as follows.

ut =
[
ur1
t
> . . . urN

t
>
]>

(C.2)

zt is obtained by stacking all the observation measurements available at the tth timestep

as follows.

zt =
[
zr1,1
t

>
. . . zr1,L

t

>
. . . zrN ,1

t

>
. . . zrN ,L

t

>
zr1,o
t
>
. . . zrN ,o

t
>
]>

(C.3)

Let Pt denote the covariance matrix of the estimated state xt.

EKF Prediction Step

The predicted state x̂t at timestep t is obtained from the state xt−1 at timestep t − 1 as

per (C.4). Here, the function f represents the dynamics of the system whose state is being

estimated.

x̂t = ft−1(xt−1); (C.4)

P̂t =
∂

∂xt−1

ft−1(xt−1)Pt
∂

∂xt−1

ft−1(xt−1)T + Rt

where

ft−1 =


f r1
t−1

...

f rN
t−1

AOt−1

 =


Lr1
t−1 ⊕ ur1

t

...

LrN
t−1 ⊕ urN

t

AOt−1

 , (C.5)

∂

∂xt−1

ft−1 =



∂
∂Lr1t−1

f r1
t−1 0 0 0

0
. . . 0 0

0 0 ∂
∂LrNt−1

f rN
t−1 0

0 0 0 A

 (C.6)

and Rt is a block diagonal matrix with all the respective Rrn
t on the diagonal and the last

diagonal element being Σo
t .
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EKF Update Step

Here we assume that at each frame every robot observes all the landmarks and moving

object. In case this is not true, we simply remove the corresponding line in the next

equations.

We first compute the innovation error et

et = zt − ẑ(xt) (C.7)

where zt is the measurement vector as defined in (C.3) and ẑ(xt) defined as follows

ẑ(xt) =



ẑ(Lr1
t , l

1)

...

ẑ(LrN
t , l

1)

...

ẑ(Lr1
t , l

L)

...

ẑ(LrN
t , l

L)

ẑ(Lr1
t ,Ot)

...

ẑ(LrN
t ,Ot)



(C.8)

is the prediction of all the measurements in zt.

We then compute the innovation covariance St

St =
∂

∂xt
ẑ(xt)P̂t

∂

∂xt
ẑ(xt)

T + Qt (C.9)
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where ∂
∂xt

ẑ(xt) =

∂
∂Lr1t

ẑ(Lr1
t , l

1) 0 0 0

0
. . . 0 0

0 0 ∂
∂LrNt

ẑ(LrN
t , l

1) 0

...
...

...
...

∂
∂Lr1t

ẑ(Lr1
t , l

L) 0 0 0

0
. . . 0 0

0 0 ∂
∂LrNt

ẑ(LrN
t , l

L) 0

∂
∂Lr1t

ẑ(Lr1
t ,Ot) 0 0 ∂

∂Ot
ẑ(Lr1

t ,Ot)

0
. . . 0

...

0 0 ∂
∂LrNt

ẑ(LrN
t ,Ot)

∂
∂Ot

ẑ(LrN
t ,Ot)



(C.10)

and Qt is a block diagonal matrix with all the respective Qrn
t and Σrn,o

t on the diagonal.

Given the innovation, we compute the Kalman gain as follows

Kt = P̂t
∂

∂xt
ẑ(xt)

TS−1
t (C.11)

and update the filter state using the following equations

xt = x̂t + Ktet (C.12)

Pt = (I−Kt
∂

∂xt
ẑ(xt))P̂t (C.13)
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