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miałam siłę by wyjść do pracy, bo wiedziałam ze zostawiam Arunię w najlepszych rękach. Za
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Abstract

W E are entering the era of robots, for everyone, everywhere. Robots work along-

side humans in hospitals, museums, at the airports, they provide assistance

to elderly and handicapped people. The expectations of the robots being

reliable, intelligent and friendly artificial creatures drive the key challenges

of the state-of-the-art robotics: technological, practical and social. The latter is of particular

importance, as the extent to which the robots will be accepted in our social environments

largely depends on whether they will accommodate the norms of our society.

In this thesis, we venture a multidisciplinary effort at the intersection of social studies, econ-

omy and robotics. We explore the notion of institution to design social multi-robot behaviors,

where institutions allow for interpretation of abstract norms formulated in human language

in terms of robot-understandable terminology. In our formalism, institutions are reusable

structures that provide abstraction, encapsulation and formalization of generic social norms

and allow for governance over miscellaneous robot behaviors and integration of social norms

of diverse nature.

The core mechanism of our framework – norm realization, forms the translation layer between

the institutional abstraction and a specific system. Norm realization is founded on three key

ingredients. First, the representation of norms in a universal form of human language, which

introduces a degree of generality necessary to achieve conceptualization, systematization and

reusability of norms. Such universal representation is shown to have a high potential to facili-

tate the integration of existing solutions for diverse applications and social contexts without

resorting to the use of heuristics. Second, the development of a clear semantics, necessary for

the interpretation of the norms at both abstract and concrete level, and for the implementa-

tion of social norms in a plug-and-play manner instead of programming hard-wired social

compliance in ad-hoc behaviors. Third, a step-by-step approach for addressing the question

of how to apply a generic, language-defined norm into robot terminology, making it readily

implementable and executable in physical systems under specific constraints. The proposed

formalism embraces low-level sophistication to adopt the complexity of continuous multi-

robot behaviors, at the same time retaining the desirable high-level properties. We showcase

the power of norm realization through a number of norms encompassing a large variety of

social aspects, ranging from human comfort achieved through navigational compliance to

legibility of robot intentions reflected through gestures, expressions and sounds. We carry out

a multi-facet validation of our institutional formalism through three extensive case studies,

where we address diverse social contexts involving mixed human-robot teams.
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We target the deployment of multi-robot systems in real human-populated environments,

which are cluttered, unpredictable, and highly dynamic. To address the practical challenges of

such conditions, we develop methods for overcoming the technological shortcomings along

three research thrusts. First, we propose an approach to agile formation control called Local

Formation Transformation, where the shape of the formation adapts locally and gradually

to meet the demands of complex indoor environments. Second, we develop a cooperative

localization method called Formation Information Gaussian Mixture Probability Hypothesis

Density filter for achieving robustness of collective navigation in case of communication

failures by combining data from diverse sources. Third, we adopt existing single-robot social

navigation methods within our institutional framework to achieve social awareness in the

context of multi-robot systems. With these ingredients, our work is pioneering within the

scope of human-aware multi-robot navigation in real, human-populated environments.

Keywords: Normative Robotics; Institutional Robotics; Social Robots; Cooperative Navigation;

Human-Robot Interaction; Cooperative Tracking; Adaptive Formation Control; Multi-Robot

Systems.
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Résumé

N OUS entrons dans l’ère des robots, pour tous le monde et partout. Les robots

travaillent aux côtés des humains dans les hôpitaux, les musées, les aéroports.

Ils donnent assistance aux personnes âgées et aux personnes handicapées. Les

attentes pour des robots en matière de fiabilité, intelligence et socialité poussent

l’état de l’art de la robotique en termes technologiques, expérimentaux et sociaux. Ce dernier

point est particulièrement important, car l’ampleur à laquelle les robots seront acceptés dans

notre environnement social dépendera grandement de leur capacités à s’adapter à des normes

sociales.

Dans cette thèse, nous entreprenons un effort multidisciplinaire à l’intersection des études

sociales, économiques et robotiques. Nous explorons la notion d’institution pour la concep-

tion de comportements sociaux multi-robots, où cette notion permette l’interprétation de

normes abstraites formulées en langage humain par les robots. Dans notre formalisme, les

institutions sont des structures réutilisables qui permettent l’abstraction, l’encapsulation et la

formalisation de normes sociales génériques, ainsi que leur integration dans le comportment

des robots.

La partie centrale de notre formalisme, la réalisation des normes (norm realization), forme

la couche traductrice entre les abstractions institutionnelles et un système en particulier.

Norm realization est composé de trois ingrédients clés. Premièrement, la représentation

des normes dans une forme universelle du langage humain, qui introduit la quantité de

généralité nécessaire pour atteindre la conceptualisation, la systématisation et la réutilisation

des normes. Une telle représentation universelle a un fort potentiel pour faciliter l’intégration

de solutions existantes pour applications et contextes sociaux différents sans avoir à recourir à

des heuristiques. Deuxièmement, le développement d’une sémantique claire, nécessaire pour

l’interprétation des normes, à la fois au niveaux abstrait et concret, et pour l’implémentation

de normes sociales interchangeables, à la place de programmer directement les conformités

sociales dans des comportements ad-hoc. Troisièmement, une approche pas-à-pas pour

répondre à la question de comment appliquer une norme générique et définie dans un langage

humain dans des termes robotiques, la rendant implémentable et exécutable en systèmes

physiques sous des contraintes spécifiques. Le formalisme proposé inclut la sophistication

nécessaire à bas niveau pour adopter les complexités des continuités comportementales des

systèmes multi-robots, et en même temps garde les propriétés de haut niveau désirées. Nous

montrons la puissance de la réalisation des normes à travers plusieurs normes qui englobent

une large diversité d’aspects sociaux, allant du confort humain atteint à travers la conformité
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de navigation, jusqu’à la lisibilité des intentions des robots par des mouvements, expressions

et sons. Nous avons conduit une validation multi-facette de notre formalisme institutionnel à

travers trois cas d’études extensifs, où nous abordons plusieurs contextes sociaux impliquant

des groupes mixtes de robots et d’humains.

Nous ciblons des déploiements de systèmes multi-robots dans des environnements réa-

listes peuplés d’humains, qui sont encombrés, imprévisibles et hautement dynamiques. Pour

aborder les défis pratiques de telles conditions, nous avons développé trois differentes mé-

thodes pour gérer des groupes de robots en mouvement. Premièrement, nous proposons

une approche pour un contrôle agile et graduel de la topologie du groupe basée sur une

transformation locale de la formation (Local Formation Transformation). Deuxièmement,

nous avons développé une méthode de localisation coopérative basée sur des filtres Bayesiens

(Formation Information Gaussian Mixture Probability Hypothesis Density filter) pour atteindre

une navigation collective fiable en cas de perte de communication, et cela en combinant les

informations de differentes sources. Troisièmement, nous adoptons des méthodes existantes

de navigation sociale pour un seul robot dans notre système institutionnel pour atteindre

une réalisation sociale de nos systèmes multi-robots. Avec ces ingrédients, notre travail est

novateur dans le cadre de la navigation sociale de groupes de robots dans des environnements

réalistes peuplés d’humains.

Mots Clés : Robotique Normative ; Robotique Institutionelle ; Robots Sociaux ; Navigation

Cooperative ; Intéraction Humain-Robot ; Suivi Coopératif ; Contrôle en Formation Adaptif ;

Systèmes Multi-Robots.
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Resumo

N ESTA tese empreendemos um esforço multidisciplinar, englobando estudos

sociais, economia e robótica. Exploramos o conceito de instituição para projetar

comportamentos sociais envolvendo vários robôs, permitindo a tradução de

normas abstratas formuladas em linguagem humana para uma terminologia

capaz de ser compreendida pelos robôs. Na nossa formulação, instituições são estruturas

reutilizáveis que proporcionam abstração, encapsulamento e formalização de normas sociais

genéricas, permitindo a gestão de diversos comportamentos robóticos e a integração de

normas sociais de diversas naturezas.

O mecanismo principal da nossa plataforma – realização de normas, forma a camada de

tradução entre a abstração institucional e o sistema em concreto. A formulação proposta

abrange uma especificação de baixo nível, de forma a adoptar a complexidade de comporta-

mentos entre vários robôs, retendo ao mesmo tempo, as propriedades de alto nível do sistema.

Mostramos a importância da realização de normas utilizando um conjunto de normas que

envolvem uma grande variedade de aspetos sociais, que vão do conforto humano, atingido

através de navegação ciente de humanos, à leitura das intenções dos robôs através de gestos,

expressões e sons. Realizamos uma validação multifacetada do nosso formalismo institucional

através de três estudos de casos, onde abordamos vários contextos sociais envolvendo equipas

mistas entre robôs e humanos.

A tese tem como objectivo o desenvolvimento de sistemas de múltiplos robôs em ambientes

povoados por pessoas, que são desordenados, imprevisíveis, e muito dinâmicos. De forma

a abordar os desafios práticos inerentes a essas condições, desenvolvemos métodos para

ultrapassar as deficiências técnicas explorando três linhas de investigação. Primeiramente,

propomos uma abordagem para controlo flexível de formações, denominada transformação

local de formação, onde a geometria da formação se consegue adaptar localmente e gradual-

mente, de forma a poder suportar as complexidades de ambientes internos. Seguidamente,

desenvolvemos um método de localização cooperativa, denominada de filtro de densidade de

hipóteses com mistura de gaussianas para informação de formações, que pretende atingir

a robustez de uma navegação colectiva no caso de falhas de comunicação, combinando in-

formação de várias fontes. Finalmente, incluímos métodos de navegação social para robôs

singulares na nossa plataforma institucional de forma a conseguir implementar em sistemas

de vários robôs cientes de normas sociais. Com estes ingredientes, o trabalho é pioneiro

no contexto de navegação de vários robôs levando em conta pessoas em ambientes reais e

povoados.
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Streszczenie

W KRACZAMY w erę robotów, dla wszystkich i wszędzie. Roboty pracują razem

z ludźmi w szpitalach, muzeach i na lotniskach, zapewniają opiekę oso-

bom starszym i niepełnosprawnym. Oczekiwania, że roboty powinny być

niezawodne, inteligentne i przyjazne kierują kluczowymi wyzwaniami współ-

czesnej robotyki – mianowicie wyzwaniami technologicznymi, praktycznymi i społecznymi.

To ostatnie ma szczególne znaczenie, ponieważ stopień, w jakim roboty będą akceptowane

w naszym społeczeństwie, zależy w dużej mierze od tego, czy dostosują się one do ogólno

przyjętych norm.

W niniejszej pracy doktorskiej podejmujemy się tematyki łączącej badania społeczne, ekono-

mię i robotykę. Wykorzystujemy pojęcie instytucji w celu określania i budowania społecznych

zachowań robotów, które nie tylko współpracują ze sobą nawzajem, lecz także z ludźmi. Insty-

tucje pozwalają nam na interpretację norm społecznych sformułowanych w mało precyzyjnym

języku ludzkim oraz przetworzenie ich w terminologie zrozumiałą dla robota. Osiągnięta w ten

sposób formalizacja ogólnych norm społecznych zapewnia możliwość ich powtórnego użytku

w szerokiej gamie odmiennych sytuacji, pozwala na zarządzanie różnorodnymi zachowaniami

robotów oraz integrację norm społecznych o wielorakim charakterze.

Podstawowym mechanizmem naszego formalizmu jest proces realizacji norm, który tworzy

warstwę pośrednią między instytucjonalną abstrakcją a konkretnym, fizycznym systemem

robotów. Realizacja norm opiera się na trzech kluczowych składnikach. Po pierwsze, normy

społeczne są przedstawione formie ludzkiego języka, a zatem formie ogólnie zrozumialej i

uniwersalnej, niezbędnej do osiągnięcia systematyczności w ustalaniu społecznych zachowań

robotów i możliwości ich ponownego zastosowania w odmiennych sytuacjach. Co więcej,

uniwersalna reprezentacja norm ma ogromny potencjał ułatwiania integracji istniejących

rozwiązań bez uciekania się do heurystyki. Po drugie, realizacja norm opiera się na przejrzystej

semantyce, niezbędnej do interpretacji norm społecznych zarówno na poziomie abstrakcyj-

nym, jak i wprowadzania ich w czyn na poziomie konkretnych zachowań robotów. Dzięki

temu normy społeczne są wdrażane na zasadzie podłącz i graj, a nie wprowadzane jako za-

kodowane na stale zgodności, jak to jest powszechnie stosowane we współczesnej robotyce

normatywnej. Po trzecie, realizacja norm to instrukcja jak, krok po kroku, przetłumaczyć

normy zdefiniowane w języku ludzkim na terminologie zrozumiałą dla robotów, dzięki czemu

proces ten jest łatwy do wdrożenia w konkretnych systemach. Proponowany formalizm po-

zwala osiągnąć precyzję, która jest wymagana by moc osiągnąć pożądane zachowania robotów,

przy jednoczesnym zachowaniu korzystnych właściwości. Weryfikacja naszego formalizmu
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przeprowadzona jest poprzez trzy obszerne studia przypadków, w ramach których zajmu-

jemy się różnorodnymi kontekstami społecznymi z udziałem grup ludzi i robotów. Poprzez

zastosowanie szeregu norm obejmujących wiele różnych aspektów społecznych, takich jak

zapewnienie komfortu człowieka dzięki przystosowaniu ruchu robotów, czy osiągnięcie czy-

telności intencji robotów, odzwierciedlonej poprzez gesty, mimikę i dźwięki, demonstrujemy

potencjał przedstawionego formalizmu oraz procesu realizacji norm.

Systemy wielorobotowe, którymi się zajmujemy, weryfikowane są w miejscach często uczęsz-

czanych przez ludzi, w realistycznych sytuacjach, charakteryzujących się złożonością, nie-

przewidywalnością i dynamiką. Aby sprostać powyższym wyzwaniom, w niniejszej pracy

podejmujemy się badań dotyczących trzech zagadnień, które według naszych przewidywań

niezbędne są do wdrożenia systemów wielorobotowych w naturalnych przestrzeniach zaj-

mowanych przez ludzi. Po pierwsze, proponujemy metodę pozwalająca grupie robotów

poruszającej się w zwartej formacji na adaptację owej formacji, by móc efektywnie poruszać

się we wnętrzach z zawiłymi przeszkodami. W owej metodzie każdy robot indywidualnie i

stopniowo modyfikuje kształt formacji w swoim najbliższym otoczeniu, by wspólnie ominąć

przeszkodę. Po drugie, opracowujemy metodę pozwalającą na utrzymanie formacji nawet w

przypadku zaburzeń systemów komunikacji pomiędzy robotami, poprzez łączenie danych

z różnych źródeł, mianowicie z systemów komunikacji, z pomiarów czujników oraz infor-

macji o pożądanym kształcie formacji. Po trzecie, stosujemy istniejące już metody służące

do osiągnięcia stosownego poruszania się pojedynczego robota w środowiskach ludzkich w

nowym kontekście systemów z wieloma robotami. Dzięki powyższym składnikom nasza praca

przoduje w zakresie nawigacji z wieloma robotami w realistycznych miejscach uczęszczanych

przez ludzi i przystosowanej społecznie do obecności człowieka.

Słowa Kluczowe: Robotyka Normatywna; Instytucjonalny Formalizm; Roboty Świadome

Społecznie; Kooperacyjna Nawigacja; Interakcja Człowiek-Robot; Kooperacyjne Śledzenie;

Adaptacja Formacji Robotów; Systemy Wielorobotowe.
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Part IIntroduction

It’s a dangerous business, Frodo, going out your door.

You step onto the road, and if you don’t keep your feet,

there’s no knowing where you might be swept off to.

J.R.R. Tolkien, The Lord of the Rings
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1 Introduction

I T feels like technology and its prevalence in our everyday lives is progressing faster than

ever. 30 years ago hardly anyone had access to a computer, while nowadays most of

us carry an equivalence in their pocket. Raymond Kurzweil, a computer scientist and

futurist, in 2001 wrote “We won’t experience 100 years of progress in the 21st century –

it will be more like 20,000 years of progress.”

After the boom of privately-owned computing technologies – personal computers, laptops

and smartphones, now it is the time for interactive, mobile devices to ensue – we are entering

the era of robots, for everyone, everywhere. Current trends in robotics slowly shift beyond the

primary applications in manufacturing and automation towards our homes, offices and public

places. Robots work alongside humans in hospitals, museums, at the airports, they provide

assistance to elderly and handicapped people; household robots are available in almost every

convenience store and almost every child possesses a simple robotic toy. The numbers are

staggering – by 2020, 5.9 million new service robots will be in operation, raising the total to

22.5 million world-wide1. Furthermore, the market potential will reach its full capacity once

solutions are found for extending their operational range. Irrespective of whether we accept

this trend or not, robots are slowly becoming an integral part of our lives and there are no

signs of the trend slowing down.

A successful introduction of robots into human environments will rely on the development

of systems that are reliable, safe, and easy to use. However, operation “in the wild” is very

different from that in a controllable factory environment [1]. Human-populated environments

are cluttered, unpredictable, and highly dynamic, and so, the first challenge of deployment of

robots in human spaces is that of overcoming the technological shortcomings and limitations

related to their reliable operation. Such challenges become further exacerbated when multiple

robots are supposed to operate cooperatively.

The second challenge, disputably more consequential, is of social nature. Needless to say

that similarly to the Industrial Revolution of the 19th century, which transitioned handcraft

1 International Federation of Robotics, Frankfurt, https://ifr.org/.
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to manufacturing, nowadays the viewpoints on the pervasiveness of machines in our lives

vary. The perspective of sharing everyday life with robots or any other artificial machines

causes many controversies – people are not only scared of losing their jobs to automation, but

also worried that technology slowly replaces real human relationships and even that one day

intelligent machines could develop consciousness and will take over control. While the fear

is partially caused by the science-fiction literature, the wide-spread apprehension towards

robotics remains a fact2.

As the progress of robotics is riding this new wave of uncertainty, efforts towards smooth and

natural introduction of robots are of paramount importance. The expectations of the robots

being reliable, intelligent and friendly artificial creatures drive the key challenges of the state-

of-the-art social robotics, as the extent to which the robots will be accepted largely depends

on whether they will accommodate the norms governing our society. To this end, research

on social robots proposes increasingly sophisticated methods for human-robot interaction,

strongly inspired by well-versed findings on human social behaviors. Socially intelligent

robots and other artificial agents are taught to follow social norms, create relationships with

humans and invoke social responses. However, the vast majority of research deals with specific

challenges or applications. Current developments in social robotics remain within the comfort

zone of controllable single-robot single-human settings and address isolated problems, the

solutions to which are difficult to generalize or reuse for applications other than what they

have been originally proposed for. As of now, only few attempts are focused on developing a

holistic theory that would bring the interdisciplinary efforts together.

In human societies, social order is achieved through institutions, while the core of each

institution relies on social norms. Thereupon it is only natural that institutional mechanisms

inspire solutions for the development of artificial systems for interacting with humans. A

number of approaches drawing on the economics paradigms are proposed within the field of

Multi-Agent Systems (MAS), with the aim of modeling complex systems. The MAS frameworks,

however, are disconnected from physical operations and thus cannot easily be applied to

robots. At the other end of the spectrum, robotic approaches to normative behaviors suffer

from poor reusability and scalability, as the norms are often designed for, and integrated

into, a specific behavior, and not for a general use. Such design principle possibly hinders

the progress of social robotics, as methods only target limited scope, and consequently are

difficult to compare and reuse for other applications.

The challenges of technological and social nature vary across different applications. Problems

to be tackled in the case of a stationary robot engaged in sophisticated conversations with

humans are different from those of a mobile platform moving in a human crowd in a safe and

social way. The latter case necessitates a number of developments that are yet to be made,

in particular in the context of multi-robot systems with real world deployments. A possible

reason for such state of affairs is the fact that traditionally multi-robot methods tend to be

2 World Development Report 2019: The Changing Nature of Work. World Bank. 2019. Washington, DC: World
Bank. doi:10.1596/978-1-4648-1328-3. License: Creative Commons Attribution CC BY 3.0 IGO

4



1.1. Motivation: Lessons Learned at a Hospital

Figure 1.1 – Images from overhead cameras showing a formation of two robots navigating in the
corridor of the IPOL ward (a). During execution, the robots change access point (b), which causes
the formation to break temporarily (c) before it gets corrected after the robots communicate again
(d). Similar problems could be solved if the robots used a combination of communication and
tracking based on onboard sensing.

validated through simulation, in controlled physical settings, or with simplifying assumptions.

However, once such systems are deployed in real human spaces, the challenges that are yet to

be addressed become evident.

1.1 Motivation: Lessons Learned at a Hospital

One can truly understand the challenges of multi-robot navigation in human-populated

environments through a real deployment. Within the course of this thesis we had the unique

opportunity of performing multi-robot experiments with two robots moving in a formation at

the pediatric ward of the Instituto Português de Oncologia de Lisboa (IPOL) in Lisbon, Portugal.

The lessons learned during that short experimental campaign became the leading motivation

of this thesis.

During the experiments, we identified challenges along three main axes: multi-robot naviga-

tion, cooperative localization, and social awareness. Details and results of the IPOL experi-

ments are presented in Chapter 6.

I. Multi-Robot Navigation. Human indoor environments are enclosed spaces, constrained

by structural building features such as doors and corridors, and cluttered with various

appliances. While single-robot navigation methods proved to be successful in such

settings, the operation of multiple mobile robots turned out to be far more challeng-

ing, even more so in case the robots needed to exhibit spatial coordination. Without

any specific application in mind but rather with a two-fold objective, namely that of

entertaining the kids hosted at the pediatric ward and that of gathering experience

with multiple robots operating in such settings, we implemented a simple navigation

experiment involving two robots in a column formation moving back and forth from

one end of the ward to the other. Based on this field experiment, we imagined scenarios

in which more than two robots had to navigate safely in such cluttered environment

while maintaining a certain spatial topology and proposed in Chapter 7 a method for
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Chapter 1. Introduction

Figure 1.2 – Social challenges of deploying multi-robot systems in human-populated environ-
ments. Images taken during experiments at the IPOL hospital.

adaptively changing the formation shape.

II. Cooperative Localization. Collective navigation methods such as formation control rely

on constant exchange of state information among the robots. While wireless communi-

cation is generally reliable, it might suffer issues in settings such as those of an hospital,

including message losses, delays, and even temporal loss of connection. During the

experiments conducted at IPOL, robots temporarily lost their ability to communicate

when changing access points of a local WiFi network, which resulted in situations similar

to that shown in Figure 1.1, where a formation of two robots broke temporarily, result-

ing in a less intelligible collective behavior from a human perspective and ultimately

giving the onlookers an impression of incompetent robots. To overcome such difficul-

ties, in Chapter 8 we propose a system that incorporates the available communication

data, sensory information, and knowledge about the desired formation geometry in a

multi-target tracking filter.

III. Social Awareness. The greatest challenge of deploying multiple robots in an instrumental

and yet fragile environment such as a hospital is of social nature. On the one hand,

robots represent an added value by, for instance, providing entertainment, edutainment,

or encouragement for physical interactions; on the other hand, robots can hamper

activities of hospital staff and, in the long term, be an annoyance. The formation

behavior we have deployed in the hospital did not incorporate any human awareness,

and the results presented later in this thesis show that although the robots were well

accepted, they also disturbed regular activities of the ward. In Figure 1.2 we show

examples of situations where robots were generating disturbances and some discomfort

to the surrounding humans while showcasing a technically correct behavior. We believe

that if the robots were aware of the mechanisms of human society and complied with

its social norms, the disturbances and discomfort mentioned above would have been

significantly mitigated. This is the core challenge of this thesis and is addressed in

Part III through an institutional framework in which social norms are to be respected by

the multi-robot system and incorporated into robot behaviors.
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1.2. Objectives and Outline

Figure 1.3 – Thesis overview.

1.2 Objectives and Outline

Our objective is to develop a distributed framework for multi-robot systems enabling safe

navigation in structured, indoor environments populated by humans. We aim to achieve

a socially aware behavior from a human observer perspective, where a multi-robot team

navigates around the humans without disturbing their habitual activity and takes into account

human comfort and conventions that people abide by. We choose to focus on spatially

coordinated behaviors resulting in formations and flocks, as they accentuate the perpetual

balance between purely robotic cooperation and human-robot interactions.

In an attempt to address the aforementioned challenges, the focus of this thesis will be on

answering the following research questions:

A) What are the distributed, multi-robot algorithms that would result in a reliable and

robust navigation in the environments of interest?

B) How can the team of robots respect the conventions and rules of human societies?

C) Which coordination mechanism could deal with both high-level behavior management

and low-level, reactive coordination of robots?

D) Can the same mechanism introduce social norms for guiding robots towards socially ac-

ceptable collective behaviors and lead to better mutual understanding between humans

and robots?
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The focus of this thesis resides on the three layers visualized in Figure 1.3, from the bottom to

the top: the algorithmic approach towards enabling human-aware multi-robot coordination in

real, human-populated environments; the formalism that allows for the introduction of social

norms to robot behaviors in a plug-and-play manner; and the demonstration thereof through

three distinct case studies. With this modular bottom-up approach, the basic elements related

to the continuous control of the multi-robot system are operated upon by the institutional

formalism, to result in the normative behaviors demonstrated in the case studies. As such,

the normative behaviors are achieved through the institutional formalism and rooted into the

algorithms.

Although the algorithmic methods are strongly intertwined into the case studies and linked

through the institutional formalism, our approach emphasizes abstraction and encapsulation,

therefore allowing for the use of other algorithms at the bottom layer and application to other

case studies at the top layer. The structure of this manuscript will generally follow Figure 1.3 in

a bottom-up and left-right fashion. Besides the introductory and conclusive parts, this thesis

includes the following two core parts:

� Part II: Cooperative Navigation

We focus on the deployment of multi-robot systems engaged in spatially coordinated

behaviors in physical environments. In this part, we address two of the main challenges

identified in the previous section:

– Multi-Robot Navigation. We build upon state-of-the-art graph-based control

laws, where the graph-based framework serves as a tool to formulate rules for rigid

formations and a naturally loose flocks. We enhance algorithmic robustness in

complex, indoor environments and facilitate dynamic adjustment of the spatially

coordinated behavior to the environmental situation. To this end, we propose a

method for the real-time adaptation of the formation geometry to accommodate

the constraints imposed by structured indoor environments.

– Cooperative Localization. With the purpose of providing reliable robot state es-

timates to be used for formation control when communication fails, we propose

a method that incorporates data from diverse sources to result in an enhanced

multi-robot tracking filter.

� Part III: Institutions and Norms

We address the challenge of formalization of human social norms in the context of

multi-robot systems as follows:

– Social Awareness. We adopt well-established single-robot methods for social

awareness in the context of multi-robot systems.

– Institutional Formalism. We propose a model-based approach for abstraction,

encapsulation, and formalization of generic social norms into reusable structures

called institutions.
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– Case Studies: We demonstrate how the proposed abstract representation of institu-

tions allows for the governance over miscellaneous robot behaviors and integration

of social constraints of diverse nature.

1.3 Contributions and Publications

To the best of our knowledge, ours is the first effort towards the integration of social norms

into continuous robot behaviors through a formalism that allows to abstract the normative

layer from its execution in a physical system. Furthermore, up to date, no contributions

have reported experimental results about a group of robots robustly moving in structured

human-populated environments or engaging in mixed human-robot formations, and only few

attempts have been made to expand the state-of-the-art beyond the coordination mechanisms

of miniature robots with a low-level of complexity or beyond highly controlled environments.

With this thesis we bring the following contributions to the state-of-the-art in robotics.

Adaptive Formation Control. We deploy cooperative robot teams in scenarios with real hu-

man participants in typical indoor spaces. To this effect, we developed a Local Formation

Transformation (LFT) method for realizing adaptive robot formations in constrained

indoor environments that yields local and gradual change of formation geometry with

the level of alteration that accommodates the structure of the environment. Our method

stands in contrast with the state-of-the-art approaches on formation control, where

the change of formation shape is global and discrete, and robots are typically deployed

in controlled environments with obstacles scattered around a large arena. A relevant

publication for this part is:

� A. Wasik, J. N. Pereira, R. Ventura, P. U. Lima, and A. Martinoli, “Graph-based

distributed control for adaptive multi-robot patrolling using local formation trans-

formation”, in IEEE/RSJ International Conference on Intelligent Robots and Systems,

2016, pp. 1721–1728.

Cooperative Localization for Formation Control. We proposed a method for combining global

positioning data exchanged by the robots, information about the formation geometry,

and on-board sensory detections in an extension of a multi-target tracking filter, a

Gaussian Mixture Probability Hypothesis Density (GM-PHD) filter. Our method called

Formation Information GM-PHD (FI-GM-PHD) filter is capable of maintaining the state

estimates even when long-duration sensing occlusions or communication losses occur,

and it allows for maintaining formations in cluttered environments under high mea-

surement uncertainty and low communication quality. Relevant publications include:

� A. Wasik, P. U. Lima, and A. Martinoli, “A robust localization system for multi-robot

formations based on an extension of a Gaussian mixture probability hypothesis

density filter”, Autonomous Robots, vol. 44, 395–414, 2019, DOI:10.1007/s10514-

019-09860-5.
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� A. Wasik, A. Martinoli, and P. U. Lima, “A robust relative positioning system for

multi-robot formations leveraging an extended GM-PHD filter”, Proceedings of the

First International Symposium on Multi-Robot and Multi-Agent Systems, pp. 71–77,

2017.

� A. Wasik, R. Ventura, J. N. Pereira, P. U. Lima, and A. Martinoli, “Lidar-based relative

position estimation and tracking for multi-robot systems”, in Robot 2015: Second

Iberian Robotics Conference, Springer International Publishing, 2016, pp. 3–16.

Social Awareness in Multi-Robot Systems. We adopted well-versed findings of single-robot

social navigation research in the context of multi-robot systems. In contrast to the state-

of-the-art research on multi-robot teams deployed in human-populated environments

that either leverage multiple, uncooperative robots or cooperative solutions that fail

to consider realistic situations, we deploy socially aware cooperative robot teams in

scenarios with human participants in typical indoor spaces, enacting the deployment

of spatially coordinated multi-robot systems in shared environments, as well as mixed

groups of multiple humans and multiple robots. By the virtue of representing a selec-

tion of human-aware methods in the form of social norms that are represented at an

abstract level using human language, we take the first step in a process of achieving

a comprehensive method for unifying the existing approaches to normative robotic

systems.

Institutional Formalism. We performed an interdisciplinary effort towards bridging research

findings in economics, multi-agent systems and normative robotics. We developed

a model-based approach for abstraction, encapsulation and formalization of generic

social norms into reusable structures, called institutions. Our methods draw upon

the original principles of Institutional Robotics (IR) [6] [7] and the approaches derived

there. Nonetheless, we reach beyond the current state of affairs by targeting continuous,

collective, social robot behaviors, venturing the formerly addressed work on IR beyond

the swarming principles and discrete planning methods.

� Norm Realization We have identified three key elements necessary for interpreting

social norms and putting them into practice. First, the representation of norms in a

universal manner, in a human-understandable form. Second, the development of a

clear semantics, necessary for the interpretation of the norms at both abstract and

concrete levels. Third, a step-by-step approach for addressing the question of how

to apply a given norm, resulting in its concretization into robot-understandable

terminology. These three elements are brought together in our main contribution

– norm realization, a mechanism for translation of high-level, language-defined

norms in terms of robot-understandable terminology, making such norms readily

implementable onto concrete restrictions of robot behaviors and executable in

real physical systems. Our method embraces low-level sophistication to address

the complexity of continuous multi-robot behaviors, while and at the same time

retaining the desirable high-level properties, including abstraction, encapsulation,

10



1.3. Contributions and Publications

and modularity. We showcase the power of norm realization through a number of

norms targeted to encompass a large variety of social aspects, ranging from human

comfort achieved though navigational compliance, to legibility of robot intentions

reflected through gestures, expressions, and sounds.

� Norm Abstraction The aforementioned norm realization provides a tool for en-

coding behavioral specifications according to plug-and-play principles instead

of programming social compliance in hard-wired ad-hoc behaviors, as it is done

currently. We pioneer in a number of worthwhile properties lacking in state-of-

the-art approaches to social and normative robotics, namely high reusability of

institutions and norms, which we freely allot over different domains and behav-

iors without the need of redesigning them, and modularity and scalability, where

the encapsulation of norms allows to decouple their operation from the behavior

design and where introducing a new norm does not require heuristics on how to

merge it with the current solution. Instead of the design being driven by norms,

norms are imposed as constraints operating over the parametrization of already

existing behaviors.

Relevant publications include:

� A. Wasik, S. Tomic, A. Saffiotti, F. Pecora, A. Martinoli, and P. U. Lima, “Towards

norm realization in institutions mediating human-robot societies”, 2018 IEEE/RSJ

International Conference On Intelligent Robots And Systems (IROS), IEEE Interna-

tional Conference on Intelligent Robots and Systems, pp. 297–304, 2018.

� S. Tomic, A. Wasik, P. U. Lima, A. Martinoli, F. Pecora, and A. Safiotti, “Towards

institutions for mixed human-robot societies”, in Intternational Joint Conference

on Autonomous Agents and Multiagent Systems, 2018, pp. 2216–2217.

� A. Wasik, A. Martinoli, and P. U. Lima, “An institutional robotics approach to the

design of socially aware multi-robot behaviors”, Proceedings of the RO-MAN 2017

Workshop on Towards Intelligent Social Robots: Social Cognitive Systems in Smart

Environments, pp. 2–7, 2017.

Contributions of Predecessors and Collaborators

I would like to give credit to my close collaborators who influenced the final shape of this

thesis.

My institutional formalism has been strongly influenced by the work of Stevan Tomic and

his supervisors, Professor Alessandro Saffiotti and Professor Federico Pecora, all belonging to

the Cognitive Robotic Systems Laboratory of the Centre for the Applied Autonomous Sensor

Systems (AASS) at Örebro University. They were the first to abstract the institutions from the

concrete systems within the IR framework. In particular, I adapted the high-level definitions

of institutions, domain and grounding, and modified them to better capture the complexity of

11



Chapter 1. Introduction

norms for continuous cooperative behaviors. Our close collaboration resulted in two joint

publications: first in [9], where my contribution is minor and hinges on the development of

the multi-robot behaviors the institutions operate upon, and second in [8], where I propose

my major contribution of norm realization.

This thesis includes the work of a master student Michiaki Hirayama, who under my supervi-

sion carried out the real robot experiments evaluating the performance of the FI-GM-PHD

filter in Chapter 8. A significant part of my experimental setup, including installation of the

motion capture system and camera system has been prepared by my colleagues, Zeynab

Talebpour, Duarte Dias Emmanuel Droz and Steven Roelofsen. Furthermore I strongly relied

on Zeynab’s expertise when preparing my participative study.

Finally, I would like to give credit to all my fellow members of the European Multi-Robot

Cognitive Systems Operating in Hospitals (MOnarCH) project, the work of whom has laid the

instrumental foundations of this thesis, in particular the single-robot navigation function-

alities, calibration of the simulated setup and preparation of the software stack I have been

relying upon long after the conclusion of the project. The credit goes to Professor Rodrigo

Ventura, research and development engineers Lorenzo Sarti and David Mansolino, and post-

doctoral researcher José Nuno Pereira. Moreover, José Nuno provided me valuable feedback

on my early work on formation control and made the experiments at IPOL possible.

Summary

The research effort presented in this thesis addresses three key aspects, namely the

algorithmic methods enabling human-aware multi-robot coordination in real, human-

populated environments, the formalism that allows for introduction of social norms

to robot behaviors in a plug-and-play manner, and the demonstration through three

distinct case studies. Our modular and layered bottom-up approach puts together

the basic elements related to the continuous control of the multi-robot behaviors in

order to provide the physical baseline for our institutional formalism to operate over,

while the case studies validate normative behaviors that are built upon the institutional

formalism and rooted into the algorithms.
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2 Systems and Methods

T HE deployment of mobile, child-sized, complex robots in human-populated en-

vironments necessitates the co-existence of multiple systems and components

interplaying at a different level of centralization, competency and physicality. In

this chapter, we describe the robotic platforms, auxiliary systems and simulation

tools used for experimentation and validation of our methods. It should be noted that our ap-

proach to normative, multi-robot coordination is independent of the chosen robotic platform

or the system architecture, so the choice of the system components does not impose further

restrictions on our methods.

2.1 System Overview

An overview of the system is presented in Figure 2.1. Some of the components are used only in

a subset of the experiments, depending on their availability in the experimental facility or on

whether their presence is required.

At the core of a networked multi-robot system is communication. All robots and external

systems are connected to a local wireless network and, as we will describe in Section 2.3.1, by

the means of Robot Operating System (ROS) messages, they can broadcast information to all

other connected elements.

The main robotic platform used throughout this thesis is the MBot robot - a child-sized,

friendly-looking robot equipped with navigation, perception and low-level safety sensors. The

navigation of the MBot robots is based on a standard occupancy grid map, serving for both

motion planing and self-localization. For spatial coordination, the robots communicate to

each other the poses generated through self-localization. In order to minimize the dependence

of the system on a single point of failure, we developed an onboard detection and tracking

module that complements information obtained via communication with data from onboard

sensors. Our multi-robot navigation functionalities make use of two already existing single-

robot navigation capabilities of the robot. First, a Fast Marching Method (FMM) is used for
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Figure 2.1 – System overview.

trajectory planning and point-to-point navigation. Second, a Dynamic Window Approach

(DWA) reactive obstacle avoidance method is always activated in parallel with our multi-robot

algorithms, preventing robots to collide with each other and with objects that are detectable

by sensors. Additionally, in one set of experiments, we use another robotic platform – a Pepper

robot, with its interaction capabilities, but not its navigation.

To obtain reliable pose estimates of the humans during experiments, we use one of the three

following systems: an overhead camera, a Motion Capture System (MCS), or an Ultra-Wide

Band (UWB) localization system. These systems are connected to ROS and broadcast data

that are available to all the robots. Furthermore, data from the MCS provides ground truth

localization of the robots, a key information used for experimental evaluation. The modularity

of our setup allows for flexibility in terms of adding or removing additional components.

Experimental evaluation is performed in both simulation and reality. For simulation, we use

the high-fidelity simulator Webots, which faithfully reproduces the robots with all their sensors

and actuators, calibrated to match the reality. Real experiments are carried out in four facilities,

and exhaustive evaluation has been realized in two facilities of DISAL (the off-campus Motion
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Arena at Rue de Jordils 41 in St. Sulpice, in short Jordils, and the on-campus Robotic Laboratory

in the GR building, in short GR) as well as one of the AASS Center of the Örebro University (in

short Örebro). We also present observations collected during trials at the IPOL hospital.

2.2 Robotic Platforms

In this section, we describe two robotic platforms used in this work, the MBot and the Pepper.

The MBot robot is our main experimental platform and will be used throughout this thesis,

while the Pepper robot, available at the Örebro experimental facility, has been used to a limited

extent. Pictures of both robots are shown in Figure 2.2.

2.2.1 MBot

The MBot is a child-sized, friendly-looking robot developed within frame of the FP7 European

project MOnarCH1 with the goal of introducing social robots in the pedriatric ward of the

IPOL hospital. Shown in Figure 2.2, the MBot has an approximately round footprint of 0.65 m

in diameter and a height of 0.98 m. A complete description of the MBot robot can be found in

[11].

The robot is equipped with navigation, perception and low-level safety sensors. For mapping,

localization and obstacle avoidance, it fuses measurements provided by odometry encoders,

IMU sensors and two laser range finders (Hokuyo URG-04LX-UG01) mounted at a height of

approximately 13 cm above the ground, one in front and one at the back of the robot, provid-

ing a 360◦ Field of View (FOV) and approximately 4 m sensing distance. An omnidirectional

locomotion system with four Mecanum wheels provides a maximum speed of 2.5 m/s and

maximum acceleration of 1 m/s2. The robot has two onboard computers running Linux OS

(Ubuntu 12.04), one responsible for navigation, localization, system control and actuation of

low-level interaction devices, the second responsible for the control of the interaction func-

tions. Interaction components include arms and head actuated with servo motors, speakers,

touch screen and LEDs located at the mouth, eyes, cheeks and at the bottom of the base.

Batteries, depending on the usage, give an autonomy of up to 3 hours.

2.2.2 Pepper

Pepper is a 1.2 m high humanoid robot manufactured by SoftBank Robotics 2, designed to

interact with people at a personal level, at homes or for education, as well as aid businesses at

a professional level as customer help. It is equipped with interaction, motion detection and

safety sensors, including 2D and 3D cameras, touch screen, tactile sensors and IR sensors and

6 lasers, each providing 60◦ field-of-view and used for safety purposes, but not for navigation.

1 MOnarCH, FP7, FP7-ICT-2011-9-601033 (http://monarch-fp7.eu)
2 SoftBank Robotics (https://www.ald.softbankrobotics.com)
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Figure 2.2 – Two robotic platforms used in this thesis - the MBot robot, used throughout our work,
and the Pepper robot, accompanying MBot in experiments at one of the facilities.

Pepper’s interaction functions, such as speech, LEDs or gestures can be controlled using

dedicated software or can be scripted in Python. The robot is used in our case study in

Chapter 16.

2.3 Software

In our work we heavily rely on two open-source software tools: the Robot Operating System

(ROS), which provides the basis upon which we build our software stack, and Webots, a high-

fidelity simulator we used for design, development and first-step validation of our methods.

2.3.1 ROS

The ROS3 is an open-source framework providing a collection of libraries and tools for design,

implementation, and execution of robotic applications. The primary benefits of using ROS

include abstraction of hardware and low-level device control, simplicity of message-passing

between processes and devices, and ready-to-use implementation of commonly-used robot

functionalities, making it easy to develop software by connecting existing modules from

3 ROS (http://wiki.ros.org)
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various developers. We have been using ROS1, based on a master-slave architecture, with a

master node running on each robot. In ROS, a robot application is broken down into a network

of concurrent processes called nodes, which are loosely coupled using the ROS communication

infrastructure, where messages are relayed using topics. The same infrastructure allows

seamless communication over multiple devices or multiple robots. Nodes, either within

one device or distributed over several machines, communicate using a publisher/subscriber

architecture, where nodes can subscribe to topics and receive data from other nodes that are

publishing.

2.3.2 Simulations

Webots [12] is an open-source, physics-based robot simulator that allows for modeling, pro-

gramming and simulation of robots. Webots is integrated with ROS, allowing for seamless

transition from simulation to reality with no changes in code. In our simulations, the ap-

pearance and the devices of the MBot robot are faithfully simulated, with all the sensors and

actuators carefully calibrated to match the reality, so the performance of simulated robots,

especially at the multi-robot level, is comparable to real robots. Webots also provides simple

models of humans, for which we have developed custom motion controllers based on research

on crowd behavior. For experimental evaluation, Webots provides access to ground truth posi-

tioning information of robots and humans, accommodating the role of a real external tracking

system. The real experimental facilities, including GR, IPOL and Jordils are reproduced with

care, so that it is possible to carry out the same experimental scenarios in both simulation and

reality. Snapshot of simulated humans and MBot, and examples of Webots worlds used in this

thesis are shown in Figure 2.3.

2.3.3 Temporal Planner

In the case study of Chapter 16, the temporal course of the experiments (i.e. behavior activation

and deactivation) is established offline by a temporal planner. The planner uses constraint

satisfaction problem reasoning methods for determining relations between time intervals

when the behaviors are executed based on specifications. More details about the planner

can be found in [13], where it is used for enforcing temporal norms within the institutional

formalism.

2.4 Detection and Tracking

At the heart of a networked multi-robot system lies the ability to communicate. In formation

control and other consensus-based methods agents simply must know the state information

of at least a subset of the neighbors. Furthermore, when we start to consider mixed societies of

humans and robots, it becomes necessary to be able to reliably detect and track humans. In this

section we describe the methods and tools used for obtaining human and robot positioning

17



Chapter 2. Systems and Methods

Figure 2.3 – Models of the MBot robot, humans, and selected worlds in the Webots simulator.

information and explain the data flow in our system.

2.4.1 Communication

All robots and external devices connect to a local wireless network and exchange messages

using a ROS-based system, where selected topics and their content are automatically synchro-

nized via multicast routing provided by a third-party ROS package4 running on all connected

devices.

2.4.2 Onboard Robot Detection

For robot detection we use an onboard relative localization system, which we describe in detail

in [5]. At each time step, the laser range finder point cloud measurements are associated using

the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm5 from

scikit-learn6. For a robot with a circular model of the base and known diameter, the clusters are

subject to circle fitting using a least squares solver, where the center of the circle corresponds

to the center of the base of the detected robot. The coordinates are compared against a

known occupancy grid map to filter out false positives stemming from known obstacles. The

final measurement is the position of the tracked robot. The accuracy of the detections, as

4 ROS package multimaster_fkie (http://wiki.ros.org/multimaster_fkie)
5 In [5] we use sliding-window, nearest-neighbor classification for that purpose.
6 DBSCAN data clustering algorithm, https://scikit-learn.org
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determined in [5] is around 20 cm. We use the onboard detection system as the source of

measurements for the tracking filter presented in Chapter 8.

2.4.3 Overhead Camera

A GigE color camera from Basler mounted under a ceiling at the GR facility is used for human

position tracking in our experiments on adaptive formations in Chapter 7. The tracking

method is based on active marker tracking with OpenCV-based color blob detection7. In these

experiments the tracking information is only used for performance evaluation and is not fed

back to the robots, as they rely on onboard sensing to avoid human in a manner that does not

consider the social aspect.

2.4.4 Motion Capture System

The Motion Capture System (MCS) available at Jordils facility is a tool developed by Motion

Analysis Inc. for tracking 3D movements of multiple targets with millimetric accuracy. In this

work, we use a MCS for two purposes: for obtaining ground truth pose of the robots and for

human tracking. The MCS leverages a set of 28 cameras anchored to a structure at the ceiling

and tracks sets of reflective markers placed rigidly on the tracked objects. In the robot case,

markers are placed at the top of robot’s head, while for the humans we place the markers on

plastic construction caps. The data from the cameras are processed by a dedicated software

provided by the MCS manufacturer and results in a pose estimate for each tracked object. The

pose estimates of humans are further translated to reference frame of the robots’ map and

relayed through ROS to the robots.

2.4.5 Ultra-Wide Band Localization

Ultra-Wide Band (UWB) localization is an emerging technology that has proven effective

in indoor positioning and tracking. It provides low-cost, low-computation localization in

semi-structured environments. However, it also suffers from spatially-varying measurement

biases when emitters and receivers operate in Non Line Of Sight (NLOS) conditions, leading to

a spatially-varying offset between the actual and the estimated position.

We have adopted the Kio UWB technology from Eliko8 for human localization in a subset of

experiments at the Örebro facility. Kio is a small size, easy to deploy UWB system consisting

of tags - movable sensors attached to the tracked person, and anchors placed at known

locations, used as references to compute the positions of the tags. UWB radio signals are

exchanged between the anchors and the tags, and the tag’s position is estimated by performing

trilateration on the distances to the four nearest anchors. In our implementation, each tag

carried by a person is powered by a power bank and connected to a Raspberry Pi 3 with an

7 OpenCV (https://opencv.org)
8 Eliko https://www.eliko.ee
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on-board WiFi adapter9.

2.5 Navigation Methods

The single-robot functionalities of the MBot robot have been designed and developed as part

of the MOnarCH project, but are key for the development of our multi-robot methods. In

this section, we describe the localization and the navigation methods of the MBot robot and

shortly explain how they are integrated in our algorithms.

2.5.1 Mapping and Localization

For constructing a static occupancy grid map of the environment we use the off-the-shelf ROS

package GMapping10, which implements a Rao-Blackwellized particle filter for SLAM [14],

generating an occupancy grid map from laser scan data and odometry. Robot self-localization

is performed using another off-the-shelf ROS package AMCL11, which by combining odometry

and laser scan data tracks the pose of a robot within a known map using an adaptive Monte

Carlo localization approach [15]. The accuracy of the self-localization system is around 10 cm

in the facilities considered in this thesis.

2.5.2 Motion Planning and Obstacle Avoidance

For motion planning, we use a Fast Marching Method (FMM) [16], which provides a local-

minima-free potential field that encodes the optimal direction of motion towards the goal.

FMM provides a solution to the boundary value problems of the Eikonal equation - equation

that models a wave front propagation, starting from the initial hypersurface, and propagating

it with a speed specified by a scalar field. FMM is a numerically efficient solution employing

discretization of space, therefore it can be directly applied to the occupancy grid map. Planning

is followed by a Dynamic Window Approach (DWA) method to perform obstacle avoidance

while driving the robot along the optimal direction. This is done by casting the problem of

determining the next actuation command into a constrained optimization problem over a

discrete set of candidate velocity commands. The set of valid candidates is obtained from

an equally spaced grid of points in the actuation space, constrained to respect the speed

and acceleration limits of the robot and to guarantee that, for each candidate, the robot can

stop at maximum deceleration before hitting a perceived obstacle. In our work, the multi-

robot algorithms deliver a velocity reference for each robot. The obstacle avoidance method

described above integrates this information so that the DWA method will tend to prefer velocity

candidates closer to the velocity reference, while assuring collision-free trajectories.

9 Raspberry Pi (https://www.raspberrypi.org/)
10 ROS package GMapping (http://wiki.ros.org/gmapping)
11 ROS package AMCL (http://wiki.ros.org/amcl)

20



2.6. Experimental Facilities

D
IM

E
N

S
IO

N
S

R
O

B
O

T
S

E
X

T
E

R
N

A
L

T
R

A
C

K
IN

G

C
O

N
T

R
O

L
L

A
-

B
IL

IT
Y

S
T

R
U

C
T

U
R

E
D

JORDILS 8 × 10 4 MCS high 3

GR 14 × 6 4 - medium 3

ÖREBRO 20 × 5
2 MBots, 1

Pepper
UWB medium 3

IPOL 23 × 8 2 - low 3

Table 2.1 – Characteristics of experimental facilities. Controllability of an environment indicates
whether the area is specifically dedicated for robotic use (high), or it is a space for everyday use,
frequently visited by people that do not explicitly participate in the experiments (low). Structured
environment is constrained by structural obstacles, such as walls or doors.

2.6 Experimental Facilities

Our methods have been validated in a variety of environments, each posing a different set of

challenges. Jordils is a controlled, open arena with walls scattered around, where we enact

highly dynamic scenarios with multiple people walking around. The facility that we refer to

as GR is a real office and laboratory space in the GR building of the EPFL campus, where we

challenge the robot formation to move through multiple doors and kitchen frequently visited

by users. The Örebro area at the Örebro University, where we deploy mixed human-robot

formations, is a busy section of the AASS center, full of obstacles scattered around. Finally, we

perform a number of experiments with a two-robot formation at the IPOL hospital – a highly

dynamic, sensitive environment with challenging obstacles and several humans essentially

always present in each room. Pictures of the experimental areas are shown in Figure 2.4, and

in Table 2.1 we summarize their main characteristics.

2.6.1 Jordils

The experimental area at Jordils is a controlled environment, the structure of which can be

build on-the-fly using modular building blocks. This facility is endowed with a MCS (described

in Section 2.4.4), which we use to obtain human and robot poses with millimetric accuracy.

Experiments performed at Jordils are presented in Chapter 8, Chapter 15 and Chapter 17.

2.6.2 GR

This area can be considered a fairly standard indoor setting cluttered with various appli-

ances, including furniture, lab equipment and structural building features such as doors and

columns. Our experiments take place between two rooms connected by a corridor, in an area
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Figure 2.4 – Maps and pictures of facilities where we carried out our multi-robot experiments.

frequently visited by people. The challenges posed by this environment inspired our study on

transformable formations in Chapter 7.

2.6.3 Örebro

Being in part a robotics lab, in part a corridor, the Örebro arena is cluttered with fragile equip-

ment and frequently crossed by humans. At this facility we use the two available MBot robots

and a Pepper robot, and track positions of humans with the Kio UWB system described in Sec-

tion 2.4.5. We deploy altogether 12 anchors to simultaneously track two humans. Experiments

performed in Örebro are presented in Chapter 17.

2.6.4 IPOL

In contrast to the other facilities, IPOL is a sensitive environment, where performing exper-

iments with even one robot might generate severe disturbances to the regular operation of

the pediatric ward if not properly designed and at least remotely supervised. Thanks to an
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incrementally built trust relationship with the hospital staff over long periods of operation

with a single robot, we have been afforded the opportunity to deploy two robots for one day. In

Chapter 6, we discuss the results of experiments in this highly dynamic, fragile environment,

where groups of visitors block robots’ paths, children run next to the robots trying to stop

them, and busy staff can be easily disturbed by the robots’ motion. The lessons learned at

IPOL inspired the leading idea of this thesis - to make multi-robot behaviors social. Moreover,

the communication problems we encountered at this facility are the leading motivation of our

work on multi-robot tracking, presented in Chapter 8.

Summary

Performing experiments with multiple robots in complex, human-populated environ-

ments requires a reliable robotic platform with robust localization and navigation tools.

If robots are expected to behave socially, they must be able to perceive humans, or at

least obtain their poses from external systems. In this chapter, we have presented the

key system components upon which the methods developed in our research heavily

rely. From algorithmic design in simulation to validation in experimental facilities, all

presented tools will accompany our journey through the subsequent chapters.
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Part IICooperative Navigation

“Darwin had no idea...”

“That life is so unbelievably complex,” Malcolm said.

“Nobody realizes it.

I mean, a single fertilized egg has a hundred thousand genes, which act in a coordinated way,

switching on and off at specific times, to transform that single cell

into a complete living creature.

That one cell starts to divide, but the subsequent cells are different.

They specialize. Some are nerve. Some are gut. Some are limb.

Each set of cells begins to follow its own program, developing, interacting.

Eventually there are two hundred and fifty different kinds of cells, all developing together, at

exactly the right time.

(...)

Week after week, this unimaginably complex development proceeds perfectly – perfectly.”

Michael Crichton, The Lost World
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3 Introduction

M ULTI-ROBOT cooperative systems are becoming increasingly relevant to real-

world applications, including search-and-rescue missions, evacuation of

humans in emergency situations, or environmental monitoring. The abil-

ity to efficiently navigate as a group enables a team of robots to perform

activities not possible for single robots, contributing not only to enhanced performances

when carrying out specific missions but also bringing additional flexibility and robustness to

failures. However, cooperative navigation in complex, structured environments poses many

technical challenges, including how to handle spatial constraints when robots are moving

as an ensemble (for example, in a formation of large robots). Furthermore, introduction of

robots in social environments entails some basic level of human awareness, i.e. the ability to

act around humans in a way that appears friendly, social, and safe. Finally, in order to ensure

inter-robot positioning robustness, also in case of communication failures, we identify the

need for a reliable cooperative localization system.

In this chapter we motivate the use of cooperative approaches for multi-robot navigation and

look into the aforementioned challenges, identifying the steps necessary to address them.

3.1 Cooperation and Coordination in Natural and Artificial Systems

Compared to single robots, multi-robot systems can offer a large variety of advantages, includ-

ing, to name a few, enhanced efficiency and flexibility achieved through concurrent execution

of the task, distributed sensing and actuation, capability to specialize, and increased tolerance

to robot failure. Moreover, some tasks might not even be possible for a single robot. However,

to thrive upon the benefits of multi-robot systems it is not enough to simply send out several

robots and let them act on their own - robots must cooperate with each other. From the

very onset of multi-robot systems, solutions for effective cooperation have been sought for in

nature. Since in this work we are particularly interested in multi-robot navigation, we will now

take a closer look at solutions for motion coordination in natural and artificial systems.
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Figure 3.1 – Examples of flocking in the nature.1

3.1.1 Inspiration from Animal Flocking

Collective animal behavior is a fascinating phenomenon where large groups of social animals

coordinates their movement, resulting in a functional global structure. Such cooperation

provides numerous advantages ranging from effective foraging to protection from predators.

Such systems are typically leveraging interactions among individuals executed on the basis of

purely local information, with no external guidance or central coordination.

Collective movements in animal societies, such as flocking of birds, schooling of fish or herding

of land animals (shown in Figure 3.1) are popularly implemented with three simple local rules:

1) Cohesion – remain close to your neighbors

2) Separation – avoid collisions with the neighbors

3) Alignment – adjust heading to that of the neighbors

The three rules above have been originally proposed by Craig W. Reynolds [17] in order to

produce realistic computer animations of bird flocks. Similar rules are used for modeling of

crowd behaviors [18], where humans move as a result of attraction towards destination and

repulsion from other people and obstacles. The flocking ruleset has received a great deal of

attention in artificial multi-agent systems [19] [20], because of its straightforward applicability

to a variety of virtual and physical platforms.

While the flocking rules applied to multi-robot systems result in robust, flexible motion, the

resulting inter-agent spatial coordination remains loose: the overall grouping can be typically

influenced by the balance among the three rules and a perceived field guiding the individual

robots towards their destination (Reynolds called it the “migration urge”). To control the inter-

robot distances with higher accuracy, we will now take a closer look into robot formations.

1 (left) Image by Tommy Hansen, https://en.wikipedia.org/wiki/Collective_animal_behavior (CC BY 3.0)
(middle) Image by T. R. Shankar Raman, https://en.wikipedia.org/wiki/Wildebeest (Public Domain)
(right) Image by Bruno de Giusti, https://en.wikipedia.org/wiki/Shoaling_and_schooling (CC BY-SA 2.5)
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3.1.2 Robot Formations

Compared to the flocking rules, formation control methods provide an additional degree of

control over inter-robot positions – range and bearing control, which at the team level results

in the control over the overall geometric shape of the robot team. Formation control is thus

employed where spatial topologies are important – in aerospace and outer space applications

(e.g., space-borne optical interferometry [21]), in systematic search missions (e.g., odor source

localization [22]), and in surveillance and mapping. The methods for formation control can

be loosely classified into a) behavior-based approaches, where simple motion primitives are

composed to build more complex patterns [23]; b) virtual structures, which consider the

formation as a rigid body with motion of each robot following a point on a moving virtual

shape [24]; c) leader-follower strategy, where the leader moves towards a group goal while the

followers maintain an offset from the leader to keep their desired place in the formation [25].

Other alternatives include fuzzy systems [26], and artificial potentials [27].

The ability to represent the individual robots and their relative spatial positions in an abstract

form makes it possible to ignore technical details of a particular implementation. Graph-

theoretic methods provide means for such representation by abstracting away the complex

interplay of sensing, actuation and communication of individual robots and offer tools for

synthesis and analysis of networked systems [21]. We explore a graph-theoretic framework in

our work to achieve cooperative group movement. It is worth noting that the adoption of such

framework is well-aligned with our institutional formalism which also aims at abstraction

from the physical implementation.

3.2 Challenges of Multi-Robot Systems in Real Environments

Robustness and performance in multi-robot teams is achieved at the cost of behavioral com-

plexity - multi-robot systems are more difficult to synthesize and analyze, as the resulting

behavior emerges from a large number of interactions. The challenges of single-robot navi-

gation are exacerbated – while it might be difficult for a single robot to move successfully in

a complex environment cluttered with obstacles and frequently visited by humans, a multi-

robot system deals with the same problems at much larger scale and with often the additional

constraints to maintain some sort of coordination with the teammates. In the following

subsections, we will discuss the main challenges of deploying multi-robot systems in real

environments.

3.2.1 Formation Control in Complex, Structured Environments

Indoor human environments are typically characterized by a large number of appliances

such as furniture or equipment, and structural building features such as corridors, doors, or

other wall-restricted spaces. State-of-the-art methods for multi-robot formations yield good

performance when tested in laboratory conditions, and the underlying obstacle avoidance is
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sufficient to deal with open environments with obstacles appearing sporadically. However,

strong assumptions regarding sparseness of the obstacles and openness of the environment

with lack of structure makes them ill-prepared for real, indoor environments. For a successful

navigation of multiple large-sized robots in complex environments additional dexterity is

needed - robots not only must be able to avoid obstacles or shrink the shape of the forma-

tion, but also tolerate high flexibility in terms of formation geometry when passing through

corridors and doors.

3.2.2 Unreliable Communication

As the robots are becoming more present in environments populated with humans, safety,

robustness, and reliability of the methods are of highest importance. While many of the

multi-robot approaches do not require continuous coordination among the agents, methods

such as formation control and other consensus-based algorithms heavily depend on access

to the state information of the other robots and require robust and reliable information flow

among them.

The simplest solution for the robots is to communicate the required information to each other,

which involves constant information exchange between a robot and all of its neighbors in the

network [28]. Unfortunately, wireless communications suffers from many problems, including

message losses, delays, and even temporal loss of connections. Volatile communications

threatens formation stability, while temporary loss of communication during close proximity

navigation might even lead to collisions. Our robot formations are deployed in settings which

are by far not standard for the majority of the formation methods, namely Global Naviga-

tion Satellite System (GNSS)-denied, complex indoor environments populated with humans

and obstacles, where a positioning system based on direct inter-robot measurement suffers

from long-term occlusions and false detections [2] and the communication can suffer from

short-term outage. While communication is often the only possible approach to formation

control in dynamic and structured environments full of obstacles, it is necessary to provide

a backup solution for securing the formation when the communication fails. An example of

such situation is shown in Figure 1.1. There exist well-studied approaches for connectivity

maintenance aiming at improving the robustness of the distributed robot network [29][30],

however in our setup network failure is location-independent. For this reason, we interpret

the problem from a global perspective and explore a multi-target tracking approach to face

the issue of unreliable communication.

3.2.3 Human Awareness

Addressing the technical challenges related to reliable navigation in complex environments is

a must when robots are to be deployed in human environments. However, it is not sufficient.

When moving among humans, robots can cause discomfort by either moving too closely,

too quickly, or too loudly. They can be a nuisance, if they get into a way or interfere with
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human activities. Therefore, research on human-aware navigation aims at maximizing robot

acceptance, minimizing annoyance and stress caused by a robot, and making the interaction

more comfortable and natural.

According to [31], human-aware navigation studies focus on three aspects: 1) human comfort,

with the goal of minimizing human stress and annoyance, 2) naturalness, aiming at making

robot predictable and intuitive, and 3) sociability, where robots act according to social norms.

To improve human comfort and make a person feel safe, the literature proposes strategies

such as maintaining proper distance, speed control or planning to avoid interference. To

make robot motion understandable, navigation methods focus on trajectory smoothness and

general resemblance to how humans move.

Sociability (or social awareness), refers to the ability of a robot to follow behavioral norms

expected by the people with whom the robot is intended to interact [32]. For this, robots

need an adaptable model of human social behaviors, ability to recognize social contexts and

conventions, and, eventually, bear means to support diversity of user cultural and social

backgrounds, different ages, genders, etc. in order to deal with different human abilities and

preferences [33]. Moreover, robots should clearly convey their intentions to the onlookers

and be proactive in their actions. While the state-of-the-art research is far yet from designing

a perfect social robot, there is a rich body of work in human-aware and social navigation

providing a wide range of solutions [31] and further insights into the design of a socially

acceptable robot.

3.2.4 From Single-Robot to Multi-Robot Social Navigation

While the design of a socially acceptable navigation strategy for a single robot is a challenge

by itself, addressing it from a multi-robot perspective boosts the problem complexity. Well

established human-aware navigation methods have no equivalence for multi-robot systems,

as there is no analysis of the impact of the presence of multiple robots on their acceptance

by the humans. Similarly, social behavior of a group of people can differ from that of a single

person, for instance, in the management of space [34]. It is out of scope of this thesis to

perform extensive user studies necessary for understanding the impact of multi-robot (and

multi-human) aspects on social navigation. Our approach is to use well-established single-

robot methods in the multi-robot context with an assumption that their core mechanisms are

adequate, even if not complete.

Summary

Collective systems are known for their flexibility to adapt to the environment and ro-

bustness to individual failures. Multi-robot systems offer a large variety of advantages,

including parallelism, scalability, flexibility, and robustness through redundancy and

absence of a single point of failure. However, the deployment of a robust cooperative

team of robots navigating around humans in a socially aware manner requires over-
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coming many challenges, including collective navigation in complex environments,

development of a no-single-point-of-failure system architecture, and exploration of

human-aware single-robot navigation solutions in a multi-robot context. In the next

chapter, we will review the state-of-the-art approaches to address these challenges.
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T HE deployment of cooperative multi-robot systems navigating in human-populated

environments in a socially aware manner requires overcoming a number of chal-

lenges of technical and social nature. In the previous chapter, we put an emphasis

on three such challenges we have identified during our preliminary experiments

at the IPOL hospital. First, the need for robust navigation methods enabling a team of robots

to move collectively in complex environments. Second, the development of a no-single-point-

of-failure system architecture to provide the robots with a reliable source of information, even

in case of communication failure. And finally, the integration of human-aware solutions in a

multi-robot context. In this chapter, we review the related work addressing these challenges.

4.1 Formations in Complex Environments

As we emphasized in Section 3.2.1, existing methods for multi-robot formations rely on

strong assumptions regarding the nature of the environment. For instance, an attractor

dynamic approach in [35] controls the formation topology in situations where no obstacles

are present, but breaks the formation during obstacle circumvention, therefore assuming

an implicit capacity to split and join a formation upon encountering a single object in a

sparse space. Dynamic change of formation in [36] performs well in open outdoor spaces,

but may not be adequately reactive indoors. The decision to change the formation shape

is taken globally by a leader, which upon detection of an obstacle informs the followers

about the new desired formation geometry. Approaches to formation scaling, morphing and

rebuilding behaviors in [37] allows for the selection of new formation shapes minimizing

the total formation error after completing an obstacle avoidance maneuver. However, all

the robots participate in the deliberation of the formation topology; the formation change

is global (as opposed to local) and implemented as a discrete switch between two different

shapes. Transitions between formation control and other modes of operation such as obstacle

avoidance and wall following are tackled in [38], but only for unstructured environments. Other

approaches that rely on a modification of the formation geometry for obstacle avoidance
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include priority-based arbitration among behaviors [39], formation change using a transition

matrix [40], scaling [41], or avoiding obstacles while handling the formation as a rigid body [42].

Deformable formations are studied in [43] and in [22], where the exploration of a noisy

environmental field drives the shape of the multi-robot formation. A method with potential

to create flexible formations proposed by the gaming community [44] represents a crowd of

simulated characters as a deformable mesh, with vertices being control points that allow the

user to prescribe desired trajectories. To prevent congestions, the characters are reassigned in

formation and obstacles difficult to avoid are negotiated by splitting and rejoining, but the

high-level control is centralized.

A common assumption in the above approaches is that (a) the experimental area is large,

i.e. the formation has enough space to reorganize after negotiating the obstacle, or (b) the

obstacles are cluttered in the environment and do not restrict the environment itself, i.e. the

experimental settings reflect outdoor, unstructured environments without boundaries.

Perspective

In view of the limitations summarized above, in Chapter 7 we introduce the Local For-

mation Transformation (LFT) algorithm – an approach to dynamic formation change

that is local (meaning that the formation is only reshaped in the immediate neighbor-

hood of the robot that initializes the change) and gradual (meaning that the formation

does not switch topologies but is modulated in its shape to some extent), with the level

of shape alteration proportional to the density of obstacles around the robot. We relax

the traditional assumptions on experimental settings and present results of cooperative

formation patrolling in structured indoor areas characterized by confined spaces, i.e.

spaces not large enough to deploy the desired formation.

4.2 Tracking for Formation Control

The problem of tracking for realization of multi-robot formations has been addressed as

early as the first approaches to formation control appeared. Among many existing formation

control algorithms, the most common ones rely on the pose estimates in the global reference

frame [24], on relative positions of the other robots [45], on range only [46] or bearing only

information [47]. While acquisition of accurate state of the other team members has been

addressed previously using various perception tools, including cameras [35], infrared sen-

sors [45], sonars [48] or laser range finders [5], tracking is significantly simplified in order to be

reliable enough for formation control.

Simplification usually casts a multi-target tracking problem to single-robot tracking by pro-

viding the robots with unique identification tags (IDs) that can be extracted by the tracking

robot. Tracking the multi-target estimates with known IDs is trivial, as long as not all the

tracks are lost. To realize an ID-based formation, multiple solutions have been proposed in
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the literature. In [25], robots perform teammate detection using a combination of a LIDAR

and a camera, tracking a uniquely colored marker, which in turn can reveal the identity of

the neighboring robot. In [38], robots recognize themselves by extracting color blobs from

a camera image. Both approaches aim at localizing a single local leader distinguishable by

a marker. In [48], a follower vehicle maintains a formation with two leaders using acoustic

ranging. The distinction between the leaders is ensured by an appropriate time-multiplexing

scheme of the acoustic relative positioning signals. For tracking multiple quadrotors, [49] use

active markers and an on-board camera. The markers provide 3D poses of the robots, which by

pulsating at a predefined frequency, provide a unique aircraft ID. ID-dependent graph-based

formation is achieved in [45]. Robots use a dedicated infrared range-and-bearing system

and exchange messages containing robot IDs. In [50], agents localize using bearing-only

measurements but are constrained to move with the motion type that is known by all agents a

priori.

The above approaches all share a common element – ID of the neighbor robots can be extracted

from the sensing data. When this is not the case and multiple robots are to be tracked, one must

either perform data association at the tracking level or assign each estimate to a given role in

the formation. Within the context of multi-robot coordination, the problem of role assignment

has been addressed previously using potential fields [51], market-based algorithm for task

allocation [52], and the Hungarian algorithm in [53] and in [54] for formation initialization.

Those works however consider only a static case, i.e. the roles must be assigned only once,

and are kept throughout the experiment. Dynamic role assignment, where roles are updated

online by the robots as they navigate in the environment, can be performed as part of the

tracking algorithm. In [55] state estimates are associated with unique track labels within a

Gaussian Mixture Probability Hypothesis Density (GM-PHD) filter. In [56] the IDs of the robots

are reconstructed by incorporating odometric data directly in the Probability Hypothesis

Density (PHD) filter. Both methods maintain the track-label association, however an explicit

assignment of the labels to formation roles would require further manipulation. To overcome

the problem of mutual multi-robot localization with ID-less measurements, in [57] robots are

allowed to communicate their IDs and the ID-less measurements of the other robots. The

robots self-localize in their individual coordinate frames, the relative configuration of which

has to be estimated. The proposed method uses probabilistic data association techniques,

combinatorial in their nature, together with multiple particle filters, one per each robot.

Up to date, most of the existing research addresses robot localization and multi-agent for-

mation control as two separate problems and only very few studies combine them as an

integrated control problem. Velocity and relative position estimation integrated with for-

mation control is studied in [58], but each agent is forced to carry out a specific combined

circular and linear motion during the entire process. To control the agents in the formation

that are not able to measure the relative positions of their neighbors, [46] devised a method

called stop-and-go. A consensus-like relative localization using measurements and local

communications in [59] is integrated with leader-follower formation control by combining

the proposed relative localization scheme and a Laplacian-based formation control method,
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allowing to achieve desirable convergence properties. ID data are available to the agents as

they communicate locally. The above methods mostly focus on the theoretical aspects of

the problem and show only results in simulations with simplistic models. Assumptions on

robot motion and availability of additional information make them not suitable for ID-based

formations with ID-less tracking data.

Perspective

To ensure robustness of the navigation methods to communications failure, in Chapter 8

we study robot localization and multi-agent formation control as an integrated control

problem. We work with ID-based robot formations, where each robot is assigned a role

in the formation (target position), but the tracking data does not provide the identity

of the robot; it is impossible therefore to utilize single-target tracking methods. For

this reason, we introduce our method for incorporating communication data, tracking

information, and knowledge about the desired formation geometry in the Gaussian

Mixture Probability Hypothesis Density (GM-PHD) filter [60]. Furthermore, we perform

an online role assignment, where the estimates are matched with the expected target

positions in the formation. Designed to deal with short-term communication outages or

low communications throughput, our methods perform well even in obstacle-cluttered

complex environments with high measurement uncertainty and sensing occlusions.

4.3 Single-Robot Human-Awareness

Human-aware navigation deals with modeling and respecting norms of human societies, not

only to avoid discomfort or animosity but also to improve robot acceptance and integration in

human environments. Human-aware navigation introduces elements of research on Human-

Robot Interaction (HRI) to robot motion planning, and so, a robot not only takes into account

constraints posed by an environment, but also those related to human comfort and social rules.

From among many possible types of interaction between robots and humans, that affecting

navigation is the most subtle as no direct communication with the humans is considered. In

this section, we review a selection of human-aware navigation methods, which will inspire

our solutions in the case studies in Part III.

The study in [31] argues that a human-aware robot should possess the following capabilities:

Respect personal spaces. A personal space is an area around a human, intrusion into which

can cause discomfort. It can vary across cultures and familiarity groups [61] and depend

on personality traits of the individual [62]. Analysis of spatial distances in social and

interpersonal situations is captured in the Proxemics Model (PM) [63]. The model has

been adapted in robotics to describe virtual spaces around a person that the robot

should respect and became the most popular paradigm to describe space management
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around humans. A multi-human counterpart of proxemics – O-spaces – deals with the

management of space around a (static) interacting group of people. The space, being

more than a mere addition of individual personal spaces, is a set of concentric circles

around the group, which vary depending on poses of the participants [64]. In dynamic

situations, particularly in crowds, spatial constraints around humans are popularly

represented using potential field methods [65] [66] and cost functions concentrated

around human poses. Once assigned to the map of a robot, the repulsive forces influence

the robot motion planning [31]. It has been shown in [67] that the performance of the

reactive methods can be improved by adding a predictive component in the model of

human motion [68].

Respect affordance spaces. The affordance space is another type of virtual space arranged

around a human activity (or a potential human activity) that should be avoided by robots

to prevent potential interference [69]. An example of such space is an area between

a person watching a TV and the TV itself, which should be circumvented to avoid

interference. Most commonly, affordance spaces are represented using cost functions,

which can be static or dynamic, deterministic or probabilistic [70] and can take multiple

shapes depending on the human activities [64] [69].

Approach for explicit interaction. The simplest and most common strategy to identify loca-

tions in the environment adequate to stop for interaction is based on proxemics, but

other methods, for instance based on potential fields, have been proposed [31]. Various

aspects of human approaching behavior are addressed, ranging from pose selection [71]

and velocity control to visibility [72] and modulation of gaze direction.

Adjust velocity around humans. Studies on the impact of robot velocity on human com-

fort [73] suggest that there is a limit to which robot speed is acceptable. If chosen

inappropriately, velocity can have a high impact on human perception of a robot – a

large robot moving too fast can be threatening, while robot moving too slow might be

perceived as incompetent.

Modulate gaze direction. Gaze direction has been found to have an effect on human comfort,

but some contradictory results are obtained depending on human gender [64]. It is

natural to assume that during interaction a robot should direct its gaze towards the

human partner. It is generally recommended to avert gaze when approaching human to

avoid conveying a threat [74].

Avoid erratic motions or noises. To achieve smooth motion one must account for various

criteria including environment structure, unknown objects, social conventions, and

human proximity constraints [75], but, as it has been pointed out in [31], for achieving

optimal results it is necessary to predict human movement. Natural, human-like naviga-

tion can be achieved with strategies based on models of human motion in crowds [76],

but some results suggest that not all behaviors appropriate for humans are suitable for

human-friendly robots [77].
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Avoid culturally inappropriate behaviors. – In other words, adhere to human social norms,

acknowledging personal and cultural preferences [78]. Examples of such norms re-

fer to people ordering in queues, letting people leave a room or an elevator before

entering, giving priority to elderly or disabled, walking on the right (or left) side of a

corridor [79] [75], apologizing for crossing somebody’s personal space, or avoiding to

pass through a group of people [75].

Perspective

The methods mentioned above are the tip of an iceberg of a large body of work on

human-aware robot navigation. In Chapter 10, we provide more details on the selection

of methods used in this thesis, including the proxemics model, cost maps and examples

of social norms embodied in our case studies in Part III. By exploring a variety of

approaches typically adopted by socially aware robots, we illustrate the power of the

institutional framework to represent and abstract the underlying methods, allowing for

unification of the development of social-aware, multi-robot behaviors.

4.4 Multi-Robot Human-Aware Navigation

Research on human-aware navigation addresses the question of how to mitigate the inner

reserve we have towards the non-living objects. Human lack of comprehension of robot

behavior and inability to predict the robots’ movements may cause vigilance, especially with

people that rarely have a contact with autonomous machines. The issue becomes even more

exacerbated when the environment is shared with multiple robots. Although human-aware

navigation is a widely studied subject, only few studies on human-aware multi-robot systems

exist. Moreover, one has to distinguish cooperative methods, where robots act and move as a

team, from approaches, where robots act as individuals. In the latter case the robotic team has

a common goal (such as greeting visitors or moving among a crowd to provide information

services), but the robots undertake independent actions. For example, in [80] four robots greet

visitors in a shopping mall and guide them towards goals allocated in a Wizard-of-Oz manner,

therefore no coordination between the robots is required. An obstacle avoidance method with

miniature robots in [77] based on the imitation of pedestrian behavior results in trajectories

intuitive for the interpretation by humans, but no experiments with humans and robots are

performed. Human-operated multi-robot systems are also employed in urban search and

rescue missions [81].

The above mentioned methods consider multiple robots moving independently. To the best of

our knowledge, only a small number of studies involves cooperative multi-robots systems. In

the context of coordinated multi-robot navigation, a large body of research is related to human

guidance. Strategies stem from early research on flocking [17] and control of herds [82], also

in a multi-robot case [83], they treat the group of humans as dynamic particles [76], dynamic

obstacles [84], or assume that humans simply follow the robot [85]. Formation control of
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aerial vehicles navigating in environments with static and dynamic obstacles – humans –

has been shown in [84], but no social aspects are considered. Motion control of groups of

formations in [86] is designed with the intention of achieving team’s legibility, i.e. ability to

convey information such as the state or the task to the user. Experiments are carried out in

virtual reality, therefore the physicality, and consequently, the social aspect of the human

presence is left out. A preliminary study on human crowd dynamics [66] has shown that in

some situations the presence of cooperative robots can improve pedestrian flow, while in

others can lead to unexpected detrimental effects. Methods are evaluated only in simulation

and with an idealized human model. The above solutions are largely over-simplistic and fail

to consider realistic situations. A more realistic study [87] proposes a human-aware prediction

and anticipation model that can handle realistic situations and regrouping of people who

have left the team. The approach is thoroughly tested in simulation, but no real-world results

are presented. An adaptive multi-robot task allocation strategy in [88] deals with cooperative

re-planning in presence of humans, where the social aspect and human motion uncertainty

are encoded into risk-based bids. Methods are validated in experiments with two robots and

up to two humans. Robots cooperate at a task allocation level, but not at the navigation level.

To conclude, although numerous studies attempt to develop human-aware robotic teams, the

current models of humans are too simple, the algorithms work under too many assumptions

and the experiments are too controlled. In contrast to what is claimed in the literature,

we believe that currently roboticists are not yet able to launch groups of robots that could

interact and move around groups of humans. From our perspective, the state of research

on human-aware navigation is largely mature in the single robot case, but when it comes

to studies of cooperative multi-robot systems, only few studies target realistic applications,

while the research on social robots navigating as a group handles the presence of a person

inappropriately or even naïvely, and solutions are heuristic and difficult to generalize.

Summary

In view of the literature summarized in this chapter, we conclude that robot forma-

tions are largely deployed in controlled environments and formation reconfiguration in

presence of structured indoor obstacles is a novel concept. Although solutions to coop-

erative tracking have been employed in the context of formation control, the problem

is reduced to that of tracking a single robot by assuming that robot IDs can be sensed.

Only very few works attempt to combine formation control and robot localization as

an integrated problem, but these approaches are not suitable for ID-based formations

with ID-less sensing, as it is our case. Finally, little research has been conducted on co-

operative multi-robot teams deployed in human-populated environments: most of the

multi-robot systems focus on the deployment of individual, uncooperative robots or co-

operative solutions that fail to consider challenging situations from a group navigation

perspective .

In the next chapter, we provide the background on graph-theoretical approaches to the
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formation control and flocking. That chapter lays the background for the remaining

parts of this thesis, as all our case studies involve cooperative robot teams. After that

we present our method for adaptive formation control in complex environments and

present our approach for dealing with the challenge of unreliable communication – an

issue we must address before deploying formations in human-populated environments.
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S PATIAL group coordination realized by a team of cooperative robots is characterized

by distinct geometrical patterns that result from a significant number of low-level

interactions, as opposed to a global specification given by a centralized authority.

Graph theory provides means for practical representation of such interactions,

and allows for abstraction of technical details and encapsulation of concepts necessary for

the specification of complex multi-agent behaviors. In this chapter, we introduce the basic

elements of graph theory, which we will then leverage for formation and flock control in the

rest of the chapter.

While tight motion coordination achieved with formation control allows for flexibility, at the

same time retaining good control of the team spatial configuration, flocking as a bio-inspired

solution can result in more natural motion. For this reason we consider the two methods to

be complementary and use both of them to showcase the mechanisms of our formalism, in

particular the ability to abstract not only from a physical system, but also from the underlying

behaviors and behavior specification.

5.1 Introduction to Graph Theory

An undirected graph with N elements is defined as a pair G = (V ,E), where V = {vi , i = 1. . . N }

is the vertex set and E ⊆V ×V is the edge set. Edges represent the flow of information, that is if

vi can observe v j , then there exists an edge εi j . In this work if vi can communicate with v j

then v j can also communicate with vi , thus the edges are undirected.

An incidence matrix H ∈ ZN×|E | describes which edges connect which nodes. It is usually

defined on directed graphs, but if (without loss of generality) a random orientation is assigned

to the edges of the undirected graph G, the incidence matrix takes the following values:

Hi k =
 −1 if εk = (vi , v j )

1 if εk = (v j , vi )

0 otherwise

(5.1)
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where |E | is the cardinality of the edge set and εk is the k th edge of G. In this work, vertices

correspond to the robots and edges represent the existence of an information flow among

them.

Rendezvous

Consider the robots modeled using a single kinematic integrator, ṗi = ui , where pi ∈ R2

represents the position of robot Ri on a plane and ui is a control input. For a team of N robots,

a simple averaging strategy commonly used in continuous consensus problems declares that

each robot should be attracted to its neighbors with a strength proportional to the weights

wi j of the corresponding edges of the graph:

ṗi =
∑
j∼i

wi j (p j −pi ) (5.2)

where j ∼ i means robot Ri and robot R j are connected. The above solution to the rendezvous

problem (all robots converging to the same position) can be rewritten in a standard form of

the Laplacian-based feedback control [21]:

ṗ =−Lp (5.3)

The Laplacian matrix L ∈ RNx N defined as L = HW HT for an undirected graph is a sym-

metric and positive semi-definite matrix [89], with one eigenvalue equal to zero. The zero

eigenvalue ensures state convergence limt→∞p (t ) = υ1υ
T
1 p0, where υ1 = 1p

N
is the normalized

eigenvector corresponding to the zero eigenvalue.

A weighted Laplacian is a Laplacian with weights assigned to the edges: L= HW HT , where

W = diag({wk ,∀εk ∈ E}) ∈R|E |×|E | is the weight matrix. By controlling the relative weights of

the connection edges one can achieve better control over system convergence, as we will see

in the next sections.

Formation Control

While ṗ =−Lp drives the agents to a rendezvous point, formation control requires an addi-

tional bias matrix b, so that:

ṗ =−L(p −b) (5.4)

defines a desired deviation from a center point of the formation [21].

5.2 Graph-Based Formation Control

The unconstrained holonomic locomotion system of the MBot robots allows us to use the

standard Laplacian-based feedback directly as a control input.
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Figure 5.1 – Illustration of the graph-based connectivity
information with respect to the robot Ri , where di j is
the Euclidean distance between Ri and its neighbor R j ,
and γi j is the bearing. Dashed lines indicate the local
coordinate frame Ii of Ri .

Leaderless Formations

For a robot Ri with position pi = [xi , yi ] and orientation αi , the formation control presented

in Equation 5.4 is achieved as follows:

ẋi = Ku
1

|∑ j Li j |
∑
i∼ j

[
−Li j (di j cos(γi j )−bx

i j )
]

ẏi = Ku
1

|∑ j Li j |
∑
i∼ j

[
−Li j (di j sin(γi j )−by

i j )
] (5.5)

where L is a piecewise time constant Laplacian, di j and γi j are the Euclidean relative range

and the bearing between the robots Ri and R j respectively, as shown in Figure 5.1, and Ku is a

positive constant.

As mentioned above, a relation i ∼ j means robot Ri and robot R j are connected. If there

is a directed edge from Ri to R j , Ri has access to state information of R j . In our work,

unless stated otherwise1, the graph is considered fully connected with unidirectional edges,

because each robot maintains the information about the spatial states of the others at all

times. The state information can be communicated through a standard radio channel (e.g.

WiFi). Communication neighborhood set of robot Ri , Ξi = { j |i ∼ j , i 6= j }, is a set of agents to

which state information Ri has access to, while the term |∑ j Li j |−1 is used for normalization

with respect to the number of neighbors.

The bias vectors bx
i , by

i ∈RN , where N is the number of robots in the formation, define the

desired inter-robot distances along the x and y axes of the formation’s coordinate frame

respectively. Example of a bias for a diamond-shaped formation of five robots is shown in

Figure 5.2. Comprehensive demonstration of this controller stability has been presented

in [90].

Finally, the robots are omnidirectional, so the heading is decoupled from the velocity control

1 This assumption is relaxed in our work on cooperative tracking methods for formation control presented in
Chapter 8.
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to match the desired orientation αD :

α̇i = Kφ(αD −αi ) (5.6)

where Kφ is a positive constant.

Figure 5.2 – Illustration of the bias matrix b for a diamond-
shaped formation of five robots, specified in an absolute
coordinate frame. With respect to the robot R2, the bias
vectors along the x and the y axes of the formation take the
following form: bx

2 = [a,0, a,2a, a] and by
2 = [a,0,0,0,−a],

the index of which corresponds to the robot ID.

5.2.1 Leader-Follower Formations

Leader networks extend the idea behind the graph-based control by allowing some team

members – leaders (denoted as L) to perform an independent behavior (such as moving

towards a targeted destination), while others – followers (denoted as F) to converge to the

predefined configuration, simultaneously keeping up with the leader. With regard to the

underlying graph, the follower-follower edges remain bidirectional, but the leader-follower

edges are unidirectional, leaving the leader and entering each follower, indicating information

flow from the leader to the followers, but not the opposite.

Specifically, the graph G = (V ,E) becomes G̃ = (Ṽ , Ẽ), where the vertex set Ṽ holds the leaders

subset Vl and the followers subset V f . A partition of the vertex set leads to an analogous

subdivision of the edges, Ẽ = El ∪E f ∪E f l . Details of how to partition the Laplacian matrix to

encompass dissimilarities between leader and follower vertices can be found in [91].

The weight matrix is partitioned so that changing weights on some particular edges triggers a

desired group dynamics. The relative strength of the connection edges, given by the magnitude

of the associated weight, determines the convergence rate towards the bias. If w f f < w f l , the

followers have a higher potential to reach the leader first. On the other hand if w f f > w f l ,

the followers are forced to converge to the formation in priority. The relative strength of the

edges depends on the desired result and varies across applications, therefore we will provide

the implementation details along with the description of our experiments, later on in the

manuscript.

Now that the distinction between the leaders and the followers is defined, we would like to

point out that, unless stated otherwise, the orientation of the follower robots achieved through
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Equation 5.6 is aligned to the orientation of the leader, while the leader’s heading is pointed

towards the direction of motion of the formation and so, it also defines the coordinate frame

of the formation. Such design choice results in a clearer indication of the team’s intention as

well as a better readability of the individual robot behavior from a human perspective.

The number of leaders in the formations studied in this thesis is dictated by the application re-

quirements. Formations with one leader are used in Chapter 7 and Chapter 15, and formations

with multiple (coordinated) leaders in Chapter 17.

5.2.2 Methods for Mixed Formations of Humans and Robots

Humans, even when moving in a formation with robots, do not conform to the rigid config-

uration specified by the formation bias. Quite the opposite, we do not assume that human

motion is controllable. We consider two aspects of mixed teams of humans and robots. First,

robots perform social human avoidance, where by generating a repulsive field around the

human the robot is prevented from interfering with human personal space. Second, based on

an assumption that humans tend to maintain free space around themselves, in our models

robot proximity causes repulsive effects on human motion.

Social Human Avoidance

Each human Hh at position ph generates a repulsive field [92] that modifies the motion of a

follower robot Fi by adding a new term ΓR to the formation consensus in Equation (5.5):

ṗi =
(|∑

j
Li j |

)−1 ∑
i∼ j

−Li
[
(pi −p j )−bi j

]+ΓR (5.7)

ΓR = ∑
i∼h

wi h(‖ph −pi‖) · (ph −pi
)

(5.8)

where i ∼ h means that i has access to state information of h. The weight coefficient wi h has

a repulsive effect, assuring that Fi stays away from Hh :

wi h =


− Ko

(di h−∆c )2 − Ko

(∆a−∆c )2 if ∆c +εc < di h <∆a

−Ko

ε2
c
− Ko

(∆a−∆c )2 if 0 ≤ di h <∆c +εc

0 otherwise

(5.9)

The weight changes continuously with the distance di h = ‖ph −pi‖ between the robot and the

human, and is parametrized with a constant gain Ko , range ∆a where repulsion is a quadratic

function of di h , and an imminent collision range ∆c <∆a , where the weight wi h grows to a

large, finite number. Later on in this chapter we will explain how we leverage existing human

behaviors models to determine the parameters in Equation 5.9.
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Figure 5.3 – Illustration of the flocking components.
We denote the agent-to-agent motion vector of Ri to
R j as Γi j ∈ Γα, the obstacle repulsion motion vector
from point o(i ) at obstacle o as Γo(i ) ∈ Γβ, and the mi-
gration motion vector towards VL as ΓVL ∈ Γγ. An ob-
stacle is represented as a virtual β-agent, which is cre-
ated at the surface of an obstacle at a point closest to
Ri to which this β-agent is connected. Finally, bA is
the desired agent-to-agent distance and ∆A and ∆O

are interaction ranges for agents and for obstacles, re-
spectively.

5.3 Flocking

Flocking is a collective movement of a group of agents with a common destination. As we

described in Section 3.1.1, flocking has been first simulated by Reynolds [17] with three basic

rules: 1) cohesion, i.e. staying close to the neighbors, 2) separation, i.e. avoidance of the

nearby agents, and 3) alignment, i.e. matching velocity with neighbors. However, as pointed

out in [19], none of the rules is mathematically stated, so it is unclear when and how the rules

are applied. The same study proves that Reynolds rules can be insufficient for flocking, and

that under certain conditions they can lead to fragmentation. Although the basic conditions

for achieving flocking according to [20] include stabilization of the distances between the

agents and similarity of their velocity vectors, [19] point out that the ability to avoid obstacles,

split or rejoin the flock as well as the means to migrate to a destination are equally important,

but not explicitly stated in the canonical flocking rules.

5.3.1 Components of Flocking

The flocking algorithm we use in this work is following the approach proposed in [19] com-

posed of the following three terms:

1. Inter-agent distance balancing, where if too close, the agents (called α-agents) are

repelled; if too far, agents are attracted. This term leverages a gradient-based method

and includes velocity consensus among agents.

2. Repulsion from obstacles, where obstacles are represented as a type of kinematic agents,

β-agents, that move on the surface of the obstacles.

3. Team migration, namely attraction to a dynamic point in space – a virtual leader, repre-

sented by a γ-agent, which drives the team through the environment.

46



5.3. Flocking

The first term embodies all the three rules of Reynolds. In this section we provide a high-level

description of the flocking algorithm, while the computational details can be found in [19].

5.3.2 Flocking Algorithm

The set of α-agents ∈ Vα (robots), β-agents ∈ Vβ (obstacles) and γ-agents ∈ Vγ (migration

point) make up a proximity graph in the form:

Gαβγ =Gα+Gβ+Gγ (5.10)

where Gα = (Vα,Eα) is an undirected robot-robot graph, Gβ = (Vβ,Eβ) is a directed bipartite

graph where the nodes represent the β-agents simulated at the surface of the obstacles at the

points closest to the individual robots and the edges connect the β-agents to the respective

α-agents Eβ ⊂ Vα×Vβ, and Gγ = (Vγ,Eγ) is a complete bipartite graph, where the γ-agents

∈ Vγ are the virtual leaders and the edge set Eγ connects each α-agent to all γ-agents (i.e.

each robot has access to state information of all virtual leaders). The resulting graph Gαβγ
can be therefore explicitly expressed as Gαβγ =

(
Vα∪Vβ∪Vγ, Eα∪Eβ∪Eγ

)
. Since Gαβγ is a

proximity graph, edges of that graph are defined between agents situated within interaction

range from each other (in case of the γ-agents the range is assumed to be infinite). For a

robot Ri , the neighbor set with other robots is defined as Ξαi = { j ∈Vα : ‖p j −pi‖ <∆A} and

with obstacles (β-agents) is Ξβi = {k ∈Vβ : ‖pk(i ) −pi‖ <∆O} where ∆A and ∆O are interaction

ranges for agents and for obstacles, respectively, and the β-agents are represented as virtual

agents, indicated with (·)k(i ), created at the surface of an obstacle k at a point closest to Ri . For

illustration, see Figure 5.3.

Finally, flock migration is achieved by directing the agents towards a virtual leader (VL) -

a dynamic point at position pVL that moves with velocity ṗVL. In [19] the γ-agent is static,

meaning there is only need for a single information exchange between the α-agents and the

γ-agent at initialization. In our work, the γ-agent is dynamic (and embodied by a human

leader) and connected to α-agents throughout the experiment.

Each robot Ri realizes the flocking behavior using:

ṗi = Kc
(
Γα+Γβ+Γγ

)
(5.11)

where Kc is a positive gain, Γα drives the neighbors towards a equally-distanced configuration,

Γβ is the obstacle avoidance term and Γγ is the migration term:

Γα = Kα1
∑
i∼ j

φα(‖p j −pi‖σ)ni j + Kα2
∑
i∼ j

ai j (ṗ j − ṗi ) (5.12)

Γβ = Kβ1

∑
i∼k

φβ(‖pk(i ) −p j‖σ)nk(i ) + Kβ2

∑
i∼k

ai k (ṗk(i ) − ṗi ) (5.13)

Γγ = −Kγ1σ1(pi −pMP) − Kγ2(ṗk(i ) − ṗMP) (5.14)
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Figure 5.4 – Simple simulation of the flocking algorithm. A group of six holonomic agents (in
red) moves in an environment cluttered with obstacles (yellow spheres). The VL is located at the
left (from the point of view of the reader) and moves in the direction indicated by the arrow. The
numbers and the letters in parenthesis correspond to the IDs of agents, and obstacles, respectively.

The first term in each equation represents cohesion, obstacle avoidance, and migration,

respectively. The second term is the velocity matching with respect to the other agents, to the

obstacles, and to the dynamic virtual leader, respectively.

Parameters Kα, Kβ and Kγ are positive gains. Link i ∼ j means that Ri and R j are within an

interaction range and φ is a function that represents a smooth pairwise attractive or repulsive

potential with a global minimum at the desired agent-agent or agent-obstacle distance of bA

and bO respectively. To complete the notation, ‖ ·‖σ is a differentiable map Rm →R≥0, and σ1

is a gradient defined as σ1(z) = 1/
√

1+‖z‖2. nab is a vector from pa to pb , and A= [ai j ] is an

adjacency matrix satisfying the property ai j 6= 0 ⇔ (i , j ) ∈ E .

The flocking motion vector are illustrated in Figure 5.3. For simplicity, we denote the agent-to-

agent motion vector of Γi to Γ j as Γi j ∈ Γα, obstacle repulsion motion vector from point o(i ) at

an obstacle o as Γo(i ) ∈ Γβ and migration motion vector towards VL as ΓVL ∈ Γγ. In Figure 5.4

we show result of applying the above algorithm to a group of six holonomic agents moving in

an environment cluttered with obstacles.

5.4 Performance Evaluation

The performance of the formation is analyzed with regard to two criteria to be minimized:

FORMATION ERROR eF = (|∑
j
Li j |

)−1 ∑
i∼ j

|(pi −p j )−bi j | (5.15)

ORIENTATION ERROR eO = (|∑
i
Li L |

)−1 ∑
i∼L

|αi −αL | (5.16)

The formation error eF is the average difference between the desired distances and the actual

distances between the robots in the formation. The formation orientation error eO evaluates

the orientation control by verifying differences in heading alignment between the leaders and

the followers.
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Figure 5.5 – Illustration of selected leader behaviors, a) trajectory re-planning for avoidance of
social affordance spaces modeled as cost maps and b) on-line trajectory modification to move
sideways when passing next to a human.

To evaluate the flocking behavior, we use the following performance metrics:

CONNECTIVITY eC = (||Vα|−1|)−1 rank(L) (5.17)

COHESION eR = max
i∈Vα

‖pi −pc‖ (5.18)

DEVIATION eE = (|b2
A(|Eα|+1)|)−1 ∑

i∈Vα

∑
i∼ j

(‖p j −pi‖−bA
)

(5.19)

where pc is the center of positions of the robots. Connectivity eC ∈ [0,1] is a measure of

how well the α-agents (robots) are connected in the graph; bear in mind that the edges are

broken once two agents are further than ∆A apart. The cohesion metric eR indicates the group

dispersion, and the deviation metric eE measures how well the robots maintain the desired

inter-robot distances bA .

5.5 Encoding the Collective Movement Behaviors

The collective movement behaviors we have discussed in this chapter have a number of

parameters that, when manipulated, can yield different results. A specific parameter setting

that yields a unique behavior will be referred to as a behavior modality. In our formalism, we

will explore the behavior parameter space for achieving norm-satisfying results in the case

studies presented in Part III. Answering to how parameters should be manipulated is left for

the later chapters, while in this section we list the relevant parameters of the formation and

flocking behaviors, and those of the individual leader behavior.

5.5.1 Behavior of the Formation Leader

The task of the leader robot is to plan a path in a known environment and guide the team

along this path, while making its current position known to all the agents in the team. Given a

goal destination, the leader path PL is determined using the Fast Marching Method (FMM)

method described in Chapter 2.5.2. The leader independently follows the planned path with a
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desired speed, providing the overall trajectory TL for the team. This leader behavior is referred

to as MoveOnTrajectory.

The leader has the freedom to dynamically modulate low-level aspects of its behavior such as

adjusting the velocity, moving sideways or pausing. The capabilities are represented by two

parameters: 1) TrajectoryShape and 2) TrajectorySpeed.

The TrajectorySpeed parameter allows the leader to adjust its speed; for instance, to slow

down when navigating close to a human or to wait for the other team members to catch up.

Note that although we consider norms which make the leader wait for the followers, in general

the leader does not take the followers into account when planning, in particular with regard to

spatial constraints – the leader plans the path for itself, while the task of the followers is to be

able to follow.

The TrajectoryShape parameter allows the leader to re-plan its path taking into account the

additional constraints, or modify the original path on-the-fly. The first capability is useful

when a robot has to consider social norms such as avoidance of affordance spaces. We model

such spaces as cost maps and add to the occupancy map for re-planning with FMM, as

illustrated in Figure 5.5a. The second capability serves for normative human avoidance, where

a robot is to move sideways when passing next to a human, as illustrated in Figure 5.5b.

The resulting movement of the leader follows a trajectory TL being a function of the path PL

provided by FMM and the speed ṖL with which the leader completes that path, both modified

as a function of the norms, i.e.

ṗL ← TL = f
(
PL , ṖL

)
(5.20)

5.5.2 Behavior of Formation Followers

The MoveInFormation behavior of the formation follower has the following parameters:

• Connectivity - an abstraction of the edge set C = {
(i , j )|i ∼ j , i 6= j , i , j ∈ { L, F, H }

}
,

where H is a human

• FormationShape - choice of formation topology, e.g. triangle, line, etc., encoded by the

formation bias b that fully defines the geometrical configuration of the formation

• FormationSize- a collection of the desired inter-agent distances provided by the bias b

• LaplacianWeights - given in the form of the weight matrix W = {w f l , w f f }

• RepulsionWeights WR - weights of the motion vectors used for human avoidance

• ControlGain, Ku for velocity control and Kφ for orientation matching

We decouple FormationShape and FormationSize to facilitate high-level formation specifi-

cation. For instance, it is advantageous to be able to specify that the formation should be a
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triangle with small inter-robot spacing. Details on computation of the formation repulsion

weights we use for social human avoidance are given in Section 5.2.2.

The resulting formation control signal in Equation 5.5 can be represented as follows:

ṗi = f
(
C, b , W , WR, Ku ,Kφ

)
(5.21)

5.5.3 Behavior of Flocking Followers

The MoveByFlocking behavior of the formation follower has the following parameters:

• Connectivity - abstraction of the edge set Eαβγ, C = {(i , j )|i ∼ j , i 6= j , i , j ∈ { L, F, O, VL}},

where O is a set of obstacles

• DesiredDistance - desired agent-agent bA and agent-obstacle bO distances

• InteractionRange - interaction range for agents ∆A and for obstacles ∆O

• ControlGain - gain of the flocking behavior Kc

• FlockingTermGain - gain of the flocking terms Kα, Kβ and Kγ

The resulting formation control signal in Equation 5.11 can be represented as follows:

ṗi = f
(
C, bA , bO , ∆A , ∆O , Kc , Kα, Kβ, Kγ

)
(5.22)

5.6 Modeling Human Behaviors

Human modeling is a key mechanism for interpreting human behavior, and adapting the

robot’s behavior to accommodate users with varying skills, experience, and knowledge [33].

In this thesis we will rely on two models of human behavior, the Proxemics Model (PM) and

the Social Forces Model (SFM), which will be integrated with the formation control to result

in human-aware robot motion. In particular, we use a PM to express human comfort zones,

as it provides simple and intuitive representation of personal space preferences. However, a

distance value alone is insufficient to determine the parameters Ko , ∆a and ∆c of the robot

repulsive motion vector necessary for computing its weight in Equation 5.9. For that purpose

we introduce a SFM.

5.6.1 Proxemics

The original PM we use for representation of human comfort spaces characterizes only one

aspect of human comfort in only one situation – a distance to establish for explicit interaction

when the human stands still [31].

To represent human comfort spaces we use the PM proposed in [63], which classifies the
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Chapter 5. Cooperative Spatial Coordination

Figure 5.6 – Two basic models of human behavior. PM defines the preferable areas that people
maintain between themselves and the others. The SFM represents human motion ṗh as a result of
interaction between forces that drive the person to a destination (Γd ), and forces that keep away
from other people (Γh′ ) and obstacles (Γo), including robots (Γr ).

virtual area around the human into intimate zone (< 45 cm), personal space (< 120 cm) and

social space (< 3.7 m) (see Figure 5.6). The radii of human spaces serve to determine the

degree of compliance the robot must apply to ensure human comfort. We label the extent of

the comfort zones for human Hh with ∆S,h for social space, ∆P,h for personal space, and ∆I ,h

for intimate space.

Although proxemics has also been investigated in dynamic situations [31], we have chosen

to use a well known human model – the SFM [18] to understand the effects that the robot

repulsion forces have on human behavior and determine the parameters of such forces.

5.6.2 Social Forces Model

The SFM represents humans as masses subject to effects of virtual gravitational forces. Each

individual is drawn towards a destination (or a leading person), while simultaneously being

repelled by obstacles and from other agents (see Figure 5.6 for illustration). The SFM has

been popularly used to model crowd dynamics [68], and represent human behavior in agent

simulation [66], while in robotics it is used to model the effects of robot’s presence on human

motion [76], by explicitly modeling the robot-repulsion term [66] [67]. It is also used for

determining the robot’s behavior required for enforcing a desirable human action [93]. We

adapt the model from [18], with an additional term for robot effects.

The movement of the human Hh is regulated by the forces exerted by the environment:

ṗh = Γd +∑
O
Γo +

∑
H
Γh′ +∑

R

~Fr +n (5.23)

where n ∼N (0,σ f ) is motion fluctuation, Γd is an attractive force driving human towards
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destination d with the desired velocity ṗd , relaxation time τ f and strength K f d :

Γd = K f d (ṗd − ṗh)τ−1
f (5.24)

Force Γo prevents the human from colliding with obstacles o ∈O, while the repulsive effects

from the other humans H’ ∈ H and from the robots Rr ∈ R are modeled using Γh′ and Γr forces

respectively:

Γo = K f oe−‖pv−o‖/∆o (5.25)

Γh′ = K f he−γ f /∆h (5.26)

Γr = K f r e−‖ph−pr ‖/∆r (5.27)

where K f o , K f h and K f r are constant gains and∆o , γ f ,∆h and∆r specify the areas of influence

of the forces. Each force is additionally discounted to account for the perceptive effects. For

details on the model and calculating γ f , please refer to [18]. The resulting potential repulsive

resulting from this model is a monotonically decreasing function with equipotential lines in

the form of an ellipse oriented towards the direction of motion.

Unfortunately, there is no physical equivalence between the personal distance of proxemics

and the parameters of the SFM, so we chose to adapt the parameters based on observations

of real pedestrian behavior presented in original work [18], namely σ f = 0.001, τ f = 0.5,

|ṗd | ∼N (1.34,0.26), K f d = 2.0, K f o = 2.0, K f h = 2.1, K f r = 6.5 and ∆o = 0.1 m, ∆h = 0.3 m and

∆r = 0.38 m. We use the SFM to model human motion in the Webots simulator, from which

we determine the parameters Ko , ∆a and ∆c of the robot repulsive force empirically in [9]. The

resulting parameters are used in the case studies in Part III.

Summary

This chapter has provided the background on collective movement approaches central

for this thesis – formation and flocking. While the graph-based representation enables

the conceptualization of individual agents and their interactions necessary for achiev-

ing coordination, we have introduced another level of abstraction – that of behavior

modality representing the behavior parametrization, a concept that will be used in our

formalism for denoting specifications for norm-satisfying behaviors. Before moving to

the formal framework however, in the next chapter we analyze our preliminary experi-

ments at the IPOL hospital to understand the implications of socially-ignorant robot

behaviors. Then, we focus on practical challenges of deploying multi-robot systems in

real environments.
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T HE multi-robot experiments at the IPOL hospital are the leading motivation for

this thesis and reveal the major challenges we attempt to address - the need for

robust multi-robot navigation in complex environments, augmented cooperative

perception and normativeness of multi-robot behaviors. In this chapter, we closely

analyze the experimental results and aim to understand the impact of non-social robots on a

place with strict ethical regulations - a hospital environment.

6.1 Experimental Setting

Our experiments have been carried out at a pediatric ward of the IPOL hospital in Lisbon on

the 14th Oct 2015. Two MBot robots moving in a leader-follower formation navigated through

a child playroom, then through a busy corridor and back. Robots displayed random facial and

bodily expressions (such as changes of light, displaying pictures on a touch screen, random

head or arms movements), but did not engage in interactions. The formation was controlled

by a canonical graph-based law with active obstacle avoidance but no social layer. Over the

course of a day we performed 23 experimental runs (i.e. back and forth traversing of the ward)

with an overall duration of 74 min.

All experiments were recorded using five cameras: four overhead omnidirectional cameras,

two mounted in the playroom and two in the corridor, and one camera providing a side-view

of the corridor. We have annotated the videos in post-processing using subjective factors that

quantify the influence of the robot presence on the end-users with respect to the following

categories:

Motion. Interactions are analyzed with regard to relative motion of humans and robots. We

distinguish three subcategories: a) when robots interrupt static humans, b) when robots

disturb moving humans and c) when humans join the formation.

Impact. How the presence of the robot team affects the behavior of humans. The sub-
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Figure 6.1 – Examples of interactions between the team of robots and humans at the IPOL hospital.

categories include: a) situations when humans take actions to ensure safety (such

as removing obstacle from the path of the robots), b) when humans visibly change

their intentions, c) when humans engage in a play with the robot, and d) when humans

engage in a passive, long-term observation of the robots.

Staff. The last category describes the impact of robot’s presence on the efficiency of hospital

staff. This includes all the interruptions caused by the robots, judged either as significant

or acceptable (when only the motion is disturbed, but no actions are required from staff

to continue their work).

6.2 Results

During the experiments, robots navigate autonomously, but were observed from a nearby

room for safety reasons. An operator intervention was required four times, 1) when two

humans with an Intravenous Device (IV) pole were passing through a door and one of the

robots blocked the base of the pole, 2) when a robot navigated towards a child with an IV pole,

3) when the robots were blocked by a wheelchair, and 4) when the robots could not reach a

goal point due to a navigation glitch. Note that the base of the IV poles, having a maximal

height inferior to that of the Mbot’s laser scanning plane, were practically invisible to the robot

at the time the experiments were run (a camera-based solution was introduced later in the

project).

We have labeled a total of 174 interactions, 19% of which are of long-duration (> 20 s). A

summary of the interaction activation rates per second (×10−3) is presented in Table 6.1.
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With regard to the relative motion of humans and robots, the highest number of interactions

occurred when robots and humans were passing by each other - a total of 60 interactions of

this type were recorded. Slightly less, but equally important are the interactions with static

humans (a total of 33). Examples of such interactions are shown in Figure 6.1. Interestingly,

there was a relatively high number of instances when a human or multiple humans join a

formation, with a total of 21. Most of the cases occurred in the morning – at the time when

visitors with children were present. Both children and adult visitors joined the formation,

either for amusement and as a part of a play, or to extend the interaction time with the robots.

Figure 6.1 shows examples of one human moving side-by-side with robots, and a child and an

adult following the robots.

In the category of robot’s impact on human behavior it can be clearly seen that the robots

noticeably affect the IPOL environment. It can be seen in the videos that the robots were the

main attraction for the children and the visitors, who played with the robots 45 times in total

over the course of the day (see Figure 6.1). Many people (26 occurrences) engaged in long

duration observation of the robots (annotations are based on human gaze and gaze direction

that follows the robots). Robots were also found to affect the environment practically – in 57

occurrences humans visibly changed their initial action in order to accommodate the robots,

either by giving them a way or actively avoiding. A high number of humans (37 occurrences)

took visible actions to assure safety by removing obstacles (e.g., IV poles, cleaning equipment)

from the path of the robots or by moving away from the robot in an attempt to prevent

potential collisions (see Figure 6.1). Work of hospital staff was only moderately affected by the

robots – a total of 15 times the movements of the staff were mildly disturbed, but we noted 9

occurrences when the staff needed to take an action in order to continue work (e.g., move a

cart with food away, overtake robots while pushing a bedware cart).

6.3 Discussion

It is difficult to estimate the effects of a multi-robot system on the humans in a hospital

based on a short-term exposure. It has been a great challenge of the MOnarCH project to

analyze such effects even when the amount of data collected over years with a single robot was

large. However, the relatively small set of experiments described in this section can already

give some insights into the potential advantages and drawbacks of a long-term deployment

of multi-robot systems in sensitive and cluttered environments such as that of a pediatric

ward. For example, one can expect continuous excitement from children and newcomers:

the appearance of the robots and their coordinated movements are definitively entertaining.

However, it should be expected that the patience and leniency of staff and long-term occupants

might eventually wear off. The high number of humans taking action to ensure safety indicates

that even though humans enjoy the robot presence in general, they are not fully comfortable

with it. One can imagine that if the cleaning staff with heavy equipment had to avoid robots

on a daily basis, or doctors had to watch out every time they traversed corridor, the robots

would have quickly become an annoyance. The primary objective when designing robots
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M
O

T
IO

N

Static human interrupted 4.05

Static group interrupted 3.38

Moving human interrupted 10.8

Moving group interrupted 2.7

Formation with one human 2.7

Formation with multiple humans 2.03

IM
P

A
C

T

Human taking action to assure safety 8.33

Human changing intentions 12.83

Human playing with the robots 10.13

Human observing robots 5.85

S
T

A
F

F Significant interruption of staff work 2.03

Acceptable interruption of staff work 3.38

Table 6.1 – Activation rates per second (×10−3) of human-robot interactions observed during
deployment of two MBot robots at the IPOL hospital.

for human environments should be therefore to minimize disturbances for any operation

typically carried out in that environment.

Summary

The analysis of results gathered during multi-robot experiments carried out at the IPOL

hospital suggests that the robots are a great addition to highly sensitive environments,

providing entertainment, and encouraging physical interactions. At the same time, it is

apparent that non-social robots are of high disturbance to the regular hospital activities

and in the long-term robots might become a nuisance. While solving the technical

problems related to navigation and obstacle avoidance can bring improvements, it is

obvious that robots need to comply to human social norms in order to be better accepted

in our societies. However, if multi-robot systems were to operate autonomously in

social environments, they must be aware of the mechanisms of human society. Such

key mechanisms by which humans operate are social norms – they regulate all human

interactions, behaviors, and provide order and predictability in the society. If the robots

were to follow simple norms, such as “wait at the door until the human passed” or

“move out of way of hospital staff”, their acceptance could be tremendously improved.
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7 Adaptive Formations

A S we have pointed out in Chapter 3, the state-of-the-art approaches to multi-robot

navigation rely on fairly restrictive assumptions regarding the experimental set-

tings, namely that (a) the experimental area is large, i.e. the formation has enough

space to reorganize after negotiating obstacles, or (b) the obstacles are cluttered

in the environment and are not surrounding it (i.e., no enclosure). Therefore, such canonical

experimental settings reflect outdoor, unstructured environments without boundaries.

In view of these limiting assumptions, we introduce the Local Formation Transformation

(LFT) algorithm – an approach to dynamic formation change that is local (meaning that the

formation is only reshaped in the immediate neighborhood of the robot that initializes the

change) and gradual (meaning that the formation does not switch topologies but is modulated

in its shape to some extent), with the level of shape alteration proportional to the density of

obstacles around the robot. Although locally adaptive formations are receiving attention in

the robotics community [94] [27] [43], to the best of our knowledge, LFT is the first formation

change method validated on real robots that allows any robot to alter locally and independently

the formation shape without imposing a global reconfiguration.

In this chapter, we explain how the LFT method extends the graph-based formation control

approach and validate the algorithm through formations consisting of three real MBot robots

in structured indoor areas of increasing complexity.

7.1 Overview

The LFT method allows the follower robots to autonomously modify the formation in reaction

to the environment as a function of the available area, topology of that area and density

of obstacles. Intuitively, the LFT algorithm works as follows. We define a variable ηi that

reflects a local density of obstacles with respect to the follower Fi and drives its gradual and

local formation change. Two extreme circumstances can be distinguished: a) when there are

no obstacles around the follower, ηi = 0 and the robot should remain in the defined place
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Figure 7.1 – Illustration of the Local Formation Transformation algorithm. (Left) The default
formation. (Middle) The follower on the left detects an obstacle and starts gradual alignment
behind the leader. (Right) The follower on the left remains partially aligned behind the leader until
the obstacle is cleared.

in the formation; b) in case of maximal density of obstacles, ηi = 1, the safest path for the

follower is to be aligned within a parametrized tolerance margin behind the leader. Under

such circumstances we can assume its path to be collision free. In particular, this is the case

for sufficiently static environments1 when the leader’s heading is constrained to be tangential

to its trajectory by a motion planning module.

The variable ηi varies continuously between 0 and 1, and thus the follower gradually wavers

between its desired place in the formation and a safe place behind the leader. The estimated

obstacle density ηi ∈ [0,1] serves as a sole indicator of how the follower should modify the orig-

inal formation matrix to navigate around the obstacles. It is computed based on a constrained

virtual sensor FOV characterized by a sensing range and a sensing angle. The FOV covers an

area to be traversed in the near future, with an exception of when ηi → 1 and the robot queries

the area around the desired place in the formation to return there when it is safe to do so. The

LFT method is illustrated in Figure 7.1.

7.2 Algorithm

Because of the continuous adaptation of the follower Fi to maintain its desired relative position

with respect to the leader, the resulting formation change can be formalized as a transforma-

tion function ψi : [0,1] →RNi×D in a D-dimensional space as follows:

SLF T =
〈
ψi (0), ψi (1), ψi : ηi →RNi×D

〉
(7.1)

where Ni = |Ξi | is the number of neighbors of robot Fi . That is, given two geometries ψi (0)

and ψi (1), we design a smooth, continuous function of class C 1 that maps the density of

obstacles perceived by the robot Fi in the environment to the modification of the formation

geometry ψi ∈ [0,1]. Globally, the geometry ψ(0) specifies the original shape of the formation

and is assumed to be determined by a higher level controller or external user. The purpose

of ψ(1) is to define a virtual column formation shape and specify an allocation of the robots

1 With the exception of when a dynamic obstacle cuts the course of the follower; in such situation collision is
prevented by the means of the DWA obstacle avoidance described in Section 2.5.2.
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within such structure. Using ψ(1) guarantees that each follower has a dedicated place behind

the leader in the extreme case when ∀Fi ∈ F, ηi ≈ 1 and all followers must fall behind the

leader. An illustrative example of the transformation function ψ is shown in Figure 7.2.

Remark 1 (Generality). The specification of the LFT algorithm requires that ψ is able to

transform the shape of the formation from ψ(0) to ψ(1). Consider the specification of the

formation in Equation 7.1. If the transformation function is designed with the constraint:

∀Fi , F j ∈ F, ∥ψi (ηi )−ψ j (η j ) ∥ ≥ ε (7.2)

where ε is the minimal allowed distance between any two robots (e.g., the robot diameter plus

a safety margin), then collisions among formation members will not occur. The algorithm

is generalizable to N robots and different formation topologies, because it is possible to

design ψ(1) and ψ : [0,1] →RN×D so that the transformation between two formation shapes is

collision-free. �

Figure 7.2 – Illustration of the transition function
ψ. The desired formation of the robots is ψ(0)
(green), upon detection of obstacles they transi-
tion to a column topology ψ(1) (blue).

7.3 Implementation

While the abstract definition of LFT in Section 7.2 does not restrict the algorithm to a specific

formation control law, here we present its realization within the graph-based framework. In

particular, the transition function ψi (η) : ηi →RNi×2 corresponds to the bias matrix bi ∈RNi×2

as follows:

b̃i L = ψi (ηi ) : [0,1] →RNi×2 (7.3)

The bias to the leader is changed on two axes simultaneously: by modifying bx
i L , the follower Fi

aligns behind the leader L, while by modifying by
i L , the follower maintains a closer or further

distance from the leader. The bias bi j to all local neighbors of Fi is changed accordingly. The
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functions for changing the x and the y components of bi L are chosen as follows:

ψx
i (ηi ) = bx

i L

(
1− (1+e−K1(ηi−K2))−1

)
ψ

y
i (ηi ) = sign(by

i L)
(
(ψi (0)−abs(by

i L)
)
ηi +by

i L

(7.4)

where K1 and K2 are constant parameters normalizing and attenuating the shape of a function

that filters ηi . Thus, the value of ψi (ηi ) updates the bias as new sensory information arrives.

Remark 2 (Convergence). The convergence rate of a system based on the Laplacian consen-

sus feedback can be calculated depending on the eigenvalues of the Laplacian matrix L [89]:

∥ p(t )−1 ∥≤∥ p(0)−1 ∥ e−λ2t (7.5)

where 1 = [1, ...,1]T and λ2 is the lowest non-zero eigenvalue of L that determines the speed

of convergence. Under the assumption of the time-scale separation principle [95] and the

constraint that the function ψ is chosen so that ψ̇ ≤ τe−λ2 , where τ≥ 1, the system described

in Equations 5.5 and 5.6 is assumed to achieve consensus. �

The functions in Equation 7.4 satisfy the constraints discussed in Remark 1 and Remark 2.

They have been tested in simulation with up to 10 robots, but their generalization to a larger

number of robots is still to be proved.

It is important to note that it is not sufficient that the follower Fi changes its bias, but the

modification must be propagated through the graph, otherwise the neighbors of Fi would

accommodate the change by further distorting the formation. To address this issue, the

follower Fi that initializes the local formation change communicates this fact and the degree

of modification ψi to all its neighbors, which adjust the bias to Fi accordingly. In our case,

this requires the communication of two variables, b̃x
i j and b̃y

i j . This step could be omitted in

sparse, minimum degree graphs were each follower is only connected to its local leader (for an

example of such a formation refer to [25]). A solution not requiring information propagation

through communication and yet retaining a connected graph could project a virtual robot

at the default bias once a robot detects that the formation is being modified by one of its

neighbors.

LFT complements obstacle avoidance in the sense that it reacts at farther distances through its

multi-robot perception capabilities and has an implicit predictive component that estimates a

collision course by monitoring the area to be visited shortly in time. While obstacle avoidance

prevents collisions in a reactive manner, LFT allows navigation around structured obstacles

such as corners or through narrow passages. It implicitly promotes a column formation, as

superior for the teams of robots going through tightly confined areas (the superiority of such

formations is shown in [37]).
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(a) SCENARIO SI (b) SCENARIO SI I (A)

(c) SCENARIO SI (d) SCENARIO SI I (A)

Figure 7.3 – Robot trajectories and performance evaluation in scenarios S I (a) and S I I (A) (b).
Rectangles and circles in (a) and (b) represent static obstacles, including mapped and unmapped
obstacles labeled in (b). Size of the outer robot circles indicates the true size of the robot. Plots
in (c) and (d) show the formation error [m], orientation error [rad] and LFT reactivity (unitless).
The shaded colors in (c) and (d) indicate the standard deviation averaged over 10 runs and the
two followers. This convention remains valid for the performance evaluation plots throughout the
chapter.

7.4 Experiments

Experiments are performed in the GR building of the EPFL campus described in Section 2.6.2,

comprised of two rooms connected by a corridor. The objective is to assess the impact of

environmental settings on the adaptive formation algorithm. Additionally to the metrics

proposed in Section 5.4, we choose e A ∈ [0,1] as an indirect measure of the LFT reactivity in

avoiding obstacles:

LFT REACTIVITY e A = (N −1)−1
N−1∑
i=1

ηi (7.6)

where only the followers are taken into account as the leader is not contributing to the forma-

tion adaptation. The rationale behind analysis with e A is that as soon as η starts to increase,

the robot modifies locally its bias to lessen the chance of driving close to obstacles, leading
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(a) SCENARIO SI I (B) (b) SCENARIO SI I (C )

(c) SCENARIO SI I (B) (d) SCENARIO SI I (C )

Figure 7.4 – Robot trajectories and performance evaluation in scenarios S I I (B) (a) and (c) and
S I I (C ) (b) and (d) respectively.

to a reduction of η . The value of e A close to one means that all the robots undergo maximal

degree of formation modification.

The parameters used in the experiments are: K1 = 10, K2 = 1 (in Equation 7.4) and Ku = 0.8

and Kφ = 0.8. Weights have been tuned according to the distance between the follower Ri

and the leader L using functions proposed in [45]. If the distance is large, the weight of the

follower-follower edge w f f is smaller than on the leader-follower edge w f l and the followers

have a higher potential to reach the leader first. If the opposite is true, the followers are forced

to converge to the formation first.

7.5 Scenarios

We investigate the performance of the LFT algorithm in four scenarios. For each experiment

we perform 10 runs with initial positions of the robots at the same locations. We consider a

triangular formation with two followers F1 and F2 and one leader L forming an equilateral

triangle with 1 m sides.

S I – Trajectory Twist Scenario

We test the ability of the formation to move on a trajectory with sharp turns. This scenario

serves as a baseline for performance comparison. The leader moves at a speed 0.5 m/s in an

eight-figure trajectory shown in Figure 7.3a (the same trajectory is retained for scenarios S I to
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Figure 7.5 – Snapshots of the experiment S I I I with the formation being interrupted by a person
walking around the arena.

S I I I ).

S I I – Static Obstacles Scenarios

The second scenario evaluates the LFT algorithm in three static obstacle settings, where:

S I I (A) – obstacles are scattered at the outer edges of the leader’s trajectory (Figure 7.3b), at

positions that require formation alteration by the followers as they cope with sharp turns.

S I I (B) – obstacle setting (Figure 7.4a) requires the followers to deviate from their original

formation as they pass over the inner circle of the eight-figure trajectory.

S I I (C ) – formation is to pass through a narrow passage of 1.5 times the diameter of the robot

(Figure 7.4b).

S I I I – Dynamic Obstacles Scenario

In S I I I the formation encounters a dynamic obstacle - a human volunteer H moving on a

collision course with the robots and tracked by an overhead camera. For repeatability of the

experiment, the human follows a path delineated on the floor and timed with a stopwatch.

S IV – Complex Environment Scenario

The final demonstration of the algorithm is in a realistic indoor environment. We consider a

waypoint patrolling task designed so that it is necessary for the robots to change the formation

during the run as well as rotate in a highly constrained space. The storyline is the following:

the leader is to go out of the 1st and the 2nd door, pass through a narrow passage and then

return to the initial position (see Fig. 7.6).
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Figure 7.6 – Trajectories of the robots and pictures taken during one experimental run, and
performance evaluation in Scenario S IV .

7.6 Results

The performance metrics discussed in this section are averaged over the runs and over the

two followers. The formation error eF [m] indicates the average distances the followers are

from the desired places in the formation, the orientation error eO [rad] indicates the average

difference between the follower’s desired and actual orientation, and the LFT reactivity e A

[unitless], indicates the average degree of formation modification estimated locally by each

follower. Additionally, for each scenario we provide trajectories of the robots carried out during

one of the runs. Videos of the experiments are available at the link provided in the footnote2.

S I – Trajectory Twist Scenario

The trajectories presented in Figure 7.3a show that the robots converge to the desired forma-

tion and maintain it. The performance metrics presented in Figure 7.3c lead to the conclusion

that the intricacy of the leader’s trajectory has no significant impact of on the formation errors.

Because of the size of the MBot robot, small rises of eF during sharp turns are not visible in

reality (the average formation error eF = 0.27 m is less than half the robot radius). A small

variation of performance over the runs suggests a strong repeatability of the results.

2 https://www.epfl.ch/labs/disal/research/InstitutionalRoboticsFormations
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S I I – Static Obstacles Scenarios

S I I (A) – As shown in Figure 7.3b, the followers visibly locally modify the formation during

negotiation of the obstacles. The performance presented in Figure 7.3d only marginally

decreases compared to Figure 7.3c, but has a larger variance.

S I I (B) – Robots cope with the obstacles either by going around them or taking them in-

between, as shown in Figure 7.4a. Scenario S I I (B) is more challenging than S I I (A) because of

the obstacle being combined with a sharp turn. This is reflected by a decrease of performance,

especially of the eF component, which attains a peaky performance drops, as illustrated in

Figure 7.4c. Additionally, the existence of two possible solutions the robots can adopt drives

the large variance of eF .

S I I (C ) – The followers detect the wall-like obstacles on their path and change to a column

formation using the LFT algorithm as shown in Figure 7.4b. The two peaks of eF in Figure 7.4d

correspond to the two times the robots navigate through the narrow passage, but even then

the mean eF error is smaller than the robot diameter.

S I I I – Dynamic Obstacles Scenario

S I I I – The snapshots presented in Figure 7.5 show the situation before, during, and after

the formation encounters a dynamic obstacle - a human. Notice that collisions with swiftly

moving obstacles are primarily handled by the virtue of DWA, which is more reactive than

LFT. Even though the DWA does not guarantee finding an optimal velocity, it prevents colli-

sions by stopping the robot before hitting the obstacle. The performance is little affected as

compared to S I because of the instant nature of obstacle negotiation. The mean error values

are eF = 0.25 m, eO = 0.05 rad and e A = 0.31 with the maximum value of eF never exceeding

0.45 m and the maximum value of e A never exceeding 0.55.

S IV – Complex Environment Scenario

S IV – Figure 7.6 shows the trajectories of the robots and pictures taken during one experimental

run. The team starts in a triangular formation which by the means of the LFT becomes more

elongated and narrower as the robots navigate through the environment (in particular at

the location indicated as a Narrow Passage at t=48 s). At the furthest waypoint (t=56 s), the

formation rotates in a confined area with the diameter of the free space smaller than the

diameter of the desired formation. The formation error eF shown in Figure 7.6 attains its peaks

at t=[38 s, 56 s, 81 s, 98 s], corresponding to the robots passing the 2nd Door, Narrow Passage,

the 2nd and the 1st Door. Note that without the LFT method, the followers moving in a triangle

formation are not capable of negotiating an abrupt transition characterized by passage with a

width smaller than that of the formation (such as door leading out of a room). Indeed, with a

canonical implementation of a graph-based control law, the followers would head towards

the wall surrounding the narrow passage and become trapped in the local minima. Only for
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smaller, convex obstacles, DWA allows the followers to safely navigate around the obstacles.

The results indicate a high correlation between the density of the obstacles (reflected by

e A) and the formation shape error eF . The orientation error remains largely unaffected by

the experimental settings, mostly due to the fact that the heading control of the followers is

decoupled from the position control.

Summary

In this chapter we presented an approach for realizing adaptive multi-robot formations

for structured environments that yields local and gradual changes of the formation

shape with the level of alteration proportional to the density of obstacles ahead. We

concluded that the LFT enables the formation to navigate as a unit through demand-

ing environments, such as narrow passages with abrupt entry points and the width

smaller than the width of the formation. Reactive formation reconfiguration resulted in

the ability of the team to cope with complex building features such as doors or other

confined spaces in an environment with numerous uncertainties arising from the pres-

ence of static and dynamic obstacles as well as sensor and actuator errors. Motivated

by human-populated environments, the LFT algorithm achieves desirable properties,

including smoothness of motion and aesthetic negotiation of obstacles. While the

LFT method is designed for enabling the passage of formations of large-sized robots

through indoor structured spaces (with doors and corridors), the ability of adjusting

the formation shape plays also a crucial role for the realization of social norms. In

later chapters, we will illustrate how by modifying the formation bias we realize mixed

human-robot formations, and how, through an augmentation of the graph with repul-

sive edges, we can achieve a formation reshaping to accommodate human-induced

social space constraints.
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8 Indoor Relative Localization for Multi-
Robot Formations

T HE settings in which we deploy our multi-robot systems are by far not standard for

the majority of the spatial coordination methods, namely GNSS-denied, complex

indoor environments populated with humans and obstacles. In this chapter we

present a strategy for providing reliable state estimates that allow a group of robots

to spatially coordinate even when communication fails and a relative localization system based

on direct inter-robot measurements suffers from long-term occlusions and false detections.

While the method proposed in this chapter can be generalized to other types of collective

movements, our development has been targeting robot formations. We will therefore focus

the remainder of the chapter on this specific way to spatially organize a group of robots.

We work with ID-based robot formations, where each robot is assigned a role (target position)

in the formation, but the tracking data does not provide the identity of the robot. Roles are

important to determine the range and the bearing that the robot has to keep with respect to

the other robots in the formation, but since the robots are homogeneous, they can assume

any role. However, the lack of ID information associated with the measurements does not

allow for simple fusion of communication and tracking, especially when tracking is expected

to sustain the formation dependably for some time, even when communication fails. Multi-

target tracking methods without explicit data association such as PHD filters, require on-line

role assignment, where the robot dynamically estimates the optimal matching of the estimates

with the roles (including its own role that might change over time). When the assignment

is not shared, the robots might diverge to different guesses of the assignments, making the

formation ill-defined, which can lead to breaking of the formation. Wrong data association can

be caused by as little as one track missing, imperfect detection, or long term occlusions, which

are common occurrence in formations. These challenges make the tracking-only methods

unsuitable for maintaining the entire formation for long periods of time.

To overcome such difficulties, we have developed a method that incorporates communication

data (when available), tracking information, and knowledge about the desired formation

geometry in GM-PHD filter [60]. The use of such filter allows us to combine data from multiple
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Figure 8.1 – Overview of the approach. We combine communication data, tracking information,
and knowledge about the desired formation geometry in the FI-GM-PHD filter. The estimates are
then assigned to the roles (target positions) in the formations to determine the desired bias to
keep from the estimated robot location.

information sources without the need to use heuristic methods for data association. Moreover,

a GM-PHD filter does not set the number of tracks a priori, therefore additional data regarding

a target can be incorporated seamlessly [96]. To the best of our knowledge, our method

called Formation Information GM-PHD (FI-GM-PHD) filter is the first approach attempting to

improve tracking estimates of the robot poses based on specification of the desired formation

geometry. Our method consists of two main components added to the GM-PHD filter: i) the

inception step, which incorporates poses of the robots exchanged via communication, when

such information is available, ii) the coalition step, which integrates the projection of the

formation state based on the desired formation geometry. The projected formation state is

either improving the current estimate or generating a new one, depending on the dissimilarity

between the estimated formation state and the projected formation state. Once the estimates

are obtained, we assign them to the roles in the formations to determine what is the desired

bias from that estimate. A high-level overview of the method is shown in Figure 8.1.

8.1 Problem Statement

We address the problem of multi-robot tracking to provide absolute position estimates neces-

sary for a team of robots to control and keep a desired formation geometry. The multi-robot

system consists of N robots R1, ...,RN . The formation includes one leader robot, which moves

on a pre-defined trajectory, and N −1 follower robots, all of which know the desired formation

geometry, i.e. the desired range and bearing they should keep with respect to their neighbors,

including the leader.

Each robot Ri independently estimates its own position pi = [xi , yi ] and orientation αi in

a two-dimensional, GNSS-denied environment, based on a known map and onboard sensing.

Since all the robots share the same map, they all share a common global coordinate frame IW .

Each robot Ri is equipped with sensors that provide range and bearing to the other robots in
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its local reference frame IRi , but the measurements do not include IDs of the detected robots.

Since the relation of IRi w.r.t. IW is known to Ri , the range and bearing sensor measurement j

can be expressed in the global frame as z j to constitute the measurements set Zk . Because of

the lack of IDs, the followers do neither have the means to distinguish among the neighbors,

nor can they tell apart the leader from a follower based on the measurements alone. Therefore,

the formation orientation is defined in IW , which is the only frame known to all the robots.

The frame of the leader, IL , cannot be used for that purpose, as it is not known to the robots at

all times. Robots are capable of communicating to each other their global self-localization

positions in IW , but the communication is not reliable enough to be used as the only means

to maintain the formation.

The state x j = [x j , y j , ẋ j , ẏ j ] of each target robot in the global reference frame IW consists of

its position and velocity. Each target follows the linear Gaussian dynamical model as proposed

in [60]:

xk|k−1 = F xk−1 +nk (8.1)

with the process noise nk ∼N (0,Q) and the matrices are:

F =
[

I2 δI2

02 I2

]
, Q =σ2

f

[
δ4

4 I2
δ3

2 I2
δ3

2 I2 δ2I2

]
(8.2)

where In and 0n denote, respectively, the n ×n identity and zero matrices, δ is the time step,

and σ2
f is the standard deviation of the process noise.

The sensor measurement z j = [zx
j , z y

j ]T , expressed in the global frame IW is a noisy version of

the position of a target robot R j and follows a linear Gaussian observation model:

zk = Hxk +νk (8.3)

with the measurement noise νk ∼N (0,U ), where H = [I2,02], U =σ2
ε I2, and where σ2

ε is the

standard deviation of the measurement noise. The communicated information sent by R j to

the receiving robot Ri includes a position p j in IW . Multi-target tracking is performed in the

global frame IW .

8.2 Multi-Target Tracking

The objective of multi-target tracking is to jointly estimate the states of multiple targets, and

sometimes the numbers of targets themselves, from a sequence of noisy observation sets.

The existence of multiple targets and multiple measurements necessitates data association,

a computationally expensive procedure dealt with either explicitly or implicitly. Therefore

single-target tracking approaches are not readily extensible to the multi-target problems.

From among many existing multi-target tracking algorithms that emerged in recent years, [97]

classified the existing approaches in the following categories: a) Non-Bayesian Approaches,

such as Nearest Neighbor (NN) data association, b) Maximum A Posteriori approaches, such as
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Multiple Hypothesis Tracking (MHT), c) Bayesian estimators, such as Joint Probabilistic Data

Association (JPDA) filter or Markov Chain Monte Carlo Data Association (MCMCDA), and d)

Finite Set Statistics (FISST)-based approaches, such as Random Finite Sets (RFSs).

The NN methods deal with data association by assigning each measurement to the closest

target based on a distance measure [98]. The NN filters assume one-to-one mapping between

the measurements and the targets, therefore cannot deal with multiple observations of a

single object, clutter, or occluded objects. MHT evaluates the likelihood that there is a target

given a sequence of measurements. To restrict the exponential growth of the number of

hypotheses, MHT requires pruning out spurious hypotheses for each track independently

and discarding the deleted items, which makes it impossible for MHT to recover from errors

[99]. The Probabilistic MHT (PMHT) uses soft association methods, but assumes that the

number of targets is known, and that it is possible to initialize the states [100]. The JPDA

filter is a sub-optimal Bayesian algorithm that calculates a marginalized probability on the

joint data association space. To mitigate the computational burden, many of the heuristic

techniques to an approximate JPDA sacrifice the tracking accuracy to make the algorithm

computationally tractable and, as a result, the application domain is restricted to scenarios

with few, well separated targets [101]. MCMCDA filter is a true approximation for the optimal

Bayesian filter. However, the algorithm requires specification of numerous parameters, the

target creation is accomplished heuristically and many particles are required for the method

to perform well [102].

The Random Finite Set (RFS) approach to multi-target tracking is a novel and promising

alternative to the traditional association-based methods. RFS is a theoretically optimal ap-

proach to multi-target tracking and a direct generalization of the single-target Bayes filter. Its

main advantage is that it treats the problem of clutter and association uncertainty under a

rigorous unified Bayesian filtering framework [103]. Moreover, it incorporates track initiation,

a procedure that has mostly been performed separately in traditional tracking algorithms.

Based on the RFS theory, the Probability Hypothesis Density (PHD) filter and its variations

deal with the measurement-to-track association implicitly, resulting in higher robustness and

accuracy in scenarios where the number of targets is not known in advance or changes over

time.

Flexibility and ability to deal with challenging scenarios makes the PHD filters and the vari-

ations thereof increasingly popular in the robotics research. Among many other notable

examples, the PHD filter is used for Simultaneous Localization and Mapping (SLAM) in [104],

where it estimates vehicles trajectories and the encountered environment features, also in

the multi-robot case in [105]. In [96], cooperative tracking of multiple vehicles is achieved by

fusion of PHD hypotheses among the cooperative agents. Cooperative multi-target tracking

with the PHD filter is also exploited in [106]. The output of the PHD filter in [107] is used

not only for tracking of targets, but it also provides importance weighting so that the robots

are drawn towards areas that are more likely to contain targets. In [108] visual detection and

tracking with GM-PHD filter is performed to estimate the aircraft’s position and velocity in 3D.
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Multiple autonomous underwater vehicles in [109] are tracked using acoustic signals and a

Monte Carlo PHD filter. An example of application-driven modification of a PHD filter in [56]

reconstructs the identities of the unmanned ground vehicles by incorporating odometric data

collected by an aircraft in the PHD filter.

8.2.1 Multi-Target Tracking using Random Finite Sets

The Random Finite Sets (RFSs) are natural representations of multi-target states and obser-

vations that provide a way to directly extend single-sensor, single-target Bayes statistics to

multi-sensor, multi-target problems [103]. The RFS formulation treats the collection of indi-

vidual targets as a set-valued state, and the collection of individual observations as a set-valued

observation.

Let M(k) be the number of the targets at time k with the states xk,1, ...,xk,M(k) ∈X . At the next

time step some targets may die, surviving targets evolve to the updated states and new targets

may appear. Let N (k) be the number of measurements zk,1, ...,zk,N (k) ∈Z . Measurements can

be generated by the targets or stem from the clutter (false positives). Missed detections can

occur due to sensing imperfections (false negatives).

At time k, the collections of target states and the collections of measurements can be repre-

sented as finite sets:
Xk ={xk,1, ...,xk,M(k)} ∈F (X )

Zk ={zk,1, ...,zk,N (k)} ∈F (Z)
(8.4)

where F (X ) and F (Z) are the collections of all finite subsets of targets X and measurements

Z respectively1.

The RFS State Evolution Model

An RFS model for the time evolution of the multi-target state can incorporate target motion,

birth and death of a target [60]. The targets may be temporarily occluded or venture out of the

field of view. Thus, given a multi-target state Xk−1 at time k −1, the multi-target state Xk at

time k is given by the union of the surviving targets and the spontaneous births:

Xk =
[ ⋃
ζ∈Xk−1

Sk|k−1(ζ)

]
∪Γk (8.5)

Sk|k−1(ζ) is the model of the behavior of the state ζ at the next time step and can take on either

{xk } when the target survives or ; when the target dies, corresponding to the cases where

the target xk−1 ∈ Xk−1 continues to exist at time k with probability pS,k (xk−1) or dies with

probability 1−pS,k (xk−1) respectively. Targets that continue to exist transition from a state

1 Analogously to the single-target system, where uncertainty is expressed by modeling the state xk and the
measurement zk as random vectors, the uncertainty of the multi-target system is expressed by modelling the
multi-target state Xk and the multi-target measurement Zk as RFS.
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xk−1 to xk with the multi-target transition density fk|k−1(xk |xk−1). Γk is the RFS of spontaneous

birth at time k.

The RFS Measurement Model

The RFS measurement model accounts for the uncertainty of detection and the clutter. Given

a multi-target state Xk at time k, the multi-target measurement Zk is given by the union of the

measurements generated by the target and the clutter:

Zk =
[ ⋃

x∈Xk

Θk (xk )

]
∪Kk . (8.6)

where Θk (xk ) is an RFS generated by the target with a state xk ∈ Xk at time k and can take

on either {zk } when the target is detected with probability pD,k (xk−1) or ; when the target is

not detected with probability 1−pD,k (xk−1). For the detected targets, the probability density

of obtaining an observation zk from xk is given by the multi-target likelihood gk (zk |xk ). Kk

denotes the clutter.

The Optimal Multi-Target Bayes Filter

The optimal multi-target Bayes filter propagates the multi-target posterior density pk (·|Z1:k )

in time using recursion:

pk|k−1(Xk |Z1:k−1) = ∫
fk|k−1(Xk |X )pk−1(X |Z1:k−1)µs(d X ) (8.7)

pk (Xk |Z1:k ) = gk (Zk |Xk )pk|k−1(Xk |Z1:k−1)∫
gk (Zk |X )pk|k−1(Xk |Z1:k−1)µs(d X )

(8.8)

where µs(d X ) is a reference measure on F (X ). Computing (8.7)-(8.8) involves multiple inte-

grals on the space F (X ), which is intractable.

8.2.2 Probability Hypothesis Filter

To deal with intractability, the PHD filter, instead of propagating the multi-target posterior

density in time, propagates the posterior intensity, a first order statistical moment of the

multi-target posterior [103].

For RFS X on the collection of all finite subsetsX with probability distribution P , the first order

moment, called the intensity, is a non-negative function v on X . In essence, for each region

S ⊆X , the integral of v over that region,
∫

S v(x)dx, gives the expected number of elements of

X that are in S2. The posterior intensity approximation of the multi-target posterior, where vk

2 The local maxima of the intensity v are the local concentrations of the expected number of elements and can be
used to estimate the elements of X .
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and vk|k−1 are the approximations of pk and pk|k−1 respectively, can be propagated in time

via the PHD recursion:

vk|k−1(x) =
∫

pS,k (ζ) fk|k−1(x|ζ)vk−1(ζ)dζ+γk (x)

vk (x) = [1−pD,k (x)]vk|k−1(x)+pD,k (x)vD
k|k−1(x)

(8.9)

with

vD
k|k−1(x) =

∑
z∈Zk

gk (z|x)vk|k−1(x)

κk (z)+∫
pD,k (ξ)gk (z|ξ)vk|k−1(ξ)dξ

(8.10)

where γk (x) is the intensity of the birth RFS Γk and κk (z) is the intensity of the clutter RFS Kk .

The PHD filter does not involve combinatorial computations, nevertheless it does not admit

closed form solutions.

8.2.3 Gaussian Mixture Probability Hypothesis Filter

The GM-PHD [60] filter admits a closed form solution to the PHD recursion. Under linear,

Gaussian assumptions on the target dynamics and birth processes, the posterior intensity is a

Gaussian mixture of the form:

vk (x) =
Jk∑

i=1
w (i )

k N (x;m(i )
k ,P (i )

k ) (8.11)

where each Gaussian component i is associated with a weight w (i )
k , Jk is the number of

Gaussian components representing the intensity and N (·;m,P ) denotes a Gaussian density

with mean m and covariance P .

The GM-PHD filter involves four steps: 1) prediction, where the previous intensity evolves

according to the motion model and where new targets can appear 2) update, where the

intensity is updated with the acquired measurements 3) selection, including merging and

pruning, to reduce the number of Gaussian components and 4) state extraction from the

posterior intensity.

Prediction

The predicted intensity at the time k is a Gaussian mixture of the form:

vk|k−1(x) = vS,k|k−1(x)+γk (x) (8.12)

where vS,k|k−1(x) is the survival intensity:

vS,k|k−1(x) = pS,k

Jk−1∑
i=1

w (i )
k−1N (x;m(i )

k|k−1,P (i )
k|k−1) (8.13)

with pS,k being the probability of survival, andγk (x) is the birth intensity with Jγ,k components:
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γk (x) =
Jγ,k∑
i=1

w (i )
γ,kN (x;m(i )

γ,k ,P (i )
γ,k ) (8.14)

The components of the survival intensity are computed from the previous intensity compo-

nents according to a linear Gaussian motion model:

m(i )
k|k−1 = Fk−1m(i )

k−1 (8.15)

P (i )
k|k−1 =Qk−1 +Fk−1P (i )

k−1F T
k−1 (8.16)

and w (i )
k|k−1 = w (i )

k−1, where Fk−1 is the state transition matrix and Qk−1 is the process noise

covariance. The mean values of the birth intensity components, m(i )
γ,k , represent places, where

new targets are likely to appear.

Update

Given a set of measurements Zk , the posterior intensity is updated as follows:

vk (x) = vT,k (x)+ ∑
z∈Zk

vD,k (x;z) (8.17)

where

vT,k (x) =
Jk|k−1∑
i=1

(1−pD,k )w (i )
k|k−1N (x;m(i )

k|k−1,P (i )
k|k−1) (8.18)

vD,k (x,z) =
Jk|k−1∑
i=1

w (i )
k (z)N (x;m(i )

k|k (z),P (i )
k|k ) (8.19)

where pD,k (m(i )
k|k−1) is the state-dependent probability of detection. Intuitively, vT,k (x) is

the missed-detection term, where the weight of each Gaussian component of the predicted

intensity is discounted according to pD,k (see Equation 8.18). The vD,k (x;z) term, one for

each measurement z ∈ Zk , is the detection term, which provides closed form expressions for

computing the means, covariances and weights of vk from those of vk|k−1 when a new set of

measurements arrives. The complete expressions for w (i )
k , m(i )

k|k and P (i )
k|k in Equation 8.19 are:

w (i )
k (z) =

pD,k w (i )
k|k−1q (i )

k (z)

κk (z)+pD,k
∑Jk|k−1

l=1 w (l )
k|k−1q (l )

k (z)
(8.20)

m(i )
k|k (z) = m(i )

k|k−1 +K (i )
k (z −Hk m(i )

k|k−1) (8.21)

P (i )
k|k = [I −K (i )

k Hk ]P ( j )
k|k−1 (8.22)

with

q (i )
k (z) =N (z; Hk m(i )

k|k−1,Uk +Hk P (i )
k|k−1H T

k ) (8.23)
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K (i )
k = P (i )

k|k−1H T
k (Hk P (i )

k|k−1H T
k +Uk )−1 (8.24)

where Hk is the observation matrix, Uk is the observation noise covariance and κk (z) is the

expected clutter level.

Selection

The update step yields a quadratic increase in the number of Gaussian components the

posterior intensity is composed of. To keep the problem tractable, components with weak

weights are pruned: I = {i = 1, ..., Jk |w (i )
k > TS}.

Furthermore, all Gaussian components close to each other are merged into a single Gaus-

sian as follows. At first, a Gaussian component with the highest weight is selected with

j = argmaxi∈I w (i )
k . Then all Gaussian components within the Mahalonobis distance US from

j are forming a set of Gaussian components:

L = {i ∈ I |(m(i )
k −m( j )

k )T (P (i )
k )−1(m(i )

k −m( j )
k ) ≤US} (8.25)

that are merged into a single component:

w̃ (l )
k = ∑

i∈L
w (i )

k , m̃(l )
k = 1

w̃ (l )
k

∑
i∈L

w (i )
k m(i )

k , (8.26)

P̃ (l )
k = 1

w̃ (l )
k

∑
i∈L

w (i )
k (P (i )

k + (m̃(l )
k −m(i )

k )(m̃(l )
k −m(i )

k )T )

Finally, the number of Gaussian components is truncated to Jmax components with the highest

weights, resulting in a posterior intensity shaped as a Gaussian mixture:

vk (x) =
Jk∑

i=1
w (i )

k N (x;m(i )
k ,P (i )

k ) (8.27)

State extraction

The means of the Gaussian components are the local maxima of the posterior intensity vk .

Extraction of multi-target state estimates comes down to selection of the Gaussian means that

have weights greater than a threshold TSE .

8.3 GM-PHD Filter with Formation Information

In this section we introduce the FI-GM-PHD filter, overview of which is shown in Figure 8.2.

The FI-GM-PHD filter consists of two steps for supplementing additional Gaussian compo-
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Figure 8.2 – An overview of the FI-GM-PHD filter.
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nents to the filter intensity:

� The inception step - incorporation of communication data;

� The coalition step - using spatial configuration of the formation as a prior for the PHD

filter.

To provide the robots with the necessary information to maintain the formation, each follower

robot Ri runs its own FI-GM-PHD filter. The leader robot moves independently of the other

robots and therefore does not rely on other robot estimates.

The filters are decentralized from the computational viewpoint, as they are run locally and inde-

pendently by the different follower robots. Role assignment and formation control procedures

are also run individually by the follower robots. However, because of the global networking

and the implemented information sharing strategy, each follower runs a FI-GM-PHD filter

instance with information about the locations of all its teammates.

8.3.1 Prediction in the FI-GM-PHD Filter

The components of the survival intensity vS,k|k−1(x) constituting the predicted intensity

vk|k−1(x) (Equation 8.12) at the time k are computed from the previous intensity components

according to a linear Gaussian motion model: m(i )
k|k−1 = Fk−1m(i )

k−1 and P (i )
k|k−1 =Qk−1 +Fk−1P (i )

k−1F T
k−1

(corresponding to Equation 8.15 and Equation 8.16 respectively). The motion model of a target

with the state x j composed of position and velocity is a linear Gaussian dynamical model

with the state transition matrix F and the process noise covariance Q, described in detail in

Section 8.1. At initialization, the filter run by robot Ri is supplied with a birth RFS γ0(x) at the

initial detections. At time k 6= 0, birth intensity in Equation 8.12 is γk (x) =;.

8.3.2 Update in the FI-GM-PHD Filter

The update step in the FI-GM-PHD filter differs from the procedure of the original filter

described in Sec. 8.2.3 with regard to the source of the measurements. While in the GM-

PHD filter the set of measurements Zk consists of direct measurements obtained from the

sensors of the tracking robot, the detection term vD,k in the FI-GM-PHD filter also includes

communicated state information, added in what we refer to as the inception step.

Measurement Update

The missed-detection term vT,k (x) constituting the update intensity in Equation 8.17 is cal-

culated using the predicted intensity vk|k−1(x), discounted according to the probability of

detection pD,k as shown in Equation 8.18. The state-dependent probability of detection used

in this work is described in detail in Section 8.3.2; it suggests how likely it is that the tracked
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robot is detected given the occlusions and its position with respect to the field of view of

the tracking robot. The detection term vD,k (x;z) (Equation 8.19), one for each measurement

of the position z j of the target R j , follows a linear Gaussian observation model with the ob-

servation matrix H and the observation noise covariance U , as detailed in Section 8.1. The

sensor measurements in Zk are obtained from onboard range and bearing sensors described

in Section 2.4.2, where the range and bearing data is used to determine the position of target

R j in the global frame IW as explained in Section 8.1.

Inception of the Communicated Data

Even when communication between the robots is possible, it may suffer of message losses, be

of low rate or break occasionally. For the receiving robot Ri to perform inception in the update

step at time k, the communicated position information p j ,k , one per each communicating

neighbor robot j = 1, ..., Nk , forms a measurement z( j )
k . The measurement is added to Zk to

form a new measurement set:

Zk := Zk ∪
Nk∑
j=1

z( j )
k (8.28)

There is no need to associate the position messages with the existing Gaussian components

from the prediction step, as the PHD filter does not require data association, but each measure-

ment generates a new set of components updated from the predicted intensity (see Equation

8.19). In a general case, including communicated measurements is not suitable for the update

step, because if only a fraction of the robots is exchanging the information, then performing

the update would delete from the output the tracks of the robots that did not communicate.

This can be prevented by ensuring that when merging the Gaussian components generated

by the transmitted data of the robots that do communicate and the Gaussian components

from the prediction step that might correspond to those robots, the weight of the merged

component always remaining between (0,1).

By curbing the merged weight, the predicted components that are not strengthened by ad-

ditional communicated data are prevented from pruning. The selection step thus includes

an additional merging procedure. Now, after performing the standard merging step (Equa-

tion 8.2.3 to Equation 8.26), we again select a Gaussian component with the highest weight

j = argmaxi∈I w (i )
k . Then all the components within an Euclidean distance 2rr between the

position part of the Gaussian mean, m0:1, and the position part of the mean of j form the set

L′ = {i ∈ I |‖m(i )
0:1,k −m( j )

0:1,k‖ ≤ 2rr }, where 2rr is the robot diameter. The set L′ is merged into a

single component with the weight w̃
′(l )
k = min

(∑
i∈L′ w (i )

k ,1
)
. The calculation of m̃

′(l )
k and P̃

′(l )
k

proceeds as in Equation 8.26.

Note that if the model for the communicated measurements differed from the model of

the sensor-based measurements, Equations. 8.20-8.22 would have to be applied with each

measurement updated according to its respective model.
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Probability of Detection

In order to reduce the risk of losing track of a robot when it enters an occluded area or escapes

the field of view of the detecting robot, the probability of detection pD,k (m(i )
k|k−1) is state

dependent. Constant probability of detection would result in quick decrease of the weights of

the components without associated measurements.

The method for determining pD,k (m(i )
k|k−1) is summarized in Algorithm 1 and illustrated in

Figure 8.3. If the estimated position p̂ j of the tracked robot R j is outside the sensing range

rs of the detecting robot Ri , a minimum detection probability pmi n
D is assigned (line 4 in

Algorithm 1). Additionally, the object of interest is considered occluded if any other object k is

located between the detecting robot and the object of interest. In this case, the decrease in the

probability of detection is proportional to the weight of the occluding object and proportional

to the estimated degree of occlusion.

In the Inception step (Sec. 8.3.2), the probability of detection associated with the components

stemming from the communicated measurements p Inc
D is state-independent and constant.

Figure 8.3 – Illustration of the occlusions and field of view
model. The detecting robot Ri determines the degree of
occlusion of the robot R j . Angles [α(o)

1 ,α(o)
2 ] are the bound-

aries of the region occluded by object o. The green region is
the intersection of the occlusion regions of R j and Rk .

8.3.3 The Projected Formation State

Given the absolute position pi ,k = [xi ,k , yi ,k ] of the robot Ri at time k, the position of the robot

R j is projected in the global frame IW based on the desired formation geometry:[
hx

i j ,k

hy
i j ,k

]
=

[
bx

i j

by
i j

]
+

[
xi ,k

yi ,k

]
(8.29)

where bi j is the bias between the robot Ri and R j . The collection of the projected positions

with respect to the robot Ri of all the other robots in the formation is denoted by:

hi ,k := {{hx
i j ,k ,hy

i j ,k }, | j = 1, ..., N ; j 6= i } (8.30)

where N is the number of robots in the formation and so, |hi ,k | = N −1.
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Algorithm 1: PROBABILITY OF DETECTION

1: Given the position of the detecting robot pi = [xi , yi ], the estimated position of the object
of interest p̂ j = [x̂ j , ŷ j ] and the set of all object estimates {x̂k }N

k=1 with weights w (k)

2: Denote range rab = ‖pa −pb‖
3: Denote bearing γab = t an−1((ya − yb)/(xa −xb))

4: p( j )
D = p0

D
5: βT OT = Ø (total occluded region)
6: 1) Check if object within the sensing range
7: if ri j > rs (outside sensing range)

8: p( j )
D = pmi n

D
9: else

10: α( j ) = t an−1(rr /ri j )

11: [α( j )
1 ,α( j )

2 ] = γ j i ±α( j ) (region where R j can be occluded)
12: for k = 1, ..., N
13: if ri k < ri j

14: [α(k)
1 ,α(k)

2 ] = γki ±α (region which Rk can occlude)

15: 2) Check if object k occludes the object of interest

16:
[
β

( j k)
1 ,β( j k)

2

]= [
α

( j )
1 ,α( j )

2 ]∩ [α(k)
1 ,α(k)

2

]
17: if

[
β

( j k)
1 ,β( j k)

2

] 6= Ø (R j is occluded by Rk )
18: 3) Check if not double counting occlusion

19:
[
β

( j k)
1 ,β( j k)

2

]= [
β

( j k)
1 ,β( j k)

2

]−βT OT

20: βT OT =βT OT ∪ [
β

( j k)
1 ,β( j k)

2

]
21: 4) Decrease the probability of detection

22: p( j )
D = p( j )

D

[
1−w (k)(1−

∣∣∣[β( j k)
1 ,β( j k)

2

]∣∣∣∣∣∣[α( j )
1 ,α( j )

2

]∣∣∣ )
]

23: end if
24: end if
25: end for
26: end if
27: return p( j )

D

8.3.4 Coalition of the Projected Formation States

The coalition step extends the GM-PHD filter with an additional block, added after the update

step. It combines the intensities obtained during the update step with the coalition intensity

derived from the projected formation states. Thus, the Gaussian components constituting the

coalition intensity serve as an outline of where the tracked robots are to be expected.

The coalition step is detailed in Algorithm 2. The set of states hi ,k projected by the robot

Ri is used to approximate the means of the components of the coalition intensity vζ,k as

follows. For each tracked robot R j the mean is placed at the projected position of that

robot m( j )
ζ,k = [hx

i j ,k , hy
i j ,k , 0, 0]T , where j = 1, ..., N ; j 6= i and so Jζ,k = N −1. Each component
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j = 1, ..., Jζ,k of the coalition intensity vζ,k at time k is given an initial budget Φ( j )
ζ,k =Φζ,0. Then,

all the components forming the posterior intensity vk (x), l = 1, ..., Jk , are compared against j

to find the matching that maximizes some criteria (line 7 of Algorithm 2). We choose to put

emphasis on minimizing the distance between the position part of the component means

(m0:1 corresponds to the position part of the state, while m2:3 corresponds to the velocity part

of the state), while choosing components of the posterior intensity with significant weights. By

sorting the posterior intensity components according to the o( j ,l )
k measure, we first evaluate

the best candidates for good matching.

Figure 8.4 – Illustration of the coalition
step. Three posterior intensity compo-
nents, m(1)

k ,m(2)
k ,m(3)

k are compared against
two coalition components, m(1)

ζ,k ,m(2)
ζ,k

with the corresponding budgets Φ(1)
ζ,k ,Φ(2)

ζ,k .

Closeness of the m(1)
ζ,k to the m(1)

k de-
creases significantly its budget, while for
m(2)
ζ,k , the budget does not become de-

pleted and a novelty is created.

The components are coalesced as follows. Lines 16-18 calculate a temporary budget for

the posterior component (Φ(l )
k ) using a sigmoid function f ∈ 〈0,1〉 of the distance between

the means of the components (line 15). If the distance is small, the possibility that both

components correspond to the same target is high and the components j and l are coalesced

to form a new Gaussian component, with a mean of intensity being a combination of the

means of the two, the covariance and the weight being the covariance and the weight of l

modified as a function of the divergence. If the distance between j and l is large, the likeliness

that l is associated with j is small and l is propagated further with little change. This diverse

behavior is assured by using a sigmoid-shaped function of the distance when comparing the

components.

The budget of the coalition component is decreased with every posterior component that

has been found close to it, and has two major advantages. Firstly, it limits the number of

new components that can originate around it. Secondly, a budget left at the end of iteration

indicates that one of the coalition components did not have a corresponding component in

the posterior, whether because of the missed detection, occlusion, or field of view limits. In

that case, a new component, called the novelty is created with the mean at the area where a

robot is expected to be. Only the coalition components are allocated the initial budget; the

components of the posterior intensity come with an associated weight and their budget is

computed during the coalition process (line 15).

While in our previous work [4] we assumed that the formation always stays close-to-desired,

here we relax this assumption by moderating the importance of the novelty components
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Algorithm 2: THE COALITION STEP

1: Given the components means approximating the projected formation states {m( j )
ζ,k }

Jζ,k
j=1

and the components of the posterior intensity {w (l )
k ,m(l )

k ,P (l )
k }

J k
l=1

2: n = 0
3: for j = 1, ..., Jζ,k

4: Φ
( j )
ζ,k =Φζ,0

5: for l = 1, ..., Jk

6: 1) (Evaluate best-matching criteria)

7: o( j ,l )
k = exp(‖m(l )

k −m( j )
ζ,k‖)+ (w (l )

k +ε)−1

8: d ( j ,l )
k = ‖m(l )

0:1,k −m( j )
0:1,ζ,k‖

9: end for

10: 2) (Sort posterior components)

11: sort({w (l )
k ,m(l )

k ,P (l )
k }

J k
l=1 ,o( j ,l )

k )

12: for l = 1, ..., Jk

13: ifΦ( j )
ζ,k >Φζ,mi n

14: 3) (Coalesce components)

15: Φ(l )
k = f ((d ( j ,l )

k )−1)

16: m̄(n)
k :=Φ(l )

k m(l )
k + (1−Φ(l )

k )m(i )
ζ,k

17: P̄ (n)
k := (Φ(l )

k +ε)−1P (l )
k

18: w̄ (n)
k :=Φ(l )

k w (l )
k

19: n := n +1

20: 4) (Update budget)

21: Φ
( j )
ζ,k =Φ( j )

ζ,k −Φ(l )
k

22: 5) (Estimate association error)
23: êS,k = (1−Φ(l )

k )(w (l )
k +ε)−1

24: end if
25: end for
26: end for
27: êS = median(êS,k )

28: 6) (Novelty)
29: for j = 1, ..., Jζ,k

30: ifΦ( j )
ζ,k > 0 :

31: m̄(n)
k := m( j )

ζ,k

32: P̄ (n)
k := êSP ( j )

ζ,k

33: w̄ (n)
k := (êS +ε)−1

34: n := n +1
35: end if
36: end for
37: J̄k = n

38: return {w̄ (n)
k ,m̄(n)

k , P̄ (n)
k }

J̄ k
n=1
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according to how well the matching between the posterior and the coalition components

has been performed on the whole. The matching is estimated using the association error êS ,

calculated in line 23 of Algorithm 2, where a good matching means that a posterior component

with a substantial weight is found close to a coalition component. The quality of the overall

matching is used to determine the weight of the novelty components in line 33. The larger the

error, the lower the weight of the novelty component. In case the overall matching is poor, the

weights of the coalition components are negligible and become discarded in the prediction

step of the next iteration. This property modulates the impact of the coalition step on the

role assignment procedure, making the latter rely on a) the Gaussian components of the full

FI-GM-PHD filter when the matching is good or b) the Gaussian components created based on

communicated and sensed data otherwise, for example when formation shape is not perfect.

As an example, depicted in Figure 8.4, consider three posterior intensity components, m(1)
k ,

m(2)
k , m(3)

k compared against two coalition components, m(1)
ζ,k ,m(2)

ζ,k with the corresponding

budgetsΦ(1)
ζ,k ,Φ(2)

ζ,k initially set toΦζ,0. Closeness of m(1)
k to m(1)

ζ,k decreases significantly its budget

Φ(1)
ζ,k , and a new component is created as a combination of the two. For m(2)

ζ,k , the budget

does not become depleted and a novelty is created. Finally, component m(3)
k has no close

correspondence in vζk and it is propagated with no modification.

The coalition step and the inception step supplement the intensity with additional Gaussian

components. In case the robot has not been tracked, adding a new Gaussian component

creates a new target based on the high probability that the target is there. This is analogous

to the birth process of the GM-PHD filter in [60]. In case the robot has already been tracked,

adding a new Gaussian component that corresponds to that robot increases the likelihood of

the robot being present at that position, provided that the state extraction takes into account

the fact that multiple targets cannot occupy the same physical position, i.e. the components

with weight above one are extracted as single targets.

8.4 Role Assignment

The multi-target state estimates of the FI-GM-PHD filter provide the range and bearing infor-

mation, but in order to be used in the ID-based formation algorithm they are dynamically

assigned with the target positions (roles) in the formation.

Figure 8.5 – Illustration of the role assign-
ment step. The center of the estimates cN

and the center of the desired formation cb

are brought to a common reference frame at
the origin, where the translated position es-
timates are p̂ c

N , and the bias, translated and
rotated according to the formation orienta-
tion αW , is bR . Dk j is the cost of associating
bias bR

k with estimate p̂ c
j .
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Algorithm 3: ROLE ASSIGNMENT

1: Given formation orientation αW , position of detecting robot Ri , pi = [xi , yi ], estimated positions

p̂ N−i = {[x j , y j ]}N̂−1
j=1 and bias bi = {[bx

i j ,by
i j ]}N

j=1

2: 1) Find common coordinate frame
3: p̂ N = [pi , p̂ N−i ]
4: cN = mean(p̂ N ) (find center of the robots)
5: p̂ c

N = p̂ N −cN (robot positions w.r.t the origin)
6: cb = mean(bi ) (find center of the formation)
7: bR = rotate(αW )(bi −cb) (rotated global bias)

8: 2) Find best assignment
9: D = cost(p̂ c

N ,bR ) (find assignment cost)
10: A∆ = hungarian(D) (choose best assignment)

11: return A∆ = {link εL = (p̂ j , s)}N
j=1,s=1

The role assignment procedure finds a permutation that assigns the estimates and the position

of the detecting robot to the target positions in the formation. Although we use the graph-

based framework notation, the method can be generalized to other formation algorithms.

The procedure is sketched in Algorithm 2. Consider a formation with its geometry uniquely

determined by a bias matrix b , a set of desired inter-robot distances. The heading of the

formation is defined in a global reference frame and is assumed to be known by all the robots.

In our case the formation orientation αW is along the y-axis of the world frame. The bias3 and

the estimates are brought to a common reference frame by matching the center of the rotated

global bias bR with the center of the estimated positions p̂ c
N (see Figure 8.5). The combination

of the estimates and the roles resulting in the smallest cost is computed using the Hungarian

algorithm [110]. The role assignment procedure, run by the robot Ri , provides a set of links,

A∆ = {εL = (p̂ i , s), }N
s=1. The link εL = (p̂ j , s) is used for correct matching of the bias bi s(t) with

di s(t) and γi j (t) in Equation 5.5, while its cost gives the confidence about the assignment.

More precisely, estimate x̂ j (akin to position p̂ j ) is associated with role “s” and its subscript is

changed to x̂s , with the range di s and the bearing γi s with respect to the robot Ri . The estimate

x̂s is coupled with bias bi s that corresponds to the “s th” place in the formation.

The role assignment procedure provides the tracking robot Ri with its own role. In the next

iteration of the FI-GM-PHD filter this role is used to determine the projected formation state

that affects the coalition step, which in turn after state extraction is used for the next role

assignment. Since the coalition step introduces novelty components for robots that can neither

be communicated with nor tracked, it is important to note that without the fundamental

assumption of our work, namely that only a subset of robots experiences communications

outage at the same time, errors are likely to occur and have a tendency to escalate. With

relatively small teams of robots, the formation recovers from sporadic inconsistencies.

3 Note that the bias bi specifies the relative distances between the robot Ri and all the other robots in the
formation. It is possible to calculate the global formation shape based on that information.

86



8.5. Experimental Setup

8.5 Experimental Setup

Thorough evaluation of the FI-GM-PHD filter is first performed in the Webots simulator, where

the two LIDAR sensors are accurately simulated and calibrated using real data. The second

set of experiments with real robots is carried out at the Jordils experimental facility. In both

cases the implementation details, including parametrization of the algorithms, remain the

same with the exception of the probability of detection model, which in real experiments is

updated based on empirical evaluation to take into account imperfection of the detection

system caused by overlapping laser scans.

8.5.1 Implementation

For robot detection, we use the on-board relative localization system described in Section 2.4.2,

which returns a measurement of a robot position in the form zi = [zx
i , z y

i ]T . The position of the

leader is not known globally to all the robots, but the robots must track the leader in order to

follow it in the formation. Since the pose of the leader is not globally shared, the followers

align their orientation to the positive y-axis of the map frame IW
4.

The tracking filter is run in a global frame IW . The tracking parameters of the filter are as

follows. The state of the target is x j = [x j , y j , ẋ j , ẏ j ]. Each target has the survival probability

pS,k = 0.95, and follows the linear Gaussian dynamical model (see Sec. 8.1) with σ2
f = 1.0,

which accounts for motion uncertainty associated with holonomic motion of robots, and

δ= 0.5s. The measurement zi = [zx
i , z y

i ]T is a noisy version of the position and follows a linear

Gaussian observation model with the standard deviation of the position σ2
ε = 0.2, determined

empirically in simulation.

At initialization, the filter run by robot Ri is supplied with a birth RFS at the initial detections

with the covariance Pγ,0 = di ag ([σ2
ε , σ2

ε , σ2
γ, σ2

γ]T ), where σ2
γ = 1.0, and the weight wγ,0 = 1.0.

We choose σ2
ε as it is the expected measurement error and σ2

γ as the measurements do not

include the velocity. The parameters for merging and pruning are: Jmax = 10, US = 0.3, TS = 10−4

and we select Gaussian components above TSE = 0.5. Furthermore, to take into account phys-

ical dimensions of the robots, the selection step (see Equation 8.2.3) additionally merges

components if their means are closer than twice the radius of the robot, 2rr = 0.65 m,

L = {i ∈ I |‖m(i )
k −m( j )

k ‖ ≤ 2rr }. The poisson distributed clutter level is κk (z) = 0.015 within the

sensing range of the robot. The parameters for the detection probability are p0
D = 0.9,

pmi n
D = 0.02. The sensing radius rs = 4.0 m is the range of the laser scan.

Inception Given that the sending robot Ri at time k communicates its estimated position

pi ,k = [xi ,k , yi ,k ] and the orientation, this information is used in the inception step in the form

of a measurement, where z(i )
k = [xi ,k , yi ,k ]. The robot orientation is not included in the

4 The robots self-localize on a known map, therefore the orientation of the body with respect to the map frame is
estimated online.
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state estimation as our current laser detection cannot provide orientation information. The

constant probability of detection used in the model is p Inc
D = 0.9.

Coalition The coalition mean intensity is based on the projected formation state given by

m( j )
ζ,k = [hx

i j ,k , hy
i j ,k , 0, 0]T , j = 1, ..., Jζ,k . The initial budget isΦζ,0 = 0.5 and the minimal budget

isΦζ,mi n = 0.1. The function used for coalescing the components is f (x) = (
1+exp(−10(x −0.5))

)−1.

8.5.2 Performance Evaluation

We study the tracking performance using the Optimal SubPattern Assignment (OSPA) met-

ric [111]. OSPA is comprised of two components, one accounting for localization accuracy

and the other for the cardinality error:

ō(c)
p (X ,Y ) =

( 1

δ

[
min
π∈Π

∑
(i , j )∈π

min(‖xi , y j‖,c)p + cp (|n −m|)
])1/p

(8.31)

where n = |X |, m = |Y | and δ= max(m,n). Π is the best permutation between X and Y found

using the Hungarian algorithm, p penalizes the estimated position error and c is the cut-off

parameter for penalizing cardinality errors. In our experiments, OSPA is computed between

the ground truth positions and the estimated positions, unless stated otherwise. Each robot

calculates the OSPA metric individually based on the outcome of its own instance of the filter.

We present the mean results of the robots, averaged over the runs.

8.6 Simulation Experiments

With four scenarios, we conduct a thorough evaluation of the FI-GM-PHD filter, and present a

comparison with respect to the full-communication-no-tracking situation and with respect to

the standard GM-PHD filter.

8.6.1 Scenarios

We study the performance of the methods under the following four scenarios: I) for tracking

purposes only, i.e. the robots do not use the tracking data for control; II) for formation

initialization and convergence; III) in challenging situations, where the robots navigate around

obstacles scattered in the environment or the measurement error is large; IV) in realistic

scenario where communications suffers from the periods of outage.

Scenario I: Multi-Robot Tracking

The dataset is collected when five robots, one leader and four followers, move in a cross-shaped

formation on a circular trajectory. Robots maintain the formation using communicated self-
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localization information, while simultaneously collecting sensory data. With the collected data

we perform multi-robot tracking with i) the standard GM-PHD filter, and with the variations

of the FI-GM-PHD method: ii) with inception step only, with iii) the coalition step only, and

with iv) the full FI-GM-PHD system (both inception and coalition steps). We test the methods

that combine communications (ii and iv) with message drop probabilities pmd = 0.0, pmd = 0.5

and pmd = 0.9 and in a situation when two robots are not communicating and the other robots

communicate with pmd = 0.0, pmd = 0.5 and pmd = 0.9. For each experiment we perform 10

sequential runs, each lasting approximately 180 s.

Scenario II: Initialization

We generate ten worlds (corresponding to ten experimental runs) with four robots placed

at random initial positions and with random orientations. The sensing network is initially

connected. In the experiments, both the tracking and the control steps of our method are

applied, which means that the tracking data is used for initialization (bringing the robots

from random initial positions to positions in the formation) and maintenance of a diamond

formation. As a baseline for comparison, we use an experiment where robots rely on i)

only communication, but where robot roles are given a priori, ii) only communication with

dynamic role assignment, so that the robots take optimal paths to the formation. We study the

performance of iii) the standard GM-PHD filter, iv) the inception step only, v) the coalition

step only, and vi) the full FI-GM-PHD system. The methods (i-ii, iv and vi) are tested with

message drop probabilities pmd = 0.0, pmd = 0.5 and pmd = 0.9 and in a situation when two

robots are not communicating (and where for the other robots pmd = 0.0). For each of the

ten worlds we allow maximally three trials for testing whether one of the variants above can

complete successfully.

Scenario III: Limitations

Limitations of our methods are studied with regard to two aspects, A) challenging environ-

ments with obstacles and B) precision of robot detection.

Scenario III-A: Challenging Environments The leader robot guides a diamond-shaped

formation of four robots in an environment populated with obstacles of various shapes and

sizes. We use an experiment with i) perfect communication with dynamic role assignment as

a baseline for comparison. We study the performance of ii) the standard GM-PHD filter and

iii) the full FI-GM-PHD system. In iii), only three robots communicate. For each experiment, 5

sequential runs of approximately 400 s are performed.

Scenario III-B: Measurement Error Three robots move on a circular trajectory in a triangle-

shaped formation. We compare i) perfect communication with dynamic role assignment, ii)
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the standard GM-PHD filter and iii) the full FI-GM-PHD system. For ii-iii) we add a random

uniform error to the original measurement, with the magnitude of a) eM = 0.0 m, b) eM = 0.3 m,

c) eM = 0.6 m, d) eM = 0.75 m and e) eM = 1.0 m. For iii) only the leader robot communicates.

We perform 10 sequential runs of around 120 s.

Figure 8.6 – Scenario I. The OSPA metric.
Note that the Std and Col do not use the
communicated data. Std stands for the
standard GM-PHD filter; Inc stands for
FI-GM-PHD filter with inception step only;
Col stands for FI-GM-PHD filter with the
coalition step only; FSys stands for the
full FI-GM-PHD system; (P) stands for a
situation, when a subset of robots is not
communicating.

Scenario IV: Final Demonstration

The goal of the final experiments is to showcase the nominal situation for which our method

is targeted, namely when communication has temporary problems that can be overcome by

taking advantage of the tracking. Four robots move on a circular trajectory. At t1 = 10 s, one

of the robots loses communication for 20 s. At t2 = 50 s, there is no communication between

any pair of robots, for a period of 10 s. Finally, at t3 = 110 s, one robot loses communication

for 10 s. The total length of the run is 120 s, and we perform 10 sequential runs. A i) perfect

communication with dynamic role assignment is the baseline for comparison. We study the

performance of ii) the standard GM-PHD filter and iii) the full FI-GM-PHD system.

8.6.2 Results

In the following section we use the following acronyms for labeling the methods. Std stands

for the standard GM-PHD filter; Inc stands for FI-GM-PHD filter with inception step only;

Col stands for FI-GM-PHD filter with the coalition step only; FSys stands for the full FI-GM-

PHD system; NT stands for experiments where robots do not perform tracking, but use

only communicated data; RA stands for experiment where dynamic role assignment is used

(indicated only for NT); (P) stands for a situation when a subset of robots is not communicating.

Videos of the experiments are available at the link provided in the footnote5.

5 https://www.epfl.ch/labs/disal/research/InstitutionalRoboticsFormations
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Figure 8.7 – Scenario II. Failure rate r f . NT
stands for experiment where robots do not
perform tracking, but use only communi-
cated data; RA stands for experiment where
dynamic role assignment is used (indicated
only for NT).

Scenario I: Multi-Robot Tracking

Figure 8.6 shows the average OSPA results calculated between the ground truth and the

estimates of the five robots. The results suggest that the standard GM-PHD filter and the

Col method achieve the best performance, irrespectively of whether the other methods use

additional data. This is counterintuitive, as one might expect that when communicated

self-localization information is added to the tracking data, this additional source of infor-

mation should improve the estimates. Since the poses shared by the robots and used in the

methods Inc and FSys are the self-localization poses, this data inherently incorporates the

self-localization error of the tracked robots (in addition to the self-localization error of the

tracking robot), so the above methods naturally perform worse than the methods that do not

incorporate the error. However, even though according to the ground truth the tracking data

in methods Inc and FSys appears to be inferior when communication is sparse (with high

message drop probability and when not all the robots communicate), in reality the robots

perform formation control based on their own self-localization data and have no access to

ground truth, neither of their own nor of the neighboring robots. Therefore, formation control

based on estimates that include the self-localization data in practice does not perform worse

than if it relied purely on tracking. Moreover, in Scenario I the robots do not rely on the

tracking data for navigation, but only passively collect it. The FI-GM-PHD filter has been

designed to be used for active use in formation control, where collective motion control and

tracking have mutual influence on each other. In the ensuing experiments, it will be shown

that the proposed approach exceeds the performance of the original method in its designated

applications.

Table 8.1 – Scenario II: OSPA metrics

Std Col FSys
pmd 0.0 0.5 0.9 (P)

OSPA mean 0.4 0.4 0.20 0.22 0.26 0.32
OSPA std 0.07 0.3 0.05 0.05 0.10 0.03
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Figure 8.8 – Scenario II. Formation error.

Scenario II: Initialization

Figure 8.7 shows the failure rates r f for each of the tested methods. An experimental run is

labeled as failed if the robots are not capable of converging to a stable formation state, caused

by the lack of data or collisions. We consider a formation to be stable when the formation error

falls below a pre-established threshold and attains a steady state. If the robots are not capable

of converging to a formation after initialization, or if the formation breaks after convergence

without external disturbance, the formation is considered unstable. It is clear that when robots

do not use tracking (NT, NT+RA) and some of the robots are not communicating (P), the

robots always fail, hence r f = 1.0. The lack of dynamic role assignment in NT leads to frequent

collisions, as the robots must shuffle when moving to designated places in the formation. In

general, methods Inc and FSys perform at least as well as the baseline NT, but they also allow

for formation initialization even when not all the robots communicate (P). Additionally, using

the formation prior in FSys leads to higher chance of success than not using it in Inc. Using

the formation prior but no communication in Col leads to slightly worse performance than

FSys, with r f = 0.36, however Col still significantly outperforms the standard GM-PHD filter

(Std) in terms of its success rate.

The tracking performance, summarized in Table 8.1 shows that communication always im-

proves tracking in the FI-GM-PHD method (FSys) as compared to when communication is not

included (Std and Col). The formation convergence as well as the precision of the formation

can be deduced from Figure 8.8, which shows the average time-wise evolution of the formation

error eF for pmd = 0. The convergence rate is slower for the tracking methods (Std, Inc, Col

and FSys) than for the baseline NT methods. Among the tracking methods, the steady state

with eF ∼ 0 is only achieved by the full FI-GM-PHD (FSys), while lack of communication (Std

and Col) leads to slight deformation of the final formation shape.

Scenario III-A: Challenging Environments The trajectories of the robots using the FI-GM-

PHD tracker in a challenging environment can be seen in Figure 8.9. Even though a comparison

between the FI-GM-PHD filter and the GM-PHD filter was not the aim of the experiment, the

tests performed with the standard GM-PHD filter give a better insight as of why a tracking-
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Figure 8.9 – Scenario III-A. Simulation screenshot (a). Trajectories of the robots at t = 62 s (A),
t = 114 s (B), t = 190 s (C) and t = 270 s (D).

Figure 8.10 – Scenario III-A. Formation error (left) and OSPA (right) performance measures.

only method (Std) is not sufficient for robust navigation of multi-robot formation in realistic

environments. Figure 8.10 shows that for the GM-PHD filter (Std) the eF and OSPA metrics

on average keep rising until the point when the formation breaks apart at around t = 80 s

(caused by the robots losing track of the leader or drifting apart form each other until they

move out of field of view). This is not the case for the FI-GM-PHD (FSys) method, which

enables periodic correction of the tracker with the communication data, even when only a

subset of robots communicates. Note that the presence of obstacles that are close to the path

of the robots forces a deformation of the formation shape, which in turn leads to lowering

the weights of the filter components that stem from the formation prior, so the coalition

step of the FI-GM-PHD has a small effect on improving the tracking performance. Therefore

in challenging environments the FI-GM-PHD filter with no communications is expected to

perform very similarly to the standard GM-PHD filter.

Scenario III-B: Measurement Error Results summarized in Table 8.2 indicate, that even

though larger measurement error has a negative impact on the performance of the FI-GM-

PHD filter, the method is still capable of providing good enough estimates to sustain the

robot formation even with the measurement error of up to 1 meter. Precision of the formation,

expressed by the formation error eF , deteriorates steadily with the increase of the measurement

error eM , however it remains within reasonable bounds of less than half of robot radius. There
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is a similar trend in the tracking performance. For eM = 1 m the robots, however, begin to have

a large offset from the desired places in the formation, so the likelihood of collision increases,

up to the point where for eM > 1 m the formation is no longer guaranteed. One can also notice

that even though the values of OSPA in Table 8.2, in the range ∼ (0.7−0.8) are significantly

larger than in Scenarios I to III-A, the robots are still capable of maintaining the formation

based on the estimates.

Table 8.2 – Scenario III-B: Metrics

NT+RA FSys
eM [m] 0.0 0.3 0.6 0.75 1.0

eF mean 0.2 0.27 0.32 0.36 0.32 0.34
eF std 0.03 0.1 0.1 0.1 0.16 0.1

OSPA mean - 0.7 0.67 0.76 0.77 0.83
OSPA std - 0.04 0.04 0.05 0.07 0.05

Scenario IV: Final Demonstration

Similarly as in Scenario III-B, the GM-PHD tracker alone is not capable of providing robots state

information reliable enough for maintaining a formation for extended amount of time. Even in

an environment free of obstacles, rotation of the formation and the associated temporary loss

of neighbor tracks causes divergence in the local robot perception of the optimal assignment,

which when uncorrected, leads to instability of the formation (see Figure 8.11, t = 42 s).

The performance of the FI-GM-PHD method (FSys) remains stable even when one robot is

disconnected and when none of the robots communicates. The tracking error, shown in

Figure 8.11, stays around a constant value, irrespectively of the communications status. The

formation error in Figure 8.11 is comparable to the baseline error of formations that rely on

perfect communication (NT+RA). Slightly divergent behavior between NT+RA and FSys at

times t = 80−120 s occurs due to the fact that during this part of the experiment the robots

are navigating closely to a wall. The NT+RA method leads to higher temporary formation

distortion, while the FSys method results in the formation staying closer to the desired shape,

but taking longer to recover.

8.6.3 Discussion

Highly dynamic scenarios with multiple robots moving nearby in a coordinated fashion are

decidedly challenging for tracking. While the multi-target tracking methods work well with

well-separated targets and reliable measurements [60], long-term occlusions, convoluted

tracks, and sensor-induced clutter hardly distinguishable from the real tracks cause deteriora-

tion of tracking performance up to a point, where the reliability of estimates is insufficient for

maintaining a formation. Structured indoor environments, where the robots must navigate

along complex paths and around obstacles, increase the difficulty of the problem even further.
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Figure 8.11 – Scenario IV. Formation error (left) and OSPA (right).

Furthermore, in case the estimates must be matched with the formation roles, and when

the role assignment is necessary, any tracking errors are escalated. If the assignment is in-

consistent among the robots, the different perception of the overall formation state may not

allow consensus methods to converge. For this reason only a subset of robots can maintain

formation with tracking-only data for longer periods of time. With a small numbers of robots,

the complexity of association and probability of wrong assignment is low, therefore a larger

proportion of non-communicating robots is allowed. With an increasing numbers of robots,

this proportion becomes smaller. Therefore for groups of robots larger than the size demon-

strated in this chapter, one should consider anonymous (ID-less) formations (e.g., potential

fields), where each robot keeps a constant distance from each estimated neighbor irrespective

of the identity of that robot. Such methods are much less prone to tracking errors, at the

expense of the precision of the formation shape.

Incorporating communicated data in the tracking filter can provide reliable data used for

reinforcing the existing targets or for adding targets that cannot be tracked using other means.

In our work [4], the communicated data is included as intensity in the prediction step (anal-

ogously to the birth intensity), while in this work the communicated data is integrated as

measurements in the update step. We compared the two approaches in a series of tests (not

included in this manuscript), the results of which show that the latter systematically yields

moderately better performance. More importantly, the latter method is simpler and more

intuitive. It does not require complex parametrization that depends on the experimental setup,

as it is the case with the first method. Irrespective of the method, when adding communicated

data in the filter it is important to adapt the selection step of the PHD filter to discourage

double-counting of the targets and prevent inconsistencies in the targets weights.

Finally, incorporating formation geometry in the tracker might lead to worse performance

than if such information was not used. While the posterior enforcement stage of the coalition

step (step 1-4 in Algorithm 2) is robust to challenging scenarios, and in the worst case it does

not improve performance of tracking, the novelty stage (step 6 in Algorithm 2) can create a

virtual robot in place of a robot that singles out from the formation. This can happen when

all the robots except one are close to desired places in the formation, and is common with

leader-follower formations, when the leader moves too fast for the formation to converge. One
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Figure 8.12 – Representative pictures of experiments in Scenario II-A with pmd = 1.0 (left) and
Scenario III (right).

possible solution to this problem is to reinforce the follower-leader edges with higher weights.

However, in some environments characterized by high clutter, where the followers might

get stuck behind an obstacle, one might have to consider disabling the novelty step. Using

formation geometry is particularly advantageous in situations where a subset of robots cannot

communicate and measurements are unreliable, but the formation is capable of physically

maintaining a close-to-desired shape. In such instances, the coalition step can determine

whether the formation continues to function or if it fails.

8.7 Real Robot Experiments

As our objective is to evaluate the robustness of the methods that were first tested in high-

fidelity simulation, we keep the parametrization used in the simulated experiments of Sec-

tion 8.6, with the notable exception of calibrating the sensor model according to the empirical

data (the details are given in the sections that follow).

8.7.1 Self-Localization and Measurement Errors

The performance of our methods is affected by two sources of stochasticity. First, the self-

localization error eL , which is included in the formation projections and in the positioning

information communicated by the robots. Second, the measurement error eM , which is

independent of eL and affects the sensory data. Before evaluating our FI-GM-PHD method in

reality, we carried out a series of tests to understand to what extent these two errors may affect

the performance of our system.

The self-localization error eL is the difference between the self-localization positions and

ground truth data from the MCS. To calculate the eL in test TI we move a robot around the

arena for 960 s and average the results.

The measurement error eM is the difference between the estimated position of detected robot

and its actual position. In our system the error is higher in dynamic situations, where both
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the detecting and the detected robots are moving [5], therefore to determine eM in test TI I we

moved two robots independently, keeping them within sensing radius, with the range and the

bearing between the two varying throughout an experiment that lasted for 960 s.

The results are summarized in Table 8.3. The self-localization error can be seen as insignificant

given the size of the robot with the diameter of 0.65 m. The measurement error is on average

close to the size of the robot radius, posing an additional challenge of substandard robot

sensing that has a direct effect on the tracking performance.

eL eM

mean std mean std
0.18 0.051 0.33 0.24

Table 8.3 – The self-localization error eL and the measurement error eM of our setup, determined
empirically.

8.7.2 Model-Based Probability of Detection

In Section 8.3.2, we explain how the probability of detection pD reduces the risk of loosing

a track. For this purpose, in our model we integrate the sensor FOV and occlusions. For

real robot experiments, we additionally model sensor-dependent probability of missing a

detection and incorporate it in pD .

Our model is based on empirical data collected in test TI I . The model characterizes specific

sensors, therefore it is different for each robot. Recall that the MBot robots are equipped with

two LRFs. The sensors, each of them providing 240◦ field of view, are located at the front and

at the back of the robot, while on the sides their ranges overlap. The overlapping however is

skewed, which results in higher probability of detection loss around the angles −π/2 and π/2.

To the resulting distributions, we fit Gaussian models using the curve_fit method from SciPy

optimize6. The data and the models fitted to it are shown in Figure 8.13. The spikes indicate

the portion of the lost detections pD,s for a given angle. The resulting probability model is

added directly to the probability of detection pD of each robot.

8.7.3 Scenarios

The FI-GM-PHD filter is evaluated in three scenarios: (I) tracking decoupled from formation

control, where robots do not use the tracking data for control, (II) tracking for formation

control, where we alter the quality of communication and simulate augmented detection

error, and (III) in a realistic scenario, where robots navigate among obstacles scattered in the

environment. Our methods are compared with the standard GM-PHD filter and with respect

to the baseline formation control with full communication an no tracking.

6 SciPy library, https://www.scipy.org
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Figure 8.13 – The model of sensor-
dependent missed detection probability
determined empirically for each robot.

Scenario I: Multi-Robot Tracking

We collected a dataset (raw sensor data, positioning information and the formation state) in

baseline experiment with formation relying on regular WiFi communication. The formation

followed an eight-shape trajectory and involved three robots forming a triangle shape with

the inter-robot spacing of 1.75 m. We performed multi-robot tracking with the collected data

offline, with the standard GM-PHD filter, and with the FI-GM-PHD method with simulated

message drop probabilities of pmd = 0.0 (i.e. regular communication), pmd = 0.5, pmd = 0.9

and pmd = 1.0 (i.e. no communication). For each experiment, we performed 11 sequential

runs, each lasting 120 s.

Scenario II: Tracking for Formation Control

In contrast to Scenario I, in the following experiments tracking is run online, and used for

formation control directly. In other words, the performance of the tracking system affects the

formation control efficiency, which in turn has an effect on tracking through the coalition step.

We distinguish two sub-scenarios:

Scenario II-A: Message Drop Probability where we simulated message drop probabilities

by varying pmd ∈ {0.0,0.5,0.8,1.0} and compared to a regular communication baseline case.

Scenario II-B: Measurement Error where we altered the precision of the robot detection

by adding a random uniform error to the original measurement, with the magnitude of

eM = {0.0,0.5,0.9,1.0} m. The probability of message drop was pmd = 0.0 so as to decouple

the effects of communication quality and the sensing factors. The experimental settings,

including the number of robots, the desired formation shape and the prescribed trajectory

were identical to those of Scenario I.
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Scenario II-A. Scenario III.

Figure 8.14 – Trajectories of the robots using the FI-GM-PHD filter with pmd = 1.0, i.e. with no
communication. For Scenario II-A trajectories of the robots are given at (a) t = 15 s, (b) t = 55 s, (c)
t = 95 s. For Scenario III, the trajectories are given at (a) t = 15 s,(b) t = 45 s,(c) t = 75 s.

Scenario III: Challenging Environment

In the final set of experiments, the robots move in a triangular formation with the inter-robot

spacing of 1.6 m in the arena scattered with obstacles. The leader robot planned the trajectory

using a FMM [112]. For each experiment, we performed 11 sequential runs of approximately

100 s. We perform a perfect-communication baseline experiment and successive runs with

varying communication quality characterized by pmd ∈ {0.0,0.5,0.8,1.0}.

8.7.4 Results

We use the following acronyms for labeling the methods. NT stands for the baseline experi-

ments with the formation relying on regular communication and no tracking, Std stands for

the standard GM-PHD filter and FSys stands for the full FI-GM-PHD system. Videos of the

experiments are available at the link provided in the footnote7.

Scenario I: Multi-Robot Tracking

The OSPA performance is summarized in Table 8.4, from which we draw two conclusions.

First, the tracking performance of the FI-GM-PHD filter degrades gracefully with the drop of

7 http://disalw3.epfl.ch/research/alicja/Chapter_8-7.mp4
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Figure 8.15 – Scenario II-A: OSPA and formation error eF .

the communications quality. Compared to when the positioning data is received at 10 Hz, in

the case of no communication the performance of FI-GM-PHD method is only 37% worse.

Second, in the case of pmd = 1.0, i.e. where no communication occurs, the FI-GM-PHD filter

outperforms the standard GM-PHD filter. This is a fair comparison, as both methods rely on

the same data, but the FI-GM-PHD filter performs an additional coalition step.

Scenario II-A: Message Drop Probability

The formation error, shown in Figure 8.15, remains bounded for all the tested cases. It oscillates

between as low as 0 m and up to 0.4 m, with a short-term peak in the FSys and pmd = 1 case.

Higher values of eF are resulting from the fact that during part of the experiment the leader

robot is situated behind the followers, and the “pushing” forces it exerts have a smaller effect

than the “pulling” ones (they act against the follower-to-follower forces, not with them). For

the majority of the run duration the formation error of all the methods follows that of the NT

baseline.

Shown in Figure 8.15, on average the OSPA error is the lowest for the FSys method and it

gracefully degrades with the reduction of the communications throughput. As summarized in

Table 8.4, the rise of the OSPA error with respect to the pmd is moderate, with the difference

between the pmd = 0.0 and pmd = 1.0 amounting to 27%. This confirms the results we obtain

in Scenario I, but in the case where the tracking is performed online. On average, the OSPA

error of the FI-GM-PHD with no communication (pmd = 0.0) is almost identical to that of

the standard GM-PHD filter. However, during our experiments, the Std method resulted in 3

formation failures out of the total of 11 runs. A run is labeled as failed when at least one of the

robots stops keeping the formation with the other robots and falls behind. This phenomenon

is typically caused by a lost estimate, an estimate fixed to an object in the area, mistaken role

association or a combination of the above. No failures occur in the FSys case, even when

no communication is allowed. An example of a trajectory of the FI-GM-PHD filter in the

pmd = 1.0 case is shown in Figure 8.14.
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Table 8.4 – OSPA metrics for Scenarios I-III.

Scenario I

Std FSys

pmd 0.0 0.5 0.9 1.0

OSPA mean 0.63 0.41 0.49 0.56 0.57
OSPA std 0.24 0.11 0.16 0.18 0.19

Scenario II-A

Std FSys

pmd 0.0 0.5 0.9 1.0

OSPA mean 0.64 0.50 0.57 0.62 0.63
OSPA std 0.21 0.14 0.18 0.19 0.19

Scenario II-B

FSys

eM 0.0 0.1 0.3 0.6 1.0

OSPA mean 0.50 0.48 0.49 0.52 0.55
OSPA std 0.14 0.14 0.14 0.14 0.14

Scenario III

Std FSys

pmd 0.0 0.5 0.9 1.0

OSPA mean 0.74 0.53 0.63 0.67 0.67
OSPA std 0.23 0.16 0.20 0.20 0.20

Scenario II-B: Measurement Error

Based on the results summarized in Table 8.4 we can deduce that once the communication

quality is marginalized, the measurement error has little effect on the performance of our

method. Recall that our preliminary evaluation determined the baseline detection error of our

setup with two LRF to be around 34 cm. The addition of a random uniform error of less than

that value (as in the eM = 0.1 and eM = 0.3 cases) has no effect on the tracking performance,

while injection of the error as high as 1 m (one and a half times the robot diameter) results in

14% decrease of OSPA compared to the eM = 0.0 case, confirming robustness of our methods

to sensory imperfections.
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Figure 8.16 – Scenario III: OSPA and formation error eF .

Scenario III: Challenging Environment

The experimental setup with the obstacles scattered around the arena and the robot trajecto-

ries recorded during one run of the FI-GM-PHD filter with pmd = 1.0 is shown in Figure 8.14.

The OSPA metrics, plotted in Figure 8.16 and summarized in Table 8.4 once more confirm

stability of the tracking performance of our methods, even when the formation experiences

deformities resulting from the environmental factors. Once more we observe the trends recog-

nized in Scenario I and Scenario II-A, namely that the increase of pmd has a bounded effect

on the quality of tracking (with the OSPA in the pmd = 1.0 case being 27% worse than in the

pmd = 0.0 case) and that the FI-GM-PHD filter outperforms the standard filter even in the case

when communication is not used (with OSPA of FSys, pmd = 1.0 being 10% lower than Std).

The formation error shown in Figure 8.16 remains close to the NT baseline, with the exception

of the Std and the FSys with pmd = 1.0 methods, the variance of which rapidly increases

around t = 50 s, at the time where both methods experience formation failures. Out of all

the tested cases, the Std and the FSys with pmd = 0.9 and with pmd = 1.0 each resulted in

failure to maintain the formation in one out of 12 runs. Each of these methods incorporates

very little (one message per second) to no communication. Once a robot falls slightly behind

during a maneuver of obstacle avoidance such robot has no means to recover if the obstacle

occludes the other formation members, while the impact of including the formation geometry

is reduced because of the actual formation is drifting from the desired set point.

8.7.5 Discussion

The presented results consistently lead us to two conclusions. Firstly, our methods are robust

to the deterioration of communications quality (Scenario I and II-A), sensory imperfections

(Scenario II-B) and the environment complexity (Scenario III), with the tracking performance

degrading gracefully with the increasing levels of experimental difficulty. Second, our FI-

GM-PHD method outperforms marginally (Scenario II-A) or significantly (Scenario I and III)

the standard GM-PHD filter, even in the cases when no communication occurs. One should

note that although it may seem that the FI-GM-PHD filter has obvious advantages over the
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standard filter, as it combines data from multiple information sources as opposed to the single

one used in the canonical GM-PHD filter, achieving effective fusion is nontrivial because of

the inconsistencies introduced by the self-localization (incorporated in the communicated

positioning information) and the detection errors. Fusion, if done inappropriately, can result in

track splitting and ambiguity of estimates, which in turn can lead to erroneous role assignment,

ill-defined formation, and finally, breaking of the formation. The GM-PHD filter facilitates

fusion of data from multiple heterogeneous sources, but care must be taken so that the

advantageous properties of the original method are not sacrificed.

The primary objective of the experiments above has been to validate the FI-GM-PHD filter

with real robots and within a realistic environment. We conclude that our methods prove

to be highly robust, and do not require fine-tuning when moved from simulation to reality

(recall that we do not perform re-parametrization except for updating the sensor-dependent

probability of missed detection).

Through the experimental validation not only did we prove the robustness of the FI-GM-

PHD method, but we tested it in settings more challenging than what the filter has been

originally designed for – situations where communication suffers from short term outages.

The FI-GM-PHD is shown to be able to successfully sustain the formation even in situations

of total communication loss, keeping the probability of formation failure marginal even in

environments cluttered with obstacles.

Summary

In this chapter we have presented a strategy for providing reliable and robust robot

state estimates to be used for formation control when the communications throughput

is low or even when communication fails. For safety and acceptance reasons, such

backup system is necessary for establishing cooperative multi-robot navigation in

human-populated environments.

Our method combines absolute positions exchanged by the robots, information about

the formation geometry and sensory detections in an extension of the GM-PHD filter.

The experiments performed in a high-fidelity simulator and with real robots demon-

strated that our approach, the FI-GM-PHD method, is capable of maintaining the

state estimates even when long-duration occlusions occur, and improves awareness

of the situation when communication is sporadic or suffers from short-term outage.

Moreover, the results have confirmed that the proposed tracking strategy allows for

sustaining formations in cluttered environments, with high measurement uncertainty

and low quality of communication. We have studied the limitations of the method when

the spatial configuration of the robots is far off from the desired formation geometry,

including initialization and cluttered environments. The proposed method not only

outperformed the standard tracking, but also proved comparable to methods relying on

perfect communication.
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Our final validation of the FI-GM-PHD filter is presented in Chapter 15. In experiments

governed by institutions a group of robots shares an environment with humans and

modifies the formation shape in order to respect social norms. Although the high

dynamics of the experiments caused by the presence of a human and a purposeful

alteration of the formation geometry to meet social norms present additional challenges

to our method, we show that complementing faulty communication with tracking

through a FI-GM-PHD filter significantly reduces the chance of formation breaking and

the probability of mission failure.
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Part IIIInstitutions and Norms

When things are simple, fewer mistakes are made.

The most expensive part of a building is the mistakes.

Ken Follett, The Pillars of the Earth
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9 Introduction

A LL human interactions, in both social and economic life, depend on some sort of

trust in the behavior of the others. Trust is based on a social order, which inspires

reliance and confidence, and where existing rules of conduct ban unpredictable,

erratic behaviors and suppress opportunism [113]. Social order – a predictable and

comprehensible pattern of human actions and reactions – is achieved through institutions,

while the core of each institution relies on social norms. To become integrated into our society

and effectively engage in human-robot interactions, robots need to be aware of the norms

and able to act according to the expectations that such norms create. It is believed that better

understanding of the social norms can lead to higher acceptance of robots in our everyday

lives [114], while conformance to human expectations through normative behaviors can

enhance human-robot interactions and human perception of cognitive capabilities of the

robots.

The norms of human societies are formulated in human language, and it is the language that

every human comprehends, irrespective of the age, occupation or culture. However, norms

stated in a form of the human language are inherently abstract and open to interpretation.

The abstraction implies generality that allows for applying norms in a variety of situations, but

if the robots are to adhere to social norms, they must be capable of translating abstract norms

to the robotic language.

In this chapter we introduce the institutional and norm-related concepts and discuss the

challenge of dealing with generic norms.

9.1 Institutions and Norms as Essential Elements of a Society

Institutions sit at the the very foundations of our living standards and our sense of security

and community. There are many different forms and types of institutions. The general simple

understanding is that institutions are formal, legally-bound structures, but the notion of insti-

tution studied across the disciplines including philosophy, sociology, economics, politics, and
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legal systems encompasses a much broader concept. Language, money, law, table manners,

religion and family – those are all systems of social order, and so, also institutions. Such

institutions create prescriptions – norms for social behaviors, facilitating decision-making

in unknown situations and regulating how humans communicate, act and cooperate dur-

ing social engagements. They reduce the cost of coordinating human actions by imposing

form and consistency on human activities and creating stable expectations of the behavior of

others [115].

In view of the above description, every social interaction in human societies is steered by some

sort of social norm embedded in our minds since the early childhood. Similarly, social norms

and institutions can be identified in the behavior of gregarious animals. Social insects such as

ants and bees prescribe each individual an institutional role with its associated expectations.

And so, every individual knows its mission – the worker ant is to collect seeds, the bee queen is

to lay eggs, while the social norms embedded in the animals allow the other individuals to

believe that the queen will not leave the apiary and that the worker will bring the food to feed

the minors. This mutual understanding of the institutional environment assures social order

and stability, and facilitates cooperation at the most fundamental level. One can conclude

that norms (and institutions that are build around them) are essential for all stable societies,

irrespective of the cognitive capabilities of the individuals that form them.

9.2 What are Norms? What are Institutions?

Social norms represent the common understanding that govern the behavior of the members

of a society. As such, they regulate communication, cooperation and other social interactions.

The definition of norm varies among the different areas of study such as sociology, game

theory, psychology, and legal theory. In social sciences, norms are informal rules and behavior

standards that are shared among the members of the society. They constrain social behavior

without the force of laws and are considered valid by the majority of a social group [116].

Norms represent desirable behaviors for a population and indicate actions that are expected

to be pursued that are either obligatory, prohibitive, or permissive given the situation [117].

Institutions are mechanisms for reducing uncertainty, simplifying decision-making and pro-

moting cooperation [118]. To be effective, they should be simple, certain, abstract and rea-

sonably stable [113]. Institutions are a product of deliberate design (law or political systems),

arise spontaneously as a set of informal norms on the basis of self-interest of individuals (table

manners) or are a combination of the above. They preside over the individual and collective

behaviors by obliging everyone to act according to the norms.

9.3 The Issue of Norm Interpretation

In sociology, norms define the behavioral expectations within a society. A norm is a general

rule of conduct forming a link between the abstract values of the group and the concrete
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behaviors that are to respond to such values [119]. As such, norms are the explicit or im-

plicit rules that a group uses to determine appropriate or inappropriate beliefs, attitudes, and

behaviors [120]. As stressed by [121], the concept of social norm means different things to

different scholars, and since there is no common definition of social norms, there can be little

agreement about how to formalize them. For this reason we focus on the most general form

of norms – norms formulated in human language. Nonetheless, norms of human societies

formulated in human language allow for a certain maneuvering margin in terms of interpreta-

tion, or even, as stated in [118], they “share problems of lack of clarity, misunderstanding, and

change that typify any language-based phenomenon”. Even for humans, interpreting norms is

more challenging than writing them down. For robots that operate on robot-understandable

commands, interpretation of norms defined in human language is close to impossible.

Summary

Social order – a predictable and comprehensible pattern of human actions and reactions

– is achieved through institutions, while the core of each institution relies on social

norms. It is believed that robots capable of reasoning about social norms are more

likely to be recognized as an element of the human society. Nonetheless, behaviors

of such robots and the norms they follow must be understandable. Norms in human

societies are defined in human language, and are therefore inherently abstract and

interpretable. If robots were to adhere to such human-understandable norms, it is

necessary that they have means to interpret them. However, for robots that operate on

robot-understandable commands, interpretation of norms defined in human language

is close to impossible. In the next chapter, we review the literature addressing the

issue of norm interpretation across the disciplines, and discuss how our institutional

formalism draws inspiration from these approaches to provide the robots with the

means to interpret abstract, language-defined norms.
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T HE concepts of norms, institutions, and methods for achieving social order are

interpreted, analyzed, and modeled across the domains. While most of the meth-

ods are disconnected from physical execution and, as a consequence, cannot be

easily applied to robotic scenarios, they provide valuable insights into the design

of normative frameworks. In this chapter, we describe how the institutional and norm-related

concepts are viewed in different areas of study, ranging from social sciences, through eco-

nomics, to computational multi-agent frameworks and robotics. How our work is situated

with respect to these studies is illustrated in Figure 10.1.

10.1 The Economics View

The definition of institution is an object of discussion among the social scientists, where

numerous interpretations and alternative meanings do not seem to converge to a generally

valid definition, other than the institution having a loose association with regularity of be-

havior [113]. An ongoing debate within the new institutional economics discusses whether

institutions should be regarded as equilibria, norms, or rules, while the different terminology

appearing across the disciplines is compared to the Tower of Babel [118].

10.1.1 Institutional Approaches

One interpretation declares institutions as rules with sanctions, that have normative influence

on human behavior, constrain arbitrary and opportunistic actions and structure interac-

tions [122][113]. An alternative, and more general view, defines institutions as systems of

established and prevalent social rules, rather than rules as such [115]. In short, institutions

are systems of social rules, not simply rules. As systems, institutions include enforcement ar-

rangements [116], specify the roles, information shared by the participants, allowable actions

and their outcomes as well as costs and benefits of participation [118].
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Figure 10.1 – The situatedness of our work with respect to the studies ranging from social sci-
ences, to computational multi-agent frameworks and robotics. The dashed areas indicate lack of
representation of the given level.

The common view is that modeling and understanding of a social framework with all its

relevant variables and the their immense number of combinations, all existing at different

levels of abstraction, is a complex endeavor [118].

Attempts at developing a general modeling framework can prove a valuable inspiration for

designing socially aware robots. Social frameworks proposed by economic studies identify

the universal elements and the relationships that one needs to consider for institutional

analysis and provide meta-theoretic languages to support interpretation of social interactions.

Conventional approaches, however, tend to focus on game-theoretic models or utility-driven

decision-making in an isolated context [119]. A notable exception is the Institutional Analysis

and Development (IAD) framework proposed by Elinor Ostrom [118], which embraces the

complexity of real-world situations with its countless variables and contexts within contexts

and makes precise assumptions about a limited set of parameters and variables.

10.1.2 Norm Abstraction and Interpretation

In economics, the issue of norm interpretation is identified at different levels of their operation.

In [113] it is stated that rule systems work better in ordering human actions if they form a

hierarchy running from general, universal rules, which are often abstract, to specific rules. A

definition of rule that hinges solely on behavioral regularities proposed in [123] neglects the
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ontology of rules and suggest that a rule does not have to be known to the individuals in any

other sense than they normally act in accordance with it. In [124] it is pointed out that rules

must be codifiable, but part of knowledge can never be fully articulated. A discussion in [116]

takes a step forward by implying that gaps in formal constraints are covered to some degree by

informal rules and that institutional incompleteness is inevitable, causing problems for the

design of behavioral rules for a given institution.

In an attempt on defining norms formulated in human language, the IAD framework in [118]

defines the term institutional statement – a broad concept encompassing three normative

media – rules, norms, and shared strategies. These statements describe a broad set of shared

linguistic opportunities and constraints that create expectations about other actors’ behaviors

and prescribe, permit, or advise actions or outcomes for the group members. A general

syntax used for analysis of similar statements includes: ATTRIBUTES – to whom the statement

applies, DEONTIC – modal verb, such as must, may or must not, AIM – is the action or action

outcome, CONDITIONS – are variables defining when and where an action or outcome is

permitted, obligatory or forbidden, and OR-ELSE – are consequences of not following the rules.

Elements of syntax are used for distinguishing rules, norms (rules without sanctions), and

strategies (norms without deontic operators). Typical institutional statements are: a) “If you

use a microwave, you must clean up your own mess!” or b) “The person who places a phone

call, calls back when the call gets disconnected.” where a) is a norm (it missed the OR-ELSE

element), while b) is a shared strategy (it misses the modal verb).

There are no uncontrollable interactions in robotics, as there are no problems with opportunis-

tic behaviors or conflicts over limited resources. In this sense, the purpose of institutions in

robot and human societies differ. However, as we will describe in later chapters, the powerful

formalization of the IAD framework became a strong inspiration for our definitions of norms

and institutions.

10.2 The Multi-Agent Systems View

The field of Multi-Agent Systems (MAS) started showing increasing interest in social theories

as the focus of research expanded from the individual agent models to models of socially

situated agents.

MAS research has addressed the problem of structuring agent interactions by attempting

different approaches: agent communication languages, communication and interaction

protocols, teams and coalitions, modeling of negotiations, institutions, organizations and

norms [125]. Similarly as the concepts of institutions, organizations, and norms are innately

bound, the MAS studies on organizational approaches, electronic institutions, and normative

MAS are closely related and overlapping in some aspects. Nevertheless, they provide invaluable

tools for analysis of interactions in artificial systems.
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10.2.1 Institutional Approaches

In this section, we take a closer look at the the normative MAS and the models of institutions

and organizations, where the concepts of organization and institution are used as abstractions

for analysis and modeling of cooperation and coordination in agent societies, while the

normative systems study the relation between norm-governed agent behavior and macro-

level system effects, and how the heterogeneous micro-world of individual behaviors generate

the global macroscopic regularities of the society.

Normative Multi-Agent Systems

Normative MAS provide the means to integrate agent mechanisms at both social and individ-

ual level, resulting in increased fidelity with respect to modeling complex social phenomena

such as cooperation, coordination, group decision-making, and organization, in both human

and artificial systems [114].

The key idea behind the normative systems is that individual and collective behavior is af-

fected by norms, which serve to guide, control and regulate proper and acceptable behavior.

Normative MAS offers mechanisms to represent, communicate, distribute, detect, create,

modify and enforce norms, and mechanisms to deliberate about norms and detect norm

violation and fulfillment [126].

Norms can be hard or soft constraints on actions that an agent can perform. In the latter

case, norms allow for the possibility that actual behavior may at times deviate from the ideal,

i.e., that violations of obligations, or of agents’ rights, may occur [127]. This is particularly

interesting in robotics, as physical situatedness in non-deterministic worlds does not admit

perfect norm compliance.

Normative MAS represent norms with simple data types, such as deontic logic, binary strings,

conditions-action pairs (in rule-based systems) and game theory [128]. Simple represen-

tation schemes reduce the complexity of the models and their computation requirements

and allow for exploration of certain system properties which may not be easily understood

otherwise [129] at the expense of realism and power of representation. Because of these prop-

erties normative MAS approaches gain popularity in the planning aspect of robotics, where

complexity and simplicity of representation are essential to real-time planning, but they lack

elaboration necessary for representing continuity and complexity of multi-robot behaviors. As

we will discuss in the later chapters, abstract norm formulation and lack of precise connection

between the abstract normative statements and any computational model makes it difficult

or even impossible to directly connect this kind of norms with the practice [130].
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Organizations

Organizational MAS approaches incorporate organizational abstractions into the computing

systems. Organizations are viewed either as processes of organizing a set of individuals, or as

separate entities, with their own requirements and objectives [130], but the primary goal of

organizations is to provide scope of interactions among a set of agents and coordinate their

behaviors to achieve some collective goal.

Organizations are conceptualized in terms of their structures, whereby a structure is a set of

roles, groups, and links specifying the structure of the system independently from the indi-

vidual agents. Structure can be explicitly implemented in the form of a social artifact existing

independently of the implementation of the agents, may be included in the implementation

of the individual agents, or may exist only intangibly, in the form of the behavior patterns

exhibited by the collective of agents during interaction [131]. A concrete organization is an in-

stantiation of an organizational structure, where roles are filled in by specific individuals [119].

That is, organizations describe objectives of the society, the roles within, rules of interactions

and the coordination protocols [130] without considering the particular characteristics of the

individuals involved.

Electronic Institutions

The notions of institutions and organizations in MAS are closely related. At the very basic

level of understanding institutions address the question of what can be done?, while the

organizations address the question of who does it?.

Electronic Institutions (EI) [132][133] are the electronic counterpart of human institutions –

they establish the expected behavior of agent societies [134]. Institutions are viewed as coordi-

nation artifacts external to the agents meant to facilitate agent interactions by establishing an

interface between the internal, rational decision-making capabilities of agents and the social

effects of their interactions [119].

EI define a controlled environment where heterogeneous agents, humans and software, can

interact by means of speech acts [134]. EI define constraints on agent interactions, regulating

them by the means of multi-agent protocols, while the individual agents are abstracted by

their roles, allowing participants with the same role to be treated collectively.

10.2.2 Norm Abstraction and Interpretation

Studies on normative MAS understand the importance of decoupling norm abstraction from

concrete system representation, and study general and domain-independent properties of

norms [114]. Existing MAS approaches distinguish several levels of abstraction, starting from

an individual agent, its role and the group it belongs to, and concluding with the overall

organization level. The HarmonIA framework [135] models organizations from the most ab-

115



Chapter 10. Related Work

stract level, where the norms are defined, down to the concrete protocols and procedures that

implement these norms. OperA [136] distinguishes between the mechanisms that describe

and coordinate the global behavior of the model, and the goals and the behaviors of the agents

that populate the model. The Organisational Model for Normative Institutions (OMNI) [137]

separates three levels of abstraction, with generic organization definition and model ontology

at the abstract level, definitions of norms, rules and roles at the concrete level and translation

of abstract norms into actions and agent low-level protocols at the implementation level. The

ISLANDER framework [138] proposes architecturally-neutral e-institutions, where no partic-

ular agent architecture or language is assumed. Computational Organization Theory [139]

uses mathematical and computational methods to study both human and automated organi-

zations, with the aim to build concepts and theories about organizations at an abstract level

and to develop tools and procedures for the validation and analysis of the models. Other

normative MAS frameworks, including GAIA [140], MOISE [141] and MOCA [142] explore

the organizational metaphor that promotes both micro-level (agents level) and macro-level

(system level) control over the design and understanding of the overall system behavior.

Normative systems and MAS are tightly related with deontic logic. Authors in [114] recognize

issues related to representation of norms as domain-dependent constraints, where the dis-

tinction between a normative behavior and an actual behavior is being disregarded and where

it is not possible to specify that some behaviors are illegal but nevertheless possible except by

ruling out these illegal behaviors by specification. The same study emphasizes that norms

should be represented using a domain-independent theory, such a deontic logic. Deontic

logic provides a means to specify what should happen if illegal but possible behaviors occur

by using special modal operators that indicate the status of behavior, namely whether it is

legal (normative) or not [143].

Insights from deontic logic can be used to represent and reason with norms and represent

norms as rules or conditionals. However, there are several aspects of norms which are not

covered by constraints nor by deontic logic, such as the relation between the cognitive abilities

of the agents and the global properties of norms. It is hard to directly connect the norms that

are formalized in the form of deontic logic with the practice [130]. The reasons listed in [144]

are:

� Norms in law are formulated in a very abstract way (vague and ambiguous).

� Norms are declarative and have no operational semantics (they express what is accept-

able, but not how to achieve it).

� There is no precise connection between the abstract normative statement and any

computational model.

Furthermore, formalization based on semantics and consequences of norms does not indicate

how the norm should be interpreted within a certain institution. As pointed out in [145], an

action mentioned in the norm statement is far more abstract than the level on which an agent
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operates on, and that it is very unlikely that the agents functioning within the institution will

explicitly have such an action available. In other words, the level on which the norms are

specified is more abstract and general than the level on which the processes and structure of

the institution are specified. Therefore, according to [145], we need to translate the norms.

Moreover, this translation is dependent on the domain (i.e. concrete system) and therefore

the translation rules depend on the ontology for that domain. And because the concrete

translations of norms do not have a direct counterpart in the institution, another translation

is needed on the level of institution to indicate how the norm is implemented. An approach

to norm translation proposed in [144] is inspired by how the gap is bridged in human rule-

based legal systems, where human laws are expressed in a very abstract way and are hard to

use in practice, but where regulations provide interpretation of the law and offer operational

constraints to be met in practice. Similarly, in [144] an intermediate level between institutional

norm specifications and institutional protocols if formed by the landmarks – sets of states

partially ordered in directed graphs, which link the institutional abstraction with the concrete

system.

Perspective

The two dominant views of institutions in economics are that 1) institutions are norms

and 2) institutions are systems in which the norms are embedded. Our approach follows

the second definition - in robotics it is not only necessary to know what are the rules,

but also who has to follow them, when and how.

The institutional formalism we present in this thesis is founded on the solutions dis-

cussed in this chapter.

First, attempts at modeling and analysis of real world social phenomena undertaken by

the economists provide valuable insights into building a framework for normative robots.

Models such as IAD proposed by Ostrom [118] encompass a large variety of interactions

and social contexts, while admitting that not all system components can be represented

or classified. Moreover, by studying actual norms existing in human societies, which are

abstract in their nature and defined in human language, Ostrom acknowledges the need

of translating abstract norms into concrete system representations. It is for those two

reasons our approach, especially the definitions of institutions and norms, is heavily

inspired by the work of Ostrom [118].

Second, normative systems propose that norms can be soft constraints and acknowl-

edge that the actual behavior of an artificial agent may at times deviate from the ideal

– which is granted in highly stochastic robot environments. In the organizational ap-

proaches, abstraction of social structure from the particular implementation of agents

and instantiation of the organization by filling the structure with the elements of a

concrete system is akin to what we refer in our work as the grounding.
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The MAS frameworks however are disconnected from physical execution and cannot

easily be applied to robots. They do not provide means for representation of physical

world, its physical actions and perceptual capabilities; furthermore, the models cannot

encompass the complexity required for social robot behaviors. Consequently, it is

impossible to use any of the aforementioned MAS methods for real robot applications

as the ones targeted in this thesis.

10.3 The Robotics View

The need for a normative framework in robotics is excellently summarized in [31]:

“(...) one main challenge in the [human-aware navigation] research area is to unify

different methods and solutions technically and semantically. This unification

requires a grounding of methods in a semantic context of behavior. Such a context

needs to define each spatial human-robot encounter as an interaction following

social rules. To find and evaluate such rules, and to map them to suitable software

processes remain the main challenge of human-aware navigation planning.”.

Furthermore [31] argues that the vast majority of surveyed publications deal with individual

domains and challenges, but there are no attempts at developing a holistic theory of human-

aware navigation. In this section, we review the related work on Institutional Robotics (IR),

in particular research in two distinct robotic domains: in the context of swarm robotics and

planning using Artificial Intelligence (AI) methods. Then we broaden our scope to review the

state-of-the-art approaches to norm-following robots.

10.3.1 Institutional Approaches

The emergent field of IR [6] is a union of disciplines studying human societies and formal-

ization requirements of robotics. Institutions are introduced as coordination artifacts in

multi-robot systems for specifying social interactions among robots and humans and in-

tended to facilitate the integration of robots in human societies. Since the robots controlled

using the IR approach abide by the norms of institutional environments created by the hu-

mans, the collective performance during human-robot interaction is expected to surpass

the existing methods. The human relationship with a robotic system may not be necessarily

focused on verbal and gestural communication skills, but rather focused on understanding of

the intentions of artificial agents or robots, so that humans no longer need any specific training

to interact with them, because when dealing with robots they adopt the same attitudes as

when dealing with other humans [146].

The principles of IR address the aspects traditionally neglected in AI, namely relevance of time

and chronology, the agent body, the world where the agent is situated, and the other agents.
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While distributed robotics approaches make progress toward embodying and situating the

agents, the sophistication of their social environment models did not reach their full potential.

The IR approach aims to meet this potential by adding the concepts of physically and socially

bounded autonomy of cognitive agents, uncoupled interaction among them and deliberately

set up coordination artifacts – institutions. Importantly, IR acknowledges the active character

of the environment and the unpredictable aggregate effects of multiple simultaneous actions

carried out by multiple agents in both physical and social (institutional) environments. Insti-

tutions are defined as artificial modifications to the environment that influence the collective

order. Humans and artificial agents are situated not only in a physical but also in an institu-

tional environment, where their interactions are being guided by a network of institutions. An

institution can be a norm, a role, a behavioral routine, physical device or any other type of

coordination artifact implemented as a material object or a mental construct. The existence of

coordination artifacts implies that an institutional setup is neither purely centralized, nor fully

decentralized, nor purely distributed, but rather a mixture of centralization and distributive-

ness. By principle, institutions are generic: they are not designed to any specific set of robots.

But it is also acknowledged that the boundaries between institutional and purely physical

aspects of the world are not sharp, and subject to interpretation.

The original work on IR [6] is a collection of insights on introducing institutions in multi-robot

systems, but it is still far away from a formal framework. A first abstract definition of institution

is presented in [7], where institution is as a tuple (ID, Rationale, Modifiers, Network, Insti-

tutional Building, History), with each component capturing the main constitutive elements

of the social order dynamics. As noted in [147], the generality of this definition makes it

insufficient for realization in control of robotic systems.

Institutional Robotics for Robot Swarms

In the context of multi-robot systems, institutions have been introduced [6], formalized [148],

and used for modelling and implementation of simple robotic behaviors [30]. For formal

representation of robot institutions, authors in [148] use Petri Nets (PNs), which encapsulate

the behavioral rules and allow for concurrent, regulated execution. An institution is defined

as a tuple consisting of conditions for institution activation and deactivation, the associated

deontic operators (stating whether the institution can be composed with other behaviors) and

a PN representation used for such composition. Composition of individual robot behaviors

and institutions organized in a multi-layer methodology results in an Institutional Agent

Controller (IAC) - a blueprint that each robot in the collective is equipped with.

Institutions are kept rather simple – an example of an institution is a 180° turn. An experience

we gained during our preliminary study in [10] made us understand that the use of similar

compact, discrete representation with PNs lacks the refinement needed for representation

of continuous multi-robot behaviors, and would quickly grow in complexity of design when

used for such systems. Furthermore, institutions are introduced to facilitate robot-robot

interaction, but not human-robot interaction, and so, there is no incentive to define norm
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in human language. Nonetheless, authors in [147] recognize the need for encapsulation,

modularization and abstraction – the key properties we aim to achieve in our institutional

framework. Encapsulation allows for heterogeneity of the actors, and so, also for mixed

societies of humans and robots. Modularity allows for hierarchical representation, where

rules (institutions) are triggered based on the events in the environment. This is equivalent to

the norm activation in our framework, where norms are activated due to conditions. Finally,

institutions as presented in [147] can be thought of as akin to the norms in our framework,

whereas the IAC, which composes institutions and individual behaviors by the means of

deontic logic, resembles an equivalence of one institution in our formalism.

Institutional Robotics for Planning

The framework presented in [13] is the first work based on IR concepts to address the need

of separation between the social structures and the concrete system. The notion of insti-

tution, defined as a set of artifacts, roles, actions and norms, is used for norm encapsula-

tion, whereas norms are predications over the institutional statements, e.g. a norm “the

customer pays money before the waiter serves food” is a relation between two statements:

before((customer,pays,money), (waiter,serves, food)). The framework distinguishes between

abstract norms and their instantiation into a concrete system, hence allowing for the use of

the same institution across different physical domains. Norms are used for restricting the

system state evolution in the planning process formulated as a constraint satisfaction problem.

Continuing with the above example, all possibilities of state evolution, where customer pays

before receiving food (at the domain level), are compliant with the norm.

Although in our methodology we adapt the separation of the institutional abstraction from

a concrete system using grounding as in [13] [149], our focus lies on coordinated multi-

robot behaviors in continuous state space, and so, the norm semantics used in [13] does

not provide sufficient sophistication and representation power to encompass the complexity

of the behaviors we deal with. The institutional approach presented in this thesis diverges

from [13] at the point where institutions are applied in physical system and the differences

mostly emerge due to different objectives – in our case for continuous collective behaviors in

human environments, in [13] for planning. However, the definition of institution, domain and

their link through grounding are similar.

10.3.2 Norm Abstraction and Interpretation

Only relatively few examples of using social norms in robotics can be found in the literature.

In [150], social rules are specified at the concrete system level using domain-dependent and

language-dependent formalism. In [151] and [152] norms are used for designing what the

robots should do, but not for how to do it, meaning that there is disconnection between the

abstract normative layer and the concrete system. To address the question of how to shape

robot behaviors according to social norms, the majority of social robotics research refers to
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the models of Proxemics [63] and Social Forces [18], based on which norms are implicitly used

for social path planning [65][153][154][155], human guidance [67] and behavior selection [79].

Lists of descriptive norms written in a natural language are employed in [156], [157] and

[75], but the translations of norms are method-specific, and targeting primarily the restricted

context of single-robot navigation with little emphasis on robot-robot or robot-human co-

operation. The above studies share the problem of being domain specific and do not have

abstract, reusable models. A model aiming at encoding guidelines for culturally competent

behaviors proposed in [78] uses specific ontology which operates at an abstract and concrete

level, but norms have no explicit representations.

Two closely related areas of research on joint actions [158] [159] and social practices [160] draw

inspiration from psychology to reason about the mechanisms that allow multiple agents to

coordinate their actions in space and time. Studies on joint actions of humans and robots

focus on the practical aspect of how to achieve successful collaboration by providing the

agents with the means for joint planning, shared task representation, intention inference and

representation of the mental model of the collaborator [161]. Social practices, on the other

hand, describe physical and social patterns of joint actions using a high-level representation,

standardized for a given context, by combining aspects such as roles, plans, norms and

resources, which can be used to construct interactions. These abstract representations are then

to be filled when they are needed to determine a course of action. A consolidated framework

bringing together solutions inspired by the work on joint actions and social practices has

the potential for achieving a powerful tool for human-robot cooperation, but up until now

solutions have been proposed only at a conceptual level [162].

Efforts to consider higher levels of abstraction are undertaken in the broad field of human-

aware task planning, focused on scheduling robot tasks and actions so as to accommodate

human presence or to collaborate with a human. Authors in [163] identify and address the

key challenge of understanding and interpretation of a broad variety of situations with rich

semantics. To this end, they propose a modular and extendable framework, where new types

of constraints can be added and solvers can be exchanged and re-arranged. In [164] planning

abilities of a social robot are designed and implemented in a task-independent manner, and

provide high levels of parametrization, so that a robot can adapt to various environments,

different tasks and variable levels of engagement. A system presented in [165] allows the robot

to elaborate and execute shared plans that are flexible enough to be achieved in collaboration

with a human in a smooth and non-intrusive manner, while building upon algorithms generic

enough to be used for other tasks and contexts. Studies on human-aware task planning focus

on what to do and when, but not on how to do it. For this reason, the key research questions

we have identified, such as interpretation of norms defined in human language and their

translation into behaviors relying on potentially complex, continuous control laws, are not

considered.

In summary, although the main purpose of norms in robotics is to guide social interaction, no

systematic framework exists to this day that brings all the elements necessary for introducing
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the normative aspect to multi-human, multi-robot behaviors. Such key elements include

general, human-understandable representation of norms, distinction between abstract, nor-

mative layer and the physical system and the connection between the two, which should

provide an answer to the question of how to translate abstract norms to concrete robot actions.

In Chapter 12, we will explore the state-of-the-art approaches to introducing language-defined

norms in robotics, particularly in navigation methods, which deal with low-level, continuous

behaviors.

Summary

Translation of generic norms defined at an abstract, institutional level into a terminology

of the concrete system is a challenge identified across the disciplines. In this chapter

we described how we draw inspiration from these findings to propose our solution

to norm representation and realization in robotic systems. In particular, the work of

Ostrom in [118] strongly influences our deliberation of the institutional components

that form a normative statement, whereas the study of Dignum on norm translation

in [145] motivates our work on norm realization.

We took this multi-disciplinary perspective to survey the recent developments on norma-

tive robotics and draw two conclusions. First, the need for abstraction of the normative

layer has been identified in the robot planning approaches, but their link to a physical

system is ignored or oversimplified. An emphasis is placed on clear semantics needed

for plan representation, but the same requirement implies need for low complexity and

thus, poor power of portrayal of complex behaviors. Indeed, in planning, most of social

norms do not answer the question of “how?”, but only “what?” and “when?” and are, in

spite of claiming to be abstract, defined at the level of a concrete system. Second, meth-

ods and frameworks for social navigation focus on answering the question “how?” to

apply social norms to robot behaviors, but the operation of norms at a concrete system

level leads to poor reusability, modularity and scalability of the solutions. Furthermore,

although proposed with the objective of being general, it is clear that the methods are

restrictive to the context of single-robot navigation.

From this perspective, our work brings the two worlds and their advantages together

in an integrated framework. In the next chapters we describe our formal framework

inspired by the planning approaches, where we distinguish the institutional layer from

the concrete system. Furthermore, we introduce the concept of norm realization, where

we answer the question of “how?” missing in the planning approaches, but addressed

by the social navigation community. We showcase our framework in a number of case

studies, where we apply norms to achieve social multi-robot behaviors in presence of

humans, and in mixed human-robot teams, in both navigational and emotive contexts.
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I N view of the literature review presented in Chapter 10 we conclude that although

multiple models for normative behaviors are proposed in the field of multi-agent

systems and robot planning, because of their disconnection from physical execution

they cannot easily be applied to robot behaviors. Conversely, in the field of social

robotics, methods exploring norms are domain specific and do not have abstract, reusable

models. In this thesis, we propose a framework that bridges the above solutions by integrating

abstract normative models and physical execution in a model-based approach.

In this chapter, we identify the concepts that lay down the foundations of our formalism

of norm-following robots situated in institutional environments, the overview of which is

presented in Figure 11.1. First, we provide the definition of institution and discuss the choice

for the components that together with norms form an institution. In a second step, we present

a formal definition of a concrete system – a domain, and discuss the link between the abstract

institutional layer and the domain achieved through grounding. So defined institution can be

reused on several physical systems. While the grounding defines the relationship between the

institutional components and the domain, it does not allow for translation of language-defined

norms onto the terminology of concrete robotic systems. Such translation is performed by

means of norm realization, which we will discuss in the next chapter.

11.1 Definition of Institution

The view we choose to adopt defines an institution as a systems of norms, as opposed to a

collection of norms only. In other words, institutions are norms and components necessary

for translation of such norms into practice. Our choice stems from the fact that, in order to

realize social norms, it is necessary to define to whom they refer to, in what situations (or

under which circumstances), and, at times, how to apply certain norm to the behavior. The

questions of “who?”, “when?” and “how?” concern both natural or artificial systems – humans

know that dressing code applies in formal situations, but not at home (“when?”), that only

children above certain age are allowed in the bouncing castles (“who?”), and that before being
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allowed to study at a university, one must fill in an application form and be accepted (“how?”).

In order to answer such questions in an artificial system, agents (or robots) must have access

to structured information necessary to enforce social norms. In our formalism, institutional

components hold such information.

Definition 11.1. Formally, an institution is a collection:

I =
〈

Norms, Roles, Actions, Conditions, Knowledge
〉

where a role in the Roles set is a function assigned to an agent, the set Actions comprises

the actions that have to be taken when playing a given role, conditions in the Conditions set

regulate whether norms are active and evaluate whether the same norms are satisfied, and

the Knowledge set gives the agents the means to comply with the norms by providing basis on

which they can act.

The above definition of institution has emerged as a result of unifying two views – a) our

preliminary work on institutions in [10], where an institution is defined as a collection of rules,

actors, actions, knowledge, memory and payoffs, and b) definition in [13], where an institution

is a tuple of norms, roles, actions and artefacts (objects in the environment).

Figure 11.1 – Institutions are defined at the
highest level of abstraction. A concrete sys-
tem is represented as a domain. Grounding
is a link connecting the abstract layer to the
concrete one, however, it is insufficient for
translating abstract norms in terms of con-
crete system representation. The translation
is achieved through norm realization, which
we describe in Chapter 13.

Roles. The purpose of assigning roles is twofold. First, roles serve to specify the mission of

an agent: for instance, a worker ant is to collect seeds, or in our formations Leaders are to

guide the Followers). Second, roles are important for understanding the classes of interactions

agents engage in: for instance, a robots should behave differently around hospital Staff than

hospital Patients, where for the first group they should minimize disturbance (also in terms

of interactive features, lights, sounds etc.), while for the latter one more lenience is allowed

and the primary objective of the robots is to provide entertainment. One should also note

that preferences can be defined for concrete agents, or the attributes thereof. For example, we

can specify that all children prefer when the robot moves slowly next to them and so does an

individual named Steven. Personalization for a given role or a given agent is further achieved

through institutional knowledge.

Actions. An action is a placeholder abstracting specific agent behavior. It allows us to reason

on a high level without the need to consider implementation details. For example, the two
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collective behaviors – formation control and flocking introduced in Chapter 5 are abstracted

away to be the same action – Follow. The differences between algorithms are taken care of at

the translation layer, but the same institution with the same norms applies to both.

Conditions. Defining conditions over the world state allows the agents to understand and

interpret the social context. For example, a condition evaluating whether there is an exam or

a class break in school situates a robot in a different social context and so, different sets of

norms are to be employed.

Knowledge. Institutional knowledge is a structure for providing the agents with information

necessary to address the question “how?”. When concretized in an actual system, knowledge

incorporates symbols, relations, facts and beliefs imperative for cooperation and provides

recipes for socially adequate interactions with humans [113]. For example, any robot moving

in a human-populated environment should know that there is a maximal allowable speed,

and what the value of that speed is. Knowledge therefore is used for encoding information

necessary for interpretation of abstract norms and should be available to all agents so that

every participant knows how to act, and knows that the others know how to act as well [166].

Knowledge also allows for personalization of interactions by specifying the preferences of

concrete agents (such as the values of the maximal speed to keep near the concrete human),

and for customization of actions with regard to the social context (for example, a robot can

make cheerful sounds to children playing a game, but not to a teacher giving a class).

11.1.1 Norms

Norms are inherently abstract statements [130], general enough to be interpreted concretely

in diverse situations. They encompass a broad set of shared linguistic constraints and oppor-

tunities that prescribe, permit or advise actions for participants. Institutional Norms denoted

with N = {n1,n2, ...} take the form of a human readable sentence with a specific syntax.

Definition 11.2. Formally, a norm is a statement, where a deontic expression forms a relation:

N : Conditions → deontic
(

Roles × Actions × Knowledge
)

The deontic includes obligations, permissions, and related concepts, e.g., must, should, must

not, etc. Not every norm sentence must explicitly include all the above elements. Statement

“no smoking” has implicit conditions (in this place, at all times) and implicit roles (everyone),

providing only the deontic operator and an action of smoking. A speed limit road sign showing

“30” is a type of norm providing only the knowledge element (the limit value), but it is generally

understood to whom it applies to and under which circumstances.

The above relation is inspired by the syntax proposed in [118] by Elinor Ostrom, winner of the

Nobel Prize in Economics in 2009, where norms are referred to as regulatory rules and take

the following syntax:
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“ATTRIBUTES of participants who are OBLIGED, FORBIDDEN, OR PERMITTED to ACT

under specified CONDITIONS, OR ELSE”.

The similarities of our proposal include the use of deontic elements, the relation between

ATTRIBUTES and Roles, the ability of participants to ACT or perform Actions, under certain CON-

DITIONS or institutional Conditions. The OR ELSE part of Ostrom’s regulatory rule encompasses

the penalty for rule infractions – an institutional aspect that we do not address in our work.

As norms operate over actions that are linked to the roles, we find it useful to define a feasibility

relation, i.e. a relation between a role and the action assigned to the participant assuming that

role (subsuming the actions that are possible for such agents). For example, a role of a teacher

is linked to an action of giving a class.

Definition 11.3. The feasibility relation takes the form:

F ∈ (
Roles × Actions

)
The feasibility relation is useful when multiple heterogeneous agents are to deliberate on the

role assignment within the team. The link between an agent and the role it can assume given

its capabilities is provided by grounding, which we discuss in the sections that follow.

11.1.2 Domain

An institution is an abstraction that can be instantiated in concrete systems that are physi-

cally different but can be described by the same structure. Such a concrete system is called

a domain.

Definition 11.4. A domain is a tuple

D = 〈 A, B, R 〉

where A is a set of agents, B is a set of behaviors and R is a finite set of state variables.

The set A can include humans and robots. B is the collection of all behaviors that agents can

perform. The state variables R define properties pertaining to the agents or objects in the

domain. They may indicate the position of an agent or an object, the activation of a behavior,

etc. The state variables also serve to evaluate whether an institutional condition is satisfied

and ground institutional knowledge to its concrete representation in the system.

11.1.3 Grounding

Grounding provides the key to reusability of the same abstract institution for regulation of

different physical systems [13].
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Definition 11.5. Grounding of institution I into a domain D is a tuple:

G =
〈
GA , GB , GC , GK

〉
where:

• GA ⊆ Roles×A is a role grounding,

• GB ⊆ Actions×B is an action grounding,

• GC ⊆ Conditions×2R is a condition grounding,

• GK ⊆ Knowledge×2R is a knowledge grounding.

Grounding establishes the relation between an abstract institution and a specific domain. It

relates roles to agents, generic actions to behaviors of agents, and conditions and knowledge

to the factual state of the environment.

The grounding GB between the institutional Action and the behavior B at the domain level

does not restrict to one-to-one mapping. It is entirely possible that agents within the same

team ground the same action to different behaviors, for instance, part of the robots moving

as a group might ground an action Follow to a MoveInFormation behavior, while others to

a MoveByFlocking behavior. Similarly, the above definitions do not prevent dynamic re-

grounding, where for a given robot, the action grounding changes depending on the situation.

For convenience, we will distinguish grounded conditions as C and grounded knowledge as K.

Grounded conditions C are the results of evaluating boolean functions f : 2R → {
True, False

}
over state variables R. For example, a condition LEADER_IN_KITCHEN evaluates whether

position of the agent that plays the role of Leader is within the area designated as the kitchen

in the given environment. Knowledge includes a-priori information encoded by the institution,

and grounded to concrete values for a given domain. For example, institutional knowledge

PersonalSpace can be grounded to a specific distance threshold once it is known that the

individual has a specific spatial preference, such as disliking when large robots are moving too

close by.

Grounding allows the institution to be universal and applicable to an unknown and inde-

terminable number of persons and circumstances. The importance of grounding is widely

acknowledged in social sciences [118] [113] and put into practice by the MAS community [119],

but the proposed solutions are not adequate for translating language-defined norms into

robot terms. In our formalism norms are translated and applied to the domain by the virtue of

a special type of grounding called norm realization, which we will describe in the next chapter.

11.2 Networks of Institutions

In our preliminary study [10], we investigated the methods for specifying relations between

institutions. Although the study and this thesis bear significant differences, in this section we
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summarize the main concepts related to the networks of institutions, the implementation and

validation of which can be found in [10].

First, we formally define the concept of the social context. Social context is the immediate

physical and social setting of the environment within which participants (humans and robots)

function and interact [167].

In our formalism, an institution operates in a specific social context it has been designed for.

Similar patterns can be observed in human environments, where some institutions (especially

the formal ones) function within clear boundaries. For instance, an educational institution

has control over the behavior of children when they are physically at school, but its norms do

not apply at home or during vacation time. The recognition of the social context is not trivial

and is considered one of the challenges of IR [13]. The same context might involve different

participants, occur in physically different place or involve other characteristics that make it

difficult to classify it.

Figure 11.2 – Illustration of the insti-
tutional environment. Social context
is an abstraction of the world states,
classifying them in terms of socially-
relevant aspects. Once a social context
is recognized, an agent joins an insti-
tution with its norms nk ∈N that has
been designed to govern the agent’s be-
havior in such context.

Once a normative agent recognizes the social context, it joins the corresponding institution –

it is assigned a role within that institution and it is obliged to act according to the institutional

norms. We say that such an agent is immersed in an institutional environment, which encom-

passes the social contexts the agent is capable of recognizing and the network of institutions

that correspond to these contexts. An agent joins an institution upon recognition of a social

context and leaves an institution when the context is no longer perceived. For example, a

robot entering a classroom joins an institution responsible for educational activities; once a

class concludes, it switches to an institution for entertaining children. It is possible to belong

to multiple institutions: for example, an educational institution can be run in parallel with

another institution responsible for monitoring children’s safety. One should, however, notice

that the granularity of institutions is a design choice, and simultaneous execution of multiple

institutions necessitates methods for resolving conflicts between them. The summary of the

above definitions is shown in Figure 11.2.

A similar view of institutional environments, where execution of institutions is triggered by
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the environmental conditions, is adopted in [147], where the composition of institutions

preventing their inadequate concurrent execution is controlled by a set of deontic operators

and implemented in the Institutional Agent Controller (IAC). In our study in [10] we introduce

the concept of a Relational Graph (RG) - a directed graph defining the relationship between

institutions, regulating which of them can be active at a given time and assuring that the

actions of conflicting institutions do not run concurrently. Both IAC and the RG are formulated

as mathematical models used for forming dependencies between complex behaviors and can

be readily proposed as the robot controllers.

The objective of the above discussion is to provide preliminary considerations about how

multiple institutions can coexist and form a balanced network, which, once embedded in the

robot’s code, would allow for building a robot’s controller as in [147] and [10]. However, it is

out of scope of this thesis to deal with institutional concurrency and conflicting institutions.

Nevertheless, we show a simple example of two linked institutions in our case study CI I in

Chapter 16, where a condition for termination of one institution leads to the activation of

another.

11.3 Granularity of Institutions

There is not a unique approach for defining the scope of institutions. They can be either very

general, with a large number of norms that are filtered by conditions, or very specialized,

which necessitate presence of protocols defining relations between them.

Figure 11.3 – Inheritance relations be-
tween the institutions deployed in this
thesis and more general institutions that
can be though of as meta-institutions.

In our implementation the institutions are neither general, nor specific, and defined at several

levels of generality, as shown in Figure 11.3. In our particular application of deploying multi-

robot systems in human-populated environments we distinguish two sub-cases (Layer 2

in Figure 11.3) that differ enough to embrace them in separate institutions, namely navigation

among humans, used when humans and robots co-exist but do not cooperate, and navigation

with humans, used for mixed groups of humans and robots. An institution for navigation

among humans is described in the Case Study CI in Chapter 15.

We further decide to separate the case of mixed groups where the humans are guided by
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the robots from the case where the humans are the guides, as most of the norms in the two

social contexts are dissimilar. An institution for the first case is deployed in Case Study CI I in

Chapter 16, while an institution for the latter context in Case Study CI I I in Chapter 17. The

two institutions for mixed groups form the most specialized bottom layer in Figure 11.3.

The aforementioned institutions can be thought of as specializations of one general institu-

tion for social multi-robot navigation (Layer 3 in Figure 11.3), which in turn inherits all the

norms related to human comfort from an institution for social navigation and all the norms

related to robot-robot interactions and collective behaviors from an institution for multi-robot

navigation (Layer 4 in Figure 11.3). It is clear that the proposed fragmentation is not the only

possible option, and is a part of a much larger inheritance relation.

Summary

In this chapter we introduced a model-based approach for abstraction, encapsulation

and formalization of social norms for robotic systems, where we systematize generic

norms into reusable structures, called institutions, and then ground these institutions

into concrete systems – domains.

We focus on transparency and generality of the formalism, where its abstract repre-

sentation allows for the use of miscellaneous robot behaviors and integration of social

constraints of diverse nature. The properties of institutions allow us to seamlessly reuse

the same institution across the domains with a variety of agents capable of performing

different behaviors, as long as the social context is the same. The proposed definitions

meet our objective of providing designers of social robot behaviors with a simple tool

that allows for encoding behavior specifications in a plug-and-play principle instead of

programming hard-wired social compliance in ad-hoc behaviors. We will demonstrate

how our approach can be used to introduce normative aspects into robot planning and

control for participating in mixed human-robot societies in the chapters that follow.
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W HEN deploying robots in social environments with the aim of interacting

with humans, it is only natural that the designer of the robot architecture

combines a number of procedures in a unified software stack to achieve

the desired behavior. For example, a robot that has to follow the norms of

socially avoiding people, slowing next to them, and planning its path so as to remain visible,

typically executes an overall behavior that integrates all the three norms or arbitrates among

them. When a norm is to be changed, or another norm is to be added, the algorithm must

be modified accordingly. From that perspective, social compliance is hard-wired in ad-hoc

behaviors, which are difficult to reuse or generalize. In this chapter, we revisit a body of work

on social robots that explicitly deals with norms and their representation and explain the

advantages that can be gained when instead of the behavior design is being driven by norms,

norms are imposed as constraints operating over the parametrization of already existing

behaviors.

12.1 Formalization of Norms in Robotics

Current research on norms for social navigation treats them as prescriptions for behavior

designers on how to select or modify robot behaviors, and the robots have no choice but

to follow those prescriptions. The bodies of work that endeavor to bring together different

aspects of social navigation under a unified framework include the Human Aware Motion

Planner [154], the COMPANION method [79], the human-centered sensitive navigation ap-

proach [156], further pursued by [157] and the socially aware robot motion framework [75]. In

these studies, norms are described in human language, e.g. “(...) robot should not enter the

personal space of a human”, or “the robot remains as visible as possible along the path”, but

not formally represented - they are directly encoded by the designer in the robot behaviors

through a motion planner. In [153] norms are specified formally as constraints on robot

trajectory, limiting them to a narrow context of single robot navigation. Studies on human-

aware robot navigation in crowded places characterized by high complexity of interactions
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with large number of participants propose more general schemes for motion planning under

social constraints [168] [169] [65], however abstraction from concrete implementation is not

considered.

None of the aforementioned approaches provides means to represent norms independently

of the domain, and usually any abstraction of normative rules is very simple or non-existent.

However, they also largely identify, implicitly or explicitly, elements necessary for concretiza-

tion of abstract norms, namely a) conditions or events that determine when a given norm

should be satisfied, e.g. robot should slow down when close to human, b) knowledge-base

– a type of lookup table encoding behavioral specifications for satisfying a given norm, e.g.

the preferable distance from the robot (i.e. proxemics), and c) the behaviors the norm has an

influence on or must be undertaken in order to satisfy the norm.

In our formalism, conditions, knowledge and actions are integral part of the normative system

layer, namely of an institution. Therefore, using the terminology of our formalism, the integra-

tion of norms and the institutional components within the normative behavior design of the

above approaches could be represented as follows:

BEHAVIOR = FUNCTION OF (NORMS × CONDITIONS × KNOWLEDGE)

The problems associated with similar design principle, where constraints drive the design of a

behavior include:

� Poor reusability – since the norms are often designed for a specific behavior, and not for

general purpose; therefore, their use is limited to the current application.

� Lack of modularity – since behavior design is driven by norms, every change of a norm

or adding a new norm might require a re-design of the behavior.

� Poor scalability – complexity of the design rapidly grows with the problem space, as

introducing a new norm might require heuristics on how to merge it with the solution

established by the existing norms.

As we will describe in details in the chapters that follow, our formalization takes the following

perspective:

NORMS: CONDITIONS → DEONTIC(ROLES × ACTIONS × KNOWLEDGE)

where norms operate on the existing system components. Actions, defined at an abstract,

institutional level represent an infinite set of possible behavioral modalities, while norms

allow only a subset that satisfies the constraints. It means that we have reversed the process –

instead of the design being driven by norms, norms are imposed on already existing baseline

in a plug-and-play manner. The difference in the approaches is shown in Figure 12.1. Although
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Figure 12.1 – Illustration of the difference between the design approaches typically adopted in
the literature and the method we propose. Given the original behavior B with the norm-induced
constraints n1−n4 (left), introducing a new norm n5 in the earlier case might necessitate re-design
of the behavior (middle). In our formalism we follow a different strategy, where the norms restrict
the parameter space of the behavior (right).

the final result in terms of achieved behavior complexity might be the same in both cases,

our method, as we will show through several case studies, addresses the above problems of

reusability, modularity and scalability.

In the above discussion we consistently use the term behaviors when describing the ap-

proaches proposed in the literature and actions in the case of our normative model, as in

our formalism we differ between these two elements. In particular, actions are defined at

an abstract, institutional level and behaviors are concrete realizations of such actions in the

domains. In the state-of-the-art methods the norms typically operate directly on concrete

behaviors, while in our case they do so indirectly via a translation layer. Eventually, however, in

both cases norms result in constraints on the concrete system level as presented in Figure 12.1.

To place our work with respect to state-of-the-art literature, in Table 12.1 we outline the

approaches discussed in this chapter, highlighting the aspects relevant to this thesis, namely

whether the normative layer is separate from a concrete system, whether a link between

the abstraction and the concrete has been made, and the choice of norm representation

and validation. The second part of the table outlines the normative frameworks in robotics,

including the studies on institutions we took inspiration from [147] [13]. We also mention

the IAD model of Ostrom [118], for its close link to our objectives on the power of norm

representation.

12.2 Formalization of Norms in this Thesis

Approaches on human comfort or naturalness can readily be framed in the form of a social

norm. For instance, methods for keeping a distance from a human address a norm “A robot

must not enter human personal space”, while imitation of human motion by a robot is equiv-

alent to a norm “A robot should replicate the way humans move”. Our choice to use human

language for norm representation is dictated by the fact that such form is the most general-

izable and understandable, also for the end users that are to share environments with the
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Wasik 2017 [10] 3 7 © © • • • •
Sgorbissa 2018 [78] 3 3 • © © © © •
Tomic 2018 [13] 3 3 © • © © • •
This thesis 3 3 © © • • • •
Table 12.1 – Overview of the literature on norms in robotics, with the notable exception of the IAD
framework shown for comparison. The first part of the table lists the approaches in navigation
and planning, while the second part the normative frameworks.

norm-following robots. Such language-defined norms are generic, so stating them explicitly

in such form does not bring benefits, unless they can be translated in robot-understandable

terms. The problem of vague norms and norm translation is critical in this thesis and here

we shortly describe the single-robot human-aware methods we adapt in our case studies to

exemplify the scope of approaches to human-robot interaction we can achieve. A selection of

norms defined in human language is outlined in Table 12.2.

We would like to emphasize that although social awareness is an essential part of our work,

we use the existing, well-studied methods to demonstrate the power of representation of our
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framework. It is not our goal to advance the state-of-the-art on social navigation, although in

some cases we are the first ones to apply existing single-robot approaches to a multi-robot

context.

12.2.1 Methods for Achieving Human Comfort

To make the robot move in a way that feels safe and considerate to the human, most of the

related work focuses on respecting human personal and activity spaces and velocity control

near humans.

Proxemics Representation of Human Personal Spaces

To represent human comfort spaces we use the Proxemics Model (PM) [63], described in

Chapter 5. The radii of human spaces serve to determine the degree of compliance the robot

must apply to assure human comfort. We vary them depending on the attributes of a specific

human (e.g., securing larger personal space near a child) or a human role (e.g., smaller zone

for humans with previous acquaintance with the robots). We label the extent of the comfort

zones for human Hh with ∆S,h for social space, ∆P,h for personal space, and ∆I ,h for intimate

space. The norm for respecting personal space is stated in Table 12.2, while the examples

of similar normative constraints formulated based on human social spaces can be found

in [154] [75] [153] [156] [79].

Cost Map Representation of Human Activity Spaces

In our approach, activity-critical areas, also referred to as the affordance spaces (see Sec-

tion 4.4 for details) are represented as cost functions and added to robot’s occupancy grid map.

Such socially-augmented cost map is further used in path planning by the formation leader.

Examples of similar norms related to affordance spaces are found in [153][154].

Velocity Control Near Humans

The maximum possible speed of the MBot robot of 2 m/s can be dangerous in constrained

environments populated with humans, therefore the overall speed in our experiments is

limited to a physically safe (but not social1) bound. Instead of enforcing further speed limits

in the vicinity of humans, we use reduction factors to lower the speed of the robots with

respect to the speed resulting from the multi-robot algorithms. The respective norm is stated

in Table 12.2.

1 The importance of speed modulation in the vicinity of humans has been described in Section 4.3.
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NORMS RELATED TO HUMAN COMFORT

PERSONAL SPACES [75] [156] “Robots must respect human personal spaces” CI−I I I

AFFORDANCE SPACES [153] [154] “Robots should not enter activity-critical areas” CI

VELOCITY CONTROL [79] “When navigating among humans, robots should as-
sume appropriate speed”

CI

NORMS FOR MIXED FORMATIONS OF HUMANS AND ROBOTS

WAITING [170] “When humans fail to follow behind the leader during
guidance, the leader should wait for them”

CI I

RE-ENGAGING [93] [87] “When humans guided in a formation are not follow-
ing, the followers should encourage them to return”

CI I

NORMS FOR HRI-AUGMENTED INTERACTION

FACIAL EXPRESSIONS [33] “Robots should indicate their intentions through fa-
cial expressions, gestures and sounds”

CI

GAZE DIRECTION [64] “When interacting with humans, robot should direct
its gaze towards the interaction partner”

CI

SOUNDS & SPEECH [33] “Robots should offer informative announcements” CI

Table 12.2 – Examples of norms used in the case studies CI , CI I and CI I I presented in Chapter 15,
Chapter 16 and Chapter 17, respectively. The second column is a reference to work from which we
took our inspiration, while the third column states the norm in human language – a representation
that in our formalism we deem to be the most generalizable and understandable, also for the end
users that are to share environments with the norm-following robots.

12.2.2 Norms Relevant for Mixed Groups of Humans and Robots

In our case studies, we employ a number of norms for mixed groups – for human guidance

(Chapter 16) and for human following (Chapter 17). A more detailed review on related work

can be found in Section 4.4. In the case study of Chapter 16, social norms exemplified in

Table 12.2 are inspired by the methods presented in [93] and [170], where in [93] a robot

re-engages a strayed person by exerting a repulsive social force that urges that human towards

a goal, while in [170] the robot adapts its trajectory using a learning-based approach to slow

down or stop when the human is not following. Methods for mixed groups on humans and

robots have been discussed in Section 5.2.2.

12.2.3 Norms for HRI-Augmented Interaction

The approaches presented so far focus on normative robot navigation. To augment user

experience, we employ HRI features, such as lights, sounds, gaze control and facial robot

expressions.
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Gaze Direction

We explore robot gaze in the case study in Chapter 15, where a group or three robots moves in

human populated environment. Since gaze of multiple robots focusing on one human can be

menacing, only one robot – the leader – directs its gaze towards passing a human and only for

a short time.

Signaling Robot Intentions

While robot intentions can be conveyed through navigation [31], we choose to use sounds and

robot facial expressions, including LEDs for eyes, mouth and cheeks as an attempt to provide

feedback to the user, convey information about internal state of the robot, and facilitate

believable human-robot interaction [33]. Our choice of robot expressions and sounds is based

on what we believe conveys a clear message about robot’s state.

Summary

The state-of-the-art research on human-aware robotics offers a number of powerful

methods providing the means to achieve socially-compliant robot behaviors. However,

most of the current research is focused on finding a solution to an isolated problem,

while integration is less of a priority. Large collaborative projects such as MOnarCH

provide an opportunity of integrating such disjoint bodies of work, and understanding

the difficulties associated with such integration, but they are rather an exception than a

rule. In this chapter, we have identified the need of abstraction of the social layer from

that of its implementation and highlighted the advantages that can be gained not only

by the designers of norm-following behaviors, but also the community.

Furthermore, we described how we take inspiration from research on human-aware

robotics to motivate the selection of norms we choose to employ in our case studies.

In particular, we focused on methods related to human comfort, approaches for estab-

lishing mixed human-robot groups and techniques for augmenting interactions with

simple HRI. Furthermore, we gave a glimpse at how we formulate those methods as

human-understandable norms. It is not our goal to encode every social robotics method

in our normative framework. On the contrary, the selection presented in this chapter is

intended to represent different aspects of human-robot interaction (from navigation

and gaze control to expressions and speech) and different approaches to achieve it. How

the norms are further applied in our methods is the subject of later chapters, where we

deal with realization of abstract norms in real robotic systems.
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W E believe that a general framework for using norms in mixed human-robot

societies requires three key features: (1) the ability to abstract norms from the

concrete systems; (2) the possibility to encapsulate norms into a model that

is reusable across such systems; and (3) a means to interpret abstract norms

in terms of robot-understandable language, readily implementable onto concrete restrictions

of robot behaviors. In the previous chapters we specified the abstraction of institutions (and

norms) from the concrete systems they regulate (1). Furthermore, the encapsulation of social

norms and the context in which they operate in the notion of institution makes them reusable

across situations (2). In this chapter, we describe the final missing element – norm realization.

Similarly to the way the grounding allows us to reuse institutional abstraction across different

domains, norm realization provides the means to do so with the norms. Translation of abstract

norms in terms of robot-understandable language makes them readily implementable onto

concrete restrictions of robot behaviors, and executable in real physical systems (3).

13.1 Norm Realization

Norm realization provides the steps needed for bridging the abstraction-to-implementation

gap, inherent of the normative systems [130]. Abstract norms of institution are translated in

terms of low-level parameters of complex behaviors to be realized to act on concrete behaviors

of concrete robots in a real physical system.

The advantages of norm realization are threefold. First, they allow us to define norms at

an abstract level, making them reusable across different domains. Second, norms can be

formulated in an inherently generic human language, in a form easily understandable by

humans, which is particularly important for forming mixed societies of humans and robots.

Third, abstracting norms from the concrete behavior implementation promotes modularity,

as norms can be added or removed in a plug-and-play principle, while the norm realization

forms a cross-compiler that put the norms on top of the existing behavior.
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The translation is achieved by the means of the rules – a tool chain linking the domain and

the institutional abstraction. Once the elements of the normative sentence (i.e. Roles, Actions,

Conditions and Knowledge) are classified in terms of institutional components according to the

Definition 11.2, and the components are grounded to the domain by the means of grounding,

the rules leverage these elements at the concrete domain level to formulate constraints of the

existing behavior.

Before introducing the principles of norm realization it is important to characterize the terms

that robots operate on, i.e. the low-level parameters of complex robot behaviors.

13.1.1 Parameters and Values

An institution I with normsN = {n1,n2, ...}, regulates behaviors in B = {B1,B2, ...} of agents in A.

Behaviors are parametric, i.e. they have multiple behavioral modalities λ= Bk (p ∈ P, vp ∈Vp )

that depend on a number of parameters P and their values Vp . In general, P is an index

set of parameters, where for each p ∈ P we associate a set of values Vp from a family of sets

V (P ) = {Vp }p∈P . The norm realization, by setting behavior parametrization to concrete values,

constraints the choice of all possible behavior modalities to only one viable option. This is

illustrated in Figure 13.1, where three parameters of behavior Bk , p1, p2 and p3 take the values

vp1 , vp2 and vp3 respectively, to result in Bk assuming the behavioral modality λ ∈Λk .

Figure 13.1 – Three parameters p1, p2 and p3 of behavior Bk

take the values vp1 , vp2 and vp3 respectively, to result in the
behavior Bk assuming the modality λ ∈Λk .

13.1.2 Rules as Constraints over Behaviors

Rules of norm realization generate constraints on behavioral modalities, restrictingΛk to a

subset, the execution of which is norm-compliant. An illustration of the constraining nature

of the rules is shown in Figure 13.2, where the horizontal axis represents the parameter space

of a behavior and the vertical axis the value space of the parameters. In Figure 13.2 a) the

rules are shown to be restrictive over the parameter value space, giving an allowable range

of parameters, for which the rules (and so, the norm) will be satisfied. A behavioral modality

is an arrangement of parameters and values for a given behavior, as shown in Figure 13.2 b),

where three relations delineate three behavior modalities.

As a concrete example, consider Figure 13.2 c), where a behavior has four parameters, namely
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Figure 13.2 – Illustration of the constraining nature of the rules. The horizontal axis represents
the parameter space of a behavior and the vertical axis the value space of the parameters. In a) the
rules restrict the parameter value space, giving a range for which the rules are satisfied. In b) a
behavioral modality is an arrangement of the parameters and the values for the given behavior. As
a concrete example in c) shows how rules restrict the behavioral modality for satisfying a norm
“During class time robot should move slowly and dim the lights”.

Speed, Path, LightsColor and LightsIntensity. Let us assume that a robot is to apply a norm

stating “During class time robot should move slowly and dim the lights”. To comply with the

norm, the robot is constrained by the rules of norm realization that only allow a Speed of up

to 1 m/s, and intensity of lights at around 30% of the maximal value, but the choice of the path

and the color of the lights is free. Any modality that lies within the shaded yellow space in

Figure 13.2 c) conforms to the norm.

Next, we provide the details on the normative power of the rules.

13.1.3 From Abstract Norms to Concrete Behaviors

The process of translating norms to concrete behaviors through norm realization involves

steps operating at both institutional and the domain levels, the relation between which is

shown in Figure 13.3.

Definition 13.1. Given that the norm ni ∈N is provided in the form of a human language

sentence, the norm realization at the institutional level involves:

NORM REALIZATION: INSTITUTION LEVEL

� Stage I. Identification of the elements of the sentence that correspond to the institu-

tional components, namely Roles, Actions, Conditions and Knowledge. The components

constitute the semantics of norms given in Definition 11.2, i.e.

N : Conditions → deontic
(

Roles × Actions × Knowledge
)
.

� Stage II. Once the components of the norm definition are identified, they particularize

the sequence summarized in Figure 13.3 and detailed as follows:

• An agent playing a role ∈ Roles determines whether the norm applies to that role.

• A set of activation conditions Ci ∈ Conditions is verified to identify whether ni is

active.

141



Chapter 13. Norm Realization

• An active norm ni ∈N A modifies an action ∈ Actions of the aforementioned agent

based on a subset of elements in Knowledge.

• The agent executes the normative action and evaluates its performance to establish

whether the norm is satisfied and ni ∈N T .

With the exception of the first bullet point, the second stage of the institutional level is purely

descriptive and does not take place in practice. Instead, once it has been determined whether

the norm ni applies to the given agent at the institution level, the sequence of the Stage II of

that level is realized for a concrete system at the domain level as shown in Figure 13.3 and

detailed as follows.

Definition 13.2. The norm realization of norm ni ∈N at the domain level involves five fun-

damental steps:

NORM REALIZATION: DOMAIN LEVEL

A) Norm ni is active when the required conditions ∈C are satisfied

B) Each active norm ni ∈N A can activate/modify/disable a subset of parameters P (Bk ) of

agent’s behavior Bk

C) Parameters in P attain values V (P ) that depend on the knowledge K and state variables R

D) The parameter values are directly applied the behavior to result in norm-complying

behavior modality λ ∈Λk

E) Norm ni is satisfied if the outcome conditions in C are satisfied

13.1.4 Rules

Rules are the binding material connecting norms to behaviors. In a one-to-one relation with

the steps of the domain level listed above, we distinguish the following rules:

A) REQUIREMENT RULES r N : 2C →N A

B) CHOICE RULES r P :N A ×B → 2P

C) VALUE RULES r V : P ×2K ×2R →V

D) APPLICATION RULES r B : 2P ×2V →Λ

E) OUTCOME RULES r O :N A ×2C →N T

where N A is the set of active norms, N T is the set of satisfied norms andΛ= {λ1,λ2, ...} is the

set of behavioral modalities of a behavior in the set B.
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Figure 13.3 – Illustration of norm realization.

Rules r N activate norms based on grounded conditions C, r P give a choice of parameters that

should be altered for the given behavior, r V provide methods to set the parameter values based

on knowledge K and state variables R, r B enact behavior procedures for applying parameter

values, establishing the behavior modality, and r O verify norm compliance after the behavior

changes the world state. For convenience, the conditions of the requirement rules will be

referred to as the activation conditions, and the conditions of the outcome rules as the outcome

conditions. The relations between the rules and the other elements of the domain are shown

in Figure 13.3.

Definition 13.3. Formally, the norm realization at the domain level is a collection of the rules:

K= 〈r N ,r P ,r V ,r B ,r O〉

Next, we discover how norm realization is carried out in practice by realizing an example of

norms in one of the collective behaviors we employ in this thesis.

13.1.5 Illustrative Example

Consider the following norm: “all robots must respect human personal spaces”. According to

the Stage I of the institutional level, we can identify the institutional components forming the
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norm semantics of Definition 11.2:

N : Conditions → deontic(Roles×Actions×Knowledge)

n : (when close to human) →must(robots, respect, personal spaces)

Now consider a robot Fi with a role of a Follower moving in a formation using the MoveInFormation

behavior described in Chapter 5. As the above norm n refers to all robots irrespective of their

roles, we can conclude that n applies also to Fi as well.

The remaining steps of the norm realization are performed at the domain level.

A) A requirement rule r N evaluates the condition CLOSE_TO_HUMAN directly on the state

variables (for example, by calculating the distance between Fi and every human in the

environment. If the condition is satisfied, norm n is active.

B) Norm n does not state explicitly the action it refers to. One could state explicitly that

“all the robots moving in a formation must respect...”, but this would defeat the purpose

of maximal generalization of norms. For the MoveInFormation behavior a choice rule

r P decides that it is the parameter RepulsionWeights WR – a parameter that generates a

repulsive force driving Fi away from the human Hh – that should be modified according

to Equation (5.8).

C) For a human Hh , the robot Fi calculates the repulsion forces through the value rules

r V . They determine the value of the parameter RepulsionWeights based on the distance

between Hh and Fi , which can be obtained from state variables R and based on the

value of personal space of that particular person that is an element of the institutional

knowledge grounded to the domain.

D) The chosen parameter value is applied directly to the MoveInFormation behavior with

the application rule r B to result in behavior modality that is expected to satisfy the

norm n .

E) Norm is verified at the next time step with the outcome rules r O by evaluating the

outcome conditions, in this case RESPECTED_PERSONAL_SPACE, evaluated based on the

distance state variable.

13.2 Norm Adaptation

The above considerations regard an institution as a static entity existing well before and

well after the agents employ the institutional norms. However, as institutions of human

environments are subject to constant alterations, similarly robot institutions can be modified

by cooperative decision-making, or by an individual with a power to do so, while the experience

gained by the robots participating in a social environment can lead to gradual modification of

the existing rules.
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In this section we propose adaptive norm realization as a mechanism by which the robots

can modify their institutional interpretation through a self-regulated process based on the

experience gathered in a given domain. This can be seen as equivalent to adjustment of how

humans interpret norms, where after familiarization with an environment, we slowly learn to

modify our behaviors to better fit the circumstances. For example, even if a speed limit in a

given area is 50 km/h, we might decide to go slower once we learn that children frequently

play nearby.

Institutions can dynamically accommodate the evolution of a given domain by the means

of adaptation rules – rules allowing to leverage robots’ experience and humans increased

confidence in robots’ actions, as well as adjust to continuous environmental changes. With

the adaptive norm realization it is possible for the robot to track and adjust to these changes

through a self-regulated process.

To accommodate norm adaptation, one has to introduce a set of measures quantifying appli-

cability of the norm in the environment. The set L : 2R → R referred to as the robot’s experience

measure is defined over state variables and includes measures used for norm evaluation.

For example, one can monitor the acceptance1 ACCEPTANCEh,i = {0,1} of a robot Ri that is

believed to be increasing with the amount of time human Hh interacts with it. Based on

this measure one can modify the values of the behavior parameters, such as the strength of

RepulsionWeights, accordingly.

The value rules encode information customized to the given domain by the grounding, but

they are given a priori and do not reflect the response of the environment. Moreover, it is

not known whether the chosen value is optimal in the given situation before testing it and

evaluating the result. In order to dynamically modify the values of the behavior parameters

we introduce a new set of rules – adaptation rules r L . With the adaptation rules, parameter

values that were chosen by the value rules are modified to accommodate the reaction of the

environment.

More precisely, if at time t the value rules determine the value of the parameter pk of a norm

ni to be vpk (t), the adaptation rules change the value vpk (t) as a function of the experience

measure l (τ) ∈ Li collected at time τ in the past, i.e. vpk (t) ← g (l (τ))vpk (t). The function g

from now on will be referred to as the adaptation function.

Formally, we introduce a new step in the norm realization at the domain level given in Defini-

tion 13.2:

C’) Parameter values can be adapted on the basis of the behavior’s performance

with the corresponding adaptation rules:

1 Such measure can be obtained from video annotations, questionnaires, or other evaluation methods we will
use in later chapters.
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ADAPTATION RULES r L : L×V →V

Note that the adaptation rules are applied right after the value rules.

Definition 13.4. Norm realization at the domain level with the adaptation rules takes the

form:

K= 〈r N ,r P ,r V ,r B ,r O ,r L〉

With norm adaptation we effectively provide a feedback to the norm realization about the

outcome of enforcing the norm, as the values are updated depending on the output of the

system in the previous time step.

Coming back to the example of the norm for respecting human PersonalSpace, if we assume

that the value of the weight of the repulsive force preventing the robot from invading that

space is wR , we can modify the strength of the force as follows. If the determined value

wR (t −1) resulted in the robot failing to obey the norm, i.e. when IN_PERSONAL_SPACE was

true l (t −1) = 1, we could take a simple function wR (t ) ← (1+ l (t −1))wR (t ) = 2wR (t ), which

doubles the force strength every time the robot intrudes the PersonalSpace of the human.

Note that even though the procedure for calculation of the parameter value is determined a

priori through the value rules, the values themselves can vary with time. In the example above,

the strength of the force depends on the distance between the robot and the human, while the

adaptation rule further increases the weight to improve the safety margin.

Summary

With this chapter we concluded the description of our framework for abstraction, en-

capsulation and formalization of social norms in robotics systems. We have clarified

that while the institutional abstraction of the normative concepts from the concrete

domain and their association through grounding allows for reuse of institutions, it is

also not enough to accomplish realization of abstract norms, formulated in human

language, in robotic systems.

Norm realization – a mechanism for translation of general, language-defined norms

has three main strengths. First, it provides the means for interpretation of a norm given

in the form of a sentence in the institutional terms. Second, akin to the grounding,

it establishes the association between the institutional level and the domain level.

Finally, the rules of the norm realization at the domain level allow for analysis and

interpretation of the norm elements at the level of robotic language, i.e. parameters,

behaviors and algorithms. Instead of the design being driven by norms, norms are

imposed as constraints on the parametrization of already existing behaviors in a plug-

and-play manner.
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The proposed norm realization not only makes it possible to impose language-defined

norms onto the robot behaviors, but also to reuse norms across different domains and

across different institutions. In the chapters that follow, we show that norm realization

addresses the problems of reusability, modularity and scalability, the main challenges

of the state-of-the-art approaches to normative robot behaviors we discussed in Chap-

ter 10.
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O UR institutional framework is validated through three extensive case studies,

each aimed at investigating different aspect of our methodology. This chapter

provides an overview of the case studies CI , CI I and CI I I presented in Chap-

ter 15, Chapter 16 and Chapter 17, respectively. The overview is summarized in

Table 14.1 and will be detailed in the sections that follow.

The case studies presented in this thesis are shaped so as to showcase different aspects of

our formalism, including a) the ability to reuse the norms and institutions in a plug-and-

play manner, b) the capacity of translating abstract norms into the robotic language, and

c) modularity and scalability of the norms that can be composed together without the need of

redesigning the behaviors.

The common scope of the case studies is the context of social, multi-robot navigation. In CI ,

we focus on navigation among humans in situations when humans and robots co-exist but do

not cooperate. In CI I and CI I I , we deploy mixed groups, with robots guiding humans in CI I ,

and with humans guiding robots in CI I I . The common objective of the case studies is that of

validation and demonstration of the institutional framework.

14.1 Institutions, Norms, Domains

As summarized in Table 14.1, in each case study we deploy a combination of institutions and

norms, and evaluate them in the respective domains. In CI , the NAVIGATING-AMONG-HUMANS

institution is evaluated in three different domains. In CI I , we deploy two different institutions,

a STEERING institution for guiding humans to a destination, and TUTORING, where robots

give a tour of the environment, providing information about objects of interest. In addition,

the norms of the STEERING institution are tailored to operate over two possible cases, first

for when humans are following, second for when at least one human fails to follow the robot.

Finally, in CI I I the ROBOT-GUIDANCE institution is evaluated with two different behaviors

(and so, also two different domains) – formation and flocking. The domain of CI I I is the same
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as one of the domains of CI purposefully – that way we can demonstrate that it is not only

possible to apply one institution to different domains, but also that different institutions can

be plugged-and-played in the same domain.

14.2 Experimental Settings

As shown in Table 14.1, the first case study CI focuses on navigation among humans, while

the studies CI I and CI I I are designed to operate over mixed groups of humans and robots.

The relations between the institutions of the case studies have been described in Section 11.3

and illustrated in Figure 11.3. In particular, the NAVIGATING-AMONG-HUMANS institution is

designed for situations, where humans and robots share the same environment, but do not

cooperate. In contrast, in CI I and CI I I humans and robots form mixed groups. In CI I robots

are guiding a group of humans. In CI I I humans are helping the robots to navigate through a

complex area by serving as the robot leaders. In all three case studies, the robot behaviors are

based on the formation or the flock behaviors, as shown in Table 14.1.

Methods in CI and CI I are evaluated with volunteers who agreed to participate in our experi-

ments and provide invaluable feedback regarding their perception of robots’ sociality. Norm

adaptation was employed in case CI I I with the aim of improving robustness of navigating in

formation with human leaders in complex spaces. In CI we evaluated the multi-robot cooper-

ative localization algorithm from Chapter 8 in a highly dynamic setting, where a formation

shape undergoes constant modification as a result of accommodating human presence.

Summary

In this short chapter we have introduced the three case studies of this thesis aiming

at validation of our institutional framework and showcasing its main advantages. The

primary objective of the proposed selection of case studies is to encompass a number

of social contexts the robots moving in groups might be situated in, namely navigating

among uncooperative humans, mixed groups where the humans serve either as leaders

or followers. Consequently, we introduce institutions tailored for such contexts.

We will frequently revisit this chapter, and in particular Table 14.1, to always withhold

the global objective of each case study when describing the implementation details.
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Table 14.1 – Overview of the case studies. INSTITUTIONS, NORMS, DOMAINS. The graphs illustrate
the high-level overview of the norms (shown in magenta), institutions (blue), domains (green),
and behaviors (yellow), operating in each case study. In CI , the NAVIGATING-AMONG-HUMANS

institution is evaluated in three different domains. In CI I , we deploy two different institutions,
STEERING and TUTORING. The norms of the STEERING institution operate over two possible cases,
therefore we can view them as two sets of norms for one institution. In CI I I the ROBOT-GUIDANCE

institution is evaluated with two different behaviors, and so, also two different domains. A star *
indicates identical domain as in CI . In terms of experimental settings, CI focuses on navigation
among humans, while the studies CI I and CI I I are designed to operate over mixed groups of
humans and robots. In CI and CI I the robots perform formation control, in CI I I we compare
both formations and flocks. In CI and CI I we perform participative studies, while in CI I I we
demonstrate norm adaptation. Finally, in CI we evaluated the multi-robot cooperative localization
algorithm from Chapter 8.
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15 Case Study: Social Navigation Among
Humans

S OCIAL navigation among humans requires that the robots, on top of respecting

navigational constraints, satisfy relevant social norms. While basic navigation

methods are easily generalizable to a large variety of environments, introducing

social aspects to robot behaviors requires a good understanding of the social context

and a mapping between the context and the manner in which the norms are applied. In

the institutional formalism, such mapping is accomplished through grounding and norm

realization.

In the following case study, we propose an institution called NAVIGATING-AMONG-HUMANS

for governing the social aspects of navigation among humans, designed for use when humans

and robots share the same environment, but perform independent missions. We employ this

institution in three different social contexts and show that the same institutional abstraction

can yield very different results for different domains, without the need of redesigning it. With

this plug-and-play property of the institutional formalism, we perform the norm-to-context

mapping without the need to resort to heuristics or full re-parametrization for each new

domain.

We carry out extensive evaluation in controlled settings with up to two humans. Subsequently,

we perform participative studies to obtain subjective assessment of robots’ sociability. Finally,

we leverage the high complexity of the experimental dynamics to challenge the cooperative

localization method presented in Chapter 8. With this last set of experiments we consolidate

all elements of this thesis – adaptive formations, cooperative tracking, and sociality of robot

behaviors.

HIGHLIGHTS

• Reusability. The NAVIGATING-AMONG-HUMANS institution is applied to three different

domains.

• Modularity. The domains represent diverse social contexts, each stipulating disparate

balance between team’s efficiency in completing the mission and team’s sociability. The
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norms however remain the same and are applied to one behavior (see Table 14.1), which

does not need to be readjusted for each domain.

• Versatility. In Chapter 17 we use one of the three domains presented in this chapter,

but different institutions (and norms), demonstrating the plug-and-play principle of

the formalism.

• Customization. In each domain, we distinguish individual human roles with distinct

personal preferences to which robot behaviors are tailored to.

• Generability. The selection of the employed norms targets a large variety of social as-

pects, ranging from human comfort achieved through robots’ navigational compliance,

to understandability of robots’ intentions reflected through gestures, expressions, and

sounds.

• Participative study. We analyze subjective performance measures collected in the form

of questionnaires with the aim of understanding individual human preferences with

regard to robot sociality and their perception of the norm-following robot.

• Consolidation. We perform experiments that consolidate all elements of this thesis

presented in Part II and Part III, namely adaptive formations with dynamically changing

topology, cooperative tracking, and sociality of robot behaviors achieved through the

institutional framework.

15.1 Representation of Social Context

The types of social contexts are diverse in their nature, and so, the levels of accommodation of

robot behaviors required to satisfy social norms in these contexts vary. To represent such levels

of conformation we draw a line between two extremities: on the one side of the spectrum,

we consider a social context, where the priority of the robots is to accommodate human

needs, on the other side, we consider an efficient context, where the priority of the robots is to

accomplish a given task by minimizing disruption engendered by the human activities. Finally,

we look into a the socially-efficient context between the two extreme cases.

We propose three domains representing the above social contexts with their basic characteris-

tics in Table 15.1.

SOCIAL CONTEXT CHARACTERISTICS DOMAIN HUMAN NAME

social accommodating, human-oriented, safe, calm SCHOOL teacher, child

efficient task-oriented, cost-effective, fast, productive WAREHOUSE worker, visitor

social-efficient a combination of the two above HOSPITAL staff, patient

Table 15.1 – Social contexts explored in this case study and the domains that represent them. In
each domain, we distinguish two human functions, for which robots personalize their behaviors
with regard to human’s preferences through norm realization.
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15.2. The NAVIGATING-AMONG-HUMANS Institution

So defined three domains, SCHOOL, WAREHOUSE and HOSPITAL, will be governed using the

same institution – NAVIGATING-AMONG-HUMANS, which, however, given different groundings

and norm realization, will yield different results, adjusted to the domain.

In each domain, we introduce two human agents, each playing a different function and with

different social preferences regarding the robots (e.g., how far away a robot should stay, how

fast it should move). Each of the humans will be treated accordingly, on the basis of the distinct

role the institution assigns to him or her. Note that although names such as teacher or child,

are general, they are part of the domain, and they refer to a specific person. Without loss of

generality, we could have used labels such as teacher-Steven or child-Ariana instead, but we

shorten them to simplify the notation.

15.2 The NAVIGATING-AMONG-HUMANS Institution

The institutional formalism allows for a large flexibility in terms of the granularity of institu-

tions, the choice of which is typically dictated by the application requirements. In this case

study, the institutional elements of NAVIGATING-AMONG-HUMANS must be able to encompass

a large variety of domains that the institution applies to and so, this institution is more general

than the ones presented in the case studies CI I and CI I I (see Figure 11.3). As an alternative to

the solution we propose, one could have defined three different institutions, one per each class

of the domains: one institution designed to govern all different instances of SCHOOL, another

all instances of WAREHOUSE, and a third one governing those of HOSPITAL; such institutions

could inherit part of their definition from a related, generic institution.

In this section, we characterize the NAVIGATING-AMONG-HUMANS institution and describe

how to apply the institutional abstraction to the distinct domains, while ensuring adequate

customization for each domain and personalization tailored to the specific human role men-

tioned above.

15.2.1 Actions and Roles

At the institutional level, we define two generic human roles: 1) Acquainted-Human – a person

that is assumed to be more familiar and experienced with the robots (such as teacher, worker,

or staff) and Unacquainted-Human – a person with less exposure to the robots and thus little

understanding of their behaviors (such as child, visitor, or patient). Human actions are not

relevant in this case study, and they will not be defined formally in the institution.

Robot roles are dictated by the function a robot plays in the group movement, in this case a

navigation in formation. We define a Leader role for a robot that guides the formation through

an environment with a Guide action, and a Follower role, for a robot that follows with a Follow

action.
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15.2.2 Norms

Social navigation literature [31] offers a large variety of norms applicable to robots navigating

in human-populated environments. In the following case study, we choose a selection of

norms along two axes: a spatio-temporal axis, constituting the operational space of the robot,

and human-oriented axis. The norms are listed in Table 15.2.

SPATIO-TEMPORAL NORMS

Spatial (static) n1 “Robots should not enter activity-critical areas”

Spatial (dynamic) n2 “Robots must respect human personal spaces”

Temporal n3 “Robots should not disturb during quiet activity times”

HUMAN-ORIENTED NORMS

Naturalness n4
“When navigating among humans, robots should assume

appropriate speed”

Friendliness, appropriateness n5
“Robots should indicate their intentions through facial ex-

pressions, gestures and sounds”

Clarity, transparency n6 “Robots should offer informative announcements”

Cultural convention n7
“When interacting with humans, robots should direct their

gaze towards the interaction partner”

Table 15.2 – Norms of the NAVIGATING-AMONG-HUMANS institution.

While the aforementioned norm selection is not exhaustive, we believe that it represents well

the spectrum of social norms applicable to robots. Spatial norms n1 and n2 represent spatial

constraints that should be respected by a robot. While n2 is inherently dynamic, i.e. the con-

straint is fixed with respect to a dynamic point in the environment (in this case, a human), n1

can be also used for temporarily constant environment constraints, such as permissions to go

through some areas that can be granted or elevated during run time. Temporal norms similar

to n3 do not allow for plan composition (see [9] for examples of temporal norms that can be

used for constraint satisfaction planning), but they provide means to introduce elements that

require an interpretation of time. For example, norm n3 can be used for scheduling robot

behaviors when a general plan is known a priori. Note that each robot interprets the social

norms individually, and given the role it is assigned to, determines whether it is obliged to

comply to the given norm.

The human-oriented categories, including naturalness, appropriateness and clarity of robot

behavior as well as cultural conventions are intended to improve acceptance of the robots.

Norms n5 and n6 do so by enhancing human-robot interactions with basic interactive features,

including gestures, facial expressions, sounds that convey information about robot’s state and

spoken dialog. Norms n4 and n7 introduce simple cues designed to give impression of the

robot having a social understanding from the point of view of the observing human.

As explained in Chapter 11, interpretation of the above norms is based on the institutional com-
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ponents, namely Roles, Conditions, Knowledge and Actions according to the Definition 11.2:

N : Conditions → deontic
(

Roles × Actions × Knowledge
)
.

Norms n1 − n7 rewritten according to this syntax are:

n1 : ;→ should not(robots, enter, activity-critical areas)

n2 : (when close to human) →must(robots, respect, personal spaces)

n3 : (during quiet activity times) → should not(robots, disturb, quiet activity times)

n4 : when navigating among humans→ should(robots, assume, appropriate speed)

n5 : (when appropriate) → should(robots, indicate their intentions, through expressions, gestures, sounds)

n6 : (when appropriate) → should(robots, offer, informative announcements)

n7 : when interacting with humans→ should(robots, direct gaze towards the interaction partner)

With the above, we complete Stage I of norm realization at the institutional level (see Defini-

tion 13.1).

15.2.3 Conditions and Knowledge

Institutional Conditions, including Activation Conditions for norm activation and Outcome

Conditions for norm verification are presented in Table 15.3:

Activation Conditions Outcome Conditions

n1 - IN_ACTIVITY_CRITICAL_AREA

n2 CLOSE_TO_HUMAN RESPECTED_PERSONAL_SPACE

n3 QUIET_ACTIVITY_TIME RESPECTED_QUIET_ACTIVITY_TIME

n4 IN_HUMAN_POPULATED_ENVIRONMENT BELOW_SPEED_FACTOR

n5

INTERACTING_WITH_HUMAN

-
REACHED_GOAL

CLOSE_TO_HUMAN

QUIET_ACTIVITY_TIME

FIRST_TIME_PERSON_ENCOUNTERED
n6

INVADED_INTIMATE_SPACE
-

n7 INTERACTING_WITH_HUMAN -

Table 15.3 – Conditions of the institution NAVIGATING-AMONG-HUMANS.

Conditions strongly depend on institutional Knowledge, e.g. in order to evaluate a condition

INVADED_INTIMATE_SPACE a robot must understand the concept of intimate space. Further-

more, when grounding the conditions to the state variables R of the domain, the actual value

of the intimate space for the particular person must be known. Providing such information is

the main purpose of the institutional Knowledge.
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Knowledge Grounded Knowledge K Symbol

ActivityCriticalArea areax ΦAC S

SocialSpace social_distancex ∆S,h

PersonalSpace personal_distancex ∆P,h

IntimateSpace intimate_distancex ∆I ,h

QuietActivityTime time_intervalx TQ AT

AppropriateSpeed speed_factorx sA

InteractionMode interaction_modex IM

SpeechMode speech_modex SM

FormationShape formation_shapex FS

FormationBias formation_biasx b

Table 15.4 – Knowledge and knowledge grounding K of the institution NAVIGATING-AMONG-
HUMANS. We use the subscript (·)x to abbreviate variables with multiple instances x.

Knowledge of the institution NAVIGATING-AMONG-HUMANS includes the elements listed in

Table 15.4 (first column). SocialSpace, PersonalSpace and IntimateSpace represent the prox-

emics [63] – preferences for the distance relation between two agents during interactions we

described in Chapter 5. ActivityCriticalArea is an affordance space where humans habitually

engage in activities that should not be disturbed by robots, for instance, the area in front of a

blackboard in schools. Similarly, QuietActivityTime represents time interval when, habitually,

humans should not be disturbed, for instance, classroom time in school. InteractionMode and

SpeechMode allow a robot to choose appropriate expressions, sounds and gestures given the

circumstances. The circumstances and the mapping between the mode and the circumstance

are determined during the grounding procedure. Finally, AppropriateSpeed, FormationShape

and FormationBias allow the robots to choose the appropriate formation parameters.

15.2.4 Formal Definition

The NAVIGATING-AMONG-HUMANS institution is formally represented as:

NAVIGATING-AMONG-HUMANS =
〈

Norms = {
n1, n2, n3, n4, n5, n6, n7

}
Roles = {

Leader, Follower, Acquainted-Human, Unacquainted-Human
}

Actions = {
Guide, Follow

}
Conditions = {

CLOSE_TO_HUMAN, QUIET_ACTIVITY_TIME, ...
}

Knowledge = {
ActivityCriticalArea, SocialSpace, PersonalSpace, ...

}〉

With this general definition of institution, we proceed to describe how this single institution is
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applied to three different domains.

15.3 Domain and Grounding

Each domain presented in Section 15.1 includes the following elements:

A = {
mbot1, mbot2, mbot3, humanx

}
B = {

MoveOnTrajectory, MoveInFormation, HumanBehaviorx
}

R = {
time, posex, speedx, distancex, locationx, soundx, expressionx, ...

}
K = {

social_distancex, speed_factorx, interaction_modex, formation_shapex, ...
}

C = {
C1, C2, C3, C4, C5, C6, C7

}
where we use the subscript (·)x to abbreviate variables with multiple instances x. Elements

in green are specified for each domain separately. According to the initial description in

Table 15.1 the element humanx is
{

teacher, child
}

for the SCHOOL domain,
{

worker, visitor
}

for the WAREHOUSE domain, and
{

staff, patient
}

for the HOSPITAL domain.

Since the human actions are undefined at the institutional level, we will leave the element

HumanBehaviorx unspecified. It is, however, entirely possible that what humans do is institu-

tionally relevant, for example, in the case study in Chapter 17, where humans are the leaders

of the formation. If so, HumanBehaviorx would become playing, working, visiting, etc. Fur-

thermore, depending on the design choices, some conditions, such as QUIET_ACTIVITY_TIME

could be directly linked to the current human behavior, for example human activity is not to

be disturbed when a teacher is teaching.

Grounded conditions C1 - C7 are the institutional conditions presented in Table 15.3 and

evaluated over the state variables of the domain. For example, the activation condition

CLOSE_TO_HUMAN, assessed by a robot mboti, is true if a distance between mboti and one

of the humans humanj falls below a threshold personal_distancej dictated by the grounded

knowledge (see Table 15.4). While the meaning of most of the conditions listed in Table 15.3 is

unambiguous, we would like to point out that the condition INTERACTING_WITH_HUMAN is

true when a human is facing the robot and the human and the robot are within interaction

distance from each other (interaction distance is proportional to the personal_distance).

The full list of grounded knowledge K is presented in Table 15.4. QuietActivityTime is grounded

to a time interval chosen a priori. Grounded InteractionMode and SpeechMode are lookup

tables mapping a triggering condition (such as that the robot has REACHED_GOAL or the robot

is INTERACTING_WITH_HUMAN) to the corresponding desirable facial expression, gesture and

sound. The mapping is performed in the process of norm realization, and will be discussed in

the next section.

In summary, in our case study we distinguish three domains, which leads to having three

institution-to-domain groundings: GS for the SCHOOL domain, GW for the WAREHOUSE domain,
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Figure 15.1 – Overview of the norms and their realization in the concrete system.

and GH for the HOSPITAL domain. Customized results achieved with a single institution in such

diversity of domains are accomplished by a combination of a) the role-to-agent grounding GA ,

b) the particular values that the grounded knowledge K assumes and c) the norm realization.

While details on the latter will be given in the next section, the general description of the

grounding is as follows.

GA = {(
Leader, mbot1

)
,
(
Follower, mbot2, mbot3

) }
GS

A = GA ∪ { (
Acquainted-Human, teacher

)
,
(
Unacquainted-Human, child

) }
GW

A = GA ∪ { (
Acquainted-Human, worker

)
,
(
Unacquainted-Human, visitor

) }
GH

A = GA ∪ { (
Acquainted-Human, staff

)
,
(
Unacquainted-Human, patient

) }
GB = { (

Guide, MoveOnTrajectory
)
,
(
Follow, MoveInFormation

) }
GC = { (

CLOSE_TO_HUMAN, ca
11

)
,
(

BELOW_SPEED_FACTOR, co
41

)
, ...

}
GK = { (

PersonalSpace, personal_distancex
)
, ...

}
with cx

ab ∈ Ca , where a denotes the index of a norm the condition pertains to, b is the index

of the grounded condition within set Ca , and x ∈ {a,o} allows to distinguish between the

activation and the outcome conditions, as shown in Table 15.3.

After all elements of the domain are defined and matched with the institutional components

through grounding, the domain-level stage of norm realization can take place.

15.4 Norm Realization

Steps of norm realization at the domain level presented in Definition 13.2 include A) norm

activation, B) selection of behavior parameters to be modified, C) assignation of the respective
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parameter values, D) application of the parameters with the chosen values to the behavior,

and E) evaluation of norm satisfaction. In this section, we provide a high-level description

necessary for understanding the norm realization and we list the key elements that allow

for adaptation of the institution to the social context at the grounding level1. The norms are

illustrated in Figure 15.1.

Norm n1: Activity-critical areas

In our implementation, norm n1 is always active, as the affordance places are known a priori.

One can however imagine that affordances can be bound to human activities, for example a

robot should not move in front of a TV when someone watches it, but it can do so otherwise.

In that case, the activation condition for that particular affordance would be TV_IN_USE.

In order to avoid an affordance area, the position and shape of which is given byΦAC S in K, the

formation leader modifies the TrajectoryShape parameter of the MoveOnTrajectory behavior

by adding social cost to the speed map used by the FMM path planning method (as explained

in Section 5.5.1).

Norm n2: Personal spaces

Norm n2 is active when CLOSE_TO_HUMAN, i.e. when robot is within a distance from human

smaller than threshold proportional to the personal_distance ∆S,h ∈ K of person h. The thresh-

old must be larger than personal_distance so that the robot can act before entering the space

and to prevent it.

The Leader robot modifies the TrajectoryShape parameter by shifting its path away from the

human, proportionally to the distance between them, until the condition is false again (see

Section 5.5.1). A Follower, by utilizing the RepulsionWeights WR, generates a repulsive force,

driving it away from the human. Further details are provided in Section 5.2.2.

Norm n3: Quiet activity times

Condition QUIET_ACTIVITY_TIME is triggered at known-in-advance time intervals provided

to the robots by the time_interval element TQ AT ∈ K. For this norm the Leader robot stops the

formation by setting the TrajectorySpeed to zero throughout the duration of the activity time.

Norm n4: Appropriate speed

The activating condition IN_HUMAN_POPULATED_ENVIRONMENT is always true if a human

takes part in an experiment. The overall formation speed is adjusted adequately to the social

1 We provide an example of algorithmic implementation of norm realization in the case study CI I in Chapter 16
and a detailed description of the norm realization for the case study CI I I in Appendix E.
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context (i.e. to the domain) by moderating the TrajectorySpeed parameter of the Leader, while

the Follower speeds are mitigated by adjusting the ControlGain parameter Ku (see Section 5.2)

proportionally to the speed_factor sA ∈ K. Note that we truncate the speeds for safety purposes,

as explained in Section 12.2.1, but decided to not limit them any further, as the robots need

enough momentum to return to the formation after large disturbances (such as the one created

as a result of the human presence) and for securing adequate response to the repulsion forces.

Norm n5: Expressions, gestures, sounds

We distinguish four conditions that trigger relevant facial expressions, gestures and sounds,

otherwise a robot assumes a default interaction mode. The mapping between condition and

interaction_mode IM∈ K is shown in Table 15.5. Note that the same conditions that trigger

norms n2 and n3 activate an interaction mode.

DEFAULT
INTERACTING_
WITH_HUMAN

REACHED_
GOAL

CLOSE_
TO_HUMAN

QUIET_
ACTIVITY_

TIME

no sound recognition
sound

success sound recognition
sound

no sound

no gesture no gesture arms up and
down repeated

arms up and
down

no gesture

Table 15.5 – Mapping between grounded conditions (top row) and robot interaction mode IM ∈ K ,
which includes facial expressions, sound and gestures.

Norm n6: Informative announcements

We define two conditions activating robot speech. First, a robot utters "Hello" upon triggering

of the FIRST_TIME_PERSON_ENCOUNTERED activation condition. Second, it says "Sorry" when

INVADED_INTIMATE_SPACE, i.e. when it intrudes the intimate space of a human. In some

social contexts, robot speech might be undesirable - as an example of that we disable it in

the WAREHOUSE domain with a suppressing condition NOT_IN_WAREHOUSE. The mapping

between the condition and the utterance, similarly as in the case of n5, is given by a lookup

table SM∈ K embedded in robot’s code.
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Figure 15.2 – Example of the gaze control the Leader robot engages in.

Norm n7: Gaze control

To convey the impression of robots awareness of human presence, the Leader robot turns

its head towards the human when INTERACTING_WITH_HUMAN, i.e. when passing close to

the human and the human gaze is directed at the robot. We choose to direct the gaze of only

one robot, as having all the robots in the formation directing their gaze at a human could be

intimidating. Example of gaze control of the Leader robot is shown in Figure 15.2.

Summary

In the above examples the activation conditions are composed using an OR operator, i.e. only

one condition in Ci is necessary to trigger norm activation of ni . In our implementation,

grounded knowledge forms a lookup table, the particular values of which will be provided in

the experiments section, in Table 15.6. Ideally, knowledge would be encoded in open source

databases, and be filled in by researchers with their experimental findings and shared publicly.

In our work, knowledge is loosely based on the literature and empirical tests that yield the

most promising results.

15.5 Experimental Campaign Overview

Experiments are performed in the Jordils arena, described in Chapter 2. A team of three robots

moves in a formation on a path between three waypoints. Experiments involve up to two

humans, each acting independently of the robots and of the other people. A participant plays

a game involving a number of waypoints delineated on a map and to be visited in a particular

order (randomized among the runs). Such design of the game allows us to maximize the

number of interactions between the robots and the humans, while retaining comparative

value across runs.

We perform three sets of experiments:

I. One Institution for Three Domains. In the first set of experiments, we analyze the

results objectively with numerical performance metrics. Our hypothesis is that the

SOCIAL context, represented by the SCHOOL domain, will yield the most human-friendly

results, the EFFICIENT context, represented by the WAREHOUSE domain will yield an

efficient robot behavior, while still taking human comfort into account, and the social-
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efficient context will reside in-between. Additionally, we perform NON-NORMATIVE

experiments where robots are not conforming to norms and do not reside in institutional

environment, and are expected to be less human-friendly, as indicated by the metrics.

II. Participative Study. In the second set of experiments we evaluate subjective assess-

ment of human participants. We ask a number of volunteers to assess the degree of

robots’ sociality through a set of questionnaires in the SCHOOL, WAREHOUSE and NON-

NORMATIVE scenarios, to determine whether introducing normative aspects influences

human perception of the robots.

III. With Cooperative Localization. The objective of the final set of experiments, is to assess

the performance of the FI-GM-PHD filter proposed in Chapter 8 in scenarios where

the dynamics of the formation are affected by the interactions with humans. In this

chapter we provide a brief summary of the results, while detailed analysis is provided in

Appendix C.

15.6 Experiment Set I

We distinguish four scenarios: NON-NORMATIVE, SCHOOL, WAREHOUSE and HOSPITAL, each

performed with A) one human and B) two humans. Each person is represented by the do-

main function (e.g., teacher, visitor, etc.) and assigned an institutional role (i.e. teacher ∈
GS

A(Acquainted-Human)), directly linking a person with its speed_factor and social, personal

and intimate distances – elements of grounded knowledge K that allow for customization of

the robot response to a particular human. For each scenario we perform 12 consecutive runs.

In experiments with one human, one of the two human functions is selected for half of the

runs. In experiments with two humans, both human functions are present simultaneously. An

overview of the key elements of the grounded knowledge is provided in Table 15.6, while the

remaining implementation details are provided in Appendix A.

15.6.1 Results

We analyze the experimental results with regard to three objective measures: human-robot

distances, formation error, and formation speed. A summary of these results is presented in

Table 15.6.

Human-Robot Distances

The largest impact on the motion of the formation is exerted by the norm n2 for avoiding hu-

man personal space. Upon encountering a human, robots prioritize the avoidance component

achieved through the trajectory change in the case of the Leader, or repulsion weights in the

case of the Followers, with the intensity of the reaction being a function of the human-robot

distance and the personal_distanceh of the encountered human Hh , known to the robots as
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SOCIAL CONTEXT Social Efficient Social-Efficient

DOMAIN NON-NORMATIVE SCHOOL WAREHOUSE HOSPITAL

ROLE default child teacher worker visitor staff patient

EXPERIMENT PARAMETERS

PersonalSpace
personal_distance 1.2 m 1.5 m 1.2 m 0.8 m 1.2 m 1.2 m 1.2 m

AppropriateSpeed

trajectory sA 1.0 0.75 (slower) 1.25 (faster) 1.0
near-agent sA - 0.3 0.7 0.9 0.7 0.7 0.7

FormationBias

formation_bias

EXPERIMENT RESULTS

Human-Robot

Distance

Single-human

experiments

Experiments

with two humans

Formation Speed

Av. run duration ' 1000 s 5% longer 5% shorter ' 1000 s

Formation Error

Average eF 0.33 0.49 0.53 0.50
Std eF 0.1 0.29 0.31 0.31

QuietActivityTime

Av. robot speed - - - 94% slower

ActivityCriticalArea

Time inΦAC S - - - 87% less

Asocial Behaviors

Offensive %

Unacceptable %

Acceptable %

Table 15.6 – Summary of the parameters included in robot’s grounded knowledge K tailored to
each domain and to the preferences of the humans within (top rows) and the summary of the
experimental results highlighting the outcomes of the aforementioned customization (bottom
rows). The pie charts of the human-robot distances show the distances falling into the intimate
space, personal space and social space categories, for the human roles that label the respective
columns.
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part of grounded knowledge K. The element personal_distance, shown in Table 15.6, differs

among human agents, with the largest space assigned to the child of 1.5 m, and smallest to the

worker of 0.8 m.

After classification of the resulting human-robot distances during encounter according to

three categories - in intimate space, in personal space, and in social space, the results confirm

that, on average, robots keep larger distance to humans with larger personal_distance. As

shown through the pie charts in Table 15.6, robots rarely intrude personal space of the child

agent, in both single-human and multi-human experiments. As expected, the opposite holds

for the worker, for whom the proportion of intrusion is the largest in both single-human and

multi-human experiments.

With regard to the static affordance space, the robots visitΦAC S 87% less frequently than when

the norm n1 is not applied (although more strict constraints could potentially achieve 100%

successful restriction).

An analysis of agent trajectories and recorded videos, shown in Table 15.7, provides further

insights into understanding of the difference between the non-normative domain and the

domains controlled by the institutions. In the non-normative case, upon encountering a

human, robots continue their movement in the formation without any change2. In the

WAREHOUSE domain, for a worker with the personal_distance of 0.8 m, robots minimally modify

the formation to let the person pass. On the contrary, in the SCHOOL domain, the reaction to a

human child with the personal_distance of 1.2 m occurs much earlier and the robots leave a

large space for the human to pass, modifying the formation considerably.

While distance control has a substantial impact on the sociability of interactions, one should

note that in our experiments, where robots act as a result of a balance between the attraction

and the repulsion forces, short-term dynamics might outweigh any other factor that influences

human’s perception of robot sociability. Large repulsion forces and, consequently, consider-

able robot speeds occurring at a small distance from a human can appear as more threatening

than similar forces taking place at larger distance, especially when large robots are involved.

For this reason it is important to introduce subjective performance measures, as we will do

later in this chapter.

Formation Error

As it can be expected, the degree of formation modification in presence of humans has a

significant impact on the formation error. Summarized in Table 15.6, the formation error is

significantly lower, in the case of non-normative experiments than in all the other scenarios.

As shown in Table 15.7, in the NON-NORMATIVE scenarios robots remain largely undisturbed

by the human presence. One should not, however, see the formation error as inability of the

robots to maintain a desirable formation, but as a degree of compliance of the robots to the

2 For safety purposes, reactive obstacle avoidance is always enabled to prevent immediate collisions
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Robots continue their movement with little to no disturbance upon encountering a human.
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When a human designated as child with personal_distance of 1.5 m passes between the
robots, followers temporarily break the formation to make a space for it.
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Similarly as in the SCHOOL domain, robots give way to the human, but the degree of
compliance is smaller due to the smaller personal_distance of 0.8 m of the human worker.

Table 15.7 – Pictures taken from the recorded videos of the experiments and the respective trajec-
tories of humans and robots. Light blue sphere around human position indicates the extent of the
custom personal space.
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presence of humans.

Formation Speed

Lastly, the control of the formation speed through speed_factor leads to changes in run dura-

tion, but does not result in differences of robot speeds around humans. On average, in the

SCHOOL domain with the smallest trajectory speed_factor of 0.75, the formation reaches the

goal in 5% longer time than in the default non-normative case with speed_factor of 1. Analo-

gously, in the WAREHOUSE domain with the largest trajectory speed_factor of 1.25 formation

completes the run in 5% less time.

Additionally, in a set of experiments in the HOSPITAL domain, where the QUIET_ ACTIVITY_TIME

condition is true, during the time_interval TQ AT = [80,100] s, robots adapt 94% lower speed

than outside of that time interval.

Video Annotations

All experiments were recorded and annotated in post-processing. Only experiments with two

humans involve participants with no knowledge of the differences between the domains, and

only these experiments are annotated. We classify human-robot encounters in the following

three categories: acceptable, where human motion is not disturbed by the robots, unacceptable,

where one or more robots interrupts human motion, and offensive, where a participant is

visibly distressed as a result of robot’s behavior. Note that although care was taken to replicate

consistency among the scenarios, annotating videos is a process prone to subjectivity of the

observer.

Altogether, we annotated 29 interactions in the NON-NORMATIVE domain, 53 in the SCHOOL

domain, 47 in the WAREHOUSE domain and 66 in the HOSPITAL domain, the summary of

which is shown in Table 15.6. The institutional scenarios generally perform much better

than the NON-NORMATIVE domain, with 6-7% of the encounters being offensive and further

11-13% being unacceptable, versus 21% and 17% for offensive and unacceptable interactions

respectively of the NON-NORMATIVE domain. Note that acceptable interactions in the NON-

NORMATIVE domain include the encounters during which the robots ignore human presence

but the dynamics of the situation do not result in the disturbance of human motion, hence

the number of the offensive encounters is bounded.

15.6.2 Discussion

The experimental scenarios proposed in this chapter are characterized by high stochasticity

and brisk dynamics, where sudden behavior changes on the human side result in large forces

being exerted on the robots, which consequently lead to rapid changes of the formation. It is a

challenge to devise relevant performance metrics for the evaluation of normative robot behav-
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iors in such uncontrollable social environments. Although norm activation is deterministic (as

dictated by the institutional conditions), the dynamic situations in which the robots operate

are affected by a multitude of factors that in turn influence their behaviors. Moreover, the

action-to-reaction time does not correspond well to the norm activation interval. For example,

one may expect that the lower near-agent speed_factors would predominantly yield lower

speeds next to the corresponding humans. However, the interplay between the repulsion

forces, the formation forces that bring the robots back together after large disturbance, and the

dynamics of the particular encounter might result in the opposite. For this reason, our analysis

is focused on the power of the formalism to yield perceivable differences in formation behavior

tailored to the domains and to the participating humans. While a subjective assessment is

undertaken in the next section, the results of the objective evaluation presented in this first set

of experiments provide an insight into the advantages of using the institutional formalism.

One of the most perceivable differences lies in the distance control – the element with the

highest impact on the human comfort, closely followed by the speed the robots keep near

humans. Our analysis of the human-robot distance with regard to the proxemics model clearly

indicates the contrast in the robot’s interpretation of the norm n2 when encountering humans

with different functions: for instance, a the robot keeps the largest distance to a child and

smallest distance to the worker. The formation speed is tailored to the domain rather than

to a particular human, and is the lowest in the domain where the knowledge dictates that is

should be so, i.e. in SCHOOL. Such customization is achieved through the grounded knowledge,

but no differences are made at the institution level, and neither in the behaviors themselves

– it is only the parameters that change the behavior modality automatically, through norm

realization.

As a final remark of this section, we would like to emphasize that there are many improvements

that can be done to the above implementation of the norms. Specifically, the behaviors would

yield better results if the parametrization embedded in institutional knowledge was based

on empirical findings, tailored to specific humans. Furthermore, elements of deliberative

planning and human prediction such as in [68] [88] are critical for achieving optimal results.

The latter elements increase the complexity of the system manifold and could overshadow

the main focus of experiments; therefore, we intentionally leave them out of the scope of

this thesis. Although our methodology might not result in better physical performance of the

robots when compared to the state-of-the-art approaches to norm-following social robots, it

also not our objective.

15.7 Experiment Set II

The results presented in the previous section show how the differences across domains are

manifested through objective performance metrics and how adding norms on top of standard,

non-normative multi-robot behaviors shapes these behaviors to meet a desired objective.

To complete the evaluation, in this section we report the outcome of a participative study that
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was designed to analyze the impact of introducing social norms on human perception. From

among the social domains introduced in this chapter, we select the SOCIAL domain – SCHOOL

and the EFFICIENT domain – WAREHOUSE, as the two most marginal cases of the normative

approaches. Furthermore, we compare the social methods with the NON-NORMATIVE case to

achieve an unbiased estimate.

We endeavor to test the following hypotheses:

� H0 - (Null hypothesis) There is no relation between the three robot behaviors and their

respective perception by the participants.

� H1 - The participants will perceive a difference between the three robot behaviors and

will rate the NON-NORMATIVE behavior as the least acceptable, social, and legible.

� H2 - The participants will perceive a difference between the three robot behaviors and

will rate the SOCIAL behavior as the most acceptable, social, and legible.

15.7.1 Experimental Protocol

Participants were recruited among EPFL staff, EPFL students, and the surrounding community

through a combination of online announcements and emails, fliers, and word of mouth. In

return for participation they received pizza coupons; no monetary incentive was provided. A

requirement for participation was to be at least 18 years of age.

A within-subjects design was adopted – each participant experienced all three robot behav-

iors, NON-NORMATIVE, SOCIAL, and EFFICIENT. To minimize the bias that could have been

introduced by the order of trials, we randomized their sequence.

Two participants were simultaneously engaged in each trial. In a case we did not find a pair of

participants, a person already familiar with the experiments was asked for an assistance, but

was not taking part in the evaluation.

Initially, each pair of participants was shown the robots and the arena, and was given a

description of their task. Participants were informed that the robots are engaged in their own

duty, but they will be sharing the same environment. Each participant was to take part in a

simple game, the rules of which have been explained before the experiments. Each person

was given a map of the arena populated with waypoints that were labeled with animal shapes

and indicated as crosses on the floor. The map was accompanied with a list of waypoints

to visit (see Appendix A for additional details on the experimental setup). Additionally, each

participant was assigned a position to start and finish the game and given a cap with a set

of MCS markers for pose tracking and a unique identification number. The designation of

a waypoint list and a specific cap to a participant was directly linked to the assignment of

an institutional role – of a child or an adult in the SOCIAL (SCHOOL) domain, or a worker or a

visitor in the EFFICIENT (WAREHOUSE) domain. To simplify the notation, we will denote the
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Figure 15.3 – Example of trajectories of the participants and the robots in the NON-NORMATIVE

scenario. All three snapshots have been taken in the same run, at times t = 21 s (left), t = 32 s
(middle) and t = 37 s (right).

participants with these roles as HA (child or visitor) and HB (teacher or worker). Neither the

differences between the roles nor the differences in robot behaviors were explained to the

participants. Participants were instructed to move naturally, in the same manner for each

experiment, following the same path. After each trial we distributed a survey form and then

asked to return to the arena for the next test. Finally, after completion of the three trials, the

participants were asked to answer a set of comparison questions. Additionally, each part of

the survey was accompanied with a free-response question to solicit comments on each robot

behavior.

15.7.2 Results

A total of 38 people participated in our study (18 female and 20 male) in a set of 23 experiments.

Participants were ranging in age from 21 to 61 years (mean = 31, SD = 10.31), and represented

a variety of education levels and occupations, including administration, art, engineering, as

well as a wide range of self-reported prior experience with robots (mean 1.18, SD 1.16, on a

scale of 1 to 4). Videos of the experiments are available at the link provided in the footnote3.

Figure 15.3 and Figure 15.4 illustrate typical encounters of the participants and the robots in

the NON-NORMATIVE and the SOCIAL trials, respectively. In the NON-NORMATIVE case the robots

change their default formation behavior only marginally, when the DWA obstacle avoidance

is activated to avoid collisions. Otherwise, human presence is ignored and the robots do not

make space for the passing humans. In contrast, in the SOCIAL trial, the formation undergoes

significant modifications to accommodate the human presence. This can be clearly seen in

Figure 15.4 (left), where the Leader adopts a path circumventing the participant with the role

of a child, and in Figure 15.4 (middle, right), where the Followers break the formation to move

away from the participants. The trials of the EFFICIENT domain are similar to the SOCIAL ones,

3 http://disalw3.epfl.ch/research/alicja/Chapter_15-7.mp4
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Figure 15.4 – Example of trajectories of the participants and the robots in the SOCIAL scenario. All
three snapshots have been taken in the same run, at times t = 21 s (left), t = 32 s (middle) and
t = 37 s (right).

but robots are less reactive to the human presence and leave less space for them.

Although the aforementioned characteristics are typical for the chosen domains, the experi-

mental runs were highly stochastic; each participant assumed different speeds, some remained

at the waypoints for longer times, some stopped to look around in search for the next step.

Reaction of the participants to the encounter with the robot team also varied a great deal –

some participants chose to stop and wait to see how to pass next to the robots, some chose to

force their way, others adopted a mixture of compliance and confrontation. Consequently, we

observed a great deal of variation between the trials. In some experimental runs, the robots

were able to successfully adhere to social norms and respect the personal spaces of the partici-

pants. In most of the trials, however, we noted infringements of such spaces resulting from a

situation the robots simply could not have dealt with given the current reactive nature of the

behaviors – for example when two participants moved on either side of a robot, the resulting

forces might have made it move towards one of them. Perception uncertainty combining

noise in both the self-localization position and the human position obtained from the MCS

also had a strong effect on the system – during some encounters humans were passing very

close to the robots, so even errors that are usually negligible could have resulted in a robot

believing that the human is on the opposite side of its body than where he or she was in reality.

Thereupon our analysis encompasses an evaluation of the survey results juxtaposed with the

performance metrics and the behavior annotations.

Metrics: Human-Robot Distances

As in Section 15.6.1, we have classified human-robot distances into three zones in-intimate-

space (< 0.45 m), in-personal-space (< 1.2 m) and in-social-space (< 1.68 m) and determined

the amount of time the robots fall into these zones. Again, we do not distinguish between

the human roles and the prescribed to them values of personal_space embedded through the
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Figure 15.5 – Distribution of the time robots spent in the three human comfort zones. White
marker indicates the median, extent of the bars is the 25 and the 75 percentiles.

institutional knowledge, as in this type of analysis we are interested in the final differences

between the trials visible through the unprocessed data and not how well the robots adhere to

the specifications.

Figure 15.5 outlines the distribution of the time robots spent in the three human comfort

zones, with the y-axis showing the number of seconds with a precision of 0.1 s, averaged across

all participants and trials and normalized per participant. In the NON-NORMATIVE scenario,

the intimate space has been invaded frequently, with a median of 0.55 s per participant, and

the 75 percentile reaching up to 1.8 s. The result is slightly better in the EFFICIENT case, where

the median of 0.18 s is much lower. The least disturbance of the intimate space has been

recorded in the SOCIAL case, with the median of zero and the 75 percentile being half that

of the NON-NORMATIVE case. A similar trend is visible when considering the personal space,

although we can also note one interesting phenomenon – in the EFFICIENT case a significant

number of participants experienced a high number of seconds a robot remained in their

personal space. We can explain it by the fact that by design, one of the human roles – that of

the worker, has been prescribed personal_space of 0.8 m. Therefore robots had no incentive to

move out of that zone. The same is true for the SOCIAL case, where robots largely remained in

the social zone for a significant amount of time.

The Distance Cost

For further analysis of the impact the distances might have exerted on the participants’ answers

in the questionnaire, we developed a score capturing their performance with respect to that

aspect. For a participant Hh and a scenario s ∈ {NON-NORMATIVE, SOCIAL, EFFICIENT} the

distance cost MD is computed as follows:

MD
s,h = 2 mD

I + mD
P − 0.5 mD

S (15.1)
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Table 15.8 – Snapshots from the videos recorded during the experiments, showing examples of
acceptable, unacceptable and offensive robot behaviors before, during, and after an interaction.

where mD is the portion of time a robot remained in a particular zone, i.e. a number of seconds

in that zone normalized over the total interaction time. To this end, metric mD
I stands for

portion of time in intimate space, mD
P for a personal space and mD

S for social space. The metric

penalizes close encounters and promotes interaction that occur at a social (norm-satisfying)

distance. The resulting average costs are 6.06×10−2 for the NON-NORMATIVE case, 0.51×10−2

for the SOCIAL case, and 3.08×10−2 for the EFFICIENT case. Note that the lower the distance

cost, the better the performance.

Behavior Annotations

We classified all encounters of humans and robots into the three categories: acceptable,

unacceptable, and offensive, following the same procedure as in Section 15.6.1. Categorization

has been done with no knowledge of the scenario label to avoid potential subconscious bias.

Altogether, we annotated 152 interactions in the NON-NORMATIVE trials, 164 in the SOCIAL

trials, 158 in the EFFICIENT trials. Examples of such interactions are shown in Table 15.8, where

we show a situation before, during and after the encounter.

Figure 15.6 provides a detailed overview of the annotation results. Offensive type of encounters
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Figure 15.6 – Result of video annotations. Red line indicates the mean, light red area delineates
95% confidence interval and blue area the standard deviation. Raw data, for clarity jittered along
the x-axis, is shown in green.

occurred in all three scenarios, with the lowest average in the SOCIAL case, and a comparable

result between the NON-NORMATIVE and the EFFICIENT scenarios. A number of participants,

in particular in the EFFICIENT case was subject to as many as two offensive encounters. With

regard to unacceptable behaviors the tendency is much clearer; the least number of such

encounters occurred in the SOCIAL case, closely followed by the EFFICIENT case. On average,

there was less than one unacceptable encounter per participant per trial in all the scenarios.

Acceptable interactions occurred much more frequently than negative encounters. On average

each person experienced at least three acceptable interactions, with the lowest number in the

NON-NORMATIVE case, where the distribution is skewed towards a smaller number (< 4) of ac-

ceptable encounters, and the best result in the SOCIAL case, with the average number reaching

3.5 positive encounters per participant, and a high number of participants experiencing 4 or 5

acceptable interactions.

The Annotations Score

Similarly as negative interactions might negatively impact the perception of robots’ sociality,

positive robot encounters have a potential to improve their acceptability. The effects of

the types of interactions unique to each participant will be accounted for when analyzing

the survey results. Similarly as for the distance metric, we propose a score capturing the

impact that the quality of interactions might have exerted on the participants’ answers in the

questionnaire. For a participant Hh and a scenario s ∈ {NON-NORMATIVE, SOCIAL, EFFICIENT}

the annotations score MA is computed as follows:

MA
s,h = m A

A − m A
U − 2 m A

O (15.2)

where m A
A , m A

U and m A
O is the number of interactions of the offensive, unacceptable and

acceptable type, respectively. The metric rewards positive encounters, and penalizes negative

ones, with the weight of the offensive being twice that of the unacceptable ones. The resulting
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average scores are 0.92 for the NON-NORMATIVE case, 2.42 for the SOCIAL case, and 1.61 for the

EFFICIENT case. Note that higher scores indicate better performance of the robot team.

QUESTIONNAIRE, PART I-III. RATING OF THE INDIVIDUAL TRIALS

GENERAL ACCEPTANCE CRONBACH’S ALPHA 0.85

Q1 “What is your overall feeling towards the robots?” Highly reject Highly accept

Q2 “Would you like to see these robots helping people at their

work places?”

Not at all Absolutely

Q3 “Were you comfortable around the robots?” Not at all Absolutely

Q4 “How would you rate the robots in terms of safety?” Very dangerous Very safe

Q5 “How would you rate the robots in terms of naturalness?” Artificial Human-like

Q6 “How would you rate the robots in terms of confusing?” Not at all Absolutely

SOCIABILITY CRONBACH’S ALPHA 0.75

Q7 “Was it enjoyable to interact with the robots?” Not at all Fully

Q8 “How would you rate the robots in terms of friendliness?” Very aggressive Very friendly

Q9 “How would you rate the robots in terms of likability?” Very unpleasant Very pleasant

LEGIBILITY CRONBACH’S ALPHA 0.74

Q10 “Were you able to understand the behavior of the robots?” Not at all Absolutely

Q11 “Were you able to anticipate the actions of the robots?” Not at all Absolutely

Q12 “How would you rate the robots in terms of intelligence?” Very stupid Very intelligent

Table 15.9 – Survey questions of Parts I-III, for analysis grouped according to three categories
(the actual order of the questions was different in the survey provided to the participants, for
explanation see Section 15.7.2). The third column lists the possible response on the Likert scale of 1,
and the fourth column on the Likert scale of 5.

Survey Analysis

Participants were asked to complete a four-part survey, Parts I-III evaluating the individual

three trials (NON-NORMATIVE, SOCIAL and EFFICIENT) and Part IV for their comparison. Parts

I-III were identical, and administered after each trial. Trial labels were not provided so as

to avoid any bias they could introduce. The questions, shown in Table 15.9 were answered

on a Likert scale from 1 to 5, with the exact labels of the marginal lowest and highest scores

provided in the table. Part IV included a set of questions regarding the differences perceived

among the trials and a set questions for choosing the trial during which the robots’ behavior

was maximizing or minimizing one of the characteristics (e.g., friendliness, safety, intelligence).

At the end of Part IV, we asked the participants to assign each trial a label from a set of available

labels, namely non-normative, social and efficient. Questions in Part IV are listed in Table 15.10.

At the end of each part we invited the participant to provide their comments (“Any other

176



15.7. Experiment Set II

Figure 15.7 – Average score the participants have given to the robots after a particular trial, grouped
according to three categories of questions, general acceptance, sociability and legibility.

comments or suggestions?”). The comments, although not codified, provide further insight

into the perception of the robot behaviors by participants. A detailed analysis of the comments

is provided in Appendix B.

Each of the Parts I-III consisted of nine questions, shown in Table 15.9. For analysis we grouped

these questions into three categories4, general acceptance, evaluating the overall perception

of the robot team, likeability, measuring how enjoyable it was to interact with the robots,

and finally legibility, for determining whether it was easy for the participants to understand

robots’ intentions. The adequacy of the proposed categories was confirmed by performing

a Cronbach’s alpha test, which surpassed the commonly-used 0.7 level of reliability5. For

each participant, we computed the score in a given category by averaging the response to the

questions comprising that category.

Statistical Analysis of Parts I-III

In this section, we aim to understand the impact that the robots’ behavioral differences

across the three trials (NON-NORMATIVE, SOCIAL and EFFICIENT) exerted on the participants’

perception of the robots. To this end we conduct a one-way ANalysis Of VAriance (ANOVA)6.

The results of ANOVA presented in this section will allow us to test the null hypothesis given in

Section 15.7.

With ANOVA we test the effects a robot behavior in a particular trial had on the response in

the survey7. Our independent variables are the specifications that lead to the differences of

4 Similar methodology has been adopted in [171] and [172].
5 Cronbach’s alpha is a test used to determine an internal consistency of a composite score, providing an estimate

of the reliability of a psychometric test. Values higher than 0.7 indicate that the questions are closely related and
evaluate the same aspect, and therefore their results can be combined for analysis.

6 ANOVA is a statistical test for determining whether there are any statistically significant differences among
group means in a sample.

7 ANOVA is considered to be robust against the normality assumption. It can be used with Likert data, even with
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robots behaviors in the three trials. The dependent variables are the participants’ acceptance

of the robots, their perceptions of the robots’ sociability and legibility, and other social and

intellectual characteristics.

First, we perform a one-way ANOVA over the three categories of survey questions. In the

general acceptance category no effects were significant (F = 0.92, p = 0.4). The average rating on

a scale of 1 to 5, shown in Figure 15.7 was 3.4 for the NON-NORMATIVE behavior, 3.56 for SOCIAL

behavior and 3.6 for the EFFICIENT behavior. Similarly, no statistically significant difference

were found in the legibility rating (F = 1.1, p = 0.336), where the SOCIAL behavior achieved the

highest score of 3.3, the EFFICIENT behavior scored 3.18, and the NON-NORMATIVE 3.04. In

contrast, an analysis of the sociability category indicated a statistically significant effect of the

behavior differences (F = 3.3, p = 0.04). Consequently, the null hypothesis H0 stating that all

behavior score means are equal is rejected. The ANOVA test was carried out with a significance

level of 0.05, hence the results can be stated with a confidence of 95%8. Furthermore, we

performed a multiple comparison test to determine which trials are statistically significantly

different than the others. Multiple comparisons with the Fisher’s least significant difference

procedure revealed that the score for the NON-NORMATIVE behavior is statistically significantly

lower than SOCIAL (p < 0.05) and EFFICIENT (p < 0.05). Consequently, we partially confirmed

hypothesis H1 – we verified that the participants rate the NON-NORMATIVE behavior as the

least social, but we cannot do so with the aspects of acceptability and legibility. Lastly, no

statistically significant difference was found between the SOCIAL and the EFFICIENT behaviors

(p = 0.926). The average rating for the SOCIAL and the EFFICIENT trials was similar (3.96 and

3.94 respectively), while the NON-NORMATIVE trials received the lowest score of 3.53.

To understand which particular questions had the most influence on the response in the

sociability category we further analyzed the three questions that it comprises. A further one-

way ANOVA procedure carried out on individual questions indicated that there is a statistically

significant difference in two of the questions, Q8 “How would you rate the robots in terms of

friendliness?” (F = 3.22, p = 0.044) and Q9 “How would you rate the robots in terms of likability?”

(F = 3.71, p = 0.028). In question Q8, the NON-NORMATIVE behavior with the mean of 3.61

was rated significantly lower (p < 0.05) than the SOCIAL and EFFICIENT behaviors with means

of 4.16 and 4.11 respectively on a scale 1 to 5. A similar pattern was visible in question Q9,

where the NON-NORMATIVE behavior with the mean of 3.5 was rated significantly lower (p <

0.05) than the SOCIAL and EFFICIENT behaviors with means of 3.97 and 4.02 respectively. The

question Q7 “Was it enjoyable to interact with the robots?” showed no significant effects, with

an average response of 3.63 across the behaviors.

small sample sizes, with unequal variances, and with non-normal distributions [173].
8 The p-value represents the lowest significance level at which a null hypothesis can be rejected. The lower the

p-value, the stronger is the evidence in favor of an alternative hypothesis.
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Figure 15.8 – Average response to ques-
tion QC 3 of Part IV, composed of seven
sub-questions determining the participants’
preferences between the three trials NON-
NORMATIVE, SOCIAL and EFFICIENT.

Comparison of the Trials in Part IV

Part IV of the survey was handed out to the participants once all trails have been completed

and evaluated in Parts I-III. As shown in Table 15.10, Part IV consists of four questions, aiming

at verifying whether the participants in retrospect perceived differences in robot behavior

(QC 1), what aspects these differences concerned (QC 2), and how at the end of all trials they

evaluate their preferences (QC 3).

Participants’ responses to questions QC 1 and QC 2 indicate that there are perceivable differ-

ences between the trials. In fact, all participant responded affirmatively to question QC 1 “Did

you see any difference in robot behavior?”. Responses to question QC 2 determining in which

aspect of the behavior the variability resided indicates that the vast majority of the participants

understood that the robots reacted differently to human presence – 37 out of 38 participants

positively answered question QC 2a (“how the robots reacted to your presence”). With this result

we once again confirm that the null hypothesis H0 can be rejected. The response was less

decisive in questions QC 2b (“how the robots interacted with each other”) and QC 2c (“how the

robots interacted with the environment”). Only 37% of the responders affirmed QC 2b , while

only two participants saw a difference in how robots interacted with the environment (QC 2c ).

Average response to question QC 3 composed of seven sub-questions determining the par-

ticipants’ preferences is shown in Figure 15.8. Retrospectively, the majority of participants

judged the SOCIAL behavior most positively. As high as 76% of the responders indicated that

the SOCIAL trials were the most social; the same behavior type received very high scores in

terms of friendliness (71%), likability (52%), appropriateness (50%) and intelligence (61%). It

was also judged safer (45%) and less confusing (only 21% indicated the SOCIAL behavior as the

most confusing) than the other behaviors. The NON-NORMATIVE and the EFFICIENT behaviors

received comparable scores throughout questions QC 3a −QC 3 f , but the EFFICIENT behavior

was slightly more confusing than the NON-NORMATIVE one (47% versus 32%). However, as the

individual encounters with the robots as well as other environmental factors could potentially

have a strong influence on the above response, we will analyze such effects later on in the next

section.
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Similarly as for the distance cost in Section 15.7.2 and for the annotations score in Sec-

tion 15.7.2 we compute a score capturing the participant’s perception of the given behavior.

For a participant Hh and a scenario s ∈ {NON-NORMATIVE, SOCIAL, EFFICIENT} the comparison

score MC is computed as follows:

MC
s,h = ∑

q∈QC 3a: f

mC (q)−mC (QC 3g ) (15.3)

where mC is the binary value indicating whether the option was selected (1) or not (0). Note

that confusing was assigned a negative score. The metric rewards positive characteristics, and

penalizes negative ones. The resulting average scores are 0.84 for the NON-NORMATIVE case,

3.34 for the SOCIAL case, and 0.82 for the EFFICIENT case.

The final question in Part IV asked for assigning a label to the trial. The correctness of the

labeling assigned to the experiments by the participants was given a score from 0 to 2, where a

score of 2 means correct answer, score of 1 means partially correct answer, when either the

NON-NORMATIVE and EFFICIENT labels were swapped, or when the EFFICIENT scenario was

labeled as SOCIAL. Zero score was awarded for labeling the NON-NORMATIVE experiment as

SOCIAL or vice versa. Half of the participants (19 out of 38) labeled the trials correctly. Further

45% (17 out of 38) achieved partially correct answer. Only one person achieved zero score in

the labeling. One answer was invalid.

The comparison score and the labeling score will form dependent variables of the statistical

analysis in the next section.

Statistical Analysis of Part IV

In our analysis, we separated the effects of the experimental setup from the effects caused

by the actual robot performances. First, we run a set of statistical tests on the effects of the

sequence of trials and the role assigned to the participant. Second, we analyzed the effects of

the distance score DS and the annotations score AS.

The comparison scores of the scenarios and the labeling score achieved by the participant

formed our dependent variables. The independent variables we considered included age;

gender; prior experience with robots, on a scale of 1 to 4 (none, low, medium, high), that

was grouped into two categories, from-none-to-low and from-medium-to-high; role assigned

to the participant (either HA or HB , as described in Section 15.7.1); sequence of the trials,

classified into three groups: first, when the NON-NORMATIVE trial was carried out at the

beginning, second, when the SOCIAL trial was first, and third, when the EFFICIENT trial was first.

We also analyzed the impact of the distance score DS described in Section 15.7.2, averaged

across the trials and encoded as a continuous predictor; and the average annotations score

AS described in Section 15.7.2, classified into two groups, first for a satisfying score (≥ 1) and

second for otherwise.
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QUESTIONNAIRE, PART IV. COMPARISON OF THE TRIALS

PERCEIVED DIFFERENCES

QC 1 “Did you see any difference in robot behavior?”

QC 2 “If the answer to the above question was yes, the difference was in:”

QC 2a – “how the robots reacted to your presence”

QC 2b – “how the robots interacted with each other”

QC 2c – “how the robots interacted with the environment”

COMPARISON OF BEHAVIOR CHARACTERISTICS

QC 3 “Indicate during which experiment the robots were:”

QC 3a – “the most social”

QC 3b – “the most friendly”

QC 3c – “the most likable”

QC 3d – “the most safe”

QC 3e – “the most appropriate”

QC 3 f – “the most intelligent”

QC 3g – “the most confusing”

LABELING

QC 4 “Each experiment was assigned a label: non-normative, social, and efficient.

Try to match the label to the experiment you participated in.”

Table 15.10 – Survey questions of Part IV. The order of the questions was the same in the survey
provided to the participants. In question QC 3 one had to indicate the number of the trial that is
best described with one of the provided adjectives.

The first set of tests evaluating the effects of the sequence of trials and the human roles on the

comparison score, in the case of the EFFICIENT scenario resulted in one statistically significant

factor, namely that of a combination of both factors (F = 4.52, p = 0.019). Multiple comparison

indicated that the response of the participants who first witnessed the EFFICIENT trial and had

a role of HA is significantly different from the ones with the same role but different sequences,

namely mean of -1 for groups who first witnessed the EFFICIENT trial versus 1.38 for those who

first experienced the NON-NORMATIVE behavior (p = 0.0348), and 1.6 for for those who first

experienced the SOCIAL behavior (p = 0.0407). There was no significant difference between

those who first experienced the NON-NORMATIVE behavior and those who first experienced the

SOCIAL one. There were also no significant effects of the experimental setup on the labeling

score.

In the second test, we evaluated the effects of the distance cost MD and the annotations

score MA . One significant effect was found in the SOCIAL scenario. Since the MD metric

was measured on a continuous scale, its effects were tested using ANalysis Of COVariance

(ANCOVA) method. We discovered with that there is a correlation between the average distance

score M̄D and the comparison score MC
SOCIAL, as shown in Figure 15.9 (middle). One can
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Figure 15.9 – Correlation between the average distance cost M̄D and the comparison score MC .
Blue shaded area is shown for visualization of the general data trend.

observe that for lower M̄D (better robot performance in terms of distance control), no low

MC
SOCIAL scores have been assigned to the robots (bottom-left corner of the plot is empty).

Similarly, for higher M̄D (worse performance), the tendency was as for the lower scores

MC
SOCIAL. For comparison, we additionally visualized data for the NON-NORMATIVE case (left)

and for the EFFICIENT case (right). In contrast to the SOCIAL scenario, satisfactory distance

score M̄D have not been awarded with high values of MC (bottom-left corner is populated

with data points while top-left corner is empty).

Finally, we analyzed the comparison score for the effects of age, gender and robot experience

using a three-way ANCOVA with the age being encoded as a continuous predictor. For none of

the scenarios significant effects were found (all p > 0.05). Similarly, the labeling score was not

affected by the personal factors.

Comments of the Participants

The participant comments provided at the end of each part of the survey are analyzed in details

in Appendix B, while in this section we provide a brief overview of the main conclusions.

The majority of comments regarding the NON-NORMATIVE trial was rather negative, the robots

were seen as aggressive and it was understood that they ignored human presence. Some

participants used decidedly negative wording, such as “scary” or “creepy”. Interestingly, a

small number of participants indicated their preference for the NON-NORMATIVE behavior,

despite of having an understanding that the robots were not social. The SOCIAL trial received

the highest number of general positive comments. The robots were described as “cute”, “polite”

and “pleasant”. However, some of the participants disliked the particular implementation of

the norms, such as the color of the eyes, or the volume of the sounds. Finally, the motion of

the robot during the EFFICIENT trials was judged as asocial and illegible.

Finally we would like to bring attention to the fact that participants had a tendency to ascribe

personality traits to the robot behaviors, a phenomenon that has been noticed in similar

studies [171]. During the NON-NORMATIVE trials robots were judged as more or less “aggressive”,

the SOCIAL behavior was “polite” and the robots had “kind of feelings”, while during the

EFFICIENT trials they were “selfish”. We believe that this further demonstrates the ability of the
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the institutional framework to produce different robot behaviors and impressions through

simple modifications of the behavioral parameters in the process of norm realization.

15.7.3 Discussion

The results of the participative study we conducted allowed us to better understand the impact

of introducing social norms to multi-robot behaviors.

The first and foremost finding is the confirmation that every human being has his or her

personal preferences and expectations regarding robot’s behaviors or other characteristics.

Our approach in the presented experiments was to show the diversity of social behaviors we

can achieve with our framework, but we did not encode the actual individual preferences of the

participants. We believe this would be the natural next step of the validation of the institutional

formalism – a human-in-the-loop design process, where initial input of the participants would

iteratively affect the process of norm realization. Alternatively, one could try to learn or predict

participant’s preferences based on age, gender or other standard statistics, however our study

did not indicate any of the a-priori human characteristics having statistically significant impact

on their preferences.

The analysis of the participants’ perception of the individual scenarios in Section 15.7.2

through the rejection of hypothesis H0 allowed us to confirm that although individual pref-

erences vary, the greater majority of people is able to perceive differences between non-

normative and social behaviors, as well as differences in the degree of sociality. Furthermore,

we confirmed hypothesis H1 in the sociability category, where the score of the NON-NORMATIVE

behavior was significantly lower than the two normative behaviors. With regard to the final hy-

pothesis H2, stating that the SOCIAL behavior is the most acceptable, social and legible, results

of Part IV of the survey shown in Figure 15.8 indicate strong preferences of the vast majority

of the participants for the SOCIAL behavior. As high as 76% of the participants judged it as

the most social, and 71% as the most friendly. Therefore we believe that in human-populated

spaces, where collection of data with regard of individual preferences is impossible because of

a short interaction time, such as at the airports or in museums, highly social behaviors can

yield the best results, as people are generally willing to forgive robots’ mistakes, as long as

they are perceived as friendly. This conclusion can be deducted from the comments of the

participants listed in Appendix B, in particular the comments regarding the SOCIAL behavior.

15.8 Experiment Set III

In this section we validate the FI-GM-PHD filter in highly dynamic environments where

formation is frequently interrupted by the presence of a human affecting the dynamics of the

norm-following formation. We simulate temporary communications failure and analyze its

impact on the performance of the robot team. We distinguish two cases: A) where robots rely

on communications only (labeled as NOTRACKING), and B) where each robot runs the FI-GM-
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Figure 15.10 – Formation failure rates per second (multiplied by ×10−3), classified into three
categories, NOT-REC, NOK-REC and OK-REC, calculated based on the video annotations. The
higher the value, the worse the formation performance in the respective category. The categories
are: NOT-REC, where robots are not able to recover the formation, NOK-REC, where the formation
breaks substantially, but is able to recover, and OK-REC, where the formation separation is visible,
but inconsequential. The row labels provide the percentage of dropped messages, 0H stands for
experiments with no human, 1H for experiments with a single person.

PHD filter described in Chapter 8 (labeled as WITHTRACKING). Details of the experimental

setup and a thorough analysis of the results are provided in Appendix C, while in this section

we summarize the main conclusions.

The tracking performance in the WITHTRACKING case is shown to deteriorate gracefully with

the degradation of the communication quality – a drop of 90% of messages for 20% of the

experiment duration increases the error on average by 14%, while 100% message drop results

in 56% increase. Human presence has a clear impact on the tracking performance, with OSPA

being on average 5.2% higher when a human is present.

As an indicator of the formation performance we use failure rates, calculated based on the

video annotations. We distinguish three categories of formation failures: NOT-REC, where

robots are not able to recover the formation, NOK-REC, where the formation breaks sub-

stantially, but is able to recover, and OK-REC, where the formation separation is visible, but

insignificant. Failure rates shown in Figure 15.10 confirm that the use of FI-GM-PHD filter in

the WITHTRACKING scenarios yields much better performance than when tracking is not used

(NOTRACKING). The formation failure occurs far less frequently in the case when the tracking

is employed, and with lesser criticality – we recorded no cases when the formation breaks with

no ability to recover.

With the above experiments we achieved two objectives. First, we have shown that the FI-GM-

PHD filter performs well also in highly dynamic situations, where the formation is subject

to frequent and significant changes resulting from a social response to the presence of hu-

mans. Second, we consolidated all the elements of this thesis in a single experimental study,

showing complementarity of the algorithmic solutions to practical challenges of multi-robot

deployment in human-populated spaces proposed in Part II, and the institutional framework
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providing a method for achieving robot sociality proposed in Part III.

Summary

The objective of the case study presented in this chapter was to highlight the advantages

of our framework when designing complex normative behaviors. We demonstrated

agility of the methodology to encompass a large variety of norms, ranging from navi-

gation to expressions and HRI features. By grounding the institution to three different

domains we confirmed the generalizability of the abstract norm formulation, while

retaining customization. The latter was achieved through the grounded knowledge,

but neither at institutional level nor at behavioral level modifications are inserted: –

it is only the parameters that change the behavior modality automatically, through

norm realization. This stands in a high contrast to what is proposed in the literature

on normative navigation as discussed in Chapter 10, where the norms are embedded

directly in the behavior design. As we emphasize in the same chapter and repeat here,

our methodology does not aim directly at improving the physical performance of the

robots but rather at facilitating the design of socially aware complex robot behaviors that

can be reusable and understandable for the humans sharing the same environment.

We completed the analysis of the social aspects of the behaviors through a participa-

tive experimental campaign. Our study targeted a comprehensive evaluation of the

subjective effects that have an impact on human perception of robots’ sociality. Our

findings confirm the power of the institutional framework to yield significantly different

robot behaviors through the process of norm realization. We were able to show that

the non-normative robot behaviors are generally seen as significantly less friendly than

normative. Furthermore, we confirmed the need of personalization of robot responses

to fit the individual robot preferences. At the same time we identified the fact that, in

general, highly social behaviors are preferable by the majority of people, so if person-

alization of interactions is impossible in a given application, such behaviors have the

potential to already yield highly desirable results.

The final set of experiments consolidated all the major technical elements of this thesis,

namely formation control with adaptive topology controlled by norms, cooperative

localization based on the FI-GM-PHD tracking filter, and sociality of robots behaviors

created through our institutional formalism. The results show that complementing

faulty communication with the FI-GM-PHD filter tracking significantly reduces the

chance of the formation breaking irreversibly, confirming that the proposed tracking

method performs well not only in controlled environments such as the ones tested in

Chapter 8, but also in highly dynamic missions where human presence induces rapid

changes of the formation shape.
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16 Case Study: Mixed Formations For
Human Guidance

W E have seen in the previous case study how an abstract institution can be mod-

eled, how it can be grounded to a concrete domain, and how a generic norm

can be designed. In particular, we can use norms to prescribe the behavior

of the controllable agents, the robots, so that they adhere to the institutional

norms. In other words, institutions can be used for both control and for deliberation in

multi-robot systems, as we will demonstrate in this chapter, where a different set of norms is

automatically activated depending on the social context. More precisely, in this case study a

first set is active in situations, when humans are following the robots, and a second set in case

humans disobey. Deliberation between the cases is transparent and embedded through the

rules of norm realization.

The social context we adopt in this case study is similar to a museum, where visitors do

not know the surroundings and the objective of the robots is to guide them through the

environment while simultaneously providing information. In contrast to the case study of

Chapter 15, humans and robots cooperate, i.e. to achieve the objective they explicitly interact

and coordinate their behaviors, while social norms make allowances for establishing mixed

human-robot formations.

We illustrate our approach in a case study, where we translate abstract norms into concrete

constraints on cooperative behaviors of humans and robots. We investigate the feasibility

of our approach and quantitatively evaluate the performance of our framework in 30 real

experiments with user-based evaluation with 40 participants.

HIGHLIGHTS

• Composition. Two institutions are deployed sequentially, with the second being acti-

vated as a result of the termination of the first. We provide a preliminary discussion on

how institutions can be activated and terminated based on the social context.

• Flexibility. The institutional framework is independent of the tools, methods or systems

governed by it. In this case study the institutional evolution coexists with a centralized
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planner, but the relation is transparent at the institutional level and occurs fully at the

domain level.

• Norm deliberation. One of the two dominant sets of norms is activated depending on

the social situation – the first set in case humans are following the robots, the second set

in case humans disobey. Deliberation between the cases is transparent and embedded

through the rules of norm realization.

• Feasibility relations. The MBot and the Pepper robots coexist in the same institutional

environment, but because of different capabilities, they cannot assume the same roles

and perform the same actions. We show how to resolve the issue of linking agents to the

roles they can perform and the respective actions through feasibility relations.

• Computational Protocol. Norm realization at the domain level is represented in a form

readily implementable in robot’s programming language.

• Mixed Formations. To the best of our knowledge, ours is the first study where multiple

humans and multiple robots engage in coordinated navigational behaviors in real

settings. The results are analyzed with the aim of understanding the social preferences

in the context of human guidance in mixed formations.

• Participative Study. An analysis of the subjective assessment of participants taking

part in the study indicates that there is a need for empirical evaluation of norms before

they can be operated in real world applications and that perception of the same nor-

mative behavior of a robot varies from person to person, as a consequence of different

expectations, background, or experience with robots.

16.1 The STEERING and TUTORING Institutions

Our case study consists of two phases. In the first phase, a group of humans is guided by a

number of robots to a destination. The formation includes one leader robot, human visitors,

and the follower robots1. The second phase takes place once the group reaches the destination,

in an exhibition room, where two cooperative robots take the visitors on a tour. One of the

robots, referred to as a tutor, describes the objects, while the other robot – an assistant, moves

around the room while showing the objects to the visiting humans. The social context is

similar to a museum, where the visitors do not know the surroundings and the objective is to

guide them through the environment while simultaneously providing information.

The case study is governed by two institutions. The STEERING institution in phase one, and the

TUTORING institution in phase two. The choice of institutions, the granularity of the activities

and their roles are one of the many possible design choices that could be made. With reference

to our discussion on the granularity of institutions in Section 11.3, STEERING and TUTORING

fall under the category of institutions for human guidance in Figure 11.3.

1 In our case study we adopted a single robot as follower but the definition of the institutions and related norms
support multiple robots in such role.
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The STEERING institution is defined as follows:

STEERING =
〈

Norms (S) = {
nS1, nS2, nS3, nS4

}
Roles (S) = {

Leader, Follower, Visitor
}

Actions (S) = {
Guide, AssistGuidance

}
Conditions (S) = {

VISITORS_NOT_FOLLOWING, LEADER_STOPPED, ...
}

Knowledge (S) = {
PersonalSpace, SocialForce, FormationShape, ...

}〉

The Tutoring institution is defined as follows:

TUTORING =
〈

Norms (T ) = {
nT 1, nT 2

}
Roles (T ) = {

Tutor, Assistant, Visitor
}

Actions (T ) = {
Teach, AssistTutor

}
Conditions (T ) = {

IN_EXHIBITION_ROOM, NEXT_TO_OBJECT
}

Knowledge (T ) = {
ObjectLocations, ObjectDescriptions

}〉

16.1.1 Norms

The norms of the STEERING and the TUTORING institutions are listed in Table 16.1.

STEERING

Prevention nS1
“When guiding humans in a formation, the followers should adopt

a configuration designed to retain the humans behind the leader.”

Comfort nS2
“The followers should maintain a comfortable distance from the

humans.”

Waiting nS3
“When humans fail to follow behind the leader, the leader should

wait for them.”

Re-engaging nS4
“When humans are not following, the followers should encourage

them to return.”

TUTORING

Accompanying nT 1
“The tutor robot should accompany the visitors to indicate the loca-

tions of the demonstrated objects.”

Instructing nT 2
“The assistant robot should provide informative descriptions of the

demonstrated objects.”

Table 16.1 – Norms of the STEERING and the TUTORING institutions.
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Human Visitors are uncontrollable agents that in general follow the instruction of following

behind the Leader. When not, we assume that human behavior can be influenced by the

robots. The norms nS1 and nS2 determine the social behavior of the robots in terms of the

formation geometry in the ideal case humans agree to follow, chosen so as to take into account

human comfort zone. The norms nS3 and nS4 operate in the case participants stop following;

the leader robot simply waits for the humans to re-engage, and the followers move closer to

the humans in an attempt to influence their motion based on the assumption that humans try

to maintain a comfort space between themselves and the others. The motivation behind the

norms nS3 and nS4 has been discussed in Section 12.2.2.

For completeness, we rewrite the norms in terms of the institutional components according

to the syntax of the institutional norm given in Definition 11.2:

N : Conditions → deontic
(

Roles × Actions × Knowledge
)
.

nS1 : (when guiding humans) → should(followers, adopt, configuration to retain humans)

nS2 : ;→ should(followers, maintain, comfortable distance from humans)

nS3 : when humans fail to follow→ should(leader, wait, ;)

nS4 : when humans not following→ should(followers, encourage, to return)

nT 1 : ;→ should(tutor, accompany the visitors, indicate locations of objects)

nT 2 : ;→ should(assistant, provide, descriptions of objects)

16.1.2 Conditions and Knowledge

The elements of institutional Conditions and Knowledge constituting the above decomposition

of norms are listed in Table 16.2 and Table 16.3 respectively.

Activation Conditions Outcome Conditions C

nS1 VISITORS_FOLLOW ROBOTS_IN_FORMATION CS1

nS2 VISITORS_FOLLOW RESPECTED_PERSONAL_SPACE CS2

nS3 VISITORS_NOT_FOLLOWING LEADER_STOPPED CS3

nS4 VISITORS_NOT_FOLLOWING ROBOTS_IN_FORMATION CS4

nT 1 IN_EXHIBITION_ROOM - CT 1

nT 2 NEXT_TO_OBJECT - CT 2

Table 16.2 – Conditions of the two institutions STEERING and TUTORING.

The conditions for norms nS3 and nS4 are the negative of the conditions for nS1 and nS2, which

results in the deliberation between two social situations – first, for the case when humans are

following the rules of the mixed formation; second for when humans stop following and are to

be encouraged to return. Further details are provided for grounded conditions.
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Knowledge Grounded Knowledge K Symbol

STEERING

PersonalSpace personal_distancex ∆P,h

IntimateSpace intimate_distancex ∆I ,h

SocialForce forcex Ko , ∆a , ∆c

FormationShape formation_shapex FS

FormationBias formation_biasx b

Destination positionx px

TUTORING

ExhibitionArea areax EA

ObjectLocations positionx px

ObjectDescriptions speech_modex SM

Table 16.3 – Knowledge and its grounding K. We use the subscript (·)x to abbreviate variables with
multiple instances x.

The institutional knowledge is based on two models of human behavior described in Chapter 3,

i.e. PM and SFM. The distances of PM are used for the case humans move in the formation

(norms nS1 and nS2) to determine the optimal parametrization of the formation geometry,

given the positions of humans and their personal spaces. While the PM is used for parametriza-

tion, it is the FormationShape element that defines the high-level structure of the formation,

with the locations of the followers placed so as to retain humans in the mixed formation.

The SFM is used for forecasting the amount of virtual repulsive force a robot is to exert to

affect human motion. As we explain in Section 5.6.2, we use the SFM to map the distance the

robot keeps from the human to the resulting motion of the human aimed at increasing the

uncomfortable distance, which results in the human moving away in the desired direction.

As we point out in Chapter 10, a similar strategy is popularly used for human guidance in

robotics.

16.1.3 Linking Institutions

In Section 11.2, we mentioned that an agent joins an institution upon recognition of a social

context (the immediate physical and social setting of the environment) and leaves an insti-

tution when the context is no longer perceived. Correspondingly, we can specify the social

context of the two institutions introduced in this case study. The STEERING institution is to be

activated when humans are to be guided to a known destination by the robots. When humans

are to be introduced to a selection of objects in the environment it is the TUTORING institution

that is activated. Such abstract descriptions can be further concretized in a manner similar to

that of a norm realization, for example through sets of conditions that must be satisfied so

that an institution is operational. In our implementation, the STEERING institution is activated
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once the presence of the humans is detected and terminated once the Leader has reached the

Destination location defined in institutional knowledge. The latter is the triggering condition

for activation of the TUTORING institution, which terminates once all the objects listed in

knowledge of TUTORING have been presented to the Visitors.

16.2 Domain and Grounding

The description so far provides specification for the abstract institutions. We now ground our

institutions in the domain of the case study involving real robots and humans. The domain

includes the following components:

A = {
mbot1, mbot2, pepper, participantx

}
B = {

MoveOnTrajectory, MoveInFormation, Speak
}

R = {
time, positionx, distancex, locationx, object_statex, ...

}
K = {

personal_distancex, forcex, speech_modex, ...
}

C = {
CS1, CS2, CS3, CS4, CT 1, CT 2

}
with the subscript (·)x abbreviating variables with multiple instances x. There are three hetero-

geneous robots, mbot1, mbot2 and pepper, and a number of human participants. We discern

the diverse capabilities of the robots through the feasibility relations described in the next

section.

The STEERING institution is grounded with G(S):

G(S)
A = {(

Leader, mbot1
)
,
(
Follower, mbot2

)
,
(
Visitor, participant1, participant2

) }
G(S)

B = { (
Guide, MoveOnTrajectory

)
,
(
AssistGuidance, MoveInFormation

) }
G(S)

C = { (
VISITORS_NOT_FOLLOWING, ca

S3

)
,
(

LEADER_STOPPED, co
S3

)
, ...

}
G(S)

K = { (
PersonalSpace, personal_distancex

)
, ...

}
while the TUTORING institution is grounded with G(T ):

G(T )
A = {(

Tutor, pepper
)
,
(
Assistant, mbot1

)
,
(
Visitor, participant1, participant2

) }
G(T )

B = { (
Teach, Speak

)
,
(
AssistTutor, MoveOnTrajectory

) }
G(T )

C = { (
IN_EXHIBITION_ROOM, ca

T 1

)
,
(

NEXT_TO_OBJECT, ca
T 2

) }
G(T )

K = { (
ObjectLocations, positionx

)
,
(
ObjectDescriptions, speech_modex

) }
Since the robots are heterogeneous, it is important to discern which robots can take which roles

and their respective actions. First, we specify the feasibility relations between the institutional

role and the action that is assigned to that role according to Definition 11.3. The relations
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include:

F (S) = {(
Leader, Guide

)(
Follower, AssistGuidance

)}
F (T ) = {(

Tutor, Teach
)(

Assistant, AssistTutor
)}

Second, we assure that an agent can take a role only if it can carry out the linked action and the

behavior the action is grounded to, i.e. an agent must have capabilities (in terms of sensors,

actuators etc.) to perform the behavior. An agent is linked to a role through grounding GA .

When synthesized, the two above steps result in the relation between the agent, through the

role it takes and the action assigned to that role, to the behavior the action is grounded to:

AGENT
GA←−− ROLE

F−→ ACTION
GB−−→ BEHAVIOR

mbot1
G(S)

A←−− Leader
F (S)

−−−→ Guide
G(S)

B−−→ MoveOnTrajectory

mbot2
G(S)

A←−− Follower
F (S)

−−−→ AssistGuidance
G(S)

B−−→ MoveInFormation

pepper
G(T )

A←−− Tutor
F (T )

−−−→ Teach
G(T )

B−−→ Speak

mbot1
G(T )

A←−− Assistant
F (T )

−−−→ AssistTutor
G(T )

B−−→ MoveOnTrajectory

According to the above relation, in the TUTORING institution, mbot1 assigned the role of an

Assistant performs a MoveOnTrajectory behavior, while a pepper robot assigned the role of

a Tutor performs the Speak behavior. The robot capabilities are taken into account through

the process of agent grounding GA . The mbot1 robot is capable of robust navigation, thus it

shows objects to the participants, while the humanoid pepper robot with enhanced interaction

potentials but poor maneuvering capabilities explains these objects from far away.

The behaviors MoveOnTrajectory and MoveInFormation of the first phase of CI I are described

in details in Chapter 5. The Tutor and the Assistant in phase two synchronize execution

of their behaviors. The Tutor describes an object oi with the Speak(oi ) behavior, while the

Assistant navigates to that object with the behavior MoveOnTrajectory(oi ). The Speak behav-

ior involves performing a speech act, with a pre-defined string, such as “The object is a yellow

sphere”. The MoveOnTrajectory behavior involves navigation using the FMM method to the

pre-selected waypoints, such as nextToYellowSphere. Object descriptions and their locations

are included the institutional Knowledge of ObjectDescriptions and ObjectLocations, respec-

tively (see Table 16.3). Synchronization is assured by a communication protocol between the

robots. Human behaviors are not represented formally.

The temporal course of the experiments is established by an offline plan devised by a temporal

planner described in Chapter 2. The planner determines relations between time intervals
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Figure 16.1 – Overview of the norms and their realization in the concrete system.

when the behaviors execute, based on institution specification, domain, and grounding, which

are used to automatically generate a planning scheme [13]. The planner enforces the temporal

norms, while the norm realization enforces the spatial norms.

16.3 Norm Realization

In the case study of Chapter 15, we have only provided high-level description of how norms

are realized at the domain level. In this case study, we propose a concrete computational

protocol of the steps A) - E) of norm realization presented in Definition 13.2. An illustration of

the necessary computational steps with a simple example is presented in Appendix D, while

here we provide a brief account of the adopted protocol.

16.3.1 Computational Protocol

The steps of the norm realization are captured in Algorithm 4. The same protocol is used in all

the case studies in this thesis CI - CI I I .

In the protocol, we can observe two dominant patterns. First, the flow of control resembles a

traditional sensing-deliberation-actuation loop of robotic systems, namely we test the condi-

tions defined over world state variables, then plan the next actuation command (behavioral

modality), and finally, execute it. Second, the richness of the resulting normative behaviors is

achieved through the depth provided by the r P - r V - r B rules.

Our implementation rules are realized as input-output functions. Rules r N and r O (lines 5 and
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Algorithm 4: NORM REALIZATION

1: Norms N of the institution are realized at time t by an agent performing behavior Bb given the

grounded knowledge K and the values of the state variables R at time t as follows:

2: N A
t ←;, N T

t+1 ←; (reset the set of active and satisfied norms )

3: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NORM ACTIVATION

4: FOR nk ∈N :

5: IF r N
k (Φk (C a)) ≡ True : ( if the formula over the activation conditions is satisfied )

6: N A
t ← nk ( norm is added to the set of active norms )

7: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPECIFICATION OF BEHAVIORAL MODALITY

8: FOR nk ∈N A
t : ( for each active norm )

9: Pk ← r P
k (Bb) ( find the set of parameters to be modified )

10: FOR p ∈ Pk :

11: vp ← r V
k (K ,Rt ) ( determine the parameter value )

12: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . APPLICATION OF BEHAVIORAL MODALITY

13: λb ← r B
k (p, vp ) ( apply the resulting behavioral modality )

14: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NORM VERIFICATION AT t +1

15: FOR nk ∈N A
t :

16: IF r O
k (Φk (C o)) ≡ True : ( if the formula over the outcome conditions is satisfied )

17: N T
t+1 ← nk ( norm has been satisfied at t )

16 in Algorithm 4) evaluate prepositional formulas over boolean conditions. Rule r P (line 9),

given the type of norm and the type of behavior, provides a list of parameters to be modified.

Rule r V (line 11) determines the specific value of the parameter given K and R ; it is typically a

complex function implemented as a part of the behavior semantics. Finally, rules r B (line 13)

are applied directly as a part of the behavioral procedure.

16.3.2 Realization of Norms

An overview of the norms of the STEERING and the TUTORING institutions is shown in Fig-

ure 16.1.

Norm nS1 specifies that the configuration of the followers should be chosen so as to retain

the humans in the formation. The norm is active when the condition VISITORS_FOLLOW

given in Table 16.2 is satisfied. The norm is complied with when ROBOTS_IN_FORMATION,

i.e. when robots are close to the desired places in the formation and the formation error

meets eF ≤ eM AX
F . The rules r P and r V determine the exact value for the bias matrix b

conceptualized in Figure 16.1. With such configuration the Visitors are placed between the

Leader and the Followers and can be closely monitored for deviation from the desired path.

This bias is calculated dynamically. It depends on the human positions and is calculated so

that the desired place in the formation of the follower closest to a human is at the limit of the

personal_distance ∆P,h ∈ K of the human, as shown in Figure 16.1. The remaining followers

choose the desired positions accordingly, taking into account the extent of the human group
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(simplified to a circular region). For guidance of a single human, the bias is chosen so as the

desired robot-human distance is twice the ∆P,h .

Realization of a norm similar to nS2 has been already provided in Chapter 13, while in Ap-

pendix D we detail the steps necessary to apply this norm with our computational protocol.

In summary, to maintain a comfortable distance from a human according to norm nS2, the

robot dynamically creates a repulsive field around the human to prevent interference with

his comfort zone. The parameters Ko , ∆a , ∆c for a specific human Hh are extracted from the

grounded knowledge of the particular domain. The resulting value of WR is applied by the

MoveInFormation behavior according to Equation (5.8). The norm is active when a condition

VISITORS_FOLLOW is true, and satisfied when RESPECTED_PERSONAL_SPACE, i.e. when the

resulting human-robot distance di h at time t + 1 is higher than the value of the personal

distance ∆P,h , for all human Visitors Hh .

Norms nS3 and nS4 are active under the condition VISITORS_NOT_FOLLOWING, specified for

the distance between the Leader and the human furthest from the Leader, d(L, Hh) exceeding

a threshold ∆L . Realization of nS3 sets the desired TrajectorySpeed parameter of the Leader’s

MoveOnTrajectory behavior to zero for the duration when the norm is active. Norm nS3 is

satisfied when LEADER_STOPPED, i.e. d(pL(t), pL(t +1)) → 0. Realization of nS4 changes the

bias matrix in the case when a human is not following. The new bias is chosen so that the

desired place in the formation of the follower is at the limit of the intimate_distance ∆I ,h ∈ K

of the human, as shown in Figure 16.1. Norms similar to nS3 and nS4 appear in the literature.

In [93] the robot re-engages a strayed human by exerting a repulsive social force that urges

the person towards a goal. In [170] a learning-based approach adapts robot trajectory to slow

down or stop when the human is not following.

16.4 Experimental Campaign

We distinguish two scenarios with the aim of demonstrating the effect of introducing normative

behaviors in real environments with human participants. Both scenarios consist of a steering

phase with the STEERING institution and a tutoring phase with the TUTORING institution.

In Scenario I two human participants are asked to follow behind the Leader robot, commenc-

ing the steering phase. A single Follower robot accompanies the participants, while attempting

to act in accordance with the norms nS1 and nS2. Once the mixed formation enters the exhibi-

tion room, the second phase begins (as described in Section 16.1.3), the Follower robot mbot2
moves aside and the Leader robot mbot1 assumes the role of an Assistant for a third stationary

agent, a pepper robot, that serves as a Tutor. The Tutor robot describes objects present in the

scene, while the Assistant robot leads the participants to these objects.

Scenario II is essentially similar to Scenario I but involves only one human Visitor, who is

asked to stop following the Leader for around 5 s during the steering phase of the experiment,

triggering activation of norms nS3 and nS4.
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Figure 16.2 – Snapshots of the experiments during the steering phase (a-b) and the tutoring phase
(c-d), for Scenario I (a,c,d) and Scenario II (b). Picture b) is taken at the time the participant stops
following the Leader.

The experiments are carried out at the Örebro facility (for details see Chapter 2.6.3), formed out

of a corridor that leads to a robotics laboratory. Further implementation details are provided

in Appendix A.

16.4.1 Scenarios

For Scenario I, we performed 20 experiments with altogether 40 participants (2 participants

per run), aged between 19 and 46 years, recruited among researchers and students with

various backgrounds. The participants are given the instruction of following the Leader robot

(for distinguishing between mbot1 and mbot2 we dress the Leader with a scarf). For half of

the control group (20 participants) no further information is given. The remaining half of

the group is informed about the course of the events (the participants are guided through a

corridor and then inside the laboratory), including an explanation about robot roles and their

behaviors (one robot is leading, another following, a third robot provides explanations). The

participants are asked to carry a box with the UWB tags, the purpose of which is explained

to them. After the experiments we hand out a survey with questions listed in Figure 16.7,

evaluated on five-level Likert scale.

For Scenario II we perform 10 experiments with 10 participants (1 participant per run). In

this scenario we inform the participants about the robot behavior and ask explicitly to stop

following, so that the norms nS3 and nS4 are activated. The evaluation of Scenario II is based

on performance metric, no subjective assessment is carried out.
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Figure 16.3 – Trajectories of the robots and the participants in Scenario I, shown for the times
t = 11 s (A), t = 35 s (B), t = 59 s (C) and t = 72 s (D).

16.4.2 Results

The objective performance measures and the subjective assessment obtained through the

participative study are analyzed with the aim of understanding the characteristics of, and the

human preferences for the type of social interactions in the mixed human-robot formations.

Representative pictures of the experiments are shown in Figure 16.2. Videos of the experiments

are available at the link provided in the footnote2.

Scenario I

The execution of a representative run of Scenario I is illustrated in Figure 16.3. The scenario

starts once the human participants assume their initial positions. This triggers the activation

of the STEERING institution with the mbot1 robot assuming the Leader role and the mbot2

robot the role of the Follower, guiding two adult Visitors, participant1 and participant2 through

a corridor (A), to the Destination of the STEERING institution at the entrance of the room (B),

when the institution becomes dormant.

Figure 16.4 – Average distances for Sce-
nario I. The area between the two hu-
man (adult) comfort zones and the
Leader or Follower robot – the personal
space ∆P,px = 1.6 m (shaded in yellow)
and the intimate space ∆I ,px = 1.0 m.

The arrival at the Destination of the STEERING institution coincides with entering the ExhibitionArea

of the TUTORING institution. The TUTORING institution becomes active, with mbot1 adopting

2 https://www.epfl.ch/labs/disal/research/InstitutionalRoboticsFormations
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Figure 16.5 – Trajectories of the robots and the participants in Scenario II, shown for the times
t = 16 s (A), t = 26 s (B), t = 34 s (C) and t = 39 s (D).

the role of the Assistant, and the pepper robot taking on the Tutor role. In each experimen-

tal run, two objects are chosen from the set of given in Section A.2, and presented by the

robots to the Visitors (labels C and D in Figure 16.3). The Tutor and the Assistant synchronize

their behaviors – the mbot1 robot guides the Visitors to an object in the scene located at

ObjectLocations while the pepper robot utters the description provided through the institu-

tional knowledge ObjectDescriptions.

The norms nS1 and nS2 pertaining to the MoveInFormation behavior of the Follower robot

mbot2 are active throughout the experiments because the condition VISITORS_FOLLOW is

always true (and VISITORS_NOT_FOLLOWING is false). The outcome condition of nS1 evaluated

over the formation error, is not always satisfied. On average, after initialization (t < 8 s), eF

stabilizes at around 1.5 m. Log data suggests that the increase of eF is caused by a saturation

of the speed of mbot2 to ṗmax , illustrating the tradeoff between safety and performance.

The evaluation of nS2 is based on the distances d(F, px ) between the adult participants and

the Follower, where px = {p1, p2} denotes the participants. The results shown in Figure 16.4

indicate that for the majority of the trials the Follower robot respects the personal_distance

∆P,px = 1.6 m, and comply with the norm nS2.

Scenario II

Robot trajectories of a representative experimental run are shown in Figure 16.5. After the

team attains an initial steady state at t = 16 s (A), the participant stops following (B at t = 26 s),

as instructed. Once the distance between the Leader and the participant exceeds the threshold

∆L = 3.2 m, the condition VISITORS_FOLLOW becomes false (and VISITORS_NOT_FOLLOWING

becomes true), which causes an activation of norms nS3 and nS4. According to the norm nS3,

the Leader robot sets its speed to zero and due to the norm nS4 the Follower robot reduces

the distance to the human to exert a force that is assumed to encourage the human to start

following again. After the participant re-joins the Leader (at C, t = 34 s), the conditions reverse
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back, the norms nS3 and nS4 are no longer active and the team attains a steady state defined

by nS1 and nS2 (at D, t = 39 s).

How the value of d(L, p) affects the robot behavior can be further analyzed in Figure 16.6.

The plot shows the correlation between d(L, p) and d(F, p). According to nS1, the Follower

bias regulates the robot-human distance to reach the set point 2∆P,p for a single human

guidance, so for d(L, p) ≤∆L , d(F, p) tends to the value 3.2 m (blue region in Figure 16.6). For

d(L, p) ≥∆L , d(F, p) (red region) tends to the value∆I ,p = 1.0 m given by intimate_distance ∈ K ,

and enforced by nS4.

Figure 16.6 – Scenario II. Human-robot
distances illustrating how norms are
shaping robot behaviors. Blue region in-
dicates activation of nS1 and nS2. The
value of the bias of the Follower (F) is cho-
sen so as the desired robot-human dis-
tance is twice the ∆P,p (3.2 m). After the
participant (p) stops following, the red
region is when the Leader (L) stops and
waits according to the norm nS3, and the
Follower tends to a value of the bias at the
limit of the intimate_distance∆I ,p (1.0 m)
given by nS4.

Results of the Participative Study

Results of the survey, presented in Figure 16.7 show that in general, the Follower is perceived

as the least understandable and natural among the robots. Moreover, the participants do not

observe whether the Follower robot adheres to human social norms or not. In general, the

Tutor robot is given the highest scores. Whether or not the participants were given a priori

information about the course of the experiment does not have a significant effect on the

perception of the robots. Among the most notable differences between the groups we note

that the informed group judges the Leader robot as slightly less understandable, less natural

and less comfortable to be around. On the other hand, the same group understands the role

of the Follower better. Results suggest that robot acceptance does not depend on whether the

behavior of the robot is explained. It is possible that the robot’s actions are perceived on a

subconscious level, and providing a priori explanation has little effect on the perception of

robot’s friendliness.

Since during the trials the participants always follow the Leader, we do not discern the correla-

tion between the different modalities of the norms the Follower adheres to and the subjective

assessment of the participants (we always only observe the norms nS1 and nS2 being active).

The analysis of the survey results leads us to two main conclusions. First, norms of human

societies are not always suitable to be directly applied to robots, or can be applied in some
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Figure 16.7 – Results of the user-based evaluation on five-level Likert scale. Group 1 involves
uninformed participants and Group 2 informed users.

situations but not in others. In our example, the Follower robot, being the only agent that

explicitly acted according to social rules, is not perceived as more social than the other robots.

Some results reported in the literature are in accordance with our findings [67], [154] [174],

while some convey the opposite [175]. Results of our experiments evince that norms should

always be verified against user expectations for the particular application. Second, our user

studies indicate that the chosen norms and their realizations are not well accepted by the

users during the particular case of human guidance in the formation. However, the fact that

the norms are encapsulated and abstracted from a system allows us to focus of our future

attention on design and re-design of norms, whereas thanks to norm realization, norms can

be easily modified or exchanged in a plug-and-play manner.

Summary

With the second case study we continued our course of validation of the institutional

framework. In particular, we provided further analysis on three aspects of the formalism.

First, we provided a preliminary solution for activation of institutions and building

institutional relations through the context recognition in a concrete domain. Second,
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we showed how within one institution norms can be conflicting, but the resolution of

such conflicts boils down to the selection of appropriate formulas over institutional

conditions. This stands in contrast to what is currently proposed in the literature,

where conflicts are either never addressed or resolved heuristically (see our discussion

in Chapter 10). Third, we demonstrated the flexibility of the framework in terms of

embracing heterogeneous robotic platform with contrasting capabilities the institutions

reside over, and tools and systems their execution coexists with. Simultaneously, we

presented a computational protocol for norm realization, readily implementable in

robot’s programming language.

The experimental validation carried out in real settings with human participants pro-

vided us with insights into acceptance mechanisms for robots that follow human-

defined norms and human preferences when in the mixed human-robot groups. The

analysis of the user-based evaluation lead us to the conclusion that depending on the

socio-cultural context, the same robot behavior can be perceived very differently by the

onlooker. Only a systematic evaluation and engagement of the end users in the design

process can lead to universally acceptable robot behaviors, but such behaviors must be

tailored to the specific person with his level of experience with robotic systems.
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17 Case Study: Mixed Teams For Robot
Guidance

W ITH the final case study we show that institutions can dynamically accom-

modate the evolution of a given domain by the means of adaptation rules for

norm realization. The adaptation rules capture the fact that that robots gain

experience, humans gain confidence in robots’ actions and the environment

undergoes continuous changes. We show that with adaptive norm realization it is possible

for the robots to track and adjust to these changes through a self-regulated process, by which

the robots can modify their institutional interpretation based on the experience gathered in a

given domain.

We demonstrate adaptive norm realization in a new case study, where two humans guide a

group of robots through a structured indoor environment. First, we show how conventional

non-normative methods can be used for such scenarios and discuss the advantages and

disadvantages of introducing the institutional approach with its additional deliberate planning

layer. Second, we show how by using institutional norms we can reduce uncertainty of

interactions due to norm-induced assumptions regarding the conduct of the other agents.

The latter has far-reaching consequences in mixed human-robot teams, as in our example,

where robots assume that the human leaders will guide them through safe (obstacle-free)

areas of the environment and, based on this assumption, the robots simplify their decision-

making routines for selecting the appropriate behavior modality. Third, we compare the

performance of the robotic system with and without the capability to adapt and analyze how

the introduction of adaptation rules affects the behavior of the robots.

HIGHLIGHTS

• Adaptation. With norm adaptation, a cognitive planning layer encompassing the re-

tained experience of a robot presides over the purely reactive behaviors. Institutional

evolution through self-regulated adaptation is shown to enhance the performance of

the individuals.

• Generality. Through the power of institutional grounding and norm realization, the
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same norms are leveraged onto two algorithmically different multi-robot behaviors –

flocking and navigation in formation.

• Reliance. By applying the norms, robots take advantage of the fact that they can make

assumptions regarding the behavior of the other agents.

• Plug-and-Play Institution. The ROBOT-GUIDANCE institution is applied to one of the

domains of CI , demonstrating that institutions can be freely exchanged within one

concrete system as long as the grounding is admissible.

• Plug-and-Play Domain. The same institution with the same norm realization is applied

to two diverse environments. This is complementary to the institution plug-and-play

principle – here one institution is grounded into multiple domains.

• Norm Reuse. A number of the norms appears across the institutions in CI , CI I and CI I I

and is accommodated by the means of norm realization, which not only concretizes

them for a given domain, but also associates the norms to other institutional compo-

nents making it possible to reuse them for different institutions.

• Simulation to Reality. The two aforementioned experimental environments are one in

simulation, and one in physical world. The transition from one to another is smooth

and does not require parameter tuning.

17.1 The ROBOT-GUIDANCE Institution

In contrast to the previous case studies CI and CI I , where the norms emphasize human comfort

and human view of robots’ sociability, the case study CI I I described in this chapter is focused

on robust multi-robot navigation that can be facilitated through human-robot cooperation

mediated by an institution. In particular, we propose that human Leaders guide a group

of robot Followers through an environment. Humans as agents with surpassing perception

capabilities provide navigation through areas that are safe to pass, while the robots keep a

formation. We achieve such cooperation through a ROBOT-GUIDANCE institution. It can be

used in applications where the capabilities of the robots are insufficient for them to pass safely

to a destination, for instance, when operating in unknown environments or environments

with unmapped obstacles.

Human Leaders, LH = {L1,L2, ...} with |LH | = NL , as agents with superior perception capabil-

ities, guide a group of robots through the environment. The space between the Leaders is

assumed to be obstacle-free at all times, so the outermost paths of the Leaders delineate areas

that can be safely passed by the robot team, i.e. safe areas. Robot Followers, F = {F1,F2, ...}

with |F | = NF follow the humans as a team using one of the two multi-robot behaviors,

B1 = MoveByFlocking or B2 = MoveInFormation.
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The ROBOT-GUIDANCE institution takes the form:

ROBOT-GUIDANCE =
〈

Norms = {
n1,n2,n3,n4,n5

}
Roles = {

Leader, Follower
}

Actions = {
Guide, Follow

}
Conditions = {

LEADER_POSITIONS_KNOWN, FOLLOWER_LOST, ...
}

Knowledge = {
PersonalSpace, SafeAreas, VirtualLeader

} 〉

The norms of the ROBOT-GUIDANCE institution are listed in Table 17.1.

ROBOT-GUIDANCE

Safe Areas n1 “Followers must follow leaders within the safe areas”

Following n2
“In complex spaces, followers must ensure to follow paths of the

leaders”

Help Request n3
“When lost, the follower must notify the guide, and the guide

must wait for that follower”

Narrow Spaces n4 “The followers should negotiate passing though narrow spaces”

Social Spaces n5 “Personal spaces must be respected”

Table 17.1 – Norms of the ROBOT-GUIDANCE institution.

The color code highlights the components of the norm as specified by the syntax proposed in

Definition 11.2, namely:

N : Conditions → deontic(Roles×Actions×Knowledge).

With the above, the components of norms n1 to n5 can be summarized as follows:

n1 : ;→must(followers, follow, safe areas)

n2 : in complex spaces →must(followers, follow, leaders paths)

n3 : when lost →must((follower, notify), (guide, wait for follower))

n4 : narrow spaces → should(followers, negotiate passing, safe areas)

n5 : ;→must(be respected, personal spaces)

Note that proposed set of norms is not exhausting all the possibilities. Moreover, the norms

listed above pertain to the Follower agents, which, as it will be shown later, will be grounded to

the robots. It would be natural to define a norm stating that n6 =“Leaders should always guide

only through safe areas”, but since the human agents, to whom the Leaders will be grounded
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to do not use norm realization to interpret the norms, we will only focus on the norms that

concern the robots. Norm n6, however, has important implications for the norm n1, which

allows the Follower robots to act based on a belief that the human Leaders are obliged to always

guide through safe areas. Because of introducing such mutual norms, agent actions no longer

rely on assumptions regarding the behavior of other agents, but rather on understanding and

trust in their conduct.

The full list of institutional Conditions and Knowledge is given in Table 17.2 and Table 17.3,

respectively. We will revise their elements when explaining how they are grounded in the

domain.

17.2 Domain and Grounding

The domain includes the following components:

A = {human1, human2, mbot1, mbot2, mbot3}

B = {MoveOnPath, MoveInFormation, MoveByFlocking}

R = {time, posex, pathx, virtual_point, environment, ...}

K = {personal_distancex, safe_area, virtual_point}

C = {C1, C2, C3, C4, C5}

L = {IN_SAFE_AREA, IS_FOLLOWING, IN_SOCIAL_SPACE}

where we use the subscript (·)x to abbreviate variables with multiple instances x.

The robots engage in either of the two behaviors: MoveInFormation, or MoveByFlocking.

We assume that all robots in one instance of the domain adopt the same behavior, there-

fore we distinguish two corresponding groundings: first GF L , where the robots perform the

MoveByFlocking behavior, and second GF R , where the robots perform the MoveInFormation

behavior:

GA = {
(Leader, {human1, human2}), (Follower, {mbot1, mbot2, mbot3})

}
GF L

B = {
(Guide, MoveOnPath), (Follow, MoveByFlocking)

}
GF R

B = {
(Guide, MoveOnPath), (Follow, MoveInFormation)

}
GC = {

(LEADER_POSITIONS_KNOWN, ca
11), (FOLLOWER_LOST, ca

31), ...
}

GK = {
(PersonalSpace,personal_distancex), ...

}
We will use the notation Gx (·) with x ∈ A,B ,C ,K to list the grounded counterpart of (·), e.g.

GA(Leader) = {human1,human2}.
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Activation Conditions Outcome Conditions

n1 LEADER_POSITIONS_KNOWN ca
11 FOLLOWER_IN_SAFE_AREA co

11

LEADER_POSITIONS_ALWAYS_KNOWN ca
21n2

IN_COMPLEX_ENVIRONMENTS ca
22

FOLLOWER_FOLLOWS_LEADERS_PATHS co
21

n3 FOLLOWER_LOST ca
31 LEADERS_WAIT co

31

n4 IN_NARROW_PASSAGE ca
41 FOLLOWER_FOLLOWS_LEADERS_PATHS co

41

n5 HUMAN_POSITIONS_KNOWN ca
51 RESPECTED_PERSONAL_SPACES co

51

Table 17.2 – Conditions of the institution ROBOT-GUIDANCE.

Each element in Conditions is grounded to cx
ab ∈Ca , where a denotes the index of a norm the

condition pertains to, b is the index of the grounded condition within set Ca , and x ∈ {a,o}

allows to distinguish between the activation and the outcome conditions. The full grounding

of conditions can be found in Table 17.2.

Institutional Knowledge includes the following elements:

� PersonalSpace for determining a social_distance ∆P,h to a human Hh ,

� SafeAreas, the extent of which is provided by the Leaders at a run time,

� VirtualLeader and ObstacleCharacteristics, including real OR , virtual OV and human-

induced OH obstacles, necessary for understanding the shared navigation concepts of

the MoveByFlocking behavior (see Section 5.3.2 for details of the algorithm),

� HumanSocialForce denoted HF and TeamSocialForce denoted TF for allowing each

agent to participate in the collective motion of the team of humans and robots, and

� FollowerLostDistance and NarrowPassageMark for agreeing on common thresholds

used by the norm conditions.

The full grounding of institutional knowledge is provided in Table 17.3. Note that in this

particular institution we consider obstacles as mechanisms of social order – artifacts upon

which robots negotiate their safe passage. Knowledge about the obstacles is shared so that all

the robots know when deliberation is necessary for passing next to them.

We assume that basic capabilities of the robots, such as ability to perform a speech act or stop

in place, can be categorized as behaviors. Such behaviors do not involve interactions and thus

are not grounded to institutional Actions. They are referred to as individual behaviors.

The experience measures L used for norm adaptation are further explained in Section 17.3.2.
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Knowledge Grounded Knowledge K Symbol

PersonalSpace personal_distancex ∆P,h

SafeAreas safe_area Ω

VirtualLeader
virtual_point VL

former_virtual_point FVL

HumanSocialForce social_forcex HFh = {Ko ,∆a ,∆c }

TeamSocialForce team_force TF = {w f f , w f l }

FollowerLostDistance lost_threshold TL

NarrowPassageMark narrow_threshold TC

ObstacleCharacteristics obstaclex ox ∈ {OR ,OV ,OH }

Table 17.3 – Knowledge and knowledge grounding K of the institution ROBOT-GUIDANCE.

17.3 Norm Realization

In this chapter, we perform the additional adaptation step of norm realization. In our im-

plementation, the adaptation is applied continuously throughout the execution of robot

behaviors. Whether to apply norm adaptation or not is a design choice, and depends on

whether the performance of the robot team calls for adjustments, or whether the environment

or humans within are expected to undergo any changes (e.g., large, structural obstacles are

moved around, humans adjust to robot presence, etc.).

17.3.1 Realization of Norms

The detailed description of the norm realization is provided in Appendix E, while below we lay

out an intuitive explanation of how norms are implemented in our system. The realization of

norms n1-n5 refers to the Follower robots – all the robots of this case study and is illustrated in

Figure 17.2.

Norm n1: Safe Areas

This norm is active when LEADER_POSITIONS_KNOWN i.e. when the follower has access to the

positioning information of the leaders.

� For the MoveByFlocking behavior, we include virtual obstacles OV at the limits of the

safe area so that the robots are kept inside it (see Figure 17.2 for illustration). Norm

adaptation further affects the weights of the repulsive forces generated by OV . Details of

the computational aspects of the flocking algorithm are provided in Chapter 5.

� For the MoveInFormation behavior, the width dΩ of the safe area drives computation
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17.3. Norm Realization

Figure 17.1 – Illustration of norm realization of the ROBOT-GUIDANCE institution. Label FL stands
for the MoveByFlocking behavior, while FR for the MoveInFormation behavior.

of the formation bias using the LFT method presented in 7, scaling the original bias of

Fi towards the column-like shape. Norm adaptation accelerates the rate at which the

modification is done.

The norm is complied with if FOLLOWER_IN_SAFE_AREA.

Norm n2: Reinforcement of Following

To facilitate navigation in complex spaces (i.e. confined areas with narrow spaces often re-

quiring sharp turns) norm n2 provides the Followers with the means to reinforce the Leader-

Follower edges. It is active when LEADER_POSITIONS_ALWAYS_KNOWN (because it is impor-

tant that the robot has access to the history of positions of the Leaders), and the robot is

IN_COMPLEX_ENVIRONMENTS.

� For the MoveByFlocking behavior, instead of following the immediate virtual_point VL,

the follower robot migrates towards a former FVL, the access to which is not obstructed

by structured obstacles that can create local minima (see Figure 17.2, where Fi moves to

the closer FVL(t) point instead of moving to VL(t)). By being more immediate than VL,

FVL allows Fi to follow the path of the Leaders even when it has lost their line of sight.

Norm adaptation amplifies the attraction weights of the flocking migration component.

� For the MoveInFormation behavior weights of the Laplacian Leader-Follower edges wl f
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are reinforced with respect to the Follower-Follower edges with weights w f f . Norm

adaptation further exacerbates the wl f to w f f ratio.

The norm is complied with if FOLLOWER_FOLLOWS_LEADERS_PATHS, i.e. the Follower is able to

follow the general route provided by the Leaders, even if at a large distance.

Norm n3: Help Request

This norm is active when FOLLOWER_LOST, i.e. when a Follower falls behind the Leaders further

than a threshold TL . The norm parametrizes an individual robot behavior – a speech act, not

represented in the institutional formalism. The Follower asks the Leaders to stop and wait until

it can catch up. The norm is satisfied if LEADERS_WAIT. We assume that the human Leaders

stop each time a Follower requests it.

Norm n4: Narrow Spaces

Norm n4 facilitates passing of the Followers through narrow spaces by assigning who is to pass

next. It is active when IN_NARROW_PASSAGE, i.e. when the passage that a Follower traverses is

narrower than a threshold TC .

� For the MoveByFlocking behavior, the control gain Kc of each individual Fi is tuned

according to its ID i , so that some robots speed up when passing, while others slow

down, letting the faster robots to proceed. Norm adaptation amplifies the gain further if

the previous value did not yield the desired performance.

� For MoveInFormation, the coordination when passing a narrow opening is achieved by a

length-wise change of the formation geometry with the LFT method, which spreads the

bias along the direction of motion. Norm adaptation accelerates the rate of formation

shape modification.

The norm is complied with when FOLLOWER_FOLLOWS_LEADERS_PATHS.

Norm n5: Social Spaces

The last norm is similar to n2 of CI and n2 of CI I . For both behaviors n5 introduces re-

pulsive forces that drive the robots away from human personal spaces. It is active when

HUMAN_POSITIONS_KNOWN.

� For the MoveByFlocking behavior humans are modeled as the β-agents of the flocking

algorithm described in Chapter 5, i.e. a virtual obstacle oh ∈OH is placed at the position

of the human Hh , while the strength of the repulsive force is proportional to the value

∆P,h of the PERSONAL_DISTANCE ∈ K . Norm adaptation increases the relative strength of

the force and increases the range it operates within.

� For the MoveInFormation behavior we change the parameter RepulsionWeights WR as
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described in detail in Section 13.1.5. Norm adaptation further reinforces the gain of the

repulsive weight.

The norm is complied with when the condition SOCIAL_SPACES_RESPECTED is satisfied.

17.3.2 Norm Adaptation

The experience measures L are collected throughout the course of the experiments and are

used for online adaptation of the norm values. At the domain level, we define the following

experience measures L to evaluate outcomes of the norms:

IN_SAFE_AREA Fi was located within the safe areaΩ

IS_FOLLOWING Fi was able to follow within the distance TL

IN_SOCIAL_SPACE Fi respected human personal spaces ∆P

In our implementation, we normalize the elements of L so that l ∈ [0,1] ∀ l ∈ L. As explained in

Chapter 13, the adaptation rules r L take the current parameter value vp , determined through

the choice and the value rules of norm realization, and modifies it in a way that is thought to

emphasize the enforcement of the norm.

As an example, consider the case of norm n5. When the repulsive forces that are designed to

keep the robot out of human comfort spaces do not yield the desired results (i.e. the experience

measure IN_SOCIAL_SPACE indicates recurrent violation of the norm n5), the adaptation rules

amplify the strength of the forces as a function of the degree of noncompliance. In our

implementation the strength of the forces decreases linearly with the experience measure

IN_SOCIAL_SPACE, which evaluates whether the Follower is able to stay away from human

personal space. In a marginal case, when the measure always evaluates to true, no norm

adaptation is necessary and the original force strength is applied. On the contrary, if the robot

experiences frequent, severe violations, the linear function of the measure IN_SOCIAL_SPACE

reinforces the original strength of the force. Comprehensive details of the adaptation rules are

provided in Appendix E.

17.4 Experimental Campaign

Our case study focuses on cooperative navigation of humans and robots in structured, indoor

environments. In this case study humans and robots roles are reversed in respect with CI I ,

where robots guide a group of humans.

First, we introduce the notation. A path P of an agent i is the collection of all the points

the agent visited up to time t , i.e. Pi (t) = {pi (t0), pi (t0 +1), ..., pi (t)}, where pi (t) is position

of agent i at time t . A safe area Ω is an obstacle-free zone between the outermost paths of

the Leaders. The distance dΩ(p) is the width of the safe area at a position p (see Fig. 17.2

211



Chapter 17. Case Study: Mixed Teams For Robot Guidance

for illustration). In the case of the MoveByFlocking behavior, the Follower robots follow the

Leaders by the means of a virtual point - a point calculated based on the Leaders’ positions. In

our implementation, we set the virtual point to be the center of positions of human Leaders

LH , i.e. VL(t) = |LH |−1 ∑
h∈LH

ph(t). The virtual path is PVL(t) = {VL(t0), MP(t0 +1), ..., VLi (t)}.

The concepts of path and virtual point are shown in Figure 17.2.

Figure 17.2 – Illustration of the definitions used in this
chapter. A path P of an agent i is the collection of all
the points the agent visited up to time t . A safe area Ω
is an obstacle-free zone between the outermost paths of
the Leaders. The width of the safe area at a position p is
denoted as dΩ(p ). A virtual point VL is located at the center
of the Leaders positions.

We perform two sets of experiments. The first series is performed in simulation, the second in

real settings in the Jordils facility. Experiments are performed with two human Leaders and

three Follower robots, unless stated otherwise. For safety reasons, we do not disable robots’

self-localization functionalities. The robots communicate their positioning information to

all other team members and have access to the human state, but the methods only rely on

relative positioning information, therefore they are readily implementable in environments

unknown to the robots, under the condition that robots can measure the relative localization

of the other team members. The implementation details of this case study are provided in

Appendix A, while the thorough account of norm adaptation is given in Appendix E.

17.5 Experiments Set I

All experiments are performed in a simulated indoor environment with narrow passages and

sharp turns (see Figure 17.3).

17.5.1 Scenarios

We distinguish the following scenarios.

� Scenario I (NONNORMATIVE), where the robots perform a non-normative behavior

without the institutional layer;
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(a) (b) (c) (d)

Figure 17.3 – Trajectories of the Follower robots and the Leader humans for a) NON-
NORMATIVE, MoveByFlocking, b) INSTITUTIONAL, MoveByFlocking, c) NONNORMATIVE,
MoveInFormation, and d) INSTITUTIONAL, MoveInFormation. Shaded blue area is the safe areaΩ.
Label (A) indicates the beginning of the run, the same for each scenario; labels (B) and (C) indicate
the first and the second narrow passages; arrow indicates the direction of motion.

� Scenario II (INSTITUTIONAL), where the behaviors are governed by the institutional

norms;

� Scenario III (ADAPTIVE), where the measures L(t ) are used for value adaptation in the

next time step t +1.

The goal of Scenario II is to understand the effect of introducing the institutional norms on top

of a non-normative baseline system. Scenario III tests whether norm adaptation can improve

the performance of the institutional approach.

Each scenario is completed with the Follower robots performing one of the two behaviors,

MoveByFlocking, or MoveInFormation. For each scenario, we perform 10 sequential runs,

each lasting approximately 100 s. Paths of the humans are obtained from an operator input,

recorded and replayed during each run to achieve consistency.

17.5.2 Results

Figure 17.3 shows typical trajectories of the agents, robot Followers and human Leaders, nav-

igating through the environment, with the starting location of the run at (A), and with the

clockwise direction of motion. Subfigures a) and b) exemplify the MoveByFlocking behavior,

for the NONNORMATIVE and the INSTITUTIONAL cases, respectively; subfigures c) and d) rep-

resent the NONNORMATIVE and the INSTITUTIONAL cases of the MoveInFormation behavior,

respectively.
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Figure 17.4 – Performance of the robots in
Scenarios I to III. Connectivity eC , cohesion
eR and deviation eE are the metrics for the
flocking behavior, while formation error eF

evaluates the formation behavior. Error bars
show the standard deviation over the runs.

The MoveByFlocking Behavior

Adding the augmented navigational competences on top of the NONNORMATIVE baseline

in the case of the MoveByFlocking behavior brings advantages visible at the first glance in

Figure 17.3 a and b. A Follower mbot3, the third robot to pass though narrow door at (A),

disconnects from the rest of the team, as it is not able to pass the narrowing before the Leaders

progress substantially on their paths. After the Leaders leave the LOS of mbot3, the VL (centre

of Leader positions) shifts further upwards, making the lost robot assume that direction of

motion, but remain behind the wall (note that according to the Γα component of flocking, the

Follower is not only attracted to the VL, but also accelerates in the direction of VL’s velocity). It

only recovers when the rest of the team enters the same room at (C) and the overall flocking

force directs it through the obstacle-free area. Similar phenomenon is observed in all of the 10

runs of NONNORMATIVE MoveByFlocking, as the original flocking algorithm has no means to

escape local minima.

By adding the normative layer onto the baseline flocking, we deal with the above problem

by encouraging the robot through the realization of norm n2 to use FVL, a former virtual

point closer to the robot and close enough to be within LOS, which allows the robot to

follow the general route of the Leaders, instead of rigidly following the most recent (and

not always feasible) VL. Note that it would be entirely possible to augment the navigational

behaviors with the additional features such as FVL without resulting to the use of norms,

as we have emphasized many times over the course of this work. However, the primary

purpose of employing institutional, norm-based approach is generalizability, encapsulation

and reusability of heuristic, case-dependent methods.

The average performance for Scenarios I-III is shown in Figure 17.4. The INSTITUTIONAL

method yields lower cohesion eR and deviation eE than the NONNORMATIVE method for

two reasons. First, in the INSTITUTIONAL case no robot is trapped in local minima. Second,

introducing virtual obstacles at the boundaries of the safe area in the realization of norm n1

makes the robots attain a column-like shape in contrast to the well-separated lattice-shaped
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Figure 17.5 – Average flocking performance, i.e. connectivity ec , cohesion eR and deviation eE ,
throughout the runs. Shaded areas show standard deviation.

pattern achieved in the NONNORMATIVE case.

The ADAPTIVE method always leads to performance improvement over the INSTITUTIONAL

case as indicated by all the metrics. Time-wise plots of the performance metrics shown in

Figure 17.5 indicate that the norm-induced navigational capabilities smoothen the spikes

of the performance errors, while adaptation levels them out completely, making the errors

consistent irrespective of whether the robots pass through complex narrow passages with

sharp turns or thorough straight open spaces.

The MoveInFormation Behavior

Compared to flocking, formation control leads to less oscillatory movement of the robots,

with well-defined separation between all the agents, as it can be seen in Figure 17.3 c and

d. All three versions of the MoveInFormation behavior perform well, with all the Followers

being able to keep their desired places in the formation. In the case of the INSTITUTIONAL

approach the Followers visibly modify the formation shape in a reaction to the environment

governed by the concurrent operation of norms n1 and n4, increasing the formation size when

navigating through open space and reducing it when encountering a narrow passage. In our

understanding such reaction is social because it involves norm-based regulation of how the

robots mediate their actions. Modification of the bias involves agreement on the mutuality of

the formation change – robot Fi cannot change its bias bi j to F j without F j doing the same.

Additionally, modification of the formation shape in this case study is based on the input from

the Leaders 1, which delineate obstacle-free safe areas, so that the robots act relying on trust

in the Leaders complying to their obligations. Agent actions no longer rely on assumptions

regarding the conduct of the other agents, but rather on understanding and trust introduced

by such mutual norms.

The formation error eF shown in Figure 17.4 is similar for both the NONNORMATIVE and the

1 In the LFT method presented in Chapter 7 the Followers alter the bias based on local sensing instead.
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MoveByFlocking MoveInFormation
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FOLLOWER_LOST 0.21 0.05 0.0 0.0 0.0 0.01

RESPECTED_PERSONAL_SPACES 0.87 0.97 0.97 0.99 1.0 1.0

Table 17.4 – Average fraction of time a condition is satisfied in Scenarios I-III.

INSTITUTIONAL methods. Norm adaptation results in a decrease of eF of 23% compared to

the INSTITUTIONAL case. One should note that during the transient time, an alteration of the

formation shape unavoidably increases the formation error, as the dynamic system needs

some time to adjust to the change of configuration.

Norm satisfaction

In Table 17.4 we present two critical results with regard to the rate of norm satisfaction, one

for whether the Followers are able to keep up with the Leaders, one for sociability of the

human-robot interactions. The results confirm that the INSTITUTIONAL and the ADAPTIVE

methods result in the Followers complying with the norms. Norm adaptation results in an

improvement of norm satisfaction, albeit a slight one, as the INSTITUTIONAL method already

yields close-to-ideal results.

A baseline NONNORMATIVE flocking algorithm leads to breaking of the formation, as indicated

by the FOLLOWER_LOST condition. Similarly, the same algorithm results in personal spaces

of human Leaders being intruded 13% of the time. The latter is a result of the humans being

treated simply as β-agents, with the strength of the repulsive forces ample for avoiding colli-

sions, but insufficient for respective human comfort zones. The aforementioned conditions

are far less frequently breached by the baseline NONNORMATIVE formation control method,

due to the rigidity of the agent-agent edges. No formation failure is noted and the personal

spaces of human Leaders are rarely intruded.

17.6 Experiments Set II

The goal of the following set of experiments is twofold. First, we validate the performance

of the methods in the real world, but with a different grounding than in the simulation.

The difference lies mostly in the shape and the size of the environment, which for the real

experiments is almost three times smaller. Second, we use the same grounding as the one

of a WAREHOUSE in Case Study CI presented in Chapter 15. While in Chapter 15 we have

shown that it is possible to apply the same institution to different domains, in this chapter we
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Figure 17.6 – Trajectories of the Follower robots and the human Leaders. The shaded blue area is
the safe areaΩ.

demonstrate that the opposite also holds: it is possible to ground different institutions to the

same domain. And since the domain in the real experiments is different than the domain in

the simulation, we once again demonstrate the institution plug-and-play property.

17.6.1 Scenarios

Experiments are carried out for three scenarios: NONNORMATIVE, INSTITUTIONAL and ADAP-

TIVE. For each scenario, we perform 10 consecutive runs, each lasting approximately 50 s. The

paths of the Leaders are provided by one human worker who carries two hand-held reference

points, tracked by the MCS. By controlling the relative spacing between the reference points,

the worker delineates the safe_area.

The agents of the domain are now A = {human1,mbot1,mbot2,mbot3} where human1 has the

function of a worker and the role-to-agent grounding now includes the reference points the

human provides (Leader, {reference_pointA,reference_pointB}) ∈ GA . The size of the worker’s

personal_distance is the same as in the Case Study CI I I and amounts to 0.8 m (see Table 15.6).

Real experiments are carried out in an area of approximately a third of the size of the simulation

setup and characterized by a relatively open space (see Figure 17.6), with wall constraints that

force the Leaders to take sharp turns, or even to turn back on the spot, as compared to the

simulated area, dominated by narrowings and ninety-degree turns (shown in Figure 17.3).

17.6.2 Results

Figure 17.6 shows representative snapshots of the NONNORMATIVE and ADAPTIVE scenarios at

the time of around 15 s (A) and 30 s (B). In the case of the MoveByFlocking behavior, in the

NONNORMATIVE baseline, the flock is compact and keeps a lattice-like shape. Introducing

norms in the INSTITUTIONAL and the ADAPTIVE methods results in a stretch of the flock, which

attempts to stay within the safe_area delineated by the reference points provided by the worker.

This phenomenon is reflected in the metrics shown in Figure 17.8, where the cohesion eR and
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Figure 17.7 – Snapshots taken during the experiments. The third picture of the NONNORMATIVE

MoveByFlocking behavior is an example of the team failure.

deviation eE metrics show the smallest values for the NONNORMATIVE case.

In the case of the MoveInFormation behavior, in the NONNORMATIVE baseline the Followers lag

behind the Leader, but keep the length of the Follower-Follower edges close to the desired value.

Introducing norms that reinforce the Leader-Follower edges leads to an increase of formation

compactness and a reduction of the formation error eF (shown in Figure 17.8) at the expense

of intruding human personal space, which in the case of a worker with personal_distance of

0.8 m is breached over 30% of the experimental time in the INSTITUTIONAL case, and over 40%

of the time in the ADAPTIVE case, but only around 5% of the time in the NONNORMATIVE case2.

Shown in Table 17.5, the failure rate is defined as the portion of runs when at least one of

the robots stops following and does not recover before the end of the run. In the case of

2 Here we refer to the role of the Leader grounded to a reference_point as a human, as for the robots the im-
plementation details are transparent. In the next section we provide an additional explanation of how this
grounding is interpreted by the robots.
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MoveByFlocking MoveInFormation
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SUCCESS RATE 50% 100% 100% 80% 90% 90%

Table 17.5 – The success rates in the real experiments. Failure is defined as the portion of runs
when at least one of the robots stops following and does not recover before the end of the run.

the NONNORMATIVE MoveByFlocking experiment the success rate is only 50%, while for

the NONNORMATIVE MoveInFormation method it amounts to 80%. No failures are recorded

during the INSTITUTIONAL and ADAPTIVE scenarios for MoveByFlocking behavior, while for

the MoveInFormation, we note one failure (90% success rate) during each of INSTITUTIONAL

and ADAPTIVE scenarios.

Finally, as noticeable in Figure 17.8, adaptation helps improving eR and eE metrics in compar-

ison to the non-adaptive institutional counterpart. For the MoveByFlocking behavior, eR is

11% smaller and eE is almost 40% lower for the ADAPTIVE method, indicating that the flock is

more compact, while retaining the excellent success rate (100%) of the INSTITUTIONAL method.

For the MoveInFormation behavior, the formation error eF is 7% smaller in the ADAPTIVE case.

Figure 17.8 – Performance of the robots in sce-
narios I-III.

17.7 Discussion

The ROBOT-GUIDANCE institution presented in this chapter has been grounded to two dif-

ferent domains – one in the simulated experiments, one in the physical experiments. In the

domain representation, the most tangible difference lies in the agents that are assigned the

institutional roles of Leaders. In simulations, those agents are human1 and human2. In the

physical experiments only one human1 agent is present, but by providing two reference points,

it grounds the role of two Leaders. The experimental area that can be formally represented
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by a state variable environment ∈ R, on the other hand, is very different for the two sets of

experiments.

From an institutional point of view, the only change that has to be applied when using the

two domains happens in their respective groundings. In simulation, each of the two hu-

mans is assigned a role of a Leader and (Leader, {human1,human2}) ∈ GA , while in the physi-

cal experiments the element A of the domain is A = {human1,mbot1,mbot2,mbot3}, where

human1 has the function of a worker, and the role-to-agent grounding includes the element

(Leader, {reference_pointA,reference_pointB}) ∈GA , where each of the reference_pointx is pro-

vided by human1. There is absolutely no difference in the definition of the institution (and in

this case also very little difference in grounding).

The domain we used in the physical experiments is that of the WAREHOUSE presented in the

Case Study of Chapter 15. All basic domain elements, including agents, behaviors and state

variables (such as the environment with the obstacles) are the same. In order to introduce

the ROBOT-GUIDANCE institution (instead of the SOCIALLY-AMONG-HUMANS institution from

Chapter 15), only the grounding is adjusted: the complementary state variables and elements

in C , K and L are determined based on the basic state variables; for instance, path ∈ R is based

on the pose of an agent, safe_area ∈ K based on path of the Leader agents, which is further

used to determine IN_SAFE_AREA ∈ L. Note that the values of the above domain elements

are not directly sensed or extracted from the domain representation, but calculated at run

time. Therefore, effectively no changes to grounding are done except that in the case of

SOCIALLY-AMONG-HUMANS the Leader role is grounded directly to human1, in the case of

ROBOT-GUIDANCE, Leader is grounded to reference_pointA and reference_pointB. Both the

interchangeability of the grounding mentioned above as well the easiness in substituting

an institution with another outline once more the plug and play feature of our institutional

formalism.

Summary

In the final case study we have shown how institutions can dynamically accommodate to

the peculiarities of a domain by regulating behavioral adaptation. Experimental results

confirm that the robotic system with the capability to adapt consistently outperforms

the non-adaptive institutional approach, although the rules of adaptation are very

simple. This promising outcome suggests that the incorporation of more sophisticated

machine learning techniques in the institutional framework might lead to outstanding

performance in systems characterized by high behavioral complexity, deployed in

dynamic, stochastic environments, where interactions of multiple individuals, humans

and robots, are influenced by numerous uncontrollable factors.

We have shown how by using institutional norms we can reduce uncertainty of interac-

tions due to norm-induced assumptions regarding the conduct of the other agents. This

phenomenon has far-reaching consequences in mixed human-robot teams. For robots,
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the reliance on humans can simplify the decision-making routines, while the consent to

ask for assistance relaxes the actuation and algorithmic requirements. Inversely, when

humans know the rules of robot conduct, they are more likely to accept the robots in

their environment.

With the third case study we further demonstrated of the institutional modularity and

reusability by exploiting the institutional plug-and-play property, where diverse insti-

tutions can apply to the same concrete system, one institutional abstraction can be

reused across multiple domains, and one norm can be repurposed by several institu-

tions. Furthermore, by applying the norms of the ROBOT-GUIDANCE institution to the

flocking and formation behaviors we have demonstrated that the same norms can be

leveraged onto two algorithmically different multi-robot routines. With the institutions,

norms, domains and behaviors freely exchangeable, the modularity of the institutional

framework is similar to that of the building blocks, where elements can be shuffled,

matched and linked, as long as the connection is compatible.

This chapter concludes the presentation of our institutional formalism. Nonetheless,

throughout our studies we have identified a number of developments towards the

completeness of the framework, which we will discuss in the conclusive part of the

thesis.
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Part IVConclusions and Future Work

“Were I to attempt to be good to everyone, to the entire world and to all the creatures living in it,

it would be a drop of fresh water in the salt sea.

In other words, a wasted effort.

Thus, I decided to do specific good; good which would not go to waste.

I’m good to myself and my immediate circle.”

Andrzej Sapkowski, Baptism of Fire
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18 Conclusions and Outlook

D URING our endeavor to design normative multi-robot behaviors we have iden-

tified a key milestone necessary for the integration of robotic systems in human

society, namely that of interpretation of generic norms formulated in human

language to robot-understandable terminology. With an aspiration of develop-

ing a holistic theory for the translation of abstract norms to robotic systems, this thesis explores

the notion of institution – a paradigm for reducing uncertainty, simplifying decision-making

and promoting cooperation. Inspired by well-versed findings of research ranging from social

studies to the early attempts in institutional robotics, we have formulated a framework that

assures conceptualization, organization and reusability of social norms, so that they can be

applied in different social contexts without resorting to the use of heuristics. Our institutional

framework is validated through three diverse case studies, each highlighting one or more

desirable properties of the formalism.

To address the practical aspects of the deployment of cooperative multi-robot systems in

physical, human-populated environments, this thesis meets the three main challenges we

identified during our preliminary experiments with a robot formation deployed in a real

hospital environment: a) the complexity of collective navigation in structured indoor spaces,

b) the robustness to communication failures and c) the sociability of robot behaviors. To

this effect, our research effort is resting on three main pillars: an approach to agile group

movement control in complex indoor environments, a multi-robot localization method robust

to communication failures, and enhanced navigation methods with elements of HRI. All

these methods in diverse combinations are leveraged and validated in the three case studies

reported in the thesis.

We hope that the discussion about the need for a holistic theory of robot sociability we

engage in this thesis will inaugurate the interest of the robotics community in the generic

approaches for unification of different methods and solutions. To this end, we trust that the

vision presented in this thesis, the insights gained through our exposure to the research on

natural and artificial societies, and the lessons learned during experimental validation will
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constitute a valuable source of information for future ventures within this field.

18.1 Summary

Our work presents a number of contributions along two lines of research, the first one address-

ing the challenge of multi-robot deployment in social environments, the second concerning

the institutional framework.

With regard to the multi-robot deployment in social environments, our contributions detailed

in Part II can be summarized as follows:

� Adaptive Multi-Robot Navigation. We developed a Local Formation Transformation

(LFT) approach for realizing adaptive multi-robot formations in structured environ-

ments that yields local and gradual change of formation shape with the level of alter-

ation proportional to the density of obstacles ahead. The results confirmed that the

LFT enables the formation to navigate as a unit through demanding environments with

complex building features and uncertainties arising from the presence of static and

dynamic obstacles as well as sensor and actuator errors. Motivated by deployments in

human-populated environments, the LFT algorithm achieves desirable properties of

smoothness of motion and aesthetic negotiation of obstacles.

� Cooperative Localization. We presented a strategy for providing reliable robot state

estimates to be used for formation control when communication is sporadic or suffers

from short-term outage. Our method called Formation Information GM-PHD (FI-GM-

PHD) filter combines absolute positions exchanged by the robots, information about

the formation geometry and sensory detections in an extension of the GM-PHD filter.

The experimental results demonstrated that our approach is capable of maintaining the

state estimates even when long-duration occlusions occur, and it allows for sustaining

formations in cluttered environments with high measurement uncertainty and low

quality of communication. The proposed method not only outperforms canonical

multi-target algorithms stressed under the same communication conditions, but also

delivers performances competitive with methods relying on perfect communication.

Finally, in experiments with elevated dynamics caused by a norm-driven reaction to

the presence of humans, introducing our method significantly reduces the chance of

formation breaking and in turn the probability of mission failure.

� Social Awareness. Our contribution to the field of human-aware navigation is three-fold.

First, we adopted well-established single-robot methods in the context of multi-robot

systems and through the experiments presented in Part III we analyzed the impact of the

presence of multiple robots on their acceptance by humans. Second, in contrast to the

state-of-the-art research on multi-robot teams deployed in human-populated environ-

ments that is limited to individual, uncooperative robots or cooperative solutions that

fail to consider realistic situations, we deploy cooperative robot teams that are socially
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aware in scenarios with real human participants in authentic indoor spaces. Finally, by

virtue of representing social norms in abstract and general form, easily understandable

for humans, we have taken the first steps of a long-term process aimed at unifying the

existing approaches to norm-following robot behaviors.

� We accomplished a unique set of multi-robot experiments in a real hospital setting. The

analysis of the results provided valuable insight into the benefits and disadvantages of

multi-robot deployments in highly sensitive environments. The lessons learned at the

hospital served as the main motivation for this thesis, and we strongly believe that they

can convince the robotics community about the need for integration of social norms

into robot behaviors.

With regard to the institutional framework our contributions detailed in Part III can be sum-

marized as follows:

� Institutional Formalism. We developed a model-based approach for abstraction, en-

capsulation, and formalization of generic social norms into reusable structures, called

institutions. Our institutional framework brought together insights gained from the

research in economics, multi-agent systems, the original principles of institutional

robotics, and the approaches derived thereof. Through our case studies we have shown

that our abstract representation of institutions allows for the governance over miscel-

laneous robot behaviors and integration of social constraints of diverse nature. The

properties of institutions allow us to seamlessly reuse the same institution across the

domains with a variety of agents capable of performing different behaviors.

� Norm Realization. By bridging the research on robot planning, where the focus lies on

clear semantics and abstraction, and the normative navigation, which addresses the

question of “how?”, we have identified the key elements necessary for interpretation of

social norms and putting them into practice. Our main contribution, norm realization,

is a mechanism for translation of generic, language-defined norms in terms of robot-

understandable language, making such norms readily implementable onto concrete

restrictions of robot behaviors and executable in real physical systems. To this effect,

we have introduced low-level sophistication to embrace the complexity of continuous

multi-robot behaviors, at the same time retaining the desirable high-level properties,

including abstraction, encapsulation, and modularity. The power of norm realization

has been showcased through a number of norms related to a large variety of social

aspects, ranging from human comfort achieved through robot navigational compliance,

to understandability of robot intentions reflected through gestures, expressions, and

sounds.

� Norm Abstraction. The proposed institutional formalism provides a simple tool for

encoding behavior specifications in a plug-and-play way instead of programming hard-

wired social compliance in ad-hoc behaviors, as it is done currently. To this end, we
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pioneer a number of worthwhile properties lacking in the state-of-the-art normative

robotics approaches, namely high reusability of institutions and norms, which we

freely allot over different domains and behaviors without the need of redesigning, and

modularity and scalability, where the encapsulation of norms allows to decouple their

operation from the behavior design and where introducing a new norm does not require

heuristics on how to merge it with the current solution. Instead of the design being

driven by norms, norms are imposed as constraints operating over the parametrization

of already existing behaviors.

18.2 Discussion and Outlook

Our work constitutes a first step towards integration of social norms in multi-robot systems.

Although we have addressed some aspects towards this end, several remain to be taken into

consideration.

To begin with, we have identified a number of practical challenges of cooperative navigation

in indoor, human-populated spaces, but the selection is by no means comprehensive and

there are ample opportunities to improve our solutions, which we will discuss next. Second,

in spite of our best effort towards achieving completeness of the institutional formalism, we

have identified a number of key research thrusts that can be undertaken for leveraging the

current approach.

The lessons learned during our multi-robot experiments in Part II and in the case studies in

Part III lead us to the following conclusions:

� Suitability of Norms. Bearing in mind that although the development of adequate social

norms and methods is imperative for achieving robot acceptance in human societies,

it was not our primary objective. Instead, we attempted to reuse existing single-robot

approaches and extend them to the multi-robot context, with varied levels of success.

This is partially a result of the combination of highly dynamic scenarios with multiple

heterogeneous agents – humans and robots, and so, environments characterized by a

low level of controllability. From our perspective, however, even if a norm is designed

with the best intentions and has proven to be adequate in one social context, it may

not necessarily be easily ported to another application. Norm validation necessitated

extensive participative studies tailored for the particular context and performed at

various stages of the effort. Furthermore, as we have emphasized throughout this

manuscript, there is a clear need of an open source database where results of such

studies can be collected and shared among the researchers.

� Challenges of Real Environments. Soaring dynamics, high stochasticity, noisiness and

uncontrollability of the real social environments make deployments of multi-robot sys-

tems profoundly challenging. Although we have addressed a number of such challenges,

there are still several improvements that can be made. Firstly, through our evaluation
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in Chapter 15 we recognized the need for augmentation of the purely reactive forma-

tion control methods with deliberative components. In all our case studies, we have

considered only established formations and flocks. However, it should be still investi-

gated how group initiation, leaving and joining a team, and other behaviors necessary

for dealing with re-grouping and emergency handling would fit into our framework.

Although the methods we described performed well in most of the social interactions,

the case studies involved also situations where it was simply impossible for the robots

to meet the social requirements (e.g. when two humans approached a robot from two

sides). Incorporating a prediction for the human motion into the graph and propagating

such information in order to accommodate formation structure correspondingly could

represent a promising next step. Secondly, throughout our experiments we relied on

external systems (e.g., a MCS) to obtain estimates of human positions. However, in real

environments, the deployment of similar systems can prove difficult or impossible, and

the positioning information would have to be retrieved from robots’ onboard sensing.

To this end, effort towards dealing with robot perception, its limitations and inherent

uncertainty must be made.

The key research thrusts that can be undertaken for leveraging the current institutional for-

malism and broaden its perspective can be summarized as follows:

� Completeness of the Framework. Although our institutional framework accommo-

dates all the necessary steps of grounding and norm realization, we left part of the

procedures in the hands of the designer. First, the identification of the elements of

the sentence that correspond to the institutional components is trivial, so we foresee

that it would be possible to perform this step with a language-based compiler. More

prominently though, the step of formulating the rules based on the above opens the

door for many possibilities, and allows for ad hoc methods to be developed. As cor-

rectly diagnosed in [147], this could possibly hamper the progress of the institutional

approach by not providing the means for combination of distinct works. Unfortunately,

the formulation of the rules is nontrivial. To the best of our judgment, the development

of a fully automatic fit-for-all tool would be close to impossible, as the rules rely on the

behaviors they operate upon, and not on the norms that dictate them. Nonetheless, this

thesis offers comprehensive explanations and plenty of examples that would support the

next step, namely that of open sourcing a compiler, which based on provided behavior

specifications would guide the process of building the rules. Because of modularity of

our methods, norm realization of typical robot behaviors could be open sourced in a

form of building blocks, reusable across applications.

� Outlook on the Institutional Formalism. There remains a number of open problems

in the institutional formalization that are yet to be addressed. First, we only provided

a preliminary solution to the question of social context recognition and activation of

the institution operating upon it. Second, a rigorous method for defining relations
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within a network of institutions operating concurrently, their hierarchy and resolution of

conflicts is yet to be developed. Third, to relax our assumption of admissible grounding

an automatic process akin to that of institution recognition is yet to be established.

This would provide declarations of grounding relations that in our examples we have

assumed to be given.

� Outlook on Norm Realization. There are two further aspects related to social norms

and norm realization yet to be tackled. The first refers to detection of norms existing in

human societies, their automatic application to the robot behaviors and norm cognition,

i.e. how to generate new norms based on robot’s experience. From our perspective,

however, these problems lay at an intersection of sociology, neurology and machine

learning techniques, as proposing a solution requires a good understanding of how

individuals interpret norms, how a society agrees on common norms, and how these

solutions can be adopted by an artificial system. For this reason, it is out of our expertise

to suggest how they should be approached. The second refers to introducing priorities

between norms, necessary for conflict resolution as well as addressing ethical concerns.

For example, in Case Study I, one can imagine that a robot should prioritize respecting

human personal space (norm n2) before complying to the norm preventing to enter

spaces where humans might perform an activity (norm n1). Therefore introducing

priorities is a topic for further study.

� Limitations. Throughout our work on the institutions we always assumed full robot im-

mersion in an institutional environment, i.e. that once a robot belongs to an institution,

it has access to all the information and services it provides. We did not address the issue

of incomplete institutions, i.e. institutions with limited knowledge whose components

only partially comprise the elements of a social context. Although we proposed adap-

tation of norms at the domain level, in our approach institutions are static structures

that do not change over time. Institutional adaptation is still to be addressed. Our

formalism has been designed with the objective of scaling well with the complexity of

the norms and behaviors they apply to. However, scalability with respect to the number

of robots has not been validated as of now. To our best judgment, the institutional

framework is not purely restricted to only small teams, or only heterogeneous teams of

robots that apply the same norms, which we have proven on our case studies. However,

the design of institutions and norms for large swarms or for multiple diverse teams

operating in the same environment must be adapted to achieve the desired end results,

similarly as we have demonstrated in the Case Study II where the institution embraces

the complementary capabilities of the two robots, MBot and Pepper.

As a final conclusion of this thesis we would like to bring attention to the fact that an interdis-

ciplinary discussion among researchers representing the fields of social sciences, economics,

multi-agent systems and robotics is imperative for drawing full benefits from frameworks such

as the one presented in this manuscript. For once, we have shown that drawing inspiration

from other fields of study allows us, roboticists, to build our work upon well-established solu-
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tions. On the other hand, formal methods developed for concrete, physical and distributed

robotic systems can provide invaluable insights on representation, modeling and control of

socio-economic phenomena.
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A Case Studies: Implementation Details

This chapter provides additional implementation details for the Case Studies CI -CI I I , pre-

sented in Chapter 15, Chapter 16, and Chapter 17.

A.1 Case Study I

In all the experiments of CI , the human participants played a game involving a number of

waypoints to visit, delineated on a map. The waypoints were labeled with animal shapes and

indicated as crosses on the floor. The basic experimental setup is illustrated in Figure A.1.

Such design of the game allows to maximize the number of interactions between the robots

and the humans, while retaining systematicity between the runs.

Figure A.1 – Arena set-up of the experimental campaign for
Case Study I. Each person was asked to follow a path driven
by animal-labeled waypoints. For instance, for human HA the
path was 1) Dog, 2) Kangaroo, 3) Bear, 4) Kangaroo, 5) Bird,
6) Dog, 7) Cat and 8) Bear, and for human HB the path was
1) Horse, 2) Elephant, 3) Kangaroo, 4) Elephant, 5) Bear, 6)
Kangaroo, 7) Giraffe, 8) Horse and 9) Bird. The roles and the
paths were retained for all the runs. Each person was asked to
move with their natural pace and keep a similar speed during
each trial.

The experiments have been parametrized as follows. The virtual size of personal_distance

∆P,h and relative speed_factorh for each human Hh are presented in Table 15.6. And so, the
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robots are implored to keep a larger distance to a child than to any other human (as driven by

norm n2), while also lowering the speed the most (as driven by norm n3). The TrajectoryShape

parameter of the Leader in n2 is modified by adding a vector perpendicular to original path,

directed away from the human, with the size of the vector being a sigmoid function of the

Leader-to-human distance and the size of personal_distance ∆P,h . Also in n2, the parameter

∆a of RepulsionWeights of the Follower robot is proportional to personal_distance ∆P,h , with

additional margin to prevent the robot entering the personal space. The speed_factorx coef-

ficient plays two roles. First, for a given domain (where x stand for SCHOOL, WAREHOUSE or

HOSPITAL), a trajectory speed_factor allows the Leader to adjust the TrajectorySpeed relatively

to the default speed. Second, for the Followers, a near-agent speed_factor adjusts the Control-

Gain as in KC ← KC ∗ sA,h , where Hh is the human during the avoidance of whom the speed

is being lowered. This leads to proportional reduction of the actuation control input, and

consequently, lowers the robot speed. All discussed values are listed in Table 15.6.

The FormationShape is a triangle, while the FormationBias is scaled according to the domain

– it is smallest for the WAREHOUSE domain, where efficiency is important, and largest for

SCHOOL, where it might be desirable that the inter-robot spaces are large enough to allow a

running child to pass through. Values of FormationBias are given in Table 15.6. Lastly, in a

subset of experiments carried out in the HOSPITAL domain, we simulate QuietActivityTime

to take place during time_interval TQ AT = [80, 100]s. We also tested the robot response to a

static affordance areaΦAC S at a location [0,0] and with radius of 1.3 m. These experiments are

tested separately so as to evaluate norms n1 and n3 in an isolated context.

A.2 Case Study II

The institutional knowledge of the STEERING and the TUTORING institution is grounded

as follows. The element PersonalSpace takes the values personal_distancechild=2.0 m and

personal_distanceadult=1.6 m, and the element IntimateSpace the values intimate_distancechild=1.2

m and intimate_distanceadult=1.0 m. Values for Ko , ∆a and ∆c were obtained empirically in

simulations in [9], where the human reaction was modeled with the SFM (for more details

refer to Section 5.6.2). Robot behaviors are distributed, while their activation is regulated by a

central planner.

The Destination of the STEERING institution is grounded to the entrance of the laboratory,

which in turn is labeled as the ExhibitionArea of the TUTORING institution. The objects are

chosen from the set {VR_SET, ROBOT_STATION, CAMERA}, their positions are provided to the

robots in the grounding of ObjectLocations, while a short, one sentence description is supplied

a priori via ObjectDescriptions.

We chose eM AX
F = 0.65 m, equal to the diameter the MBot robot. The threshold determining

whether VISITORS_FOLLOW is ∆L = 3.2 m. For safety reasons, we limit the maximum velocity of

the Followers to ṗmax = 1 m/s.
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A.3 Case Study III

The experiments of the case study CI I I are parametrized as follows. The values of the thresh-

olds used in norm realization are: TL = 5.0 m for determining if a follower is lost, and

TC = 2.5 m for MoveByFlocking and TC = 2.25 m for MoveInFormation for triggering the con-

dition IN_NARROW_PASSAGE. The value of the personal_distance is ∆P = 1.2 m for all humans.

The flocking coefficients are Kα1 = 2.0, Kα2 = 1.0, Kβ1 = 150 and Kβ2 = 1.5 for obstacles and

Kβ1 = 200 and Kβ2 = 2.0 for β-agents that represent humans, Kγ1 = 5.0 and Kγ2 = 2.0. The

interaction ranges for agents and for obstacles are ∆A = 1.8 m and ∆O = 0.36 m respectively.

The desired agent-agent or agent-obstacle distance of flocking are bA = 1.2 m and bO = 0.24 m.

For the β-agents that represent humans the values are ∆OH = 0.72 m and bOH = 0.48 m. The

flocking gain is Kc = 0.15.

Formation control is parametrized with the gain Ku = 1.0, bias that forms an “X”-shaped

mesh of edge size 1.5 m with two human Leaders in front of the three followers behind. The

values for calculating the RepulsionWeights WR are Ko = 1.0,∆a = 1.0 m and∆c = 0.55 m. The

default Laplacian weights are w f f = w f l = 1.0.
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B Case Study I: Comments of the Partic-
ipants

This appendix provides a detailed summary of the additional comments provided by the

participants in Case Study I, Experiment set II of Chapter 15. The comments, although not

codified, provide further insight into the perception of robot behaviors by the participants.

B.1 The NON-NORMATIVE Trials

After the NON-NORMATIVE trial, some participants commented on the fact that their presence

was ignored, for example: “We didn’t interact much in this experiment so mostly neutral

feeling”; “I feel like robots are ignoring me and they were too close during navigation”; “In this

experiment, I’ve felt they were not eager to move out of my way”. In two cases robot aggression

was compared to the previous trial (in both cases it was preceded by the EFFICIENT trial): “In

this experiment robots looked a bit less aggressive than in experiment 1 [EFFICIENT]”; “The

robots seem a bit more aggressive [than in the EFFICIENT trial] in a sense that I don’t really

understand if they really care about human as for the 1st experiment”. One person remarked

on robots friendliness: “They are less friendly [than in experiment 1: SOCIAL trial]”. Finally,

two participants used decidedly negative wording to express their feelings: “A little bit scary”;

“Creepier experiment”. In contrast, a number of participants indicated their preference for

the NON-NORMATIVE behavior, despite it being the non-social one, e.g. “They 3rd experiment

[NON-NORMATIVE], while being the least social, was the most natural one for robots (...),

therefore I could predict their behavior easier”; “It is difficult to say what was the difference

between the 3 experiments, I just liked more number 2 [NON-NORMATIVE]”.

B.2 The SOCIAL Trials

The SOCIAL trial received a number of general positive comments, such as: “The robots are

cute [drawing of a smile]. I liked when the robots had their hands and arms moving” [emphasis

in original]; “Robots during experiment 3 [SOCIAL] have according to me the best behavior &

interaction with the human. In terms of comfortable feeling with descending order: 3>1>2
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(SOCIAL > EFFICIENT > NON-NORMATIVE)”; “Polite”; “I felt like they are too slow to work in a

real environment with humans, but it is interesting to work with them”. Their movement was

preferred against the preceding trials, i.e. “Far more receptive to my movement [than in the

other trials]”; “It is better when they avoid us [compared to the previous NON-NORMATIVE

trial]”. Other positive comments regarded the spoken apologies and facial expressions, for

example: “The robots are very pleasant now, they have kind of feelings, excuse themselves

if they disturb us” [emphasis in original]; “The fact that they say ‘excuse me’ makes them

a bit more friendly and pleasant”; “It is pleasant to see a little bit more a human face on

them (mouth changing, language)”; “Nice how they excused themselves and changed facial

expression and color on the bottom”. Interestingly, the same characteristics were perceived

negatively by a number of participants: “Robot apologizing all the time may become annoying

in the long term”; “The volume of the robots’ voice is a bit too loud. (...) The red eyes look like

an evil robot” [emphasis in original]; “Sounds are a bit annoying”; “I didn’t really understand

the sounds they are making, also they are quite dumsy”. Finally, some participants pointed

out some of the asocial aspects of the robot behavior, e.g. “A robot apologized, after which it

collided with my foot”; “It seems they try too hard to avoid each other and the humans, feels a

bit too chaotic. (...) I liked a lot the smiley [drawing of a smile] face!”

B.3 The EFFICIENT Trials

The EFFICIENT trials were generally provided negative comments, such as: “They are not likely

to give priority to people to walk. They give me selfish feeling”; “They were slightly more

aggressive [than in the social trial]”; “They didn’t care about people around. (...) They also

seemed to disturb [me] intentionally”; “Difficult to understand their roles”. Furthermore,

the comments suggested that their motion was judged as asocial and illegible, for example:

“During a close-by meeting, the robots spread apart and we did not collide. However, I had to

stop. Then they gave me way”; “The robots collided into each other when trying to avoid the

human”; “It was hard to anticipate their movement. They were paying less attention. I had

to bypass one because it was in my way”; “He walked on my foot! They are a bit too sticky”

[emphasis in original].

B.4 The Overall View

Overall, a number of participants mentioned that they felt like they were biased among the

runs, as they got used to the robot presence, for example: “I was more comfortable with the

robots in the second experiment because I got used to walk with robots”; “My feeling towards

the first experiment might be biased because I discovered the robots, whereas I was able to be

critical on the next runs”. Some participants focused on the robot characteristics rather than

on their behaviors. The comments referred to the robot appearance, e.g. “I felt that the robots

were too big for the arena”, “I felt like I was being watched”, or to their motion characteristics,

e.g., “A bit too vibrating to be considered natural” [emphasis in original].
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C Evaluation of the FI-GM-PHD Filter in
Human-Populated Environments

This chapter provides a detailed account of the third set of experiments referred to as With

Cooperative Localization introduced in Chapter 15.

C.1 Scenarios

In the first two sets of experiments formation control is carried out with sufficient quality of

communications. In the experiments of this appendix, we simulate temporary communica-

tions failure and analyze its impact on the performance of the robot team. We distinguish

two cases: A) where robots rely on communications only, and B) where each robot runs the

FI-GM-PHD filter described in Chapter 8 to compensate faulty communication data with

sensory detections and information about the desired formation geometry. We label these

two cases as NOTRACKING and WITHTRACKING, respectively.

Figure C.1 – Summary of the OSPA errors for the
scenarios with 0% message drop (i.e. ideal base-
line communication), 90% drop and 100% drop,
each evaluated in experiment with one human
(1H) and no humans (0H).

Communication failure is simulated at 10 s intervals occurring every 40 s, adding up to 20%

of the run time. Two types of communication losses are tested, 90% loss, where robots drop

9 out of 10 messages at random, and 100% loss, where there is no communication. For a

baseline, we perform experiments with no losses (0% loss). Basic communication rate is 10

Hz. Communication failures are simulated for all robots simultaneously. All robots run the

tracking system independently and onboard. All experiments are run with the SCHOOL domain
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Figure C.2 – Time-wise plots of the OSPA metric of the the WITHTRACKING experiments and 0%
and 100% message drop, averaged over the runs.

0H 1H

0% 90% 100% 0% 90% 100%

NOTRACKING
mean eF 0.22 0.25 0.23 0.38 0.34 0.3

std eF 0.07 0.12 0.12 0.26 0.24 0.22

WITHTRACKING
mean eF 0.18 0.19 0.3 0.33 0.33 0.48

std eF 0.05 0.09 0.18 0.23 0.22 0.4

Table C.1 – Average formation error eF .

and one human (labeled 1H) child, as that choice yields maximal social disturbance to the

robot team. These are compared to experiments with no humans (labelled 0H). For each

scenario, we perform 12 consecutive runs.

C.2 Results

The performance of the FI-GM-PHD tracking system in the WITHTRACKING experiments

has been analyzed using the OSPA metric (described in Section 8.5.2), calculated between

the ground truth poses obtained from a motion capture system and the estimates of the

robots. The mean OSPA errors shown in Figure C.1 demonstrate that the tracking performance

gracefully deteriorates with the degradation of the communication quality; a drop of 90% of

messages increases the error on average by 14%, while a 100% message drop results in 56%

increase. As shown in Figure C.2, the overall error mostly remains within around 0.4 m for

0% loss (left) and within around 0.6 m for 100% loss (right). Human presence has a clear

impact on the tracking performance, with OSPA being on average 5.2% higher when a human

is present and with around 40% larger standard deviation.

There is no significant difference in the formation error eF between the NOTRACKING and
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WITHTRACKING scenarios. Results summarized in Table C.1 show that tracking slightly im-

proves eF in the 0% and 90% cases for both 0H and 1H, bot not in the 100% case. Our intuition

is that in the 100% case, where in the NOTRACKING scenario robots simply stop until commu-

nication resumes, that strategy leads to lower formation error than when robots compensate

with other information sources that integrate also the sensing errors. On average, human

presence leads to around 20% rise of eF for both NOTRACKING and WITHTRACKING. The aver-

age error is bounded for all scenarios, with the highest being 0.48 m for 100% and 1H, which

given the robot diameter of approximately 0.65 m can be considered acceptable. However, one

should note that since it is desirable and driven by design that the human presence distorts

the formation shape, eF should not be considered an indicator of the formation performance,

but a sign of the degree of compliance that the formation exhibits when navigating among

humans.

As an indicator of the formation performance we use failure rates, calculated based on the

video annotations. We distinguish three categories of formation failures: NOT-REC, where

robots are not able to recover the formation, NOK-REC, where the formation breaks sub-

stantially, but is able to recover, and OK-REC, where the formation separation is visible, but

insignificant. We consider situations where a failure is a result of insufficient data or a combi-

nation of missing data and other factors, such as the complexity of the environment or the

presence of a human. Examples of the three categories are shown in Table C.2, where the

snapshots from the videos recorded during the experiments show the formation before it

breaks (left), at the time when formation of the most distorted (middle) and after recovery in

the NOK-REC and OK-REC cases or in the case of no possibility to recover in the NOT-REC

category (right).

Figure C.3 shows failure rates per second (×10−3), where the higher the value, the worse the

formation performance in the respective category. Data confirms that the use of FI-GM-PHD

filter in the WITHTRACKING scenarios yields much better performance than when tracking is

not used in the NOTRACKING case. As indicated by NOT-REC, no critical failures occur in the

WITHTRACKING experiments and the rates of failures with recovery (NOK-REC and OK-REC)

are on average much smaller than in the NOTRACKING case. Irrespective of whether the tracing

system is used, presence of human increases the likelihood that the formation breaks in all

scenarios.

C.3 Discussion

In Chapter 8, where we introduce the FI-GM-PHD filter, the evaluation is carried out in static

environments with no humans. Although we challenge the tracking system in scenarios

cluttered with obstacles in the arena and expose the formation to long-term communications

outage, there are no external factors that affect the performance of the formation and of the

filter.

With the presented experiments we validate the FI-GM-PHD filter in highly dynamic environ-
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Figure C.3 – Formation failure rates per second (multiplied by ×10−3), classified into three cate-
gories, NOT-REC, NOK-REC and OK-REC, calculated based on the video annotations. The higher
the value, the worse the formation performance in the respective category. The categories are:
NOT-REC, where robots are not able to recover the formation, NOK-REC, where the formation
breaks substantially, but is able to recover, and OK-REC, where the formation separation is visible,
but inconsequential.

ments where the formation is frequently perturbed interrupted by the presence of human,

which on top of causing sparse occlusions affects the dynamics of the norm-following forma-

tion. No changes in the filter implementation or models are made, neither did we perform

parameter tuning. This confirms the robustness of the method to environmental changes.

The results indicate that the performance of tracking degrades gracefully with the drop of

communications quality. Although the presence of a human significantly affects the ability of

the robots to track well, the performance remains stable. Finally, the formation failure occurs

far less frequently when the tracking is employed, and with lesser criticality – we recorded no

cases during which the formation broke and did not recover.
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Before breaking Most distorted After recovery / no recovery
O

K
-R

E
C

N
O

K
-R

E
C

N
O

T
-R

E
C

Table C.2 – Snapshots from the videos recorded during the experiments showing the examples of
formation failures.
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D Computational Procedure of Norm
Realization: An Example

In this chapter, we illustrate the steps of the computational procedure described Chapter 16

with a simple example of the norm nS2 of Case Study CI I . The realization of a similar norm

has been already discussed in Chapter 13, but here we focus on the implementation details.

D.1 Overview of the Computational Procedure

The procedures for the specification and application of behavioral modality in our computa-

tional procedure presented in Chapter 16 take the following form:

B) A subset of relevant parameters Pi = {p j } of behavior Bk is selected: Pi = r P (N A
t ,Bk ) = {p j }.

C) Based on R and K, each parameter p j takes value vp j = r V
j (p j ,R,K):

C’) Value vp j is adapted based on the experience measure L:

vp j = r L
j (r V

j (pi ,R,K ),L) = f |v= f j (R,K )(v,L)

D) Behavior Bk applies the value vp j of parameter p j : λk ← r B (p j , vp j ) = Bk (p j , vp j )

The labels B) - D) correspond to the steps of norm realization introduced in Chapter 13.

D.2 Computational Procedure: A Step-By-Step Implementation

Recall that completing the institutional level of norm realization resulted in the following

partition of the nS2 sentence “The followers should maintain a comfortable distance from the

humans”:

nS2 : ;→ should(followers, maintain, comfortable distance from humans)
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Norm nS2 concerns robots with the roles of the Followers, which, through the relations de-

scribed in the previous section, carry out the MoveInFormation behavior.

Although the sentence does not specify the conditions for activation of norm nS2, from nS4 we

deduce that a comfortable distance is only maintained when humans are following, otherwise

the norm nS4 encourages the Follower robot to “push” the human to join back the formation.

It is the role of the designer to interpret the missing elements of the sentence as we do in this

case. Such condition denoted VISITORS_FOLLOW is the only activation condition of nS2 and

grounded to ca
S1 ∈CS1 (see Table 16.2) and the outcome of its evaluation by the requirement

rule r N determines whether nS2 is active at time t :

N A
t = r N (C a) =

nS2 ∈N A
t if ca

S1 ≡ True

nS2 ∉N A
t otherwise

The term if ca
S1 ≡ True can be replaced by any propositional formula. We denote the generic

equivalence of the formula for norm nk withΥ(C a
k ). In our perspective every condition can be

represented in terms of prepositional logic, even conditions defined on continuous variables.

For instance, condition WHEN_WARM can be mapped to the state variable temperature being

between two discrete values.

Once a norm is known to be applicable at the given time, rules r P and r V determine the

socially appropriate behavior modality, and r B applies them. In our example, to respect nS2, a

robot dynamically creates a repulsive field around the human to prevent interference with his

comfort zone. As explained in detail in Section 13.1.5, according to the rule r P one parameter

– the RepulsionWeights WR of the MoveInFormation behavior is modified:

PS2 = r P (
N A

t ,MoveInFormation
) = {

WR
}

The value of WR is a function of three parameters, Ko , ∆a and ∆c , and the distance di h

between the robot Ri and the human Hh . The parameters for a specific human Hh are

extracted from the grounded knowledge of the particular domain. For example, in this case

study we distinguish between the child Visitors and the adult Visitors as follows:

KNOWLEDGE
GK−−→ GROUNDED K −→ PARAMETER VALUE

SocialForce
G(S)

K−−→ forcechild

forceadult

−→
−→

Ko = 1.2, ∆a = 2.2, ∆c = 0.65

Ko = 1.0, ∆a = 1.6, ∆c = 0.55

Based on the above elements of knowledge, Ko , ∆a , ∆c , and the distance di h ∈ R, the value for

the parameter pS2 =WR is chosen as follows:

vpS2 = r V (
PS2, K, R

) = f
(
Ko , ∆a , ∆c , di h

)
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with the function f given in Equation (5.9). The resulting value of WR is applied by the

MoveInFormation behavior according to Equation (5.8), which when all other active norms

have been applied, results in the behavior modality λ

λ ← r B (
PS2,VPS2

) = MoveInFormation(pS2, vpS2 )

The norm is satisfied when ca
S1 = RESPECTED_PERSONAL_SPACE is true, i.e. the resulting human-

robot distance di h at time t +1 is higher than the value of the personal distance ∆P , for all

human Visitors:

N T
t+1 = r O

(
N A

t ,C o
)=

nS2 ∈N T
t+1 if ca

S1 ≡ True

nS2 ∉N T
t+1 otherwise

In our implementation ∆a is equal to the value of the personal space ∆P , the other values are

determined empirically based on the model of human social forces discussed in Chapter 5.
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E Norm Realization in Case Study III

This chapter provides details of norm realization of the Case Study CI I I presented in Part III,

Chapter 17.

E.1 Activation and Outcome Conditions

The requirement rules r N , and so the activation and outcome conditions are independent

from the behaviors agents engage in. The conditions, listed in Table 17.2 are determined by

the Follower Fi as follows.

Activation Conditions

r N
1 ca

11 = LEADER_LOCATIONS_KNOWN

Satisfied when the state variables pose of the agents in GA(Leader), i.e. posehuman1 and

posehuman2 are known. In this case study it is assumed that this is true at all times, i.e.

ca
11 ∈N A

t ∀ t .

r N
2 ca

21 = LEADER_LOCATIONS_ALWAYS_KNOWN

Satisfied if ca
11 ∈N A

t ,∀τ ∈ (t0, t ).

ca
22 = IN_COMPLEX_SPACES

We assume that c22 ∈N A
t ∀ t , because the environment consists of multiple narrow

turns with few open, straight passages.

r N
3 ca

31 = FOLLOWER_LOST

The descriptor LOST is grounded to a distance threshold TL between Fi and the Leaders,

falling beyond which deems Fi to be lost.

r N
4 ca

41 = IN_NARROW_PASSAGE

Satisfied when the passage that Fi traverses is narrower than a threshold TC .

r N
5 ca

51 = PERSON_LOCATIONS_KNOWN
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Since the descriptor person is not a role, but rather an attribute, realization of ca
51

does not use the grounding GA directly (as it is not expressed in terms on Leaders

and Followers), but it addresses all the agents that are humans. In this case study

person= {human1,human2}. Because of that, ca
51 ≡ ca

11, and so ca
51 ∈N A

t ∀ t .

Conditions ca
11, ca

21 and ca
51 ensure the information necessary for the robots to be able to follow

the norms. These norms are always active when such information is available. In contrast,

ca
22, ca

31 and ca
41 are active only occasionally upon occurrence of an event. We can categorize

the first type of conditions as the capability conditions, and the second type as the triggering

conditions.

Outcome Conditions

The outcome conditions typically evaluate a number of relevant performance measures. Note

that the state variable position of the Follower Fi is denoted positionG(Followeri) = pi .

r O
1 co

11 = FOLLOWER_IN_SAFE_AREA

Evaluates whether pi ∈Ω.

r O
2 , r O

4 co
21 = co

41 = FOLLOWER_FOLLOWS_LEADERS_PATHS

Satisfied by Fi when ‖pi (t )−pVL(t )‖ < TL

r O
3 co

21 = LEADERS_WAIT

Satisfied when ṗh(t ) = 0, ∀h ∈GA(Leader).

r O
5 co

51 = SOCIAL_SPACES_RESPECTED

Gratified when ‖pi −ph‖ >∆P,h , h ∈ {human1,human2}.

E.2 Parameters and Values

The choice rules r P determine which parameters of the given behavior are changed by the

norm, while the value rules r V set these parameters to concrete values. Since each behavior

has different parameters, rules r P , r V and application rules r B are designed specifically for that

particular behavior. The choice and parameter rules for N and behaviors MoveByFlocking

(FL) and MoveInFormation (FR) are outlined in Table E.1 and determined as follows. Note that

n1 and n2 require the Followers to retain previous paths of the Leaders.
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MoveByFlocking

Parameter p Value vp Adapted value vp

n1 C Add OV , oV = f (Ω) cβk (oV ) ← g1(l1)cβk (oV ),k ∈ 1,2

n2 C Add FVL cγk (FVL) ← g1(l2,4)cγk (FVL) ∈ 1,2

n4 KC KC = f (ID) KC ← g1(l2,4)KC

n5 C
Add OH cβ,h

i ← g1(l5)cβ,h
k , k ∈ 1,2

(cβk ,rO ,δO) = f (rs)
rO,h ← g3(l5)rO,h

δO,h ← g3(l5)δO,h

MoveInFormation

Parameter p Value vp Adapted value vp

n1 bx bx
i = f (dΩ) dΩ = g2(l2,4)dΩ

n2 W w f l > w f f , w f l = f (T F ) w f l ← g1(l2,4)w f l

n4 by by
i = f (dΩ) dΩ = g2(l2,4)dΩ

n5 WR wR
x = f (HFx ), wR

x 6= 0 KO ← g1(l5)KO

Table E.1 – Overview of the adaptation process of the ROBOT GUIDANCE institution.

r P,V
1 (Safe areas) SafeAreasΩ are the obstacle-free areas between the outermost paths of the

Leaders. The distance dΩ(p ) is the width of the safe area at a position p (see Fig. 17.2 for

illustration).

FL: The connectivity parameter Ci of Fi includes virtual obstacles OV at the points on

the human paths that are closest to Fi at time t , i.e. OV = {ph(τ)|τ= argminτ(‖pi (t )−
ph(τ)‖),τ ∈ (t0, t),h ∈ Leaders}. Note that the norm n1 is designed to keep robots

within Ω, but when Fi falls outside of it, the repulsive weights might refrain the

robot from entering it. The solution to this is provided by the adaptation rule of n1.

FR: The safe area width dΩ(p ) drives computation of the formation bias using the LFT

method presented in Chapter 7. The variable dΩ drives the formation transforma-

tion, scaling the original bias of Fi to bx
i = f (dΩ) towards the column-like shape.

The new bias is parametrized by sx , which shrinks or expands the formation width.

Note that sy , which shortens or elongates the formation along the direction of

motion is modified by norm n4.

r P,V
2 (Reinforce following) To facilitate navigation in complex spaces – confined spaces with

narrow, sharp turns, norm n2 provides the Followers with the means to reinforce the

Leader-Follower interactions.

FL: The current virtual point VL of Fi is calculated based on the paths of the Leaders

and not their immediate positions, and referred to as the former virtual point
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FVL ∈PVL. FVL is computed as FVL = argminVL(‖pi (t )−VL(p)‖−dF ), where indicator

p allows to track and discard all the points in PVL already reached by Fi and dF

is the preferable distance of FVL being ahead of Fi (see Fig. 17.2). By being more

immediate than VL, FVL allows Fi to follow the path of the Leaders even when it

has lost their line of sight.

FR: To put larger emphasis on the following, rather than on keeping perfectly-shaped

formation, the weights of the L-F edges, wl f in the Laplacian are reinforced with

respect to the F -F edges (with weights w f f ).

r P,V
3 (Help request) Norm n3 parametrizes an individual robot behavior - spoken help request.

The value of spoken phrase is set to asking Leaders to stop and wait until Fi can catch

up.

r P,V
4 (Narrow spaces) Norm n4 facilitates passing of the Followers through narrow spaces by

assigning who is to pass next.

FL: The control gain Kc of each individual Fi is tuned according to its ID i , so that

some robots speed up when passing, while the others slow down, letting the faster

robots to proceed. This is achieved by multiplying Kc by a factor from a lookup

table [1.5,0.5,0.2], where the entry of the table corresponds to the robot ID, so

the robot F1 can render a maximum gain of 1.5Kc , and the robot F3 can render a

maximum gain of 0.2Kc , making F1 arrive at the narrowing much earlier than F3.

Similar behavior can be observed when humans walk though door and let the ones

with higher priority to pass first.

FR: Coordination is achieved in the length-wise change of the formation geometry by
i .

Depending on the width of the available space dΩ at the position of the Leaders,

each Fi spreads its bias along the direction of motion (the y-axis of the formation).

Note that norm n1 assures that the Followers reduce the perpendicular bias com-

ponents (x-axis). The result is a formation with a shape converging to a column for

very narrow passages.

r P,V
5 (Social spaces)

Norm n5 for both behaviors introduces repulsive forces that drive the robots away from

human social spaces.

FL: Humans are modeled as obstacles OH = {oh}, h ∈ {human1,human2}, with the

parameter values cβ,h
1 ,cβ,h

2 ,rOH and δOH that depend on the personal_distance ∈ K .

FR: To respect social spaces of human Leaders, the follower Fi activates the repulsive

forces described in Section 5.2.2, where the repulsion weight changes continuously

as a function of the distance dhi , gain Ko and ranges ∆a , and ∆c <∆a that depend

on social_forcex ∈ K .
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E.3 Value Adaptation

We define the following measures L to evaluate outcomes of the norms. For Fi :

IN_SAFE_AREA l1 = 1 if x̄i ∈Ω,otherwise l1 = 0

IS_FOLLOWING l2,4 = 1−min( 1
TL
‖x̄i − VL‖,1)

IN_SOCIAL_SPACE l5 = min(min
h

( 1
2∗socialh ‖pi −ph‖),1)

Functions used for norm adaptation are: g1(x) = 2−x, g2(x) = x2, and g3(x) = 3−x
2 . Note that

l ∈ [0,1] ∀ l ∈ L. Adaptation rules are outlined in Table E.1 and determined for Fi as follows.

r L
1 (Safe areas)

FL: Weights cβ1 and cβ2 of the virtual obstacles OV are increased when IN_SAFE_AREA of

Fi is false as cβk ← g1(l1)cβk , k ∈ 1,2.

FR: Bias bx
i of Fi is a function of a safe area width scaled as according to dΩ← g2(l1)dΩ.

This narrows the formation when IN_SAFE_AREA of Fi is false.

r L
2 (Reinforce following)

FL: The attraction weights cγ1 and cγ2 towards FVLare increased if Fi stays behind ac-

cording to cγi ← g1(l2,4)cγk , k ∈ 1,2.

FR: If the Follower Fi stays behind, weights w f l of the L-F edges are reinforced accord-

ing to w f l ← g1(l2,4)w f l .

r L
3 (Help request)

For norm n3, we assume that the human Leaders stop each time Fi requests it.

r L
4 (Narrow spaces)

FL: The control gain KC is increased if Fi falls behind while navigating narrow passages

KC ← g1(l2,4)KC .

FR: Bias by
i of Fi is a function of scaled dΩ← g1(l2,4)dΩ. It increases the bias length-

wise if Fi is failing to pass a narrowing.

r L
5 (Social spaces)

FL: Weights cβ,h
1 and cβ,h

2 of the repulsive forces are increased if the social space of

a human has been invaded as cβ,h
i ← g1(l5)cβ,h

k , k ∈ 1,2. Moreover, the inter-

action range rO,h and the desired distance δO,h increase as rO,h ← g3(l5)rO,h and

δO,h ← g3(l5)δO,h .

FR: If social space is interrupted, repulsion weights wi h are reinforced by increasing

KO ← g1(l5)KO .
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Glossary

AI Artificial Intelligence 118

AMCL Adaptive Monte Carlo Localization 20

ANCOVA Analysis of covariance 181, 182

ANOVA Analysis of variance 177, 178

DBSCAN Density-Based Spatial Clustering of Applica-

tions with Noise

18

DWA Dynamic Window Approach 14, 20, 60, 67, 68, 171

EI Electronic Institutions 115

FI-GM-PHD Formation Information GM-PHD 9, 12, 70, 77–79, 85–94, 96–100,

102–104, 164, 183–185, 226, 239–

241

FISST Finite Set Statistics 72

FMM Fast Marching Method 13, 20, 49, 50, 99, 161, 193

FOV Field of View 15, 60, 97

GM-PHD Gaussian Mixture Probability Hypothesis Den-

sity

9, 35, 36, 69, 70, 72, 75, 79, 82,

85, 88–94, 97–100, 102, 103, 226

GNSS Global Navigation Satellite System 30, 69, 70

HRI Human-Robot Interaction 36, 136, 137

IAC Institutional Agent Controller 119, 120, 129

IAD Institutional Analysis and Development 112, 113, 117, 133, 134

ID Identification number 34–36, 39, 69, 71, 85, 95, 210

IMU Inertial Measurement Unit 15

IPOL Instituto Português de Oncologia de Lisboa 5, 6, 12, 15, 17, 21–23, 33, 53, 55–

58

IR Institutional Robotics 10, 11, 118–120, 128

JPDA Joint Probabilistic Data Association 72

LED Light Emitting Diode 15, 16

LFT Local Formation Transformation 9, 34, 59–68, 210, 226, 251

LIDAR Light Detection and Ranging 35, 87

LOS Line Of Sight 214
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MAS Multi-Agent Systems 4, 113–116, 118, 127

MCMCDA Markov Chain Monte Carlo Data Association 72

MCS Motion Capture System 14, 19, 21, 96, 170, 172, 217, 229

MHT Multiple Hypothesis Tracking 72

MOnarCH Multi-Robot Cognitive Systems Operating in

Hospitals

12, 15, 57, 137

NLOS Non Line Of Sight 19

NN Nearest Neighbor 71, 72

OS Operating System 15

OSPA Optimal SubPattern Assignment 88, 91, 93, 94, 99–102, 184, 240

PHD Probability Hypothesis Density 35, 69, 72–75, 79, 80, 95

PM Proxemics Model 36, 51, 52, 135, 191

PMHT Probabilistic Multiple Hypothesis Tracking 72

PN Petri Net 119

RFS Random Finite Set 72–75, 79, 87

RG Relational Graph 129

ROS Robot Operating System 13, 14, 16–20

SFM Social Forces Model 51–53, 191, 234

SLAM Simultaneous Localization and Mapping 20, 72

UWB Ultra-Wide Band 14, 19, 22
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Mathematical Symbols

COOPERATIVE MULTI-ROBOT SYSTEMS AND ALGORITHMS

PRELIMINARIES

R Robot

L Leader

F Follower

H Human

O Obstacle

N Number of robots

pi Position of robot Ri

ṗi Velocity of robot Ri

ui Control input of robot Ri

Pi Path of robot Ri

Ti Trajectory of robot Ri

dab Distance between pa to pb

αi Orientation of robot Ri

∆ab Range from point pa to point pb

γab Bearing between pa and pb

IRi Coordinate frame of robot Ri

IW Global coordinate frame

Γ Motion vector

EVALUATION

eF Formation error

eO Orientation error

eC Connectivity metric

eR Cohesion metric

eE Deviation metric
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Mathematical Symbols

FORMATION CONTROL & FLOCKING ALGORITHMS

GRAPH DEFINITIONS

G Graph

E Set of edges

V Set of nodes

C Graph connectivity

Ξ Set of neighbors

H Incidence matrix

A Adjacency matrix

W Weight matrix

L Laplacian matrix

FORMATION CONTROL

b Bias matrix

αD Desired formation orientation

Ku Gain of the formation distance control

Kφ Gain of the orientation control

FLOCKING

Vα Set of α-agents (robots)

Vβ Set of β-agents (obstacles)

Vγ Set of γ-agents (virtual leaders)

bA Desired agent-agent distance

bO Desired agent-obstacle distance

∆A Agent-agent interaction range

∆O Agent-obstacle interaction range

φ Function for a smooth pairwise attractive or repulsive potential

nab Vector from pa to pb

VL Virtual leader agent at position pVL

KC Gain of flocking forces

Kx Positive gain, x ∈ {α,β,γ}

ADAPTIVE FORMATIONS

η Local density of obstacles ahead estimated by robot Ri

SLF T Specification of the formation shape adaptation

ψ Transformation function local to robot Ri

b̃ Transformed bias matrix

e A Measure of LFT reactivity
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Mathematical Symbols

COOPERATIVE LOCALIZATION

RANDOM FINITE SETS NOTATION

X State space

Z Observation space

F (X ) Collection of all finite subsets of X
F (Z) Collection of all finite subsets of Z
Xk Multi-target state (finite set) at time k

Zk Multi-target observation (finite set) at time k

M(k) The number of the targets at time k

N (k) The number of the measurements at time k

x Single-target state vector

z Single measurement

Θk (x) RFS generated by target with a state x at time k

Sk|k−1(ζ) RFS of the target state ζ at time k

Γ RFS of spontaneous birth

K Clutter RFS

fk|k−1(·|·) Transition density

gk (·|·) Likelihood function

pS Survival probability

pD Detection probability

GAUSSIAN MIXTURE PROBABILITY HYPOTHESIS DENSITY FILTER NOTATION

v Intensity

vS,k|k−1(x) Survival intensity

vT (x) Missed-detection term of posterior intensity

vD (x;z) Detection term of posterior intensity

γ(x) Birth intensity

κ(z) Clutter intensity

N (·;m,P ) Gaussian density with mean m and covariance P

J Number of Gaussian components

w (i ) Weight of Gaussian component i

Jmax Max number of components after selection

TS Weight threshold used in selection step

US Distance threshold used in selection step

TSE Weight threshold used for state extraction
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COOPERATIVE LOCALIZATION

PROBLEM DESCRIPTION

F State transition matrix

Q Process noise covariance

H Observation matrix

U Observation noise covariance

σ2
f Standard deviation of the process noise

σ2
ε Standard deviation of the measurement noise

δ Time step

rs Sensing range

[β1,β2] Intersection of occlusion regions

ō(c)
p OSPA metric

eL Self-localization error

eM Measurement error

pD,s Sensor-dependent missed detection probability

pmd Message drop probability

FORMATION INFORMATION GM-PHD FILTER NOTATION

vζ Coalition intensity

o(·,·) Measure for sorting in the coalition step

Φζ,0 Initial budget in the coalition step

hi Projected formation state with respect to Ri

êS Estimated association error

A∆ Best role assignment
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SOCIAL BEHAVIORS

METHODS FOR MIXED HUMAN-ROBOT FORMATIONS

∆S,h Proxemics: range of social space of human Hh

∆P,h Proxemics: range of personal space of human Hh

∆I ,h Proxemics: range of intimate space of human Hh

ΓR Force generating a repulsive field around humans

WR Collection of the human repulsion weights

Ko Gain of the repulsive weight

∆a Activation range of the human repulsive force

∆c Imminent collision range

SOCIAL FORCES MODEL

Γd Attractive force driving human towards destination d

Γo Force preventing human colliding with obstacles o ∈O

Γh′ Force for repulsive effects from the other humans Hh′ ∈ H

Γr Force for repulsive effects from the robot Rr ∈ R

K f x Gain of the force, x ∈ {d ,o,h,r }

γ f Area of influence of the force Γd

∆x Areas of influence of the SFM forces x ∈ {o,h,r }

σ f Standard deviation for human motion fluctuation

ṗd Desired human velocity

τ f Relaxation time in for calculating Γd
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Mathematical Symbols

INSTITUTIONAL FORMALISM

GENERAL DEFINITIONS

I Institution

D Domain

G Grounding

N Set of norms

N A Active norms

N T Satisfied norms

n ∈N Norm

F Feasibility relation

K Norm realization

C Case Study

DOMAIN DESCRIPTION

A Set of actions

B Set of behaviors

R Set of state variables

C Grounded conditions

K Grounded knowledge

L Set of experience measures

BEHAVIOR SPECIFICATION

Λk Set of modalities of behavior Bk

λ ∈Λk A behavior modality

P Set of parameters

p ∈ P Parameter

Vp Set of values of parameter p

v ∈Vp Value of parameter p

RULES

r N Requirement rules

r P Choice rules

r V Value rules

r L Adaptation rules

r B Application rules

r O Outcome rules
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Mathematical Symbols

CASE STUDIES

CASE STUDY CI

ΦAC S Activity Critical Area

TQ AT Quiet Activity Time

sA Appropriate Speed

IM Interaction Mode

SM Speech Mode

FS Formation Shape

CASE STUDY CI I I

EA Exhibition Area

Ω Safe Areas

VL Virtual Point

FVL Former Virtual Point

TF Team Social Force, TF = {w f f , w f l }

TL Follower Lost Distance

TC Narrow Passage Mark

o Obstacle Characteristics, o ∈ {OR ,OV ,OH }
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[62] R. Gockley and M. J. Matarić, “Encouraging physical therapy compliance with a hands-

off mobile robot”, in Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-

robot Interaction, 2006, pp. 150–155.

[63] E. T. Hall, The hidden dimension. Doubleday & Co, 1966.

[64] J. Rios-Martinez, “Socially-aware robot navigation : combining risk assessment and

social conventions”, PhD thesis, Université de Grenoble, 2013.

[65] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction: crowd-aware robot

navigation with attention-based deep reinforcement learning”, IEEE International

Conference on Robotics and Automation ICRA, pp. 6015–6022, 2019.

[66] J. A. Kirkland and A. A. Maciejewski, “A simulation of attempts to influence crowd

dynamics”, in IEEE International International on Systems, Man and Cybernetics, vol. 5,

2003, pp. 4328–4333.

[67] G. Ferrer, A. G. Zulueta, F. H. Cotarelo, and A. Sanfeliu, “Robot social-aware navigation

framework to accompany people walking side-by-side”, Autonomous Robots, vol. 41,

no. 4, pp. 775–793, 2017.

271



Bibliography

[68] A. Alahi, V. Ramanathan, K. Goel, A. Robicquet, A. Sadeghian, L. Fei-Fei, and S. Savarese,

“Learning to predict human behavior in crowded scenes”, Group and Crowd Behavior

for Computer Vision, pp. 183–207, 2017.

[69] A. Vega, L. J. Manso, D. G. Macharet, P. Bustos, and P. Núñez, “Socially aware robot

navigation system in human-populated and interactive environments based on an

adaptive spatial density function and space affordances”, Pattern Recognition Letters,

vol. 118, pp. 72 –84, 2019.

[70] G. Diego and T. K. O. Arras, “Please do not disturb! minimum interference coverage

for social robots”, in 2011 IEEE/RSJ International Conference on Intelligent Robots and

Systems, IEEE, 2011, pp. 1968–1973.

[71] K. L. Koay, E. A. Sisbot, D. S. Syrdal, M. L. Walters, K. Dautenhahn, and R. Alami,

“Exploratory study of a robot approaching a person in the context of handing over

an object.”, in AAAI Spring Symposium: Multidisciplinary Collaboration For Socially

Assistive Robotics, 2007, pp. 18–24.

[72] J. Kessler, C. Schroeter, and H.-M. Gross, “Approaching a person in a socially accept-

able manner using a fast marching planner”, in Intelligent Robotics and Applications,

Springer Berlin Heidelberg, 2011, pp. 368–377.

[73] J. T. Butler and A. Agah, “Psychological effects of behavior patterns of a mobile personal

robot”, Autonomous Robots, vol. 10, no. 2, pp. 185–202, 2001.

[74] L. Takayama and C. Pantofaru, “Influences on proxemic behaviors in human-robot in-

teraction”, in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems,

IEEE, 2009, pp. 5495–5502.

[75] A. K. Pandey and R. Alami, “A framework towards a socially aware mobile robot motion

in human-centered dynamic environment”, in Proceedings of IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2010, pp. 5855–5860.

[76] E. A. Martinez-Garcia, Ohya Akihisa, and Shin’ichi Yuta, “Crowding and guiding groups

of humans by teams of mobile robots”, in IEEE Workshop on Advanced Robotics and its

Social Impacts, 2005, pp. 91–96.

[77] J. Guzzi, A. Giusti, L. M. Gambardella, G. Theraulaz, and G. A. Di Caro, “Human-friendly

robot navigation in dynamic environments”, in 2013 IEEE International Conference on

Robotics and Automation, 2013, pp. 423–430.

[78] A. Sgorbissa, I. Papadopoulos, B. Bruno, C. Koulouglioti, and C. Recchiuto, “Encoding

guidelines for a culturally competent robot for elderly care”, in 2018 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), 2018, pp. 1988–1995.

[79] R. Kirby, R. Simmons, and J. Forlizzi, “Companion: a constraint-optimizing method

for person-acceptable navigation”, in 18th IEEE Int Symposium on Robot and Human

Interactive Communication, 2009, pp. 607–612.

272



Bibliography

[80] M. Shiomi, T. Kanda, D. F. Glas, S. Satake, H. Ishiguro, and N. Hagita, “Field trial of

networked social robots in a shopping mall”, in 2009 IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2009, pp. 2846–2853.

[81] R. R. Murphy, “Human-robot interaction in rescue robotics”, IEEE Transactions on

Systems, Man, and Cybernetics, vol. 34, no. 2, pp. 138–153, 2004.

[82] R. Vaughan, N. Sumpter, J. Henderson, A. Frost, and S. Cameron, “Experiments in

automatic flock control”, Robotics and Autonomous Systems, vol. 31, no. 1, pp. 109 –117,

2000.

[83] M. A. Potter, L. Meeden, and A. C. Schultz, “Heterogeneity in the coevolved behaviors

of mobile robots: the emergence of specialists”, in Proceedings of the 17th International

Joint Conference on Artificial Intelligence - Volume 2, ser. IJCAI’01, Morgan Kaufmann

Publishers Inc., 2001, pp. 1337–1343.

[84] J. Alonso-Mora, E. Montijano, T. Nägeli, O. Hilliges, M. Schwager, and D. Rus, “Dis-

tributed multi-robot formation control in dynamic environments”, Autonomous Robots,

vol. 43, no. 5, pp. 1079–1100, 2019.

[85] S. Zhang and Y. Guo, “Distributed multi-robot evacuation incorporating human behav-

ior”, in 2013 10th IEEE International Conference on Control and Automation (ICCA),

2013, pp. 864–869.

[86] B. Capelli, C. Secchi, and L. Sabattini, “Communication through motion: legibility of

multi-robot systems”, in 2019 International Symposium on Multi-Robot and Multi-

Agent Systems (MRS), 2019, pp. 126–132.

[87] A. Garrell and A. Sanfeliu, “Cooperative social robots to accompany groups of people”,

The International Journal of Robotics Research, vol. 31, no. 13, pp. 1675–1701, 2012.

[88] Z. Talebpour and A. Martinoli, “Adaptive risk-based replanning for human-aware

multi-robot task allocation with local perception”, IEEE Robotics and Automation

Letters, vol. 4, no. 4, pp. 3790–3797, 2019.

[89] C. Godsil and G. Royle, Algebraic Graph Theory, ser. Graduate Texts in Mathematics.

volume 207 of Graduate Texts in Mathematics. Springer, 2001, vol. 207.

[90] R. Falconi, “Coordinated control of robotic swarms in unknown environments”, PhD

thesis, Università di Bologna, 2009.

[91] Meng Ji, A. Muhammad, and M. Egerstedt, “Leader-based multi-agent coordination:

controllability and optimal control”, in 2006 American Control Conference, 2006.

[92] S. A. Gowal, “A Framework for Graph-Based Distributed Rendezvous of Nonholonomic

Multi-Robot Systems”, PhD thesis, EPFL, Lausanne, 2013.

[93] A. K. Pandey and R. Alami, “A step towards a sociable robot guide which monitors

and adapts to the person’s activities”, in 2009 International Conference on Advanced

Robotics, 2009, pp. 1–8.

273



Bibliography

[94] Z. Xie, Y. Long, and H. Cheng, “Distributed adaptive formation control of a team of

aerial robots in cluttered environments”, in International Conference on Intelligent

Robotics and Applications, Springer, 2019, pp. 544–558.

[95] K. Mease, S Bharadwaj, and S Iravanchy, “Timescale analysis for nonlinear dynamical

systems”, Journal of guidance, control, and dynamics, vol. 26, no. 2, pp. 318–330, 2003.

[96] M. Vasic and A. Martinoli, “A collaborative sensor fusion algorithm for multi-object

tracking using a gaussian mixture probability hypothesis density filter”, Proceedings of

the 2015 IEEE 18th International International on Intelligent Transportation Systems,

ITSC ’15, pp. 491–498, 2015.

[97] C. Qiu, Z. Zhang, H. Lu, and H. Luo, “A survey of motion-based multitarget tracking

methods”, Progress In Electromagnetics Research B, vol. 62, pp. 195–223, 2015.

[98] Y. Bar-Shalom and T. Fortmann, Tracking and Data Association, ser. Mathematics in

Science and Engineering Series. Academic Press, 1988.

[99] S. Blackman and R. Popoli, Design and Analysis of Modern Tracking Systems, ser. Artech

House radar library. Artech House, 1999.

[100] R. L. Streit and T. E. Luginbuhl, “Maximum likelihood method for probabilistic multi-

hypothesis tracking”, in SPIE’s International Symposium on Optical Engineering and

Photonics in Aerospace Sensing, 1994, pp. 394–405.

[101] Y. Bar-Shalom, “Multitarget-multisensor tracking: advanced applications”, Norwood,

MA, Artech House, 1990, 391 p., vol. 1, 1990.

[102] S. Oh, S. Russell, and S. Sastry, “Markov chain monte carlo data association for multi-

target tracking”, IEEE Transactions on Automatic Control, vol. 54, no. 3, pp. 481–497,

2009.

[103] R. P. Mahler, “Multitarget bayes filtering via first-order multitarget moments”, IEEE

Transactions on Aerospace and Electronic systems, vol. 39, no. 4, pp. 1152–1178, 2003.

[104] M. Adams, B. N. Vo, R. Mahler, and J. Mullane, “Slam gets a phd: new concepts in map

estimation”, IEEE Robotics Automation Magazine, vol. 21, no. 2, pp. 26–37, 2014.

[105] D. Moratuwage, B. N. Vo, and D. Wang, “A hierarchical approach to the multi-vehicle

slam problem”, in 2012 15th International Conference on Information Fusion, 2012,

pp. 1119–1125.

[106] P. Dames and V. Kumar, “Cooperative multi-target localization with noisy sensors”, in

International International on Robotics and Automation, 2013, pp. 1877–1883.

[107] P. Dames, “Distributed multi-target search and tracking using the phd filter”, in Inter-

national Symposium on Multi-Robot and Multi-Agent Systems, 2017, pp. 1–8.

[108] K. R. Sapkota, S. Roelofsen, A. Rozantsev, V. Lepetit, D. Gillet, P. Fua, and A. Martinoli,

“Vision-based unmanned aerial vehicle detection and tracking for sense and avoid

systems”, in IEEE International Conference on Intelligent Robots and Systems, 2016,

pp. 1556–1561.

274



Bibliography

[109] J. Melo and A. Matos, “A phd filter for tracking multiple auvs”, in 2014 Oceans - St.

John’s, 2014, pp. 1–8.

[110] H. W. Kuhn, “The hungarian method for the assignment problem”, Naval Research

Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[111] D. Schuhmacher, B.-T. Vo, and B.-N. Vo, “A consistent metric for performance eval-

uation of multi-object filters”, IEEE Transactions on Signal Processing, vol. 56, no. 8,

pp. 3447–3457, 2008.

[112] R Ventura and A Ahmad, “Towards optimal robot navigation in urban homes”, in

RoboCup 2014: Robot World Cup XVIII, ser. Lecture Notes in Computer Science ; 8992,

Springer, 2015, pp. 318–331.

[113] W. Kasper and M. E. Streit, Institutional Economics, ser. Books 1582. Edward Elgar

Publishing, 1999.

[114] G. Boella, L. Torre, and H. Verhagen, “Introduction to normative multiagent systems”,

Computational & Mathem. Organization Theory, vol. 12, no. 2-3, pp. 71–79, 2006.

[115] G. M. Hodgson, “What are institutions?”, Journal of Economic Issues, vol. 40, no. 1,

pp. 1–25, 2006.

[116] E. G. Furubotn and R. Richter, Institutions and Economic Theory: The Contribution of

the New Institutional Economics. University of Michigan Press, 2005.

[117] M. A. Mahmoud, M. S. Ahmad, M. Z. Mohd Yusoff, and A. Mustapha, “A review of

norms and normative multiagent systems”, The Scientific World Journal, vol. 2014,

2014.

[118] E. Ostrom, Understanding Institutional Diversity. Princeton University Press, 2005.

[119] V. Dignum and J. Padget, “Multiagent organizations”, Multiagent systems, vol. 2, pp. 51–

98, 2013.

[120] F. Dechesne and V. Dignum, “No smoking here: compliance differences between le-

gal and social norms”, in The 10th International Conference on Autonomous Agents

and Multiagent Systems - Volume 3, ser. AAMAS ’11, International Foundation for

Autonomous Agents and Multiagent Systems, 2011, pp. 1205–1206.

[121] M. Hechter and K.-D. Opp, Social norms. Russell Sage Foundation, 2001.

[122] D. C. North, “Institutions”, Journal of Economic Perspectives, vol. 5, no. 1, pp. 97–112,

1991.

[123] F. A. Hayek, “Notes on the evolution of systems of rules of conduct”, Studies in philoso-

phy, politics and economics, pp. 66–81, 1967.

[124] M. Polanyi, The tacit dimension. University of Chicago press, 2009.

[125] P. Noriega, “Fencing the open fields: empirical concerns on electronic institutions

(invited paper)”, in Proceedings of the 2005 International Conference on Agents, Norms

and Institutions for Regulated Multi-Agent Systems, ser. AAMAS’05, Springer-Verlag,

2006, pp. 81–98.

275



Bibliography

[126] G. Boella and L. van der Torre, “An architecture of a normative system: counts-as

conditionals, obligations and permissions”, in Proceedings of the Fifth International

Joint Conference on Autonomous Agents and Multiagent Systems, ser. AAMAS ’06, ACM,

2006, pp. 229–231.

[127] J. Carmo and A. J. Jones, “Deontic logic and contrary-to-duties”, in Handbook of

philosophical logic, Springer, 2002, pp. 265–343.

[128] C. D. Hollander and A. S. Wu, “The current state of normative agent-based systems”,

Journal of Artificial Societies and Social Simulation, vol. 14, no. 2, p. 6, 2011.

[129] B. T. R. Savarimuthu and S. Cranefield, “Norm creation, spreading and emergence: a

survey of simulation models of norms in multi-agent systems”, Multiagent and Grid

Systems, vol. 7, no. 1, pp. 21–54, 2011.

[130] D. Grossi and F. Dignum, “From abstract to concrete norms in agent institutions”, in

Formal Approaches to Agent-Based Systems, Springer Berlin Heidelberg, 2005, pp. 12–

29.

[131] R. Malyankar, “A pattern template for intelligent agent systems”, in Agents’ 99 Workshop

on Agent-Based Decision Support for Managing the Internet-Enabled Supply Chain,

1999.

[132] P. Noriega, “Agent mediated auctions: the fishmarket metaphor”, PhD thesis, Universi-

tat Autonoma de Barcelona, 1997.

[133] M. Esteva, “Electronic institutions: from specification to development”, PhD thesis,

Universitat Politecnica de Catalunya, 2003.

[134] A. García-Camino, J. A. Rodríguez-Aguilar, C. Sierra, and W. Vasconcelos, “Constraint

rule-based programming of norms for electronic institutions”, Autonomous agents

and multi-agent systems, vol. 18, no. 1, pp. 186–217, 2009.

[135] J. Vázquez-Salceda, “The role of norms and electronic institutions in multi-agent

systems applied to complex domains. the harmonia framework”, Ai Communications,

vol. 16, no. 3, pp. 209–212, 2003.

[136] M. Dignum, “A model for organizational interaction: based on agents, founded in

logic”, PhD thesis, Utrecht University, 2004.

[137] J. Vázquez-Salceda, V. Dignum, and F. Dignum, “Organizing multiagent systems”,

Autonomous Agents and Multi-Agent Systems, vol. 11, no. 3, pp. 307–360, 2005.

[138] M. Esteva, D. De la Cruz, and C. Sierra, “ISLANDER: an electronic institutions editor”, in

Proceedings of the International Joint Conference on Autonomous Agents and Multiagent

Systems, 2002, pp. 1045–1052.

[139] K. M. Carley and L. Gasser, “Multiagent systems”, in, MIT Press, 1999, ch. Computa-

tional Organization Theory, pp. 299–330.

[140] F. Zambonelli, N. R. Jennings, and M. Wooldridge, “Developing multiagent systems:

the gaia methodology”, ACM Transactions on Software Engineering and Methodology

(TOSEM), vol. 12, no. 3, pp. 317–370, 2003.

276



Bibliography

[141] M. Hannoun, O. Boissier, J. S. Sichman, and C. Sayettat, “MOISE: an organizational

model for multi-agent systems”, in Advances in Artificial Intelligence, 2000, pp. 156–

165.

[142] M. Amiguet, J.-P. Müller, J.-A. Baez-Barranco, and A. Nagy, “The moca platform”, in

International Workshop on Multi-Agent Systems and Agent-Based Simulation, Springer,

2002, pp. 70–88.

[143] J.-J. C. Meyer, “Deontic logic: a concise overview”, in Deontic Logic in Computer Science:

Normative System Specification, Wiley, 1993, pp. 3–16.

[144] H. Aldewereld, D. Grossi, J. Vázquez-Salceda, and F. Dignum, “Designing normative

behaviour via landmarks”, in Coordination, Organizations, Institutions, and Norms in

Multi-Agent Systems, Springer Berlin Heidelberg, 2006, pp. 157–169.

[145] F. Dignum, “Abstract norms and electronic institutions”, in Proceedings of Interna-

tional Workshop on Regulated Agent-Based Social Systems: Theories and Applications

(RASTA’02), 2002, pp. 93–104.

[146] P. Silva, J. N. Pereira, and P. U. Lima, “Institutional robotics”, International Journal of

Social Robotics, vol. 7, no. 5, pp. 825–840, 2015.

[147] J. N. Pereira, “Advancing social interactions among robots: an institutional economics-

based approach to distributed robotic systems”, PhD thesis, EPFL, 2014.

[148] J. N. Pereira, P. Silva, P. U. Lima, and A. Martinoli, “Formalization, implementation, and

modeling of institutional controllers for distributed robotic systems”, Artificial Life,

vol. 20, no. 1, pp. 127–141, 2013.

[149] S. Tomic, F. Pecora, and A. Saffiotti, “Too cool for school - adding social constraints in

human aware planning”, in Proceedings of the 9th International Workshop on Cognitive

Robotics, CogRob (ECAI-2014), 2014.

[150] S. Alili, R. Alami, and V. Montreuil, “A task planner for an autonomous social robot”, in

Distributed Autonomous Robotic Systems 8. Springer Berlin Heidelberg, 2009, pp. 335–

344.

[151] F. M. Carlucci, L. Nardi, L. Iocchi, and D. Nardi, “Explicit representation of social norms

for social robots”, in Proceedings of IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2015, pp. 4191–4196.

[152] E. Ferrera, J. Capitán, A. R. Castano, and P. J. Marrón, “Decentralized safe conflict

resolution for multiple robots in dense scenarios”, Robotics and Autonomous Systems,

vol. 91, pp. 179 –193, 2017.

[153] B. Okal and K. O. Arras, “Formalizing normative robot behavior”, in 8th International

Conference on Social Robotics, 2016, pp. 62–71.

[154] E. A. Sisbot, L. F. Marin-Urias, R. Alami, and T. Simeon, “A human aware mobile robot

motion planner”, IEEE Trans on Robotics, vol. 23, no. 5, pp. 874–883, 2007.

277



Bibliography

[155] R. Triebel, K. Arras, R. Alami, L. Beyer, S. Breuers, R. Chatila, M. Chetouani, D. Cremers,

V. Evers, M. Fiore, H. Hung, O. A. I. Ramírez, M. Joosse, H. Khambhaita, T. Kucner, B.

Leibe, A. J. Lilienthal, T. Linder, M. Lohse, M. Magnusson, B. Okal, L. Palmieri, U. Rafi,

M. van Rooij, and L. Zhang, “Spencer: a socially aware service robot for passenger

guidance and help in busy airports”, in Field and Service Robotics: Results of the 10th

International Conference. Springer International Publishing, 2016, pp. 607–622.

[156] C. P. Lam, C. T. Chou, K. H. Chiang, and L. C. Fu, “Human-centered robot naviga-

tion - towards a harmoniously human-robot coexisting environment”, IEEE Trans on

Robotics, vol. 27, no. 1, pp. 99–112, 2011.

[157] S. G. J.V. Gomez Nikolaos Mavridis, “Social path planning: generic human-robot in-

teraction framework for robotic navigation tasks”, in IROS workshop on Cognitive

Robotics Systems: Replicating Human Actions and Activities, 2013.

[158] É. Pacherie, “The phenomenology of joint action: self-agency vs. joint-agency”, Joint

Attention: New Developments, 2012.

[159] G. Knoblich, S. Butterfill, and N. Sebanz, “Chapter three - psychological research on

joint action: theory and data”, in Advances in Research and Theory, ser. Psychology of

Learning and Motivation, vol. 54, Academic Press, 2011, pp. 59 –101.

[160] A. Reckwitz, “Toward a theory of social practices: a development in culturalist theoriz-

ing”, European Journal of Social Theory, vol. 5, no. 2, pp. 243–263, 2002.

[161] A. Clodic, E. Pacherie, R. Alami, and R. Chatila, “Key elements for human-robot joint

action”, in Sociality and Normativity for Robots: Philosophical Inquiries into Human-

Robot Interactions. Springer International Publishing, 2017, pp. 159–177.

[162] A. Clodic, J. Vázquez-Salceda, F. Dignum, S. Mascarenhas, V. Dignum, A. Augello, M.

Gentile, and R. Alami, On the Pertinence of Social Practices for Social Robotics. IOS Press.

Envisioning Robots in Society – Power, Politics, and Public Space, 2018, pp. 36–74.

[163] U. Köckemann, “Constraint-based methods for human-aware planning”, PhD thesis,

Örebro University, School of Science and Technology, 2016, p. 194.

[164] S. Lemaignan, M. Warnier, E. A. Sisbot, A. Clodic, and R. Alami, “Artificial cognition for

social human–robot interaction: an implementation”, Artificial Intelligence, vol. 247,

pp. 45 –69, 2017, Special Issue on AI and Robotics.

[165] S. Devin, A. Clodic, and R. Alami, “About decisions during human-robot shared plan

achievement: who should act and how?”, in Social Robotics, Springer International

Publishing, 2017, pp. 453–463.

[166] E. Ostrom, Governing the Commons: The Evolution of Institutions for Collective Action.

Cambridge University Press, 1990.

[167] M. Casper, “A definition of “social environment””, American Journal of Public Health,

vol. 91, p. 465, 2001.

278



Bibliography

[168] C. I. Mavrogiannis, W. B. Thomason, and R. A. Knepper, “Social momentum: a frame-

work for legible navigation in dynamic multi-agent environments”, in Proceedings of

the 2018 ACM/IEEE International Conference on Human-Robot Interaction, ser. HRI ’18,

2018, 361–369.

[169] H. Khambhaita and R. Alami, “Viewing robot navigation in human environment as a

cooperative activity”, in Robotics Research, Springer International Publishing, 2020,

pp. 285–300.
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